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TWO REMARKS ON CONTACT METRIC STRUCTURES
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1. Introduction. This paper is a continuation of the author’s
paper [1] in which it was shown that there are no flat contact metric
structures on a contact manifold of dimension = 5. Although this
result is a non-existence theorem, the argument yields some positive
results on certain contact metric manifolds. Here we prove two such
results.

THEOREM A. A contact metric manifold M*™** is a K-contact mani-
Sold if and only if the Ricei curvature in the direction of the chara-
cteristic vector field & is equal to 2n.

THEOREM B. Let M** be a contact metric manifold and suppose
that R(X, Y)é =0 for all vector fields X and Y. Then M®>** is locally
the product of a Aat (n + 1)-dimensional manifold and an n-dimen-
stonal manifold of positive constant curvature 4. :

In Section 4 we discuss the contact structure on the tangent sphere
bundle of a flat Riemannian manifold as an example of Theorem B.

2. Proof of Theorem A. Throughout this paper we use the same
notation and terminology that was used in [1]. Recall that a contact
metric structure (@, &, 7, g) is said to be K-contact if the vector field ¢
is Killing. For a contact metric structure one automatically has

(Z9)(X, &) = en(X) — (& X]) = (&(X) =0
by the invariance of the contact form 7 under the l-parameter group
of & Since d7 is also invariant and d79(X, Y) = g(X, ¢Y), we see that
& is Killing if and only if e = 0.

It is well known that on a K-contact manifold the sectional curva-
ture of a plane section containing ¢ is equal to 1, [3]. Thus we shall
only prove the sufficiency in Theorem A and do so by showing that the
operator h = (1/2).%,p vanishes.

In [1] the following general formulas for a contact metric structure
(p, & 7, g) were obtained

@2.1) Vit = —pX — phX



320 D. E. BLAIR

and

2.2) %(R(E, X): — pRE, 9X)8) = B*X + ¢'X .

Now let {X,, X,,,, &} ¢ =1, ---, n be a local orthonormal basis such that
X,.. = pX,. Then as hf =0 and @& =0, taking the inner product of
(2.2) with X belonging to the basis and summing we see that

tr h* = 2n — g(Q§, &)

where Q is the Ricei curvature operator.

Now if the Ricei curvature in the direction & is equal to 2n, we
have trh* = 0. It was also shown in [1] that % is a symmetric operator
and hence its eigenvalues are real. The eigenvalues of h* are therefore
non-negative so that tr »* = 0 implies that » = 0 as desired.

3. Proof of Theorem B. From equation (2.2) we see that the con-
dition R(X, Y)¢ = 0 for all vector fields X, Y implies that h* = —¢* in
particular note that A& = 0 and rank A = 2n. Thus the non-zero eigen-
values of h are +1 and their eigenvectors are orthogonal to £. Now
from dn(X, Y) = (1/2)(9(Fx&, Y) — g(Fvé, X)) = 9(X, Y) and equation
(2.1) one can easily see that ¢h + hp = 0. Thus if X is an eigenvector
of +1 (respectively —1), X is an eigenvector of —1 (respectively
+1). Consequently the contact distribution D defined by =10 is
decomposed into the orthogonal eigenspaces of +1 which we denote by
[+1] and [—1] respectively. We denote by [—1] €D [£] the distribution
spanned by [—1] and the vector field £. Note that equation (2.1) says
that 7z =0 for Xe[—1] and Vy¢ = —2pX for Xe[+1].

In [1] it was shown that [—1], [—1] D [£] and [+1] are integrable.
Thus M**! is locally the product of an integral submanifold M"™ of
[—1] D [¢] and an integral submanifold M* of [+1]. In particular we

can choose coordinates (u’ ---, ™) such that d/ou’, ---, d/ou" e [—1] P [£]
and X, = o/ou""te[+1], 1 =1, ---, n. In [1] the following formulas were
obtained

8.1) Voxr@X; =0,

(3.2) 97 ox X5, X) = 0,

and

3.3) 9V x9Xi 9X)) — 9V 2, Xi X)) = —49(X;, X;)9(X,, X)) .

Now since {pX;, &} is a local basis of tangent vector fields on M"*,
equation (8.1) and R(X, Y )& = 0 show that M** is flat.

Next notice that /,, X; =0. For, we have equation (3.2), g(V,x,X;,
9X,) = —9(X;, Vox,pX:) = 0 by equation (3.1) and g(7,r,X;, &) = —9(X;,
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Vox,£) =0 by equation (2.1). Now interchanging ¢ and % in (3.3) and
subtracting we have
9(R(X, X)pX;, X)) — 9(R(X,, X)X, X))
= —4g9(X,, X;)9(X,, Xi) + 49(X,, X)9(X,, X3) ©
Using V,x, X; = 0 and [pX,, pX,] =0 we see that g(R(X,, X))pX,, pX,) =
9(R(pX;, pX)X;, X;) = 0 and hence g(R(X,, X,)X;, X)) = 49(X,, X,)9(X,,
X)) — 9(X,, X;))9(X,, X,)) completing the proof.

4. The tangent sphere bundle. In this section we shall show that
the tangent sphere bundle of a flat Riemannian manifold admits a con-
tact metric structure satisfying R(X, Y)¢ =0. Y. Tashiro [6] showed
that this structure was K-contact if and only if the base manifold has
positive constant curvature 1 in which case the structure is Sasakian.

We first give some preliminaries on the tangent bundle. Let M be
an (n + 1)-dimensional manifold and 7: TM — M its tangent bundle. If
(%', +--, 2"™) are local coordinates on M, we set ¢° = x‘-T; then (¢, ---,
q"™) together with the flbre coordinates (v, ---, ™) form local coordi-
nates on TM. If X is a vector field on M, its wvertical lift X" is defined
by X"w = w(X)%T where @ is a 1l-form which on the left side of this
equation is regarded as a function on TM. For an affine connection D
on M one defines the horizontal lift X¥ of X; see Yano and Ishihara
[7] or Dombrowski [2] for details. The connection map K:TTM— TM
is then given by KX¥ = 0 and K(X";) = Xzz), Z€TM. Similarly TM
admits an almost complex structure defined by JX¥ = XV and JX" =
— X#Z, Dombrowski [2] shows that J is integrable if and only if D
has vanishing curvature R and torsion.

If now G is the Riemannian metric on M and D its Riemannian con-
nection, we define a Riemannian metric § on TM, called the Sasak:
metric [4], by
(4.1) idX,Y)=G6qx X, 7.Y)+ GKX, KY)
where here X and Y are vectors on TM. The Riemannian connection
V of g is given at a point Z e TM by

FxnY"), = (DxY )", — —;—(E(X, Y)z)y

[ vy — __i H VY
4.2) Yy = — S(B(Y, Z)X)" + (DxY)'s

For YH), = — —é—@(x, Z)Y)"

ﬁXVYV = .



322 D. E. BLAIR

The curvature tensor of 7 will be denoted by R. § is a Hermitian
metric for the almost complex structure J. On TM we define a 1-form
B by the local expression 8 = 3, G,;v’dg’. As is well known B induces a
contact structure on the tangent sphere bundle T, M. Moreover 2dS is
the fundamental 2-form of the almost Hermitian structure (J, G). Sum-
ming up we see that (J, G) is an almost Kahler structure on 7'M which
is Kahlerian if and only if M is flat [2, 5].

As is customary we regard T.M as the bundle of unit tangent
vectors; however owing to the factor 1/2 in the coboundary formula for
dn, a homothetic change of metric will be made. (If one adopts the
convention that the 1/2 does not appear, this change is not necessary,
but to be consistent the odd-dimensional sphere as a standard example
of a K-contact manifold should then be taken as a sphere of radius 2.)

Now T.M is a hypersurface of T'M and the vector field »(9/0v’) is
a unit normal as well as the position vector for a point Z in a fibre of
TM. ¢ will denote the immersion, © = To¢ the projection map and ¢’ =
¢*g the induced metric. Define ¢', &, and %" on T.\M by, ¢, = —JN
and Ji, X =¢,0'X + 7'(X)N; (@, &,7,9') is then an almost contact
metric structure. Moreover 7’ is the contact form on 7. M induced from
B on TM as one can easily check. However ¢'(X, ¢'Y) = 2d7'(X, Y), so
that (@', &, 7', ¢') is not a contact metric structure. Of course, the diffi-
culty is easily rectified and we shall take 7 = (1/2)7, & = 2&', ¢ = ¢/,
g = (1/4)¢’ as our contact metric structure on T.M.

Let 7 be the Riemannian connection of g. For completeness we give
explicitly the covariant derivatives of & and ¢. X and Y will denote
horizontal tangent vector fields to T.M and U and W will denote verti-
cal tangent vector fields. Using ¢,& = 20%d/0x")¥ and equations (4.2) we
obtain at a point Ze T.Mc TM

(4.3) €V x8)z = —(B(m: X, Z)Z)"
(4.4) €V vd)z = —2,0U; — (B(Ke, U, 2)2)" ,

(7)Y, = —%(I_%(ﬂ*X, Z), Y )
(@) U); = % tan (R(z, X, Z)Ke,U)
o) X)s = — 29(X)ey Uy + %tan (R(Ke, U, Z)w, X

4.5) TP W), = 20(U, Wb, + %(B(Kz* U, Z)Ke, W)"
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where tan denotes the tangential part.
We can now prove the following theorem.

THEOREM C. The contact metric structure (o, & 7, g) on T.M satisfies
R, U)e =0 for all vertical vector fields U if and only if M is flat
in which case R(X, Y)& = 0 for all vector fields X and Y on T, M.

Proor. Using equation (4.2) we can easily obtain
KR(X", U"Y*® = —i—E(X, R(U, 2)Y)Z + %E(X, Y)\u

for any three vector fields X, U and Y on M. If now we let U be a
vertical tangent vector field on T\ M, then R(¢, U)é = 0 implies that
R(Z, R(Ke U, Z)Z)Z =0
and hence that
R(Z, R(X, Z2)Z)Z = 0
for all vectors X and Z on M. Therefore
0=G(R(Z, R(Z, X)Z)Z, X) = | K(Z, X)Z|!

that is R(Z, X)Z = 0 for all vectors X and Z on M. Linearizing this
and using the Bianchi identity we have that R(X, Y)Z =0 for all X, Y
and Z on M.

Conversely if M is flat, equations (4.3) and (4.4) give V& = 0 for
X horizontal and V,&é = — 2pU for U vertical. Thus the vertical distri-
bution on T, M is the [+ 1] distribution of our earlier sections and the
horizontal distribution is the [— 1] @ [£] distribution. Moreover by the
flatness of M these distributions are integrable and hence for X and Y
horizontal on T.M and U and W vertical we may take these as coordi-
nate vectors as in Section 3. Now R(X, Y)& = 0 is trivial,

RX, U)t = —2 yoU = 0
by equation (3.1), and
R(U, W)t = =20y, W + 2VupU
—200yp)W + 20V yp)U
= —4g(U, W)& + 49(W, U):
=0

i

by equation (4.5).
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