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1. Introduction. Let M be a von Neumann algebra and let {&,};cx
be a flow by which we mean a o-weakly continuous one-parameter group
of *-automorphisms on M. Let H>(x) be the set of all elements of M
with non-negative spectrum with respect to {a.},.r. Recently the struec-
ture of H*(a) has been investigated by Kawamura-Tomiyama [9], Loebl-
Muhly [11] and the author [15]. It is important to study the structure
of H*(a) in view of the role played by the disk algebra over the unit
circle. Furthermore H<“(«) happens to become a subdiagonal algebra
which may be regarded as a non-commutative, weak*-Dirichlet algebra.
On the other hand, as a generalization of the Hardy space H? over the
unit circle, several authors studied the Hardy spaces in the L?*-space
taking values in a Hilbert space ([4], [14], etc.) or a von Neumann
algebra, in particular, the ring of all » X » matrices over the complex
numbers ([1], [5], [6], etc.). The latter is considered as non-commutative
Hardy spaces.

Our objective in this paper is to define and investigate the non-
commutative Hardy spaces H”(c) associated with {a,},.r in case M has
a faithful, normal, a,-invariant finite trace. The method is based on the
theory of spectral subspaces for a flow and the non-commutative theory
of integration for a finite von Neumann algebra. Now we assume that
there is a faithful, normal, a,-invariant, finite trace = on M. TUsing the
non-commutative integration theory with respect to z, we consider Banach
spaces L?(M, 7), 1 < p < . In §2, we define H?(c) and H?(«) and study
their basic properties. In §3, we show examples of H?(@). In §4, we
consider the doubly invariant subspace theorem for H>(e) in L*(M, )
which is a generalization of Wiener’s theorem. Let _#Z be a closed
subspace of L*(M, ). If _# 1is a left doubly invariant subspace of
L*(M, z) in the sence that H*(@).# < .# and H>(a)*.# < _#, then
there exists a projection e¢ of M such that .Z = L*(M, 7)e. In §5, we
consider the simply invariant subspace theorem for H>=(a) in L*(M, )
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which is an extension of Beurling’s theorem. Let _Z be a left simply
invariant subspace in the sense that [Hy(a).#], & . #, where [Hy(®).#],
is the closed linear span of Hy(a).# in L*(M, 7). If {@},.r is ergodic,
there exists a unitary element % of M such that 27 = H?(@)u.

The author would like to thank Prof. J. Tomiyama for his valuable
suggestions and also Prof. M. Fukamiya for his valuable conversations
and encouragements.

2. The non-commutative Hardy spaces H?(®). Let M be a finite
von Neumann algebra acting on a Hilbert space H. Let {@}..x be a
flow on M. Throughout this paper, we assume that M has a faithful,
a-invariant, normal trace ¢ on M such that (1) = 1. Such a 7 exists,
for example, if {®}.,.r is 2 group of automorphisms leaving the center
of M elementwise fixed, in particular, if M is a factor. Let 1< p <
and we write L?(M, 7) the space of all integrable operators for the gage
space (M, H, 7) such that z(|z|?) < o, |#| = (#*x)"%, in the sence of Segal
[17]. If » = o, we identify M with L~(M, 7). It is well-known that
L*(M, ) becomes a Banach space with the L?-norm ||z||, = z(|z|?)"?, x €
L*(M, ) [18, Theorem 8]. We refer the reader to ([3], [13], [17]) for
the basic properties of the space L?(M, 7). Recall that L'(M, ) may be
identified with the predual of M with respect to the pairing <z, ¥) =
z(xy), ©x € L'(M, 7), y € M [3, Théoréme 5]. Furthermore, in analogy with
the scalar case, the dual of L?(M, 7), 1 < p < o, may be identified with
LY (M, 7), 1/p + 1/q = 1, via the pairing {z, ¥) = t(xy), x € L*(M, 7), y €
LM, 7) |3, Théoréme 7]. Since M is finite and z(1) = 1, we have M C
LM, z)yc L*(M,7), 1 = p < q < o [13, Lemma 3.3] and M is dense in
L?*(M, ) with respect to the L?-norm [3, Proposition 5].

REMARK 2.1. In the case of abelian von Neumann algebras, the
concept of measurable operator just introduced is essentially equivalent
to the concept of measurable function [17, Theorem 2].

PROPOSITION 2.2. For each p, 1 < p < o, {@};cr extends uniquely
to a strongly continuous representation of R of tsometries on L*(M, 7).

Proor. Since 7 is «,-invariant, we have ||a,()||, = ||z||, for ze M.
Therefore {a.},.x extends uniquely to a representation of R of isometries
on L*(M, ) and we also denote this extension of {a,},.r to each L*(M, )
by {@}icr. Let zeL?(M,7). For any ¢ > 0, there exists an element
a€ M such that ||z — al|, <e. For any yeL(M,7), 1/p + 1/qg =1, we
have

lz((@(@) — 2)»)| = [z(@le) — ala)y] + [z((@le) — a)y)| + |z((a — 2)y)|
= lla@ — o)l 1yl + [7((@da) — )| + lla — 2Lyl .
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Since {a,};.r is o-weakly continuous, (@, a)y) is a continuous function
with respect to t. Thus there exists ¢,(>0) such that |[z((a,(a) — a)y)| <¢,
|t| < t,, Hence we have

lt((ax) — o)) < @llyll, + Ve, [t <,

and so {@},cr is o(L*(M, 7), LY(M, 7))-continuous. From a well-known
result {a,};.r is strongly continuous on L?(M, z). This completes the
proof.

Throughout this paper we denote this extension of {a,},.r to L?(M, 7)
by {a.}icr too.
Next, we define a representation a(-) of L'R) into the bounded

[

operators on L*(M,7) by a(f)z =§ f®ax)dt where xeL*(M,7) and
feL(R). For feL'R), we put Z(f) = {te R: f(t) = 0}, where f(t) =
So_o e "f(s)ds, te R. Let Sp,(x) be defined as

NA{Z(f): fe L(R), e(f)x = 0} .

We refer the readers to [2] for the elementary properties of spectra and
spectral subspaces.

DEFINITION 2.3. For 1 < p = <o, the set of all x € L?(}M, 7) such that
Sp.(z) [0, ) is denoted by H?(«¢) and is called the non-commutative
Hardy space of exponent p. Further for 1 < » < « (resp. » = ) the
Lr-norm closure (resp. o-weak closure) of the set of all x € L?(M, ) such
that Sp,(x) (0, «) is denoted by Hi(«).

REMARK 2.4. Let M = L~(T) where T is the unit circle. Let xze¢
2T

L=(T). Putting aux(e®*) = x(e’*™?), s,teR, and z(x) = 1/271'8 x(e®)dt,
0

{@};cr is a flow on M and 7 is a faithful, normal, a,<invariant trace

such that (1) = 1. By Remark 2.1, we have L?(M, 7) = L?(T). Observe
that H?(a) coincides with the Hardy space H” on the unit circle 7.

For a subset S of L?(M, ), 1 < p < oo, [S], denotes the closed (resp.
o-weakly closed if p = «) subspace of L?(M, ) generated by S and we
put S* = {xe LY(M, 7): t(xy) =0,y S}, 1/p + 1/qg = 1.

PROPOSITION 2.5. Let 1<p=< o, 1l/p+1/gq=1 and xecL”(M, 7).
The following assertions are equivalent.

(i) zeH?a).

(ii) t—t(xa(y)) belongs to H*(R) for every y e L‘(M, 7).

(iii) 7(xy) = 0 for every yc H{().

(iv) z(xy) = 0 for every ye Hy(a).
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Proor. (i)=>(ii); Let xe H?(@). For an ¢ > 0, choose a function
fe L(R) such that f lives in [e, ). Then, for every y e LY(M, ), we
have

| ceamnswie = | s @wrea

=o((|” astrat)y)
= z((()x)y)
where f(t) = f(—t), teR. On the other hand

Sp. (@(F)z) < Supp F N Spa(2) < (—c0, —€] N[0, ) = B .

Then we have a(f)x = 0 and so ¢+ r(za,(y)) belongs to H=(R) for every
ye L'(M, 7).

(ii) = (iii). We refer to [2, Proposition 5.1].

(iii) = (iv) is trivial. .

(iv) = (i) Suppose that z(zy) =0 for every yc Hy(x). Then ze€
HYa) by [9, Lemma 2.2]. From the definition of H”(e), we have H'(a)N
L*(M, v) = H?(«) and € H?(x). This completes the proof.

Put M(e) = H*(@) N H*(«)*. Then M(x) is a finite von Neumann
algebra which consists of all fixed points in M with respect to {&;}:cr.
Since M has a faithful, normal, «,-invariant finite trace, there exists a
unique, faithful, normal, a,-invariant projection ¢ of norm one of M onto
M(e) [10, Theorem 2]. Furthermore, for each element xe M, &(x) is
given as the unique element of the intersection K(z, &) N M(«), where
K(x, @) denotes the o-weakly closed convex hull of {a,(x)}cr. By [9,
Proof of Theorem 2.4], we have Hy(a) = {x € H*(a); e(x) = 0}.

PROPOSITION 2.6. Let 1 < p < .

(1) ¢ extends uniquely to a projection &, of norm one of L*(M, T)
onto L*(M(e), 7).

(ii) L*(M(@), T) equals the set of all fixed points of L*(M, T) with
respect to {};cr.

(iii) Hi(e) = {x e H*(); &,(x) = 0}

ProoF. (i) Let xeM. Since e(x) is given as the unique element
of K(z, @) N M(), there is a net {y~},c; of convex combinations of the
a, (i.e., ¢, = D0t M), MP = 0, D5, MY = 1) such that lim, ¢ (x) = &(x)
in the o-weak topology. Let g be the conjugate index of p:1/p + 1/g = 1.
For any y <€ LY (M, 7),
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| T(e(w)y) | = litm [z(yrs(2)y) |
e M
< Tim 33 NP | r(adD(@)y) |
1 k=1
g

= lim 3 M7 fla@) 1,

= llellllyll -

Since L*(M, ) is the dual space of L*(M,7), we have |le@)|], < ||z]l
As M is dense in L?(M, z) with respect to ||-||,, ¢ extends uniquely to a
projection ¢, of norm one on L?(M, 7). Since L?(M(x), 7) = [M(®)],, it is
clear that the range of ¢, equals L*(M(c), 7).

(ii) Let F be the set of all fixed points of L?(M, ) with respect
to {@,};cr. Since L*(M(),7)=[M(®)],, it is easy to show that L*(M(a),z)CF.
Let x€ F. We may assume that z is self-adjoint. Let z = ” \de; be
its spectral resolution. Now we can consider a,(x) = r xda,(ezi Since
the spectral resolution is unique, ¢; € M(c) and so z eL”(ﬁl(a), 7).

(iii) From (iii) and (iv) of Proposition 2.5, we have Hi(@) = [H(a)],.
Since &(x) = 0 for z € Hy(®), we show that HI(@) C {x e H?(@); &,(x) = 0}.
Now suppose that there exists an element a € H?(@) such that ¢, (a) =0
and e ¢ H(@). We can find y € LY(M, 7) such that z(ay) =1 and z(by) =0
for all be H¥(a). Let F(t) = t(aa)y). As in the proof of [9, Theorem
2.4], F is constant in R, that is, z(ay) = t(a,(a)y) =1. Let 6 be any
number such that 0 < é < 1/2. Since L*(M, t) = [M],, there exists xre M
such that ||a — z||, < d/||¥|l,s Then

|7(a(2)y) — 1] = |t(@(x)y) — (aa)y)| < 0.

Hence we have Re z(@,(x)y) > 1 — 0. We choose a net {y},c; as in the
proof of (i). Then

|z(e(@)y)| = lim | z(¥i(2)y)|
= litm gx}f’ Ret(af)(x)y) > 1 — 4.

On the other hand
|z(e(@)y) | = |z(e @)y — e@)y)| = lla — @l |lyll, < 9.
This is a contradiction. This completes the proof.

PROPOSITION 2.7. Let 1 < p < .
(i) Hi(e)=[HF (@)
(ii) H*(«@) = [H*(@)],.
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(iii) Hj(a) = {x e L*(M, 7); t(xy) = 0, y € H~(@)).
(iv) H™(@) = Hi(@)*, 1/p + 1/g = 1.

Proor. (i) and (iv) are clear from Proposition 2.5. (ii) is clear from
Proposition 2.6. (iii) is proved from (ii).

Finally we define both simply and doubly invariant subspaces for
H~(e) in L*(M, 7). ‘

DEFINITION 2.8. Let . be a closed (resp. o-weakly closed) subspace
of L?(M, ) (resp. M) for 1 < p < o (resp. p = ). .# is said to be
left (resp. right) doubly invariant if H*(a) # C # and H(@)* #Z < .
A (resp. A H"(a) <= # and #ZH*(a)* = #). If _# is left and
right doubly invariant, .2 is said to be two-sided doubly invariant.
Furthermore a closed subspace .# of L*°(M,7), 1 < p < «, is said to
be left (resp. right) simply invariant if [Hy(@).Z], & .# (resp.
[Z H (@), & A ).

3. Examples. Let M and 7 be as in §2. Let F, be a type I,
factor and let {e;;} be a matrix unit of F,. We denote by B the von
Neumann tensor product M@ F, of M and F,. Setting &, =a, ®1,
we get a flow {&},.r on B. Let Tr be the canonical trace on F, and
let 7@ Tr be the tensor product of z and Tr. We denote by L*(M, 7) ®
F, the algebraic tensor product of L?(M, z) and F,. Then we have the
following:

PROPOSITION 3.1. For 1= p < oo, L*(M,7)Q F, = L*(B, T Q Tr).

Next, we investigate the structure of H?(&). We denote by
H?(a) ® F, the algebraic tensor product of H?(«) and F,.

PROPOSITION 3.2. For 1 < p £ «, H?(@) = H (@) QR F,.

Proor. Let zeL*(M,7)QF, (x= %, e, x;;€L*(M,7)). For
fe LY(R), we have &(f)x = 3, (a(f)r;;) Q e;;. Thus @&(f)x = 0 if and only
if a(f)x,; =0 for all 7,5. By the definition of spectrum, we have
Spz(x) = U Sp.(%;;). Therefore H?(&) = H?(@) Q F,. This completes the
proof.

REMARK 8.3. Let L*(T) and {®}..r be as in Remark 2.4. Let
L>(T, F,) be the Banach space of all F,-valued essentially bounded weak*-
measurable functions on 7. Then L~(T)& F, = L=(T, F,) [16, Theorem
1.22.18]. Moreover L>(T, F,) is a type I, von Neumann algebra with
the center L>~(T)1 [16, Proposition 3.2.3]. Put &, =a, Q1. Then we
have H?(@) = H* ® F, by Remark 2.4 and Proposition 3.2. The flow
{&@},cr has the period 27 and the structure of H*(&) was considered in
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[15]. On the other hand, this space H?(&) was studied by Helson and
Lowdenslager as the notion of analytic matrix-valued functions.

4. Doubly invariant subspaces. In this section we characterize
doubly invariant subspaces of L?(M, ), 1 < p < oo.

THEOREM 4.1. Let .« be a closed subspace of L*(M,7), 1< p = oo,
Then #Z s a left (resp. right) doubly invariant subspace of L*(M, )
of and only if there exists a projection e of M such that # = L*(M, T)e
(resp. eL”(M, 7)).

ProoF. Let % be a salf-adjoint subalgebra generated by H*(«) +
H>(@)* in M. Since H>(@) + H*(a)* is o-weakly dense in M [11, Theorem
II1.15], % is so. Suppose .# is left doubly invariant., Then .# is a
left Z -invariant subspace in L?(M, 7).

Case p = co. It is trivial since .#Z becomes a g-weakly closed left
ideal of M.

Case » = 2. Let P, be the projection of L*(M, t) onto .z, L(M)=
{L,: € M} where L,(y) = xy, yeL*M, z) and R(M) = {R,: x € M} where
R, (y) = yx, y e L¥(M, 7). Since _# is left Z/-invariant, .# is left L(M)-
invariant. Hence P, e L(M) = R(M), where L(M) is the commutant
of L(M), and so there exists a projection ¢ in M such that P, = P..
Thus # = P_,L¥ M, t) = L¥M, 7)e.

Case 1 <p <2 Putting + =_2ZnNLM7z), + is a left Z-
invariant closed subspace of L*(M, 7). According to the case p =2, there
exists a projection ¢ in M such that .+~ = L¥M, t)e. It is sufficient to
show # = L*(M, 7)e. . # DL*(M,7)e is clear. Let x = u|xz| be the
polar decomposition of 2 in .# and put z, = w|xz|”* and x, = |[x|"*®/2,
Then x, € L*(M, 7) and x,€ L"(M, t) where 1/p = 1/2 + 1/r. Putting .+ =
[Z ], 4" is a left Z/-invariant subspace in L*(M, z) and so there
exists a projection f in M such that .+ = LM, 7)f. Then

Jx, € LA(M, ) fo, = [z 2], C [%wlxz]p = [#a],c 4 .
On the other hand, since » > 2, fx,€ L"(M, ) < L*(M, z). Therefore
fr,e # N LM, 7) = 4 = LM, 7).

Thus fx, = fr,e. Moreover, since x, € LA (M, 7)f = .+, we have x, = ., f.
Therefore
T = X%, = X, fx, = ¢, fu.e € LP(M, T)e .
Hence we have _#Z = L*(M, 7)e.
Case 2 < p < . Putting 2’ ={yeL (M, ) c(y*z) =0 (xe #Z)}
where 1/p + 1/g =1, #" is a left Z/ -invariant subspace of LM, 7).
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Since 1< ¢ <2, we have a projection f in M such that .#Z’ = L'(M, 7)f.
Put ¢ =1 — f and so we have .# = L?(M, 7)e.

The assertion for right doubly invariant subspaces may be proved
in just the same way.

This completes the proof.

COROLLARY 4.2. Let _# be a closed subspace of L*°(M, ), 1< p = oo,
Then # 1s a two-sided doudbly invarient subspace of L*(M, T) if and
only if there exists a central projection ¢ of M such that .# =L*(M, 7)e.

REMARK 4.3. We suppose that M has a faithful, normal, a,-invariant
finite trace. However, even if M does not have any a,-invariant trace,
H>(@) + H*(@)* is always o-weakly dense in M by [11, Theorem III. 15].
Thus Theorem 4.1 holds in this case.

REMARK 4.4. Let M = L~(T) and let A be the disk algebra over
the unit circle 7. Let .# be a closed subspace of LX(T). If # is a
doubly invariant subspace in the sense that A # S _# and A.#Z < _#,
where A is the conjugate functions of A, then .# = C,L*T) for some
measurable set E (where C, denotes the characteristic function of E).
This result is well-known as Wiener’s theorem. Furthermore, Hasumi
and Srinivasan [4, 18] extended the result to L*-spaces taking values in
a Hilbert space.

5. Simply invariant subspaces. Throughout this section, we keep
the notations in §2. Then H=(«) becomes a finite subdiagonal algebra
with respect to the projection ¢ of norm one induced by the a,-invariance
of z. Furthermore, if {a,},.rx is ergodic in the sense that for xe M,
a,(x) = x for all te R implies # = A1 for some complex number \, H>(x)
is an antisymmmetric finite subdiagonal algebra (see [1], 8], etc.). Then
Kamei in [8] has shown simply invariant subspace theorems for antisym-
metric finite subdiagonal algebras in case p = 1,2. In this section we
precisely characterize the simply invariant subspace theorem for H>(x)
in L*(M, 7), L £ » £ o, if {&},cr is ergodic.

THEOREM 5.1. Let 1 = p < . If {a.};er ts ergodic, every left (resp.
right) simply invariant subspace #Z of L*(M, T) is of the form H*(a)u
(resp. wH*(@)) for some unitary operator u im M.

To show this theorem, we have the following lemmas. Throughout
the remainder of this section, we suppose that {a,},.r is ergodic.

LEMMA 5.2. (Kamei) Let xecL¥(M, 7). If x¢[H(@)x), then we have
x = au where we[H*(@)x], s unitary and [H*(@)a), = H¥ ).
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Let 1 < p < 2. Define the number » by 1/ + 1/2 =1/p. Then we
have the following;

LeMMA 5.38. Let x€ L*(M, 7). If x¢|Hy(®)x],, then we have |x*|?/* ¢
[HF(@)|z* "],

PrOOF. Let x = |[#*|u be the polar decomposition of z and put x, =
|x* |2y,  Assume that |2*|?2e[HJ(@)|x* |*/?],. Then

x = |a*[*n, e [H(@)|a* ", C [Hy(@)|z* |"?2,], = [H(@)x], .
This is a contradiction. This completes the proof.

LEMMA 5.3. If xeL?(M,7) and x¢|HY(@)x],, then x = zy where
ye[H*(a)x], N L'(M, 7) and zc H¥a).

Proor. If z¢[Hy(a)x],, we have |z*|??¢[Hy(a)|x*|??], by Lemma
5.3 and so |x*|?/* = zu where u € [H*(c)|x*|?*], is unitary and [H*(@)z], =
H*a) by Lemma 5.2. Let z = |2*|v be the polar decomposition of =z
and put y = w|2*|"??». Then ye L"(M, 7)< L*(M, 7). Hence

2y = zu|x* | By = |g¥ P p* |y = |[gF v = .

Since [H*(a)z], = H*x), for any ¢ > 0, there exists an element o ¢ H*(«)
such that ||az — 1|, < ¢/||¥|l,. Thus

llax — yll, = llazy — yll, < llaz — L] |ly]l, <e.
Therefore y e[ H*(«)x],. This completes the proof.

PrROOF oF THEOREM 5.1. Let .~ be a left simply invariant subspace
of L°(M, 7). In case p = 2, we have the result by [8, Theorem 1].

(1) Case 1< p<2. Putting .+ =_#Z NLM, <), + is a closed
subspace of L*M, 7). By the assumption of the left simple invariance
of _#, there exists an element x¢ #Z\[Hy(a).#],. In particular, we
have z¢[Hy(@)x], and so, by Lemma 5.4, x = 2y where z¢ H*a) and
y e[H*(@)x], N L"(M, 7). Since H*()x C .#, we have ye[H*(a)x], C . #Z
and so .+~ = {0}. If ye[Hy(a).+"], we have

© = zy € H(a)y C [H*(@)yl, C [H*(@)[H (@) 4L,
ClHH ) A"], C[HF (@) A ], -

This is a contradiction. Hence _#~ becomes a left simply invariant sub-
space of L*(M, 7). By [8, Theorem 1], there exists a unitary operator
€M such that .+ = H¥a@)u. Thus H=(@)u C H (a)u = 4" C . # and
so [H=(@)ul,c 7 1If ze #Z\|[Hy(®).#],, we have x = zy where ze
H*¥a) and
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ye|H(a)x], N L"(M, t)c 4 N L' (M, 7)
= A" N LM, 7) = He)u N L"(M, 7) .

Hence yu*e H' (@) and so =z = 2y = zyu*u € H*(@)u. Therefore
ANHF (@) AZ ], < H*(@)u. If ye|Hy(@).#],, then

x+ye Z\[H ()71, c H(@)u .

Since x € H?(@)u, we have y e H*(@)u and so .#Z = H?(@)u.

The assertion for right simply invariant subspaces in case 1 < p < 2
may be proved in just the same way.

(2) Case 2<p=co. Define the number ¢ by 1/p +1/¢=1. Putting

A = {ye L(M, 7); t(yx) = 0, x e [HP (@) A ],} ,

then .7~ is a closed subspace of L%M, 7). Since [Hy(a).# ], is a proper
subspace of _#; there exists aeL‘M,7) such that z(ax) =0, ze
[Hy(®).#], and t(ay) + 0 for some ye€ _~. Thus ac +"\[ 4 Hya),.
Therefore .+~ is a right simply invariant subspace of LM, ) and so
there exists a unitary element we M such that .+~ = w*H%@). By
Proposition 2.7 (iv), [Hy(@).#], = HX(@)u. If xe Zu* and ye Hy(a),
then
yx € Hy(e) . Zw* C [Hy (o) A~ ,u* = Hi(a)

and so t(yx) = 0. Thus z € H?(@) and so . Zu* C H?(@). Since Hji(a) is
a subspace of H?(a) of codimension 1, we have .Z = H?(@)u or # =
Hi(a)u = [HY(@).#Z],. As # is left simply invariant, .Z = H*(@)u.
This completes the proof.

REMARK 5.5. The converse of this theorem is also true. If {@}icr
is not ergodic, there exists a a,-invariant projection ec M such that
0 <e<1l. Choose a unitary element we M. Putting . #Z = H?(@)eu,
#'is easily seen to be a left simply invariant subspace of L?(M, ) which
is not of the form H?(@)v for any unitary element v e M.

REMARK 5.6. Keep the notations in Remark 2.4. Let A be the disk
algebra and put 4, = {w € A; Swdt = 0}. A closed subspace .# of L*(T)
is said to be simply invariant if [4,.Z], & #. As {@}.,.r in Remark
2.4 is ergodic, then every simply invariant subspace .Z of L*(T), 1 <
p < oo, is of the form H?f for some unimodular function f in L=(T)"

REMARK 5.7. Loebl-Muhly [11] showed an example such that H>(a)
becomes a reductive algebra. But our H>(e) is not a reductive algebra

on LAM, 7), because there is always a simply invariant subspace for
H>(a) in L*(M, 7).
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