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Hyperelliptic surfaces are classified into seven types [1]. In this
paper we aim at constructing the moduli space of each type in the
sense described in Mumford [8] and its compactification in some sense.

In Section 1, we study the structure of hyperelliptic surfaces and,
by considering hyperelliptic surfaces with some base points, we get the
fine moduli space M; of each type as a quotient space of the upper half
plane or the product of two copies of the upper half plane, over which
Suwa [11] showed the existence of a family of hyperelliptic surfaces
complete and effectively parametrized at each point.

In Section 2, we construct the compactification M, of M,. And as
a preparation for Section 3, we describe the resolution of certain quo-
tient singularities in terms of torus embeddings.

In Section 3, we describe “degenerate hyperelliptic surfaces” repre-
sented by the boundary points of M,.

1. We write the elements of C* and Z* as row vectors. Let 2 be
a 2x2 matrix with coefficients in C of which the imaginary part is
positive definite Im (2) > 0. Then by A(2) we denote the complex torus
of dimension 2 with the period matrix 2, i.e.,

A.Q—C"Z‘“(2
@) = ¢ (I)

Let [z, y] denote the point of A(2) which is the image of (x, ¥) in C2.
We denote the upper half plane by 9, and for any element = of 9,
we denote by FE(z) the elliptic curve with the periods 1 and <, i.e.,

E(t) = C/(Zc + Z) .

We identify the elliptic curve K with its group Aut(#)’ of translations,
and let [z] denote the point of E(z) which is the image of = in C.

DEFINITION. By a hyperelliptic surface we mean an elliptic bundle
over an elliptic curve whose total space has the first Betti number b, = 2.

THEOREM 1 [11]. Hyperelliptic surfaces are topologically classified



320 H. TSUCHIHASHI

wnto seven types, and any hyperelliptic surface can be expressed as the
quotient space of an abelian surface A by the group generated by an
automorphism g of A as follows, where oy = exp(2ni/N) and T, ® € :

0
(1) A= A((S w)) o[, v = [ + 1/2, —]
2 a=al; ) ”
't 0
(3) A= A((g 0)) g: [e, ¥l [ + 1/3, o]
(4) A= A<<3 (- Zs>/3>> ,
z 0
(5) A=A<<O 0)) g: [, Y] [ + 1/4, o.9]
o acaff Cromy
T 0
(7) A= A((O ) )) ¢: [0, ¥] — [ + 1/6, —o,]

We denote these surfaces by S.(z, w), Si(z, ®), Si(z), S«(z), Si(z), Si(z) and
S,(z), respectively, and denote the point of S;(z, ®) or S;(z) which is the
image of [x, y] of A(2) by the same notation [z, ¥].

~

REMARK 1. &4 = {S|(z, w)|(t, ®) € *} form an analytic family effec-
tively parametrized and complete at each point of $®. In fact, we can
construct this as follows: Let

7, = C*x 9/{f.la € Z*)
with

far (@, Y, 7, @) — (2, ¥, T, ®) + a

O H O N
= o 8 ©
o o o ©
o o o ©

and
f/?= .,Q/T/gz g [z, y, 7, w]— [z + 12, —y, 7, ®],

where [z, v, 7, ®] denotes the point of 5’? which is the image of (z, v,

~

7, ) in C*x 9. Then .54 is non-singular, the holomorphic map 7,: .7 —
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$*induced by the projection C*x $* — §* is smooth and 77z, w) = Si(z, w).
In the other cases, we can also construct the analytic families
Fp A — @ and 7. S —> 9 1=238,4,5,6,7 in the same way as above.

DEFINITION. [I' = SL(2, Z)/{+1}

I'(N) = {(Z ;’) e SL(2, Z)|¢ = 0 (mod N)} /{iI}

_ b
I (N) = {(Z d> e SL®, Z)|a,d =1,¢ = 0 (mod N)}
for N=3,4,6

I8 = {C‘ ;’) eSL?, Z)la,d =1 (mod4), ¢=0 (mod 8)}

I (9) = {(‘: ;) eSL®, Z)la,d =1 (mod3), ¢=0 (mod 9)} .

REMARK 2. When N =3,4,6,8 or 9, the projection SL(2, Z)— I
obviously induces an isomorphism I",(N) — I',(N).

On the other hand, the following is well known. (See, for instance,
[2]).

ProposiTiON 1. 9/I" and $/I'(N) are punctured Riemann surfaces.
Especially when N =2,3,4,6,8 or 9, Q/I'(N) is of genus 0 with t=
2,2,3,4,4 or 4 points removed, respectively.

PROPOSITION 2. Let

M = QI 2)xQ/I", M, = (9/I,2),
M, =M =93, M=M=39[I4, M =39/I®).

Then M, is the space of isomorphism classes of hyperelliptic surfaces
of type (7).
REMARK 3. We can show as in the proof of Theorem 2 below that

M/ is in fact the coarse moduli space for hyperelliptic surfaces of type
(¢) in the sense of Mumford [8].

PrROOF OF PROPOSITION 2. For any hyperelliptic surface S, an
abelian surface A such that S = A4/g? as in Theorem 1, is uniquely de-
termined by S. Indeed, A is determined as the unramified covering
manifold of S of degree m on which the pull back of the canonical
bundle K of S is trivial, where m is the order of K in Pic(S). In
this case ¢g” is the covering transformation group and the only elements
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which can generate g7 are g and ¢g™'. Hence if we set S = A(2)/¢9% and
S’ = A(2)/(¢')?, then S and S’ are isomorphic if and only if there exists
an isomorphism of complex manifolds @: A(2') — A(Q) such that @og’ =
gop or pog’ = g top. The following facts are straightforward.

LEMMA. A(2) and A(Q') are isomorphic as complex manifolds if
and only if there exists a matrix

B
(C D> eGL4, Z)

such that 2 = (A2 + B)(CR2 + D). In this case, the isomorphism
@: A(2') — A(2) 1s induced by the affine transformation

P: (x, y) > (x, Y)(C2 + D) + (a, B)
of C* for some (a, B) e C*.
On the other hand, ¢ is induced by the affine transformation
_ 1 0
g: (z,y)— (x, 9) , | +(@/N, 0)

0 oy
of C?, where oy = 6, when N = 2,38,4 and o;=—0,. Thus we have an
equality

{pog’ — g op}a, y]l = (PG — % Pz, ¥)] .
Hence @pog’' = g*'op if and only if

o Q
{¢og’—g—1°¢}(x,y)eZ‘(I>

for any (x, )€ C>. When this condition is satisfied, we see by easy
calculation that 4, B, C and D are diagonal matrices in the case of types
(1), (3), (5), (7) or triangular matrices of which the (2, 1)-entry is 0 in
the case of types (2), (4), (6). Let the (1, 1)-entry of A, B, C and D be
a;, b, ¢, and d,, respectively, the (2, 2)-entry of A, B,C and D be a,, b,
¢, and d,, respectively, and

T x* ' %
2= Q2 = .
(0 w> (0 w’>
Then from 2' = (AQ + B)(CR + D)™}, we get
gt b 0+ b
¢7T + d, Cw + d,

and
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. b 2
det (“ > - det(az b) ~1.
C; @y c; d,

Moreover from {Pog’ — G*'opY(x, y) € Z* (!}>’ we get ¢, =0 (mod N)

and particularly in the case of type (2) ¢, = 0 (mod 2).
Conversely, assume that there exist v and 6 such that 7/ = ¥(z) and
o' = é(w), and let

a, b, a, b, a, bl> <a2 b2> _
- ,0 = s el'(N).
7 [cx dl:] [cz dj <61 d, ¢ d, )
Then we have

Q' =(AQ + B)(C2 + D), (g g) eGL4, Z)

_ B Q2
{Pod’ —FoPNx,y)c 2! <I>

for any (x, y) € C? in each case, if we choose 4, B, C, D and  as follows:
In the case of type (1),

a, 0 b, 0) ¢, 0 d, 0)
= — — D =
4 (0 az) B (0 b,/ c (0 62> <0 d,

P: (%, ¥) > (z, Y)(C2 + D) .
In the case of type (2),

A= (al cz/2> B — <b1 (d; — a’l)/2> C = <cl 0> D= <d1 _01/2>
0 a, 0 b, 0 ¢ 0 d,

P: (x, y) — (x, Y)(CR + D) + (0, ¢,/8) .
In the case of types (8), (56) and (7),

a, 0 b, 0 e, 0 d, 0
Az(ﬂ 1> B:<o 0> C:(o 0> D=(o 1>
P (x, ) — (%, Y)(CL + D) .
In the case of type (4),
a, —1/3 b, (a, — 1)/3 ¢, ¢/3
A:<0 1 ) B:<0 0 > C:<0 0>
@ (x, ) — (z, ¥)(C2 + D) + (0, ¢,/9) .
In the case of type (6),

o @ —a)2\ . (b L—a)?) (cl —c,/Z)
A:<o 1 >B_<o 0 > €=l o

. d, —¢,/3
‘(0 1 )
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(4 —e/2
D‘(O 1>

P: (x, y) > (x, y)(C2 + D) + (0, ¢,0,/8) .
q.e.d.

Any hyperelliptic surface is an elliptic bundle in the following
unique way.

w': Si(t, w) 2 [z, y] — [2x] € E(27) 1=1,2
w': Si(7) 9 [z, y] — [Nx] € E(N7) 1=23,4,5,6,7,

where the fibers of w are E(w), E(d,), E(s,) or E(c,) in the case of
type (1)(2), (3)(4), (5)(6) or (7), respectively. We easily see that w has
(1) four sections, (2) four 2-fold quasi-sections, (8) three sections, (4)
three 3-fold quasi-sections, (5) two sections and a 2-fold quasi-section,
(6) two 2-fold quasi-sections and a 4-fold quasi-section, (7) a section, a
2-fold quasi-section and a 3-fold quasi-section.

Now to kill automorphisms we consider hyperelliptic surfaces with
specific base points. o and ¢ are base points, while p is a collection of
zero, one, two or three base points depending on the types. We require
0o, p and ¢ to satisfy the following conditions which we call (x) for
simplicity:

In the case of type (1), 0 is a point on one of the four sections of
the elliptic fiberation w. Points » and q satisfy f(0) = » and k(o) = q,
where f and h are elements of Aut(S)° and Aut(w (w(0)))’, respectively,
of order 4 with f*(o) = o.

In the case of type (2), o is a point on one of the four 2-fold quasi-
sections of w. A pair p = {p, .} of points satisfies f;(0) = p; for 1=
1, 2, where f; is an element of Aut(S)° of order 4 such that f;(o) = o
and that f, # fi*. A point ¢ satisfies h(o) = q¢ for an element A of
Aut(w(w(0)))° of order 4.

In the case of type (3), o is a point on one of the three sections of
w. Points p and ¢ satisfy f(o) = » and k(o) = q, where f and h are
elements of Aut(S)° and Aut(w *(w(0)))° of order 6 and 2, respectively,
with f%0) = o.

In the case of type (4), o is a point on one of the three 3-fold
quasi-sections of w. A triple » = {p,, p., »;} of points satisfies f;(0) = p;
for 7 =1, 2,8, where f;’s are mutually different elements of Aut(S)° of
order 9 with fi(0) = 0, and f,of;°f;(0) = 0. A point q satisfies h(0) = ¢
for an element A of Aut(w(w(0)))° of order 2.

In the case of type (5), o is a point on one of the two sections of
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w. A point ¢ satisfies h(0) = q, where h isan element of Aut(w (@ (0)))°
of order 4 such that A%*0) is on a section of w.
In the case of type (6), o is a point on one of the two 2-fold quasi-

sections of w. A point ¢ satisfies k(o) = q, where h is the image of
[1/4] under an isomorphism E(o,) ~ Aut(w*(w/(0)))°.

In the case of type (7),0 is a point on the section of w. A point
q satisfies h(o) = q for an element A of Aut(w (w(0)))° of order 3.

We denote the hyperelliptic surface S with these base points by
S(o, », @) or S(o, q).

DEFINITION. By a family (z: & — T; 0, b, q) of hyperelliptic surfaces
of type (1) with base points over an analytic space T, we mean a flat
map 7w: & — T of analytic spaces together with sections o, » and q such
that the fibers (z7(t); o(t), p(t), a(t)) are hyperelliptic surfaces of type (1)
with base points satisfying the property (x) for o = o(¢), » = p(¢t) and
q = q(®).

We can define a family of hyperelliptic surfaces of type (2), (8), (4),
(5), (6) or (7) with base points in the same way as above.

On S;(z, w) and S;(tr), we can choose base points o*, p* and ¢* satis-
fying these requirements (x) as follows:
In the case of type (1),

o*=1[0,0], »*=1[1/4,0], q*=][0,1/4].
In the case of type (2),
o*=1[0,0], »*={[1/40],[1/4+ 701}, q*=][0,1/4].
In the case of type (3),
o*=1[0,0], »*=1[1/6,0], q¢*=10,1/2].
In the case of type (4),
o*=10,0], »*=1{[1/9,0],[1/9 + z,0],[1/9 + 27, 0]},
g* =1[0,1/2] .
In the case of type (5),
o*=1[0,0], q*=1[0,1+ 0,)/4].
In the case of type (6),
o*=1[0,0], q*=]0,1/4].
In the case of type (7),
o*=1[0,0], ¢*=]0,1/3].
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Then we can verify the following:

REMARK 4. Any automorphism of S;(z, ) or S,(z) which fixes o*, p*
and ¢*, is the identity.

We get the following proposition by considerations similar to those
in Proposition 1.

PROPOSITION 3. The set of isomorphism classes of hyperelliptic
surfaces of type (¢) with base points is in one to one correspondence
with M, defined as follows:

M, =M= ®T.®)", M,=29/I'6), M =9/,
M, = 9/T'(4), My=9/I'.8), M =9/I'(6).

REMARK 5. There exists a family over M, of hyperelliptic surfaces
of type (¢) with base points effectively parametrized and complete. In-

deed, let
(a b) ’ <e f) eFO(N)
cd g h

which are mapped to v, 6 € I',(N), respectively, and let

fYya: » I 7(0 [ < ’ Yy ’ ,5 }f .:1,2,
@, 9): @, v, 7, @] = ctc+d gw+h (@), o(@) or e

Vt[x,y,r]H[ i ,y,v(r)] for i=23,4,5,6,7.
CT

+d

Then (17,(4))% (I'.(4))% I',(6), I',(9), I',(4), ',(8) and I,(6) act on < for
1=1,2, 8,4,5,6and 7, respectively without fixed point, and the actions
commute with 7;. Let

F=G@)y  i=12 H=SGT6)

= GT(9) = FIT4)
S = AT (8) = AT 6),
and let
T, S — M,

be the holomorphic map induced by #,. Then =, is smooth and
i [z, ®]) = Si(z,w) 1=1,2 or wi¥([t]) = Si(z) 1=8,4,5,6,7, where
[z, @] or [r] denotes the points of M, which is the image of (7, ®) in §*
or 7 in 9, respectively. Moreover, let o*, p* and q* be the maps which
send each point ¢ of M, to o*, p* and ¢* of the fiber 7;(t), respectively.
Then o*, p* and q* are sections or sections and a quasi-section of 7, de-
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pending on 7.

THEOREM 2. 7,;:.%%— M, 1is the universal family of hyperelliptic
surfaces of type () with base points, i.e., M, is the fine moduli space in
the sense of Mumford [8] of hyperelliptic surfaces of type (1) with base
Dotnts.

ProOF. We prove the theorem only in the case of type (1). The
proof for the other types are similar.

By Proposition 3, we have a unique map f: T — M, for any family
over an analytic space T of hyperelliptic surfaces of type (1) with base
points. We will see shortly that this map f is holomorphic. Then we
have a morphism @,: I, — h,, of contravariant functors, where I, and
hy, denote the set of families of hyperelliptic surfaces over T of type
(1) with base points, modulo isomorphism, and the set of holomorphic
maps from T to M, respectively. By Remark 5, @ (T): M,(T)— hy,(T)
is surjective for any analytic space T. Thus it is enough to show that
for any family (z: & — T; o0, p, q) of hyperelliptic surfaces of type (1)
with base points, there is an isomorphism from ¢ to .9 x,, T over T,
which maps o(?), p(?) and q(¢) to (0% f(?), t), (p* o £(?), ) and (q% o f(?), 1),
respectively, for each point ¢ of 7. For any point ¢, of T, #;'(f(t,) =
7~t,). Hence, by Remark 5, there is a holomorphic map f’ from a con-
nected neighborhood U of ¢, to M, with f'(t,) = f(¢,) and an isomorphism

F': Ay 5 AXy U

over U such that F'oo(t,) = (00 f'(t,), t,), F'ob(t,) = (h*o f'(t,), t,) and
F'oq(t,) = (@%o f'(t,), t.). By Remarks 1 and 5, .94 X, U is expressed
as a quotient manifold of C*x U. Hence there exists an automorphism
of &7 X, U which is induced by an automorphism of C*x U of the
form (z, y, t)— (x + a(t), ¥, t) and which maps F'oo(t) to (0*o f'(t), t),
where a is a holomorphic function on U vanishing at ¢,. Composing
this automorphism with F"’, we get an isomorphism

F:-%U’—\;'%XMIU

over U which maps o(t) to (o*f'(t),t). For any 7, we€ 9, there exist
only four points »F = »*, pF = [3/4, 0], »i = [(1 + 27)/4,0] and pf =
[(8 + 27/4,0] on S|z, ®) such that (o*, »§, ?) satisfy the property (x).
Therefore Fop(t) agrees with one of these points p} on 77 f(t)) = Si(z, w),
where f'(t) = [z, ®]. But these points p; for k =1, 2, 3,4 on each fiber
77 (f'(t)) = S,(z, ®) form the sections

piiU—>AXy, U for 1 =1,2,38,4,
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respectively. Hence Fop equals one of these sections pj, since U is
connected. Thus Fop = (p*o f’,id) on U for Fop(t,) = (b¥° f'(¢,), t,) and
for p* = p¥. By the same consideration, we get Foq = (4% f’, id) on U.
Therefore, f = f' and Foo = (0*o f,id), Fop = (p*o f,id), Foq = (q* o f,
id) on U. Since F' is uniquely determined by f, we can, by Remark 5,
pateh up these F’s defined on neighborhoods U’s which cover 7. Thus
we get a unique isomorphism from . to .54 x,, T over T. q.e.d.

2. Since 9/, (N) is a complex manifold of dimension 1, it has a
unique non-singular compactification (9/I,(N)), and when N = 4, 6,8 or
9, it is biholomorphic to the projective line P!. We construet it ex-
plicitely, for later convenience. (See [7] I.)

There are ¢ I',(N)-equivalence classes of the cusps for I',(N) acting
on 9, where ¢t is the same as in Proposition 1. We choose representa-
tive points p,, ,, ---, », from each of them. Let

9,, = {w € Im(6(w)) > C},
I, =o' (n)p,

' (n) = {((1) 11)> lb = O(modn)}/{i[} ,
where 0 € " with 6(p;) = -, and » is the smallest positive integer such
that 67", (n)0 is the subgroup of I',(N). Then 9, /I, is isomorphic to
a punctured disk 4}, and we can regard 4;, as an open set of $/I'(N)
for sufficiently large C, since 9,, is a neighborhood of p;, and I',, is the
stabilizer of p,.

Let

(SIT(N)) = §/T(N) U 4, Udy, U---U 4,

by the natural identifications, where 4, is the disk with the same
radius as 4;. Then (9/I,(N)) is the non-singular compactification of
/T (N). Let

. *
Qp2 Dp, APi

be the projection. Then a, (@) = exp(2rid(w)/n). For N =4,6,8,9 we
have the following:

N = 4. The cusps of I',(4) are represented by oo, 0 and 1/2, and
a. () = e(w), a(w) = e(—1/4w), a,,(w) = e(a/(l — 2w)), where e(w)=
expl@riw).

N = 6. The cusps of [',(6) are represented by <, 0,1/2 and 1/3,
and  a.(0) = e(®), a(w) = e(—1/6w), a,x(®) = e(®[3(1 — 20)), a(@)=
e(w/2(1 — 3w)).
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N = 8. The cusps of I',(8) are represented by <, 0, 1/2 and 1/4, and
() = e(w), a(w) = e(—1/8w), a,,() = e(0/(1—-2w)), a,,(®) = e(®/(1—4w)).

N =9. The cusps of I',(9) are represented by <, 0,1/3 and —1/3,
and a.(®) = e(®), aw)=e(—1/9), a1 — 3w)) = —ew/(l— 3w)),
a_y(@) = e(@/(1 + 3w)).

DEFINITION. M, = M, = ($/T,(8)y M, = ($/T,(6)) M, = (B/I'.(9)) M,=
(BIT(9) M, = ($/T(8)) M, = (B/T,(6)).

When ¢ = 3 through 7, M, is the unique compactification of M,, but M,
or M, is only one of many other possible compactifications of M, or M,,
respectively.

Our final goal is to show that a possibly degenerate hyperelliptic
surface with base points “naturally” corresponds to each point of M, in
the following way: For any point £, of M, there exists a neighborhood
U of t,, a finite covering @: V — U with @7%(¢,) consisting of a point s,,
and a family 7: % —V with sections o, q and a section or a quasi-
section p such that

-r(/ﬂw_l(UnMi) = % X My ‘;D_l( U n Mz)

over o (UNM,), where 7,;: & — M, is the family in Remark 5. In this
case, we say that w7'(s,)(0(s,), P(s,), q(s,)) corresponds to t, = @(s,).

It is enough for our purpose to construct families with base points
over finite covering spaces of (9/I',(4))x4d,, 4;%X(H/",(4)) and 4,%X 4, or
4,’s, which together with M, cover M,, when ¢ = 1,2 or ¢ = 3 through
7, respectively. We construct these families in the next section as fol-
lows: First, we construct degenerating families .7 of abelian surfaces
and automorphisms g of .%7. Secondly, we construct, if possible, a
non-singular model .7, flat over the base space, of .o /g?. Finally, we
add base sections to these families.

For these constructions, we need the following. We use the theory
of torus embeddings in the same notations as in Oda [5]. Especially we
denote by @, the morphism of torus embeddings which corresponds to
a morphism ¢ of r.p.p. decompositions.

(I) Families of abelian surfaces

(1) Let N=Z* with Z-basis {n, n,, n,, n,}, and let N’ = Z* with
Z-basis {ni, n;}. Let X = Tyemb (X), where X = {all the faces of g, ;|1,
je Z} with
;5 = Ry(n; + in,) + Ry(n; + (¢ + 1)n,) + By(n, + jn,) + B(n, + (5 + L)n,) .
Then X is non-singular. On the other hand, let Y = T,.emb(4), where
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A = {the faces of Rm; + Rm;}. Then Y = C®.. Let ¢ be the morphism
of r.p.p. decompositions from (N, X) to (N’, 4) defined by

4
P 3 an, — am + amn, .
=1

Thus we have an equivariant morphism @,: X —Y = C%. Let )\, k, v and
1t be the automorphisms of (I, X) defined by

-

4
e ; am, — (a, + a)n, + >, am,;
=2

-
I

3
M-

-
Il
-

ain; = (@, + a)n, + >, amn,
i=1,3,4

4 4
Vil am = —am, + >, am;
i=1 1=2
4
A —am, + D, am; .

1=1,3,4

Then @, o\, = Py, Pyoky = Py, PyoY, = @, and @, o, = @,. Let 6 and
o be the extensions to Tyemb(Y) of the actions (v, w, s, t) — (—v, w, s, t)
and (v, w, s, t)— (v, —w, s, t) of Ty, respectively. Let

o = X p/NEXEY 0 = X p/NEXKY

= Xp/NixeY S = X pNE XK

S = Xipl(0o NI XK 84 = Xip/(000)* XNE XK
7 = Xip/(hy 0 K5) XK S = Xp/NEX (00 k%",

where D is the unit polydisk in Ty .emb(4) and X,, = @3(D). When
1 # 6, .7 is non-singular, but .94 has four isolated singular points some
neighborhoods of which are isomorphic to Spec{C[x? ¥? 2% w? xy, 22, xw,
yz, yw, zw]}. If an automorphism ¢ of X induces an automorphism of
.57 by natural projection X — .97, we denote the induced automorphism
by [¢]. Let w,: .5, — D be the holomorphic map induced by @,. Then
for non-zero s and ¢, w;i(s, t) is an abelian surface, while w;%(s, 0) and
w40, t) consist of components each of which is isomorphic to a product
Ex P* of an elliptic curve and a line. These components cross along
elliptic curves. When 4 # 6, w;'(0, 0) consists of components each of
which is isomorphic to P'x P!, and these components intersect along
fibers and sections. w;%(0, 0) consists of four components each of which
is isomorphic to
V=P xXP'/h* with h:(n,&—(—n, —§&).

(2) Let ¢,: &,— 4= {seC||s| <1} be the family of elliptic curves,
whose general fiber ¢,%(s) has the periods 1 and n(log s)/27%, and ¢,%(0)

S
Il
NA
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w;70,8 or 27,0 @;Y0,0) for i%6

Ficure 2-1

is a cycle of n rational curves crossing normally. Let a,, @ and v be
the automorphisms of &, defined by
a,. (w, s) — (o,w, s) with o, = exp@ri/k),
B: (w, s)+— (sw, s) , 7: (w, 8) — (w™, s),
respectively. Let
Z; = Cx Q/{hi|a e Z% with
tagapt (@, T) = (@ + a,T + a,, 7T)
. Plagey: (@, 7)) (@ + 20,7 + @y, T) .

For any element 6 € I",(4), we define the automorphism of <7, by

‘a b
[¢, 7] [zt +d), 7], with &= (“ d> .
c
Then I',(4) acts on %. Let & = Z/,4) and let y.: 2B — (9/1,(4))
be the holomorphic map induced by the projection CxH — . Clearly
dp Xyt E X B, — AX (D[ ,(4)) is a degenerating families of abelian sur-
faces.
(II) The resolution of quotient singularities.
We consider the following singularity. For a positive integer b, let

N, = C¥h* with h:(x, ¥, 2)— (0,2, 0;'Y, 0;'2) ,

where o, = exp(27i/b). Ueno [12] constructed the canonical resolution
of this singularity. Using torus embeddings, we reconstruct this re-
solution endowed with a fiberation different from that considered in [12].

Let N =2° with Z-basis {n,, n, %}, and let =, = bn, + n, + n,,
Ny = Ny, Ny = Ny Let

V = {the faces of o}, with ¢ = R, + Rmn, + Rmn; ,
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vV = {the faces of 0,0, and 7|k =1, ---, b — 1} with
o, = Ry(n, + n, + n;) + Rn, + Ryn,

0, = Ry(kn, + n, + n;) + RBy((k + L)n, + n, + ns) + Ryn,
T, = Rokn, + n, + n;) + R((k + L)n, + n, + n;) + Ryn, .

Then Y/ is a subdivision of V/, and TNemb(f7) is non-singular. Tyemb(Y)
and Tyemb(Y) are isomorphic to N, and M in [12], respectively. ¢,
agrees with 77 in [12], where ¢, is the holomorphic map induced by
the identity map ¢ of N. See Figure 2-2.

Tyemb(v) T, emb(¥)

FIGURE 2-2

Next let L = Z with Z-basis I, and let [] = {0, Rl}. Let 7= be the
morphism of r.p.p. decompositions defined by

7. (N, @) 3a,m, + an, + an;— ale (L, []) .
Then we obtain
b—1
7y orb(RiD) = 3,6, + 6,

where 0, = orb(R,((b — k)n, + n, + n,)), @, = orb(R,m,). We easily see
that 6, and ©; are isomorphic to those in [12], and intersect in the same
way as in Lemma 4.6 [12]. In particular, we note that 6, , = P? and
0, =%_, for 1<k <b—2, where X, is the P!bundle over P! of de-
gree d.

3. We use the local degenerating families w';: .% — D, 1 = 1 through
8, ¢ Xy & X B — AX (DI, (4)), k = 1through 4, j =1, 2,and ¢,: &, X E—
4, k=1 through 6, defined in the previous section. Most of the com-
ponents of “degenerate hyperelliptic surfaces” described in this section
are elliptic surfaces. In describing their singular fibers, we use the
notation of Kodaira [4]. In the following, we denote by 4 — 4, sending
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s to s?, the double covering of a disk 4.

(1-i) Over 4. x(9/I,(4)).
Let &7 = &, x &%, and

g: . 3(p, [y, ®]) — (., [y, ®]) e .7 .

Then g has fixed points {(o, [y, ) e &y =0, 1/2, w/2 or (1 + w)/2} and
by suitable coordinates in their neighborhoods, g and ¢, X+, are express-
ed as follows:
g: (w’ Y, %, ’LU) = (_x: —Y, —%, _w) ’

¢1X'¢‘1: (x’ y’ z’ w) l-_) (xy’ w) d
Thus some neighborhood of the singular points of .%7/g% is isomorphic
to N,x(9/I',(4)). Let & be the non-singular model of /g% as in (II)
of Section 2, and let n: & — 4,.%x(9/I',(4)) be the holomorphic map
induced by ¢, X+,. Then 770, [w]) consists of five components crossing
normally. A component V is isomorphic to a non-singular model of
P*x E(w)/g?, where g: (9, [y])— (9, [¥]), thus is an elliptic surface over P!
with two singular fibers of type I}. The other four components are iso-
morphic to P2 They intersect as in Figure (1-i). In particular, V
intersects with itself at the points [, y] and [0, y], where [7, y¥] denotes
the image in V of (9, [y]) € P' X E(w). Let

0: 4, X QI ,(4) 3 (s, [@])—]1, 5,0, w]e &,
p: 4. %D/ ,(4)) 3 (s, [@]) — [0y, s, 0, w] e &,
q: 4, X (Q/T,(4)3 (s, [w]) —[1, 8, 1/4, w]e &,
where [v, s, ¥, ] denotes the image in & of ([v, s], [y, w]) € &, X .

Then o(0, [®]), p(0, [®]) and q(0, [@w]) are the points [1, 0], [o,, 0] and [1,
1/4]) of V, respectively.

FIGURE 1-i
(1-ii) Over 4,x (H/,(4)).
Let &7 = &,xX.<%, and

g: . 3(p, [y, ) = (Bp, [—y, ®]) e ¥ .
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Then g has no fixed point, hence & = .7 /g% is non-singular. Let 7
be the holomorphic map from & to 4,x(9H/I,(4)) induced by é,Xqr,.
Then 750, [®w]) is the analytic space consisting of two components V,
and V, both isomorphic to P'x E(w), which intersect in the following
way: The points (0, [y]) and (e, [y]) of V, meet the points (<o, [y]) and
(0, [—y]), respectively. Let o,q be the sections of =, defined in the
same way as in (1-i), and let

p: 4o} (D/T(4) € (s, [@]) =[5, 5, 0, w]e & .

Then 0(0, [®]), q(0, [®@]) are the points (1, [0]), (1, [1/4]) of V,, respectively,
and p(0, [®]) is the point (1, [0]) of V..

/A’i\
N

\

FIGURE 1-ii
(1-iii) Over 4,, X (H/I,(4)).

Let & be the same manifold as in (1-i), and =,;; be the holo-
morphic map from .& to 4,x(9/,(4)) induced by ¢ x+~. Let o, q be
the sections of 7w,; defined in the same way as in (1-i), and let

‘p: Al/zx (@/F0(4)) El (S, [CU]) = [0481/2’ 8, 07 Cl)] € y .
Then clearly 75;i(0, [@])(0(0, [@]), (0, [@])) is isomorphic to z%(0, [w])(o(0,
[@]), a0, [@w])) in (1-i), and P(0, [®w]) is a point of a component iso-
morphic to P*.
(1-iv) Over (9/I',(4))x 4.

Let & = Z X &, and let
g: .87 3 ([, 7], ») — ([x + 1/2, 7], vp) e 7 .

Then &7 = .7 /g” i§ non-singular, since g has no fixed point. Let
Tie: . — (/T (4)) x 4, be the holomorphic map induced by + x¢,. Let

0: (§/T4)x 4.3 (7], t)—[0,7,1,t]e.&,

p: (Q/IT W) x A, 5 ([z], t) —[1/4, 7, 1, t]e &,

a: (O/F@)x 4.3 (], &) — [0, 7, 0, t] €. .
Then w}([7], 0) is the analytic space consisting of two components V,
and V, both isomorphic to E(r)x P'/g?, with g: ([x], ) — ([ + 1/2], )
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meeting normally at the points [z, 0]€ V| and [z, ] e V,. o(z], 0), p([z],
0) and q([z], 0) are the points [0, 1], [1/4, 1] and [0, ¢,] of V|, respectively.

(1-v) Over (9/I,(4)) X 4,.

Let & = &Z X &, and g be the automorphism of .97 defined in the
same way as in (l-iv). Then . = .%7/g? is non-singular. Let
T — (9/,(4)) X 4, be the holomorphic map induced by +, x¢,. Then
77'(Jz], 0) is the analytic space consisting of three components: V,, V,
both isomorphic to those of =#7/(Jc], 0) in (1-iv) and V, isomorphic to
E(t)x P* with the points [x, ] of V, and [z, 0] of V, meeting the
points ([x], 0) and ([x], =), respectively. Let o, p be the sections of =,
defined in the same way as in (1-iv), and let

q: 9/ () x 43 ([z], £) — [0, 7, t, t]e & .
Then q([z], 0) is the point ([0], 1) of V.
(1-vi) Over (9/I'(4)) X dyy,.
Let & be the same manifold as in (1-iv), and let =,:.9” —

(H/I,(4)) % 4y, be the holomorphic map induced by +,xg¢,. Let o,p be
the sections of 7., defined in the same way as in (1-iv), and let

a: (94N x dip3 ([2], ) = [0, 7, 08, tle & .

Then clearly 77'([], 0)(o([z], 0), p([z], 0)) is isomorphic to z7.'([z], 0)(o([7], 0),
p([z], 0)) in (1-iv), and q([z], 0) is the point [0, 0,] of V..

(1-vii) Over 4,x4.,.

Let .o = .97 40xi. and g = [#opt,]. Then g has fixed points {[0, w,
s, tle .7 |lw==+1, +t} on .97, and some neighborhood of singular points
of .97 /g% is isomorphic to N,x 4,. Thus we can obtain the non-singular
model .&° of .&7/g”. Let m,;:.S” — 4,x 4, be induced by w,. Then
774(0, 0) consists of two components V,, V, isomorphic to the non-singu-
lar model of P!'x P'/g% where g: (9, &)+ (—%, &), and four components
Vv, V., V., V, isomorphic to P*. They intersect as in Figure 1-vii. In
particular, the points [7, 0] of V, meet the points [7, ] of V,, the
points [0, &] of V, (resp. V,) meet the points [co, &] of V| (resp. V,).
Let

0: 4, xd,5(@s,t)—[1,1,s,t]le S,
p:d.xd,3(s, t)—[o,1,s,tle S,
G d.xd,.9(s,t)—[1,0,s t]e.S .

Then 0(0, 0), (0, 0) and q(0, 0) are the points [1, 1], [0, 1] and [1, 0,] of
V., respectively.
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FIGURE 1-vii

(1-viii) Over 4,x4.,.

Let & = .97/g*, where & = i axdes 8 = [Neopt]l. Then & is
non-singular. Let 7.;: & — 4,x 4, be induced by w,. Then 7750, 0)
consists of four components V,, V, V, and V, isomorphic to P'x P!,
and intersecting in the following way: The points (0, &), (e, &) of V,
(resp. V;) meet the points (oo, £7Y), (0, &) of V, (resp. V,), and the points
(@, =), (1, 0) of V, (resp. V,) meet the points (7, =), (3, 0) of V, (resp. V).
Let o, g be the sections of 7,,;; defined in the same way as in (1-xii),
and let

pd,xd,5(s,t)—[s, 1,8 t]e S .

Then (0, 0), g(0, 0) are the points (1, 1), (1, 0,) of V, and p(0, 0) is the
point (1,1) of V,.
(1-ix) Over 4,,x 4. .
Let & be the same manifold as in (1-vii), and let 71 & — 4,, X 4.,
be induced by w,. Let o, q be the sections of 7, defined in the same
way as in (1-vii), and let
P d,,x4,3 (s, t)— 081, s, tle .

Then clearly =i (0, 0)(0(0, 0), q(0, 0)) is isomorphic to 73},(0, 0)(o(0, 0), q(0, 0))
in (1-vii), and p(0, 0) is a point of V,.
(1-x) Over 4, X 4,.

Let &% = 9%, x4, and g = [fop,]. Then we can obtain the non-
singular model of .97 /g? in the same way as in (1-vii). Let 7, .% —
4, % 4, be the holomorphic map induced by w,. Then 70, 0) consists
of two components V,, V, isomorphic to those in (1-vii) a component V,
isomorphic to P'x P!, four components V, V,, V; and V, isomorphic to
P? intersecting as in Figure 1-x. In particular, the points [0, &] of V,
(resp. V,) meet the points [co, &] of V| (resp. V,), the points [7, <] of
V, and [7, 0] of V, meet the points (7, 0) and (7, =) of V,, respectively.
Let o, p be the sections of 7. defined in the same way as in (1-vii), and
let
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FIGURE 1-x

QG d. X498, t)—[1, ¢, t]le .

Then o(0, 0), p(0, 0) are the points [1, 1], [o,, 1] of V,, respectively, and
q(0, 0) is the point (1,1) of V..

(1-xi) Over 4,X 4,.

Let & = .97/¢*, where &% = . x4, 8 =[Neogs]. Then & is
non-singular. Let 7.:.% — 4,%X 4, be the holomorphic map induced by
w,. Then 7:}(0, 0) consists of eight components isomorphic to P!'Xx P*
intersecting in the following way: The points (e, &) of V,, V,, V,; V,,
Ve Ve Vi, Vs meet the point 0, &) of Vi, Vi, Vo, Vi, (0, €74 of V,, V,, V,, V,,
respectively. The points (9, <) of V, V, V., V, Vi, Vi Vi, Vs meet
the points (%, 0) of V,, V,, V,, V,, V,, V;, Vi, V,, respectively. Let o, b
and q be the sections of 7., defined in the same way as in (1-vii), (1-viii)
and (1-x), respectively. Then 0(0, 0), »(0, 0) and ¢(0, 0) are the points
(1,1) of V,, V, and V,, respectively.

(1-xii) Over 4,,, X 4,.

Let & be the same manifold as in (1-x), and let 7.;: & — 4., X 4,
be induced by @, Let o, p and q be the sections of 7,;; defined in the
same way as in (1-vii), (1-ix) and (1-x), respectively. Then clearly
wzi:(0, 0)(0(0, 0), q(0, 0)) is isomorphic to 73%(0, 0)(0o(0, 0), q(0, 0)) in (1-x),
and p(0, 0) is a point of V,.

(1-xiii) Over 4, X d,.

Let & be the same manifold as in (1-vii), and let w: &7 — 4, X 4y,
be the holomorphic map induced by w,. Let o and p be the sections of
Ty defined in the same way as in (1-vii), and let

0 doX i3 (s, t)— [1, 0, 8, t] e & .

Then clearly =3 (0, 0)(0(0, 0), (0, 0)) is isomorphic to x74(0, 0)(o(0, 0),
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p(0, 0)) in (1-vii), and q(0, 0) is the point [1, g,] of V..

(1-xiv) Over 4,X 4.

Let & be the same manifold as in (1-viii), and let 7y: . — 4,% 4y,
be the holomorphic map induced by @, Let o,p and q be the sections
of 7., defined in the same way as in (1-vii), (1-viii) and (1-xiii), respec-
tively. Then clearly =} (0, 0)(0(0, 0), p(0, 0)) is isomorphic to =7}:(0, 0)
(0(0, 0), p(0, 0)) in (1-viii), and q(0, 0) is the point (1, o,) of V..

(1-xv) Over dy)s X Ay

Let & be the same manifold as in (1-ix), and let 7.1 & — 4,,,X 4,
be the holomorphic map induced by w,. Let o, p and q be the sections
of 7., defined in the same way as in (1-vii), (1-ix) and (1-xiii), respec-
tively. Then clearly w310, 0)(o(0, 0), q(0, 0)) is isomorphic to 73%;(0, 0)(o(0
0), q(0, 0)) in (1-xiii), and p(0, 0) is a point of V.

(2-1) Over 4., x(9/I",(4)).

Let .o = &,Xx.Z/h*, where h:(p, [y, ®])— (8p, [y + 1/2, ®]). Then
we can obtain the family z;:.%” — 4. %x(9/I,(4)) together with sections
0, q in the same way as in (1-i). Let p be the quasi-section of 7; defined
by

p: (s, [@]) = {loy, s, ¥, @]|y = 0, 1/2} .

Then =70, [@]) consists of the components isomorphic to those of
7740, [w]) in (1-i). But the points [, y] of V meet the points [0, ¥ +
1/2] of itself. p(0, [®]) is the pair of the points [o,, 0], [0, 1/2] of V.

(2-ii) Over 4,x(9/I",(4)).

Let .o = &,X.Z/h*, where h: (p, [y, ®]) — (a,p, [y + 1/2, ®]). Then
we obtain the family 7,: & — 4, X (H/I",(4)) together with sections o and
q in the same way as in (1-ii). Let p be the quasi-section of 7;; defined
by

p: (s, [@]) — {[£s" s, 0, w]} .

Then 7540, [@]) consists of the component V whose normalization is iso-
morphic to P'X E(w)/g?, where g: (n, [y])+— (—7u, [y + 1/2]), thus an el-
liptic surface with two double fibers. p(0, [@]) is a point on the double

Y

]

T P

FIGURE 2-ii
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curve of V.

(2-iii) Over 4., x(9D/I,(4)).

Let .o~ be the same manifold as in (2-i), and let g:[p, v, ®]—
[@.8p, —Yy, ®]. Then we obtain the family m,: & — 4,,x(9/,(4)) to-
gether with sections o, q. Let p be the quasi-section of w,; defined by

p: (s, [@]) — {[0,8' s, ¥, ®]|y = 0, 1/2} .

Then 7;i(0, [@]) is isomorphic to 70, [w]) in (2-i), 0o(0, [®]), q([0, [®@]) are
the points [1, 1/4], [1, 1/2] of V,, respectively, and p(0, [w]) is a pair of
points one on V, and the other on V,.

(2-iv) Over (9/I',(4))x 4.

Let &7 = X &,/h?, where h: ([z, 7], p)— ([x + 7, 7], @,p). Then we
obtain the family z,,: . — (9/I',(4)) x 4., together with the sections o, q in
the same way as in (1-iv). Let p be the quasi-section of 7, defined by

p: ([z], ) = {lz, 7, 1, t]|w = 1/4, 1/4 + 7} .

Then 77}([z], 0) consists of two components V, and V, isomorphic to
E(27)x PR*xg”, where k: ([z], 1) — ([ + <], —7), §: (&}, ) — ([ + 1/2],
77", with the points [x, <] and [z, 0] of V, meeting the points [z, 0]
and [z, =] of V,, respectively. p([z], 0) is the pair of the points [1/4, 1]
and [1/4 + 7, 1] of V..

(2-v) Over (9/I',(4)) X 4,.

Let &7 = &, x &,/h?, where h:([x, 7], »)— ([x + 7, 7], Bp). Then
we obtain the family w,: & — (9/I',(4)) X 4, together with the sections
o and q, in the same way as in (1-v). Let p be the quasi-section of =,
defined in the same way as in (2-iv). Then =w7([z], 0) consists of com-
ponents: V, isomorphic to that of z7!([z], 0) in (1-iv), and V, isomorphic
to E(27)x P'/g”, where g: ([z], &) — (Jx + = + 1/2], £&1). The points [z, o]
of V, meet the points [z, 0] of V,. And o([z], 0), q([z], 0) are the points
[0, 1] of V,, V,, respectively, p([z], 0) is the pair of the points [1/4, 1]
and [1/4 + 7,1] of V..

(2-vi) Over (9/I,(4))x 4.

Let & be the same manifold as in (2-iv), and let 7,;: & — (9/I",(4)) X
4, be the holomorphic map induced by +.x¢#,. Let o, q and p be the
sections and the quasi-section of 7,; defined in the same way as in (1-vi)
and (2-iv), respectively. Then clearly =7i([z], 0)(o([z], 0), p([z], 0)) is iso-
morphic to wi}([z], 0)(o([7], 0), p([z], 0)) in (2-iv), and q([z], 0) is the point
[0, o,] of V..

(2-vii) Over 4., x4..
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Let .o = .%%,..1., 8 = [foz,]. Then we obtain the family 7,:;: & —
4,.%x 4, together with sections o and q in the same way as in (1-vii).
Let p be the quasi-section defined by

p: (s’ t) = {[0.4’ il! s’ t]} M

Then 77}(0, 0) consists of six components isomorphic to those of 774(0, 0)
in (1-vii). The points [0, £] of V, (resp. V,) meet the points [co, £] of V,
(resp. V,) and the points [7, 0] of V, meet the points [7, =] of V..
p(0, 0) is the pair of the points [o,, 1] and [0, —1] of V..

(2-viii) Over 4,x4..

Let . = .o7/g”, where .7 = .9 4,.3.., § = [Mpoft], and let 7,;;:. 7 —
4,%x 4., be the holomorphic map induced by w, Let p be the quasi-
section of 7,;; defined by

pr(s, )= {[£s% 1, 8, t]} .

Then & has two isolated singular points isomorphic to those of .97,
and 774;(0, 0) consists of two components whose normalization is isomorphic
to P'x PY/h?%, with h: (7, &) — (=7, —&). The points [, ] of V, (resp.
V,) meet the points [7, 0] of V, (resp. V,), and the points [0, £] of V,
(resp. V,) meet the points [0, &] of V, (resp. V,). 9(0, 0) is a point on the
double curve of V..

(2-ix) Over Ao X d.,.

Let .&7 be the same manifold as in (2-vii), and let g = [foNop,].
Then we obtain the family 7,: & — 4,,%x 4., together with the sections
o and q in the same way as in (2-vii). Let p be the quasi-section of
;. defined by

p: (s, t)—~{[F0s 0y, s, t]}.
Then 770, 0) is isomorphic to 7=3{(0, 0) in (2-vii), 0(0, 0), q(0, 0) are the
points [1, ], [1, —1] of V,, respectively, and p(0, 0) is a pair of points
of V,and V..
(2-x) Over 4, X 4,.
Let & = %4 x4y 8 = [0opt,]. Then we obtain the family z,: & —

4., % 4, together with the sections o and g in the same way as in (1-x).
Let p be the quasi-section of 7 defined by

p: (s’ t) = {[0.4’ 1’ s’ t], [04! tz’ S’ t]} .

Then 730, 0) consists of seven components isomorphic to those of
w30, 0) in (1-x), and intersecting as in Figure 2-x. In particular, the
points [0, &] of V| (resp. [0, &] of V,, [n, 0] of V,, [n, 0] of V., (0, &) of V)
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FIGURE 2-x

meet the points [oo, &] of V, (resp. [, &] of Vi, (1, 0) of V, (9, ) of
Vs, (oo, & of V). p(0, 0) is the pair of the points [g,, 1] of V, and (o, 1)
of V..

(2-xi) Over 4,x 4,.

Let &7 = .94 x4 8 = [Ny o t]. Then we obtain the family =,;: & —
dyx 4, together with sections o and q in the same way as in (1-xi). Let
p be the quasi-section of 7, defined in the same way as in (2-viii). Then
7;(0, 0) consists of four components V,, V,, V, and V, isomorphic to
P'x P*, and intersect in the following way: The points (oo, &) of V,
(resp. V;) meet the points (0, &) of V, (resp. V,), the points (0, &) of V,
(resp. V,) meet the points (o, £7') of V, (resp. V,), the points (3, «) of
V. (resp. V;) meet the points (1, 0) of V, (resp. V,), and the points (7, 0)
of V, (resp. V,) meet the points (—7, «) of V, (resp. V,). And p(0, 0)
is the point obtained by identifing the point (0, 1) of V, with the point
(0,1) of V..

(2-xii) Over 4,,, X 4,.

Let &7 = %4548 = [0oNyopt,]. Then we obtain the family
Tyiis & — 4., X 4,, together with sections o and q in the same way as in
(2-x). Let p be the quasi-section of 7;; defined in the same way as in
(2-ix). Then 7:}(0, 0) is isomorphic to 730, 0) in (2-x), and p(0, 0) is the
pair of the points obtained by identifing the points (0, 1) and (0, —1) of
V, with the points (oo, 1) and (e, —1) of itself, respectively.

(2-xiii) Over 4. X .

We can obtain the family 7.:.9” — 4.%X4,, together with the
section o and the quasi-section p of 7,,; in the same way as in (2-vii).
Let q be the section of 7., defined in the same way as in (1-xiii). Then
clearly 7310, 0)(0(0, 0), b(0, 0)) is isomorphic to 774(0, 0)(o(0, 0), »(0, 0)), and
q(0, 0) is the point [1, o,] of V,.

(2-xiv) Over 4, 4,,.
We can obtain the family x..:.% — 4,x4,, together with the
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section o and the quasi-section p of 7, in the same way as in (2-viii).
Let q be the section of 7,;, defined in the same way as in (1-xiv). Then
clearly 73%(0, 0)(0(0, 0), (0, 0)) is isomorphic to =740, 0)(o(0, 0), $(0, 0)),
and q(0, 0) is the point [1, g,] of V..

(2-xv) Over 4o X dys.

We can obtain the family 7..: & — 4,,, X 4,,,, together with the section
o and the quasi-section p of 7., in the same way as in (2-ix). Let q be
the section of 7, defined in the same way as in (1-xv). Then clearly
7310, 0)(0(0, 0), (0, 0)) is isomorphic to 73!(0, 0)(o(0, 0), (0, 0)), and q(0, 0)
is the point [1, —0o,] of V,.

(8-1) Over 4..

Let & = &, X E(0,), and let g: (p, [¥]) — (a;p, [05y]) be the automor-
phism of .&7. Then g has three fixed points, and the singular points
of .7 /g? are isomorphic to N, of (II) in Section 2. Thus we can obtain
the family 7;: & — 4.. Let o, p and q be the sections of 7; which map
sed, to [1, s, 0], [0, s, 0] and [1, s, 1/2] €., respectively. Then x7*(0)
consists of three components V,,, V,,, V;, isomorphic to %, three com-
ponents V., V,, V.. isomorphic to P2, and a component V isomorphic
to a non-singular model of P'X E(o,)/g? with g: (n, [y]) — (o7, [osy])-
.Thus V is an elliptic surface over P! with two singular fibers of types
IV* and IV. These components intersect as in Figure 3-i. In particular,
the points [0, y] of V meet the point [, y] of itself. o(0), p(0) and q(0)
are the points [1, 0], [o,, 0] and [1, 1/2] of V, respectively.

O\
._..._l_ . .
.__.l_ —
.—.+ 4

0 =) P

FIGURE 3-i

(8-ii) Over 4,.

Let &7 = &7/g?, where . = &, X E(0.), g: (p, [y])— (8D, [0s¥]). Then
&7 is non-singular. Let 7,;: & — 4, be the holomorphic map induced by
#. Let o,p and q be the sections of z,; which map se 4, to [1,s, 0],
[s, s, 0] and [1, s, 1/2] € &, respectively. Then =;}(0) consists of two
components V, and V, both isomorphic to P!'x E(s;). The points (0, [¥])
and (e, [y]) of V, meet the points (o, [0.y]) and (0, [y]) of V,, respec-
tively. (See Figure 1-ii.) 0(0), q(0) are the points (1, [0]), (1, [1/2]) of V,
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respectively, and p(0) is the point (1, [0]) of V..

(8-iii) Over 4,,,.

Let & = o7[g%, where .o = &, x E(0y), g: (», [¥]) — (a:8°D, [0:]), and
let 7,;;: & — 4,,, be the holomorphic map induced by ¢,. Let o, p and q
be the sections of 7; which map sed4,, to [L,s, 0], [gs, s, 0] and [1, s,
1/2] € &7, respectively. Then 7;}(0) consists of a component V whose
normalization is isomorphic to P!'Xx E(c,). The points (0, [y]) meet the
points (e, [0.y]). And 0(0), p(0) and q(0) are the points (1, [0]), (—1, [O])
and (1, [1/2]) of V, respectively.

P

FIGURE 3-iii

(8-iv) Over 4,..

Let .7 = &,%x E(0,), and let g be the automorphism of .o defined
in the same way as in (3-i). Then we obtain the family 7,.: . — 4,5
together with sections o and q in the same way as in (8-i). Let p be
the section of 7,, which maps se 4,, to [0,*% s, 0]e.&”. Then 7 }(0) is
the unramified double covering space of z*(0) in (3-i), 0(0), q(0) are the
points [1, 0], [1, 1/2] of V’, respectively, and p(0) is a point of V.,
where V' and V), are copies of V and V,, of 7!(0), respectively.

(4-1) Over 4.

Let .o = &, X E(0,)/h?, where h: (p, [y]) — (Bp, [y + L — 0,)/3]). We
obtain the family 7;: & — 4., together with the sections o and g in the
same way as in (3-i). Let p be the quasi-section of =, which maps
sed, to {[o,, 8, k(1 — 0,)/3]|k =0, 1,2} .%”. Then 77*(0) consists of the
components isomorphic to those in (38-i). But the points [0, ¥] of V
meet the points [, ¥ + (1 — a,)/3]. p(0) is the triple of the points [o;,
kA —0)/38,k=0,1,2, of V.

(4-ii) Over 4,.

Let & = &, X E(g,)/h”, where h:(p, [y])— (a:p, [y + 1 — 03)/3]),
and let g:[p, y]+— [BD, 0:y] be the automorphism of .9. Then we obtain
the family x,:.% — 4,, together with sections o and q, in the same
way as in (3-ii). Let b be the quasi-section of 7;; which maps se€ 4, to
{[c¥s?, s, 0]lk = 0, 1,2}c.%”. Then 7;%(0) consists of the component V
whose normalization is isomorphic to P'x E(c,)/h?, with h: (%, [y]) —
(o, [y + (L — 04)/3]). Thus V is an elliptic surface over P! with two
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7

FIGURE 4-ii

triple fibers. The points [0, ¥] meet the points [0, o,y]. And 0(0), q(0)
and p(0) are the points [1, 0], [1, 1/2] and a point on the double curve of
V, respectively.
(4-iii) Over 4.

Let . be the same manifold as in (4-i), and let 7,;: & — 4, be
the holomorphic map induced by ¢,. Let o, q and p be the sections and
quasi-section of 7,;; which maps se 4, to [1,s, 6], [1, s, 1/2 + 6] €.&” and
{[o.8°, s, k1 — 0,)/3 + 01|k = 0, 1, 2} &, respectively, where d = 1/3. Then
0(0), q(0) and p(0) are the points [1/3], [1, 5/6] of V, and a point on the
double curve of V, respectively.

(4-iv) Over 4_,..

If we set 6=—1/3, we obtain the family =,:.% — 4_,, together
with the sections o, ¢ and the quasi-section p, in the same way as in
(4-iii).

(5-i) Over 4..

Let &7 = &, X E(o,), and let g:(p, [y]) — (ap, [0.y]) be the auto-
morphism of .9. Then .&7/g* has two singular points isomorphic to
N,, and a singular point isomorphic to N,. Thus we obtain the family
.. — 4, Let o and q be the sections of m;, which map se 4, to
[1,s,0] and [1,s, 1/4]€.&”, respectively. Then x;'(0) consists of two
components V,,, V,, isomorphic to X, two components V,, V,, iso-
morphic to Y,, three components V,,, V,, V, isomorphic to P? and a
component V isomorphic to a non-singular model of P!x E(g,)/g%, where
g: ™, [y]) — (6, [oy]). Thus V is an elliptic surface over P' with two
singular fibers of types III* and III. These components intersect as in

FIGURE 5-i
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Figure 5-i. In particular, the points [0, y] of V meet the points [0,
o] of itself. And o(0) and q(0) are the points [1, 0] and [1, 1/4] of V,
respectively.

(5-1i) Over 4,.

Let & = .o7/g?, where &% = &, X E(g)), ¢: (p, [y]) — (Bp, [0.y]). Let
70 & — 4, be the holomorphic map induced by ¢,, and let o and q be
the sections of 7,, defined in the same way as in (5-i). Then 7;%(0) con-
sists of a component V whose normalization is isomorphic to P'x E(c,).
The points (0, [y]) meet the points (e, [0y]). And 0(0), q(0) are the
points (1, [0]), (1, [L/4]) of V, respectively. (See Figure 3-iii.)

(5-iii) Over 4,,.

Let &7 = &, X E(0,), and let g: (p, [¥]) — (a,8p, [0,y]) be the auto-
morphism of .. Then .%7/g? has four singular points isomorphic to
N,. Thus we obtain the family z,;: & — 4,, together with sections o
and q defined in the same way as in (5-i). Then #;Y0) consists of five
components isomorphic to those of =#7Y(g, [¢,]) in (1-i). But the points
[o, y] of V meet the points [0, o,y] of itself.

(6-i) Over 4...

Let &7 = &, x E(o,)/h?, where h: (p, [¥]) — (Bp, [y + A + ¢,)/2]). Then
we obtain the family 7,:.%” — 4, together with sections o and q in the
same way as in (5-i). Then =% (0) consists of eight components iso-
morphic to those of #;%(0) in (5-i). (See Figure 5-i). In particular, the
points [oo, y¥] of V meet the points [0, ¥ + (1 + o,)/2] of itself.

(6-ii) Over 4,.

Let .o = &, X E(0,)/h”, where h: (p, [y]) — (a,p, [y + (1 + 0,)/2]), and
let g be the automorphism of .o~ defined in the same way as in (5-ii).
Then we obtain the family z,:.% — 4,, together with the sections o and
q in the same way as in (56-ii). Then 7;'(0) consists of the component
V isomorphic to P'x E(o)/h?, where h: (1, [y]) — (=7, [y + 1 + 0.)/2]),
with the points [0, y] meeting the points [0, o,y]. (See Figure 2-ii.)

(6-iii) Over 4,,.

Let .oz = &, X E(0,)/h?, where h: (p, [y]) — (8%, [y + 1 + 6,)2]). Then
we obtain the family 7,;: & — 4,,, together with sections o and g in the
same way as in (5-iii). Then 7;}(0) consists of the five components iso-
morphic to those of x;i(0) in (5-iii). But the points ([0, ¥ + (1 + 0,)/2])
of V meet the points [0, y] of itself 0o(0) and q(0) are the points [1, 1/2]
and [1, 3/4], respectively. (See Figure 1-i.)

(6-iv) Over 4,,.
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Let g:[p, y] — [a.BD, 6.y] be the automorphism of .o, where .97 is
the same manifold as in (6-i). Then we obtain the family #,,: & — 4,,
together with sections o and q in the same way as in (6-i). Then 77(0)
is isomorphic to 7;'(0) in (6-i). 0(0) and q(0) are the points [1, 1/2] and
[1, 0,/2] of V, respectively.

(7-i) Over 4.

Let .o = &, x E(0,), and let g: (v, [¥]) — (a0, [—0.y]) be the auto-
morphism of .o~. Then .97/g” has three singular points isomorphic to
N, N, and N,, respectively. Thus we obtain the family =;:.%” — 4..
Let o and q be the sections of 7;,, which map se4. to [1,s,0] and [1,
s, 1/3], respectively. Then 7=;'(0) consists of components V,, V., V..,
Vie Vig Vou, Vo V, isomorphic to %, 3, %, %, P? %, P? P? respec-
tively, and a component V isomorphic to a non-singular model of
P'x E(0,)/g”, where g: (9, [y]) — (6, [—0osy]). Thus V is an elliptic sur-
face over P' with two singular fibers of types II* and II. These com-
ponents intersect as in Figure (7-i)). In particular, the points [0, y] of
V meet the points [co, y] of itself. o(0) and q(0) are the points [1, 0]
and [1, 1/3] of V, respectively.

/\
..__.}. -4
0 [e) Pl.

FIGURE 7-i

(7-ii) Over 4,.

Let & = .o7/g”, where .o7 = & X K(0y), g: (», [y]) — (B87'p, [—0o:y]).
Let 7;: & — 4, be the holomorphic map induced by ¢, and let o and g
be the sections of z;; defined in the same way as in (7-i). Then 7;}(0)
consists of the component V isomorphic to P'x E(o,). The points (0, [¥])

meet the points (oo, [—0,y]).

(7-iii) Over 4,,,.

Let .7 = &, X E(0,), and let g: (p, [¥]) — (a:8p, [—0:y]) be the auto-
morphism of .97. Then .97 /g? has four singular points isomorphic to N.,.
Thus we obtain the family «,,;: & — 4,,, together with the sections o and
q defined in the same way as in (7-i). Then 7;}(0) consists of five com-
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ponents isomorphic to those of 70, [o,]) in (1-i)). But the points [0, ¥]
of V meet the points [0, —o,y] of itself.

(7-iv) Over 4.

Let &7 = &, X E(0,), and let g be the automorphism of .97 defined
in the same way as in (7-iii). Then .%7/g”* has three singular points iso-
morphic to N,. Thus we obtain the family x,.: & — 4,,,, together with
the sections o and q defined in the same way as in (7-i). Then 77(0)
consists of seven components isomorphic to those of #;*(0) in (3-i). But
the points [, y] of V meet the points [0, —o,y] of itself.
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