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Abstract. We extend the Hardy-Littlewood duality theorem to any
locally compact abelian group G, namely, if Lq(G) (2<q<oo) has the upper
majorant property, then LP(G) has the lower majorant property, p~1+q~1=l.
This settles the question of exactly which LP(G) has the lower majorant
property.

1. Introduction. Let G be a compact abelian group. For /, g e L\G),
we say as in [5] that g is a majorant of / if and only if | / | <: g. Let
1 ^ V ^ °° We say as in [2] that LP(G) has the upper majorant property
(UMP) if and only if there is a constant Ap such that

whenever /, g e LP(G) and g is a majorant of /. We say also as in [2]
that LP(G) has the lower majorant property (LMP) if and only if there
is a constant Bp such that every / e LP(G) has a majorant g e LP(G) for
which

The majorant problem is to determine for which p the space LP(G) has
the UMP or the LMP. To exclude trivialities we assume throughout that
G is infinite. The problem was initiated by Hardy and Littlewood [5]
and solved partially by them for the torus group T. The problem in
the general compact abelian case has now been completely solved, collec-
tively by Boas [2], Bachelis [1], and Fournier [4]. (See also Shapiro [10].)
The results can be summarized in the following theorems.

THEOREM A. LP(G) has UMP if and only if p is an even integer
or oo; and when LP(G) has the UMP the constant is 1.

THEOREM B. LP(G) has the UMP if and only if Lq(G) has the LMP,
with the same constant, (g"1 + p~ι = 1).

As an immediate consequence of these one also has
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THEOREM C. LP(G) has the LMP if and only if p = 1 or p =
2k/(2k - 1), k e N.

It should perhaps be mentioned that the difficult parts of the above
theorems are the "only if" part of Theorem A and the "only if" part
of Theorem B. The latter we shall call, following [9], the Hardy-Littlewood
duality theorem, it being, in the torus case, the main theorem in [5]. The
much easier half (the "if" part) of Theorem B was also named in [9] the
Boas duality theorem.

Now the compact abelian groups being rather special, it seems difficult
to adapt methods of the previous authors directly to the noncompact
locally compact situation. Indeed, an attempt was made (see [3]) to extend
the Hardy-Littlewood duality theorem to the integer group Z, but the
arguments were erroneous. Recently in [8] we have managed to prove
completely exact analogues of the above three theorems in LP(Z). At the
same time, Rains [9] has extended Theorem A, as well as the Boas duality
theorem and therefore the "only if" part of Theorem C, to all locally
compact abelian groups. His proof of Theorem A in the LP(Z) case is
the same as ours. On the other hand, as he says on p. 53 of [9], he has
found neither a generalization of the Hardy-Littlewood duality theorem
nor a direct proof that LP(G) has the LMP when p = 2k/(2k - 1), k e N.

The object of this paper is to prove a generalization of the Hardy-
Littlewood duality theorem and thereby, together with Rains' results,
give a complete solution of the majorant problem in any locally compact
abelian group. Our method is essentially a simple modification of the
proof in our previous paper.

When the group G is not compact, feLp(G) need not always have
an ordinary Fourier transform, so a few words must be said about the
definitions of UMP and LMP in LP{G). One can proceed in either of the
following ways as in [9]. Let

S(G) = L\G) n [L\G)T .

One can define the UMP and LMP in LP(G) by taking the test functions
/ , g only from S(G). The results of Rains mentioned previously have all
been proved under this definition. Alternatively, one can define the
concepts of major ants, UMP and LMP in the most general fashion, as
follows. S(G) is a Banach space under the norm

The Banach space dual of S(G) is denoted by S*(G), which may be
regarded as a space of distributions. The Fourier transform on S*(G)
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is defined in the usual dual manner. If feS*(G), we define feS*(G) by

(f,u) = (f,ύ), ueS(G).

F o r /, g e S * ( G ) , o n e t h e n d e f i n e s \f\^g b y

\(f,u}\^ (gfu) , ueS(G),u^0.

Thus the concepts of the UMP and LMP are defined over all test functions
in LP(G). However, as shown in [9], for 1 <; p < oo, the two definitions
of UMP are equivalent (and with the same constants). This follows from
a process of extension, since S(G) is dense in LP(G), 1 ̂  p < oo. Whether
the two kinds of definitions for LMP agree in general seems not to have
been investigated. Rains has also proved the Boas duality theorem, but
with different constants, when the LMP is taken in the distributional
sense.

Our problem is to prove the "only if" part of Theorem B and the
"if" part of Theorem C, in any locally compact abelian group. Now it
is trivial that L\G) has the LMP, and the LMP for L\G) can be established
directly, exactly as in [5]. By Rains' analogue of Theorem A, LP(G) (1 ̂
p < 2) does not have the UMP. So Lq(G) (2 < q ̂  oo) does not have the
LMP, by the Boas duality theorem. Thus what concerns us is whether
LP(G) (1 < p < 2) has the LMP. Here functions have Fourier transforms
in Lg(G), by the Hausdorff-Young theorem, so that in our case the dis-
tributional definition of LMP is exactly the same as the definition set
forth in the beginning paragraph of this paper.

We wish to thank Dr. M. A. Rains for sending us a copy of his
thesis prior to its publication.

2. Generalization of the Hardy-Littlewood duality theorem. Our
main theorem is

THEOREM 1. Let G be a locally compact abelian group. If
Lq{G) (2 < q < oo) has the upper major ant property, then LP(G) (p~ι +
q~ι = 1) has the lower majorant property, and with the same constant.

We first fix some notations. Generic elements in G will be denoted
by x9 y9 , those in G by ξ, η, . L\G) has an approximate identity
{ua}aeD with the following properties [6, (33-12)]:

( i ) uaeL\G)ΠC0(G), ua^0;

(ii) \ ua(x)dx = 1;

(iii) ua 6 Cc(G)f ua ^ 0;
(iv) lim ύa(ζ) — 1 uniformly on compact sets.

Note we shall often use without mentioning the fact that ua{ — x) =
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ua(x), ua(—ξ) = ua(ξ). Let {wa}aeD be an approximate identity for L\G)
with the same properties as above. Note that we can clearly arrange
so that the index sets are the same.

We shall need the following lemma, which can be obtained by direct
computation:

LEMMA 1. [5, Lemma 2; 7, (15-10)]. Let E be any measure space.
For f, φeLp(E), 1 < p < oo, and real t,

\4rWfL at

PROOF OF^ THEOREM 1. For / e LP(G), 1 < p < 2, u^f = ϋj e L\G),
since ua e CC(G) and / e Lq{G). Thus

Hence the set

Sa = {aeLp(G) | a(ζ) ̂  wa*\ua*f\(ξ), a.e.}

is not empty, because the inverse transform of wa*\uaf\(ζ) belongs to Sa.
Sa is closed in LP(G) by the Hausdorff-Young theorem, and is obviously
convex. Since a closed convex set in the uniformly convex Banach space
LP(G) has a unique element of minimum norm, we see that there exists
a unique ga 6 Sa such that

||<7α||p = inf {||a\\p \ α G Sff} .

Define

K{x) =

then

LEMMA 2. There is a positive Borel measure μa>β e M(G) such that
uβ*ha = βa,β.

PROOF. For any φeLp(G) with φ(ξ)^Of and for all ί^O, ga + tφeSa,
and so

\\ga + tφ\\p^ \\ga

hence

at
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By Lemma 1, we have

Re \ha{x)φ{x)dx ^ 0 ,

and since ga ^ 0, φ ^ 0 entail ga{ — x) = ga(x), φ{ — x) — φ{x), we have in fact

[ha(x)φ(x)dx ^ 0 .

Replacing φ by uβ*φ, then

\%/ϊ*Aα(ίc)^(ίc)da5 ^ 0 .

Now ψ (aj) = uβ*ha(x) 6 C0(G). We claim it is also positive definite, so
that the conclusion of our lemma follows. For, fixing any ξ e G, consider
φ(x) = wδ(x)ξ(x) e CC(G). Since φ{η) = wδ(ξ — η) ^ 0, we have

\wδ(x)ψ(x)ζ(x)dx ^ 0 .

Hence for every JceCc(G),

- x)dxdy =

\ wδ(x)ψ(x)ξ(x)dx ^ 0 .
JG

But

lim Uwδ(x)ψ(x)k(y)k(y - x)dxdy = \\ψ(ί»)&(2/)fc(i/ - x)dxdy

= \W(a? - y)k{x)k(^)dxdy ,

so that

JJαHtf - y)k(x)k(y)dxdy ^ 0

for every keCc(G), which is sufficient.

L E M M A 3 . \\ga\\p^ Aq\\f\\p.

PROOF. AS a matter of fact, for all t ^ — 1,

9a + t(ga — wa*\ua*f\) ^ wa*\ua*f\ a.e. ,

and since

9a + w ^ ί )
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we have

\\ga + t{ga - ( w β * I f i β / Γ Π 11*^ l l ftr l l ,,

so that

\4 j { \ = 0 .

From Lemma 1, we obtain

\ha(x)ga(x)dx = I ha(

Note that haeLq(G) and wα |«α/Γ eCβ(G), s o

[ha(x)wa(-x)\ύaff(-x)dx = lim \^*Λα(a;)iί)β(-flj)|βα/Γ(-a?)da;

- lim \\ίίj\(ξ)wa*μa,β(ξ)dξ ,
β j

where the last equality follows from ParsevaΓs relation. Now set

Noting that τayβeL\G) f) L°°(G)(Z LP(G), we have

We now apply the upper majorant property for Lq(G) (with constant
Aq) to the pair

τa>β and wa*μa,β .

Recall that τa>β e ί/2(G) also, so that the distributional definition of the
Fourier transform of τa,β e Lq(G) agrees with τα,/\ Thus the definition of
τa>β shows that

Wa*μa,β is a majorant of tajβ

and so by hypothesis

\\τ«,β\\q ̂  Aq\\waμa,β\\q ^ Λ| |/ ί α ι / ί | | f f = Aq\\uβ*ha\\q ^

— A I I σ \\p/q

— -^-α II 5/α Up

Combining the above steps, we have
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7. II; = \ha{x)ga{x)dx = Um^\ύJ\(ζ)wa*μa,β(ξ)dξ

which is what we need.

CONCLUSION OF THE PROOF. By Lemma 3,

\\ga\\P^Aq\\f\\p.

Hence there exists a subnet of {ga}, also denoted by {ga} for notational
simplicity, which converges weakly to some geLv{G) and

\\g\\p ^ Aq

Thus, it remains to show that

l/(f)l^0(ί) a.e.

For any heLv(G), h(ζ) ^ 0 a.e., we have

9a*h(ζ) = \ga(x)h(x)ξ(x)dx ,

which converges to

\g(x)h(x)ζ(x)dx = g*h(ζ) .

But, from the definition of ga,

9a*h(ξ) ^ h*wa* I uα*/1 (ξ) a.e.

with the right side converging to h*\f\(ξ). Hence

a.e.

Now replace h by wa. Since the corresponding nets converge in Lq(G),
so do a sequence thereof, and passing to an appropriate subsequence, we
see that

\f{ζ)\^m a.e.

as asserted.
From Theorem 1 and Rains' Theorem A as well as the Boas duality

part of Theorem B, we immediately have

THEOREM 2. For any locally compact abelίan group G, LP(G) has
the lower major ant property if and only ίfp = l or p = 2k/(2k — 1),
keN.
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