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Hyperelliptic surfaces are classified into seven types [1]. In this
paper we aim at constructing the moduli space of each type in the
sense described in Mumford [8] and its compactification in some sense.

In Section 1, we study the structure of hyperelliptic surfaces and,
by considering hyperelliptic surfaces with some base points, we get the
fine moduli space Mi of each type as a quotient space of the upper half
plane or the product of two copies of the upper half plane, over which
Suwa [11] showed the existence of a family of hyperelliptic surfaces
complete and effectively parametrized at each point.

In Section 2, we construct the compactification Mi of Mt. And as
a preparation for Section 3, we describe the resolution of certain quo-
tient singularities in terms of torus embeddings.

In Section 3, we describe "degenerate hyperelliptic surfaces" repre-
sented by the boundary points of Mt.

1. We write the elements of C2 and Z4 as row vectors. Let Ω be
a 2x2 matrix with coefficients in C of which the imaginary part is
positive definite Im (Ω) > 0. Then by A(Ω) we denote the complex torus
of dimension 2 with the period matrix Ω, i.e.,

A(Ω) = C2jZ4

x i

Let [x, y] denote the point of A(Ω) which is the image of (x, y) in C2.
We denote the upper half plane by φ, and for any element r of §,

we denote by E(τ) the elliptic curve with the periods 1 and τ, i.e.,

E(τ) = C\{Zτ + Z) .

We identify the elliptic curve E with its group A.\x.t{E)° of translations,
and let [x] denote the point of E{τ) which is the image of x in C.

DEFINITION. By a hyperelliptic surface we mean an elliptic bundle
over an elliptic curve whose total space has the first Betti number bt = 2.

THEOREM 1 [11]. Hyperelliptic surfaces are topologically classified
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into seven types, and any hyperelliptic surface can be expressed as the

quotient space of an abelian surface A by the group generated by an

automorphism g of A as follows, where σN = exp(2πΐ/JV) and τ, ω e φ:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

A = A

A = A

A = A

A = A

A = A

A = A

A = A

τ

0 ω

τ 1/2'

0 ω

0

P c

τ <X-σύlV

0 σ,

τ

0 σ4

τ

0

τ 0

0 σ.

g: [x, y] H» [a; + 1/2, -y]

g: [x, + 1/3, σ3y\

[a;, 1/4,

[a?, y]\->[x + 1/6, - σ 3

We denote these surfaces by S^z, ω), S2(τ, α>), S3(r), S4(τ), S5(r), Sβ(τ) and
S7(r), respectively, and denote the point of St(zf ώ) or St(z) which is the
image of [x, y] of A(Ω) by the same notation [x, y].

REMARK 1. £%= {S^τ, α>)|(r, α>) e $2} form an analytic family effec-
tively parametrized and complete at each point of ξ>2. In fact, we can
construct this as follows: Let

with

fa: (x, y, τ, ω) ι-» (x, y9 z, ω) + a

Iτ 0 0 0

0 ω 0 0

1 0 0 0

0 1 0 0

and

g: [x, y, z, ω] h-> [x + 1/2, —y, τ, ω] ,

where [x, y, τ, ω] denotes the point of S^ which is the image of (x, y,

τ,ώ) in C2x^2. Then ,9{ is non-singular, the holomorphic map πv. ,Ŝ f—>
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induced by the projection C2 x $2 -» £ 2 is smooth and πz\τ, ω) = Sx(r, ω).
In the other cases, we can also construct the analytic families

: S^—> φ2 and πt: *9f—> φ i = 3, 4, 5, 6, 7 in the same way as above.

DEFINITION. Γ = SL(2, Z)/{± 1}

eSL(2, Z)|c = 0 (modΛΓ)J/{±/}

Γ0{N) = ίfα ^ e SL(2, Z ) | c , i Ξ l , c = 0 (mod JSΓ)}
(\c d/ J

for iV - 3, 4, 6

Γo(8) = j Γ j 6 SZf(2, Z)|α, cZ = 1 (mod 4), c = 0 (mod 8)

Γo(9) = I Γ j 6 SL(2, Z)|α, d = 1 (mod 3), c = 0 (mod 9)

REMARK 2. When ΛΓ = 3, 4, 6, 8 or 9, the projection SL(2, Z)->Γ
obviously induces an isomorphism Γ0{N) —> Γ0(N).

On the other hand, the following is well known. (See, for instance,
[2]).

PROPOSITION 1. ίg/Γ and Q/Γ0(N) are punctured Rίemann surfaces.
Especially when N = 2, 3, 4, 6, 8 or 9, $/Γ0(N) is of genus 0 with t =
2, 2, 3, 4, 4 or 4 points removed, respectively.

PROPOSITION 2. Lei

AT/ = £/Γβ(2) x φ/Γ , Λf2' = (£/Γ0(2))2 ,

M3' = Ml = φ/Γβ(3) , ΛfB' = Λfβ' - φ/Λ(4), Mi = φ/Γβ(6) .

T%ew Λf<' is ίftβ space of isomorphism classes of hyperelliptic surfaces
of type (i).

REMARK 3. We can show as in the proof of Theorem 2 below that
Ml is in fact the coarse moduli space for hyperelliptic surfaces of type
(i) in the sense of Mumford [8].

PROOF OF PROPOSITION 2. For any hyperelliptic surface S, an
abelian surface A such that S = A/gz as in Theorem 1, is uniquely de-
termined by S. Indeed, A is determined as the unramified covering
manifold of S of degree m on which the pull back of the canonical
bundle Ks of S is trivial, where m is the order of Ks in Pic(S). In
this case gz is the covering transformation group and the only elements
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which can generate gz are g and g~\ Hence if we set S = A{Ω)jgz and
S' = A{Ω')l{g')z, then S and Sr are isomorphic if and only if there exists
an isomorphism of complex manifolds φ: A{Ω') —> A{Ω) such that φ°g'~
goφ or φog' = g~loφ. The following facts are straightforward.

LEMMA. A{Ω) and A{Ωr) are isomorphic as complex manifolds if
and only if there exists a matrix

CD,

such that Ω' = {AΩ + B){CΩ + D)"1. In this case, the isomorphism
φ: A{Ωf) -» A{Ω) is induced by the a fine transformation

Φ: («, V) ̂  (», »)(Cfl + D) + (α, /3)

0/ C2 /or some (α, /3) 6 C\

On the other hand, g is induced by the affine transformation

σN

of C2, where σ'N = σ^ when iV = 2, 3, 4 and σ'6=—σ^ Thus we have an
equality

{φog' - g±ιoφ}[χf y] = [{φ o g' - g±1oψ}{χi y)] .

Hence φog' •= g±xoφ \i and only if

for any {x, y) e C2. When this condition is satisfied, we see by easy
calculation that A, B, C and D are diagonal matrices in the case of types
(X)f (3), (5), (7) or triangular matrices of which the (2, l)-entry is 0 in
the case of types (2), (4), (6). Let the (1, l)-entry of A, B, C and D be
alf bu cL and dlf respectively, the (2, 2)-entry of Af B, C and D be α2, 62,
c2 and d2, respectively, and

T * \ , __ /τ' *

0 a) j \0 α>'

Then from β' - {AΩ + J5)(Cβ + 2?)"1, we get

and
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det h bl) = detf"2 b*) = 1 .

Moreover from {φ°gf — §r±1 © }̂(α?, y) e Z4 ( j \ we get ct = 0 (mod iV)

and particularly in the case of type (2) c2 = 0 (mod 2).
Conversely, assume that there exist 7 and δ such that r' = 7(τ) and

a)' — δ(ω), and let

_c2 α2j \Ci α j \Cg dj

Then we have

/4 B\
e GL(4, Z)

for any (#, y) e C2 in each case, if we choose A, 5, C, D and ^ as follows:
In the case of type (1),

aj \0 bj \0 c

ψ: (x, y) >-* (x, y)(CΩ + D) .

In the case of type (2),

_ la, cJ2\ (b, (d2 - βι)/2\ /c, 0\

^ - l θ β,j 5 = l θ 62 j C - l θ J
Φ: (x, y) H» (x, 10(CΛ + Z>) + (0, Cl/8) .

In the case of types (3), (5) and (7),

ψ: (x, y) M. (x, y)(Cΰ + D) .

In the case of type (4),

la, - l / 3 \ /6t (α, - l)/3\ /Cl Cl/3
A = l o i j B = [o o j c = l o o

φ: {x, y) M> (a;, y)(G0 + D) + (0, c,/9) .

In the case of type (6),

α t (1 - αt)/2\ = /6t (1 - α,)/2\ = /β l - c j

0 1 / \0 0 J \0 0
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Id, -eJ2\

Φ: (x, y) h» (x9 y){CΩ + 2?) + (0, c^/8) .

q.e.d.

Any hyperelliptic surface is an elliptic bundle in the following
unique way.

tar: St(τ, ω) 3 [x, y] \-> [2x] e E(2τ) i = 1, 2

tar: S,(r) 9 [α?f y] ι-> [JVα] 6 ^(JVτ) i = 3, 4, 5, 6, 7 ,

where the fibers of tar are JK(O)), E(σ3), E(σA) or 2£(σ3) in the case of
type (1)(2), (3)(4), (5)(6) or (7), respectively. We easily see that tar has
(1) four sections, (2) four 2-fold quasi-sections, (3) three sections, (4)
three 3-fold quasi-sections, (5) two sections and a 2-fold quasi-section,
(6) two 2-fold quasi-sections and a 4-fold quasi-section, (7) a section, a
2-fold quasi-section and a 3-fold quasi-section.

Now to kill automorphisms we consider hyperelliptic surfaces with
specific base points, o and q are base points, while p is a collection of
zero, one, two or three base points depending on the types. We require
0, p and q to satisfy the following conditions which we call (*) for
simplicity:

In the case of type (1), o is a point on one of the four sections of
the elliptic liberation tar. Points p and q satisfy /(o) = p and h{q) — q,
where / and h are elements of Aut(S)0 and Aut(tET~1(tsr(o)))°, respectively,
of order 4 with f\ό) = o.

In the case of type (2), o is a point on one of the four 2-fold quasi-
sections of tar. A pair p = {plf p2} of points satisfies ft(o) = pt for i —
1, 2, where ft is an element of Aut(S)0 of order 4 such that ft(o) = o
and that f1 Φ f2

±1. A point q satisfies hip) = q for an element h of
Aut(vf-\τf(o)))° of order 4.

In the case of type (3), o is a point on one of the three sections of
tar. Points p and q satisfy /(o) = p and h(p) = q, where / and h are
elements of Aut(S)0 and Aat(τf\τf(o)))° of order 6 and 2, respectively,
with f\ό) = o.

In the case of type (4), o is a point on one of the three 3-fold
quasi-sections of tar. A triple p = {p19 p2, pd} of points satisfies /*(<)) = Pi
for i = 1,2, 3, where //s are mutually different elements of Aut(S)0 of
order 9 with f\(p) = o, and /io/2

0/3(o) = o. A point q satisfies h(o) = q
for an element h of Autjttar^tarζo)))0 of order 2.

In the case of type (5), o is a point on one of the two sections of
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vr. A point q satisfies h(p) = q, where h is an element of Aut(τar~1('©'(o)))0

of order 4 such that h\o) is on a section of vf.
In the case of type (6), o is a point on one of the two 2-fold quasi-

sections of vf. A point q satisfies h(o) = q, where h is the image of
[1/4] under an isomorphism E(σA) ̂  Aut(tar"1(<or(o)))°.

In the case of type (7), o is a point on the section of vf. A point
q satisfies h(o) = q for an element h of Axxt('®'~1('&'(o)))0 of order 3.

We denote the hyperelliptic surface S with these base points by
S(o, p, (?) or S(o, g).

DEFINITION. By a family (π: ̂  —> T; o, £, q) of hyperelliptic surfaces
of type (1) with base points over an analytic space T, we mean a flat
map π: £f —> T of analytic spaces together with sections o, p and q such
that the fibers (π~\t);o(t)f £(«), q(ί)) are hyperelliptic surfaces of type (1)
with base points satisfying the property (*) for o = o(t), p = p(t) and
q - q(ί).

We can define a family of hyperelliptic surfaces of type (2), (3), (4),
(5), (6) or (7) with base points in the same way as above.

On St(τ, co) and S^z), we can choose base points o*, p* and q* satis-
fying these requirements (*) as follows:
In the case of type (1),

o* = [0, 0] , p* = [1/4, 0] , <7* = [0, 1/4] .

In the case of type (2),

o* = [0, 0] , p* = {[1/4, 0], [1/4 + τ, 0]} , q* = [0, 1/4] .

In the case of type (3),

o* = [0, 0] , p* = [1/6, 0] , (?* = [0, 1/2] .

In the case of type (4),

o* = [0, 0] , p = {[1/9, 0], [1/9 + r, 0], [1/9 + 2τf 0]} ,

<7* = [0, 1/2] .

In the case of type (5),

o* = [0, 0] , q* = [0, (1 + σ,)

In the case of type (6),

o* = [0, 0] , ?* = [0, 1/4] .

In the case of type (7),

o* - [0, 0] , <?* = [0, 1/3] .
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Then we can verify the following:

REMARK 4. Any automorphism of St(τ, ω) or S<(r) which fixes o*, p*
and q*, is the identity.

We get the following proposition by considerations similar to those
in Proposition 1.

PROPOSITION 3. The set of isomorphism classes of hyperelliptic
surfaces of type (i) with base points is in one to one correspondence
with Mi defined as follows:

REMARK 5. There exists a family over Mt of hyperelliptic surfaces
of type (i) with base points effectively parametrized and complete. In-
deed, let

lab), (ef)eΓ.(N)
\c dj ' \g hi

which are mapped to 7, δ e Γ0(N), respectively, and let

(Ύ,δ):[x,y,τ,ω]^\—*—, *— , 7(τ), δ(ω)~] for i = 1, 2 ,
Lcτ + d gω + h J

7: [x, y, τ] ι-> Γ x , y, 7(τ)Ί for i = 3, 4, 5, 6, 7 .
Lcτ + d J

Then (ΓO(4))2, (ΓO(4))2, Γ0(fi), Γo(9), Γo(4), Γo(8) and Γo(6) act on ^ for
i = 1,2, 3, 4, 5, 6 and 7, respectively without fixed point, and the actions
commute with πit Let

i — 1 9 Q? -
O J., Li *S Z ~

and let

be the holomorphic map induced by π^ Then πt is smooth and
πTKίτ, co]) = St(j, ω) i = l ,2 or πϊ\[τ]) = S,(τ) ΐ = 3, 4, 5, 6, 7, where
[τ, ω] or [τ] denotes the points of Mt which is the image of (τ, ώ) in φ2

or τ in φ, respectively. Moreover, let o*, }j* and q* be the maps which
send each point t of Mt to o*, p* and g* of the fiber π^(t)9 respectively.
Then 0*, J>* and q* are sections or sections and a quasi-section of πt de-
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pending on i.

THEOREM 2. πi:£ζ-*Mi is the universal family of hyperelliptic
surfaces of type (i) with base points, i.e., Mt is the fine moduli space in
the sense of Mumford [8] of hyperelliptic surfaces of type (i) with base
points.

PROOF. We prove the theorem only in the case of type (1). The
proof for the other types are similar.

By Proposition 3, we have a unique map/: T-+Mx for any family
over an analytic space T of hyperelliptic surfaces of type (1) with base
points. We will see shortly that this map / is holomorphic. Then we
have a morphism Φλ: Έl^ —> hMl of contravariant functors, where Tt1 and
hMl denote the set of families of hyperelliptic surfaces over T of type
(1) with base points, modulo isomorphism, and the set of holomorphic
maps from T to Mlf respectively. By Remark 5, Φ^T): Wl^T) -> hMι{T)
is surjective for any analytic space T. Thus it is enough to show that
for any family (π: S^ —> T; o, p, q) of hyperelliptic surfaces of type (1)
with base points, there is an isomorphism from φ to &[ x M} T over T,
which maps o(ί), p(t) and q(ί) to (o*of(t),t),(p*°f(t),t) and (q* <>/(*),*),
respectively, for each point t of T. For any point t0 of T, πϊ\f(t0)) =
π~\t0). Hence, by Remark 5, there is a holomorphic map / ' from a con-
nected neighborhood U of t0 to Mγ with f'(t0) = f(t0) and an isomorphism

over U such that FΌ0(t0) - (o* of(t0\ t0), FΌp(t0) = (p* o f\to\ t0) and
F'Όq(tβ) = (q*°/'(ί0), t0). By Remarks 1 and 5, S^x^U is expressed
as a quotient manifold of C2 x U. Hence there exists an automorphism
of S^xMιU which is induced by an automorphism of C2xU of the
form (x, y, t) H-> (X + α(ί), y, t) and which maps Ff op(t) to (o*of\t), t),
where a is a holomorphic function on U vanishing at t0. Composing
this automorphism with F'f we get an isomorphism

over U which maps o(t) to (o*f'(t),t). For any τ,ωe$, there exist
only four points p* - p*, pa* - [3/4, 0], p* = [(1 + 2τ)/4, 0] and pt -
[(3 + 2r/4, 0] on S^τ, β)) such that (o*, p?, ?) satisfy the property (*).
Therefore F°p(t) agrees with one of these points pt on π~\f(t)) = Sx(τ, ω),
where f\t) = [τ, ω]. But these points pt for ft = 1, 2, 3, 4 on each fiber
π~\f'{t)) = Si(r, a)) form the sections

W: ϋ'—^ίXif, ϋ' for ft = 1,2, 3,4,
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respectively. Hence Fop equals one of these sections p*, since U is
connected. Thus Fop = (p*of'f id) on U for F<>p(t0) = (ft* °/'(ίβ), ίβ) and
for £* = ft*. By the same consideration, we get Foq = (q*o/', id) on £7.
Therefore, / = / ' and Foo = (0*0/, id), F o ^ φ*o/ f id), Foq = (q*o/,
id) on U. Since JF is uniquely determined by /, we can, by Remark 5,
patch up these F's defined on neighborhoods U's which cover T. Thus
we get a unique isomorphism from S* to SζxMιT over T. q.e.d.

2. Since Q/Γ0(N) is a complex manifold of dimension 1, it has a
unique non-singular compactification (φ/Γ0(N))9 and when N = 4, 6, 8 or
9, it is biholomorphic to the projective line P1. We construct it ex-
plicitely, for later convenience. (See [7] I.)

There are t Γ0(iV)-equivalence classes of the cusps for Γ0(N) acting
on ίg, where t is the same as in Proposition 1. We choose representa-
tive points pu p2, •••, pt from each of them. Let

J *)|δ = 0(modw)J/{±I},

where δeΓ with 8(pt) = °o, and n is the smallest positive integer such
that S^ΓJpήδ is the subgroup of Γ0(N). Then $PJΓP. is isomorphic to
a punctured disk Δ*if and we can regard Δ*. as an open set of §/Γ0(N)
for sufficiently large C, since φPi is a neighborhood of p4, and Γp. is the
stabilizer of pit

Let

= ξ>/ro(N) u ^ u ^ u u 4,,
by the natural identifications, where Δp. is the disk with the same
radius as Δ*t. Then (IQ/Γ0(N)) is the non-singular compactification of
Q/Γ0(N). Let

aPi: ®Pi -> J*

be the projection. Then ap.(ω) = exv(2πiδ(ω)/n). For N = 4, 6, 8, 9 we
have the following:

JV=4. The cusps of /\(4) are represented by oo?0 and 1/2, and
= e( —l/4o)), α1/2(α>) = e(α/(l - 2α>)), where e(α)) =

N — 6. The cusps of Γo(6) are represented by 00,0,1/2 and 1/3,
and ajω) =
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N = 8. The cusps of Γo(8) are represented by ^ , 0 , 1/2 and 1/4, and
ajω) = e(α>), αo(β>) = e( —l/8α>), α1/2(ω) = e(ω/(l — 2ω)), #i/4(a>) = e(ω/(l — 4α>)).

JV= 9. The cusps of Γo(9) are represented by oo, 0, 1/3 and —1/3,
and ««,(<») = e(α>), αo(β>) = e( —l/9α>), aί/3(ω/(l — 3α>)) = e(α>/(l

DEFINITION. M, = M2 = (£/Γ0(4))2 Mt =

When i — 3 through 7, M* is the unique compactification of Mtf but MΊ.
or M2 is only one of many other possible compactifications of Mί or Mi9

respectively.
Our final goal is to show that a possibly degenerate hyperelliptic

surface with base points "naturally" corresponds to each point of Mt in
the following way: For any point t0 of Mu there exists a neighborhood
U of t0, a finite covering φ: V-> U with φ~\t0) consisting of a point s0,
and a family π: Sf —> V with sections o, q and a section or a quasi-
section p such that

over ^(C/fΊMί), where ^r^t—•Λί, is the family in Remark 5. In this
case, we say that π~\so)(o(so), p(s0), q(s0)) corresponds to t0 = φ(s0).

It is enough for our purpose to construct families with base points
over finite covering spaces of (φ/Γ0(4)) x Δd, Ad x (φ/Γ0(4)) and Ad x ΔΛ» or
Δ/s, which together with Mi cover Mif when i = 1, 2 or i = 3 through
7, respectively. We construct these families in the next section as fol-
lows: First, we construct degenerating families J ^ of abelian surfaces
and automorphisms g of jy\ Secondly, we construct, if possible, a
non-singular model *9*, flat over the base space, of J^7gz. Finally, we
add base sections to these families.

For these constructions, we need the following. We use the theory
of torus embeddings in the same notations as in Oda [5]. Especially we
denote by φ* the morphism of torus embeddings which corresponds to
a morphism φ of r.p.p. decompositions.

(I) Families of abelian surfaces
(1) Let N = Z* with Z-basis {nlf n2, n3, n4}, and let • JV = Z2 with

Z-basis {n[, n'2}. Let X— Γ^emb(Σ), where Σ = {all the faces of (7it3 \i,
jeZ} with

σitj = R0(n3 + in,) + RQ(n3 + (i + 1)^) + R0(n4 + jn2) + R0(n, + (j + l)n2) .

Then X is non-singular. On the other hand, let Y = TN, emb(^l), where
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A = {the faces of Ron[ + R0n'2}. Then Y = C2. Let φ be the morphism
of r.p.p. decompositions from (N, Σ) to (N\ A) defined by

Thus we have an equivariant morphism φ*\ X —>Y ~ C2. Let λ, /r, v and
μ be the automorphisms of (JV, Σ) defined by

H^ (α2 + a4)n2 + Σ a

ϊ = l 2 = 1,3,4

4 4

. . . X"1 , i V

i=l ί=2

4

Then φ*oχt = φ^9 φ*°tc% = <p*, φ*°v* = φ* and φ*° μ* = φ*. Let 0 and
^ be the extensions to TNemb(Σ) of the actions (v, w, s, t) t—> ( — v, w, s, t)
and (v, w, s, t) ι-> (v, — w, s, ί) of Γ ,̂ respectively. Let

rs^ _ V lΛ Z sy ^2Z fv^ XT" K 4Z w ~.2Z

rv^ — y /Λ z \s f^ ^z (\^ — "y /"\ ^^ \/ §c^^

J^ζ = X\D/(p ° λϊfί)
z x Λ:2/ ,Ĵ J = X\D/(Θ o p)z x λ2/ x Λ:2X

Z

where D is the unit polydisk in TN,emb(Λ) and XlD = φ*\D). When
i Φ Q, J&1 is non-singular, but ,Ĵ J has four isolated singular points some
neighborhoods of which are isomorphic to Spec{C[#2, y2, z2, w2

y xy, xz, xw,
yz, yw, zw]}. If an automorphism ε of X induces an automorphism of
Si/i by natural projection X -> j^J, we denote the induced automorphism
by [ε]. Let vfί:.J%ζ->D be the holomorphic map induced by φ+m Then
for non-zero s and t, vfϊ\s, t) is an abelian surface, while vfT\s, 0) and
TBT^O, t) consist of components each of which is isomorphic to a product
ExP1 of an elliptic curve and a line. These components cross along
elliptic curves. When i Φ 6, τrΐ\O, 0) consists of components each of
which is isomorphic to PιxP1, and these components intersect along
fibers and sections. tar^O, 0) consists of four components each of which
is isomorphic to

V = P1xP1\hz with h:(7},ξ)\-+(-η,-ξ).

(2 ) Let φn: g^ —> A = {s e C\ \ s \ < 1} be the family of elliptic curves,
whose general fiber φi\s) has the periods 1 and n(log s)/2πi, and ^ ( 0 )
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-^O,/) or ®7'(S,O) ^ ( 0 , 0 ) for i *

Π=qq

FIGURE 2-1

is a cycle of n rational curves crossing normally.
the automorphisms of g*n defined by

Let ak, β and 7 be

ak: (w, s)

/3: (w, s) ι

respectively. Let

(σkw, s) with σk = exp(2ττi/&) ,

(sw, s)

Λ(αi,α2>: (α, τ)

hlva2): (x, τ)

7: O , s) h-> (w 1 , s) ,

I α 6 Z2} with

(x + α ^ + α2, τ)

(a; + 2αxr + α2, τ) .

For any element δ e I

[x, τ] I - [χ/(cτ + d), τ] ,

, we define the automorphism of

ίa b\

c d

by

with 3 =

Then Γo(4) acts on m. Let ^ = .^/Γo(4) and let
be the holomorphic map induced by the projection
<f>kxψi: *
faces.

^ -> (φ/Γβ(4))
->φ. Clearly

Λx($/Γ0(4:)) is a degenerating families of abelian sur-

(II) The resolution of quotient singularities.
We consider the following singularity. For a positive integer 6, let

Nb = C*/hz with h: (x, y, z) \-> (σhx, σ^y, σ^z) ,

where σb = exp(2τri/6). Ueno [12] constructed the canonical resolution
of this singularity. Using torus embeddings, we reconstruct this re-
solution endowed with a fiberation different from that considered in [12].

Let N = Z3 with Z-basis {n19 n2, n3}, and let n[ = bn1 + n2 + n99

n2 = ni9 n[ = n3. Let

V = {the faces of σ), with σ = Ron[ + RQn'2 + R0n'3 ,
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V = {the faces of σ0, σk and τk\ k — 1,

σ0 = iJ0(^ + n2 + nz) + R0n2 + i20?t3

σfc = R^k^ + n2 + n3) + i?0((&

, b — 1} with

+ n2 + n3) + R0n3 .

Then V is a subdivision of V, and ΪVemb(V) is non-singular. ϊVemb(V)
and ΪVemb(V) are isomorphic to Nb and M in [12], respectively, t*
agrees with ϊ7"1 in [12], where c* is the holomorphic map induced by
the identity map t of N. See Figure 2-2.

Tvemb(v)

--4cfV

FIGURE 2-2

Next let L = Z with Z-basis Z, and let Π = {0, Rol} Let π be the
morphism of r.p.p. decompositions defined by

π: (N, V) 3 «!% + a2n2 + α3^3 H* a2l e (L, Π)

Then we obtain

π?(oτb(R0Q) = Σ©* + βί ,

where ΘA = orb(Λ0((δ — k)nx + n2 + n3)), Θ'Q = orb(/?o^2). We easily see
that Θk and Θό are isomorphic to those in [12], and intersect in the same
way as in Lemma 4.6 [12]. In particular, we note that θh_γ = P2 and
θk ^ Σb_k for 1 ^ k ^ b - 2, where 2^ is the PMmndle over P1 of de-
gree d.

3. We use the local degenerating families TDV J^l-^ D, i — 1 through
8, & x ψv: ^k x ^ -> ̂  X (Φ/Γo(4)), A; = 1 through 4, i - 1, 2, and 0fc: ^ x ^->
J, A; = 1 through 6, defined in the previous section. Most of the com-
ponents of "degenerate hyperelliptic surfaces" described in this section
are elliptic surfaces. In describing their singular fibers, we use the
notation of Kodaira [4]. In the following, we denote by Δ-^A, sending
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s to s2, the double covering of a disk Δ.

(1-i) Over Jβx(«/Λ(4)).
Let Jx? = g7! x ^ and

g: J ^ 9 (2), [3/, α>]) H* (α2p, [- |/ , f t)])e j/ .

Then g has fixed points {(o, [y, ft)]) e *$f\y = 0, 1/2, ft)/2 or (1 + α>)/2} and
by suitable coordinates in their neighborhoods, g and φ1 x ψ̂  are express-
ed as follows:

g: O, y, z, w) \-> (-&, -y, -z, w) ,

Thus some neighborhood of the singular points of J^/gz is isomorphic
to iV2x(φ/Γ0(4)). Let £f be the non-singular model of ^ / g z as in (II)
of Section 2, and let %•:. £f -> Δ^ x (§/Γβ(4)) be the holomorphic map
induced by &x^i. Then πf^O, [ft)]) consists of five components crossing
normally. A component F is isomorphic to a non-singular model of
PίχE(ώ)jgz, where g: (η, [y])\->(y], [y]), thus is an elliptic surface over P 1

with two singular fibers of type /*. The other four components are iso-
morphic to P2. They intersect as in Figure (1-i). In particular, V
intersects with itself at the points [^t y] and [0, y], where [η, y] denotes
the image in V of (η, [y])ePιxE(ω). Let

o: zL x (£/Λ(4)) 9 (β, [ft)])

pi Δ^ X (£/Λ(4)) 9 (8, [ft)])

q: JTO x (S//V4)) 9 (β, [ft)])

[1, β, 0, ft)] e S

[(74, 8, 0, ft)] 6

[1, β, 1/4, ω] e

where [v, s, y, ω] denotes the image in £f of ([v, s], [̂ /, ft)]) 6 g
Then o(0, [ft)]), K0, [ft)]) and q(0, [ft)]) are the points [1, 0], [<74, 0] and [1,
1/4]) of V, respectively.

-P1

FIGURE 1-i

(l-ii) Over 4,x($/Λ(4)).
Let j y = gΊ x ^ and

g: Ji^ 3 (p, [2/, ω]) ι̂  (β2p, [~y,
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Then g has no fixed point, hence £f = J^/g z is non-singular. Let πn

be the holomorphic map from S? to J0x(^/Γo(A)) induced by φ4xψ^
Then ππ^O, [ω]) is the analytic space consisting of two components Vt

and V2 both isomorphic to P1xE(ω), which intersect in the following
way: The points (0, [y]) and (oo, [y]) of Vx meet the points (co, [y]) and
(0, [ — y]), respectively. Let o, q be the sections of πn defined in the
same way as in (1-i), and let

(«, [ω]) κ> [s, β, 0, α>] e Sf .p: x

Then o(0, [ω]), q(0, [α>]) are the points (1, [0]), (1, [1/4]) of V19 respectively,
and K0, [ω]) is the point (1, [0]) of F 2 .

FIGURE 1-ii

(1-iii) Over 4 / ax(φ/Γβ(4)).
Let ^ be the same manifold as in (1-i), and πiU be the holo-

morphic map from Sf to z/0 x (§/Γ0(4)) induced by ^ x ^ , Let o, q be
the sections of πm defined in the same way as in (1-i), and let

p: Λ/2 x (£/Λ(4)) 3 (β, [α>]) H. [σ4sΛ β, 0, α>] e &> .

Then clearly ππi(0, [ω])(o(0, [α>]), q(0, [ft)])) is isomorphic to 7^(0, [α)])(o(0,
[ω]), q(0, [ω])) in (1-i), and p(0, [ω]) is a point of a component iso-
morphic to P 2 .

(1-iv) Over (φ/Γβ(4)) x zL.
Let j / = t ^ 1 x g 7

2 and let

g: j ^ 9 ([a?, τ], p) ι-> ([a; + 1/2, τ], 7p) e J ^ .

Then ^ = J^7g z is non-singular, since g has no fixed point. Let
πiΎ: .9* —> (φ/Γ0(4)) x/«, be the holomorphic map induced by ψ1xφ2. Let

o: (φ/Γ0(4)) x J M 9 ([τ], <) H- [0, τ, 1, t] 6 ^ ,

ί>: (φ/Γβ(4)) x 1 . 3 ([τ], t) h- [1/4, τ, 1, ί] 6 ^ ,

q: (φ/Γβ(4)) x zL 9 ([τ], ί) h- [0, r, σ4, ί] e S? .

Then πΓv([r], 0) is the analytic space consisting of two components V1

and V2 both isomorphic to E(τ)xP^\gz, with g: ([x], η) h-+([x + 1/2], η'1)



HYPERELLIPTIC SURFACES - 335

meeting normally at the points [x, 0] e VΊ and [x, ©o] e V2. o([τ], 0), J>([τ],
0) and q([r], 0) are the points [0, 1], [1/4, 1] and [0, σ4] of Vlf respectively.

(1-v) Over (§/Γ0(4))xΛ
Let J%f = ^ x g7* and g be the automorphism of s>/ defined in the

same way as in (1-iv). Then Sf = ,J^/QZ is non-singular. Let
πΎ: 6^ —> ({Q/Γo(4t))xd0 be the holomorphic map induced by ψ^x^. Then
TΓvXfr], 0) is the analytic space consisting of three components: Vlf V2

both isomorphic to those of πΓv([r], 0) in (1-iv) and V3 isomorphic to
E(τ)xPι with the points [x, oo] of V± and [x, 0] of F2 meeting the
points ([#], 0) and ([#], ©o), respectively. Let o, p be the sections of π v

defined in the same way as in (1-iv), and let

q: (£/Λ(4)) X Λ 3 (W, ί) H- [0, τ, t, ί] e ^ .

Then q([r], 0) is the point ([0], 1) of F3.

(1-vi) Over (φ/Γβ(4)) x J1/2.
Let ^ be the same manifold as in (1-iv), and let τrvi: ^ —>

(§/Γ0(4))x J1/2 be the holomorphic map induced by ψλxφ2. Let o, p be
the sections of τrvi defined in the same way as in (1-iv), and let

q: (£/Λ(4)) X 4/2 3 ([τ], ί) ι-> [0, r, σ4ί, ί] 6 ^ .

Then clearly ^ ( [ r ] , 0)(o([r], 0), KM, 0)) is isomorphic to π^{[τ\ 0)(o([τ], 0),
K[τ], 0)) in (1-iv), and q([r], 0) is the point [0, <jj of F2.

(1-vii) Over z)MxIM.
Let j y = Ĵ iuooxJoo and g = [#°μj . Then g has fixed points {[0, w,

sft]ej^\w=±l, ±t} on J^, and some neighborhood of singular points
of *J^7gz is isomorphic to A^xzL. Thus we can obtain the non-singular
model S? of jy/gz. Let π v l i : y - > 4 x 4 be induced by tsr1# Then
π"7ii(0, 0) consists of two components Vlf V2 isomorphic to the non-singu-
lar model of PιxPιlgz, where g: (rj, ξ) h^ ( — η, f"1), and four components
Va, y4, Vb, V6 isomorphic to P 2 . They intersect as in Figure 1-vii. In
particular, the points [η, 0] of Vλ meet the points [η, oo] of V2, the
points [0, f] of Vx (resp. F2) meet the points [oo, <J] of Fx (resp. F2).
Let

o: Δ,* x Δ^ 3 (β, ί) H> [1, 1, «, t] e 6^ ,

p: 1 x ^ 9 (β, ί) ι-> [σ4, 1, 8, ί] 6 ^ ,

q: ΔcoxXoo3 (β, ί) H* [1, σ4, s, ί] e ^ .

Then o(0, 0), #0, 0) and q(0, 0) are the points [1, 1], [σ4, 1] and [1, σA] of
Vlf respectively.
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FIGURE 1-vii

(1-viii) Over J o xJ M .
Let Sf = Jzfltf, where J*? = J^x**,, 9 = [K°μ*\- Then S^ is

non-singular. Let π v i i i : £f —> J^xl^ be induced by τar2. Then π̂ ΛiίO, 0)
consists of four components Vίf F2, F3 and F4 isomorphic to PιxPλ,
and intersecting in the following way: The points (0, £), (oo, ξ) of Vx

(resp. F3) meet the points (oo, f"1)* (0, ί) of F2 (resp. F4), and the points
(Vf °°)> (Vf °) o f T̂ i (resp. F2) meet the points (η, oo), (η9 0) of F3 (resp. F4).
Let o, q be the sections of πγiii defined in the same way as in (1-xii),
and let

Then o(0, 0), q(0, 0) are the points (1, 1), (1, σA) of V1 and £(0, 0) is the
point (1, 1) of F2.

(1-ix) Over z/1/2x J^.
Let £f be the same manifold as in (1-vii), and let ττix: Sf —> Aιnx Δ^

be induced by tarlβ Let o, q be the sections of ττix defined in the same
way as in (1-vii), and let

p: Λ/2 x ĉo 3 (s, ί) ^ [^s1/2,1, s, t] e &> .

Then clearly TΓΓX1 (0, 0)(o(0, 0), q(0, 0)) is isomorphic to TΓ ^ O , 0)(O(0, 0), q(0, 0))
in (1-vii), and p(0, 0) is a point of V8.

(1-x) Over 4 x 4
Let J ^ = J^U^XJQ and g = [θ°μ*]. Then we can obtain the non-

singular model of *W/QZ in the same way as in (1-vii). Let π x : Sf —>
4 x Λ be the holomorphic map induced by τrr3. Then TΓ'^O, 0) consists
of two components Vu V2 isomorphic to those in (1-vii) a component F3

isomorphic to PλxP\ four components F4, F5, F6 and F7 isomorphic to
P 2 intersecting as in Figure 1-x. In particular, the points [0, ξ] of FL

(resp. F2) meet the points [oo, ξ] of VΊ (resp. F2), the points [η, oo] of
Fx and [)?, 0] of V2 meet the points (η9 0) and (η, ©o) of F3, respectively.
Let o, |> be the sections of π x defined in the same way as in (1-vii), and
let
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J

FIGURE 1-X

q: 4 x Δo 9 0, ί) h-> [1, tf8,t]e^.

Then o(0, 0), £(0, 0) are the points [1, 1], [σ4, 1] of Vlf respectively, and
q(0, 0) is the point (1, 1) of F 3 .

(1-xi) Over ΔoxΔQ.
Let S? = J^/g z, where j ^ = J ^ o X j o , g = [ λ * o μ j . Then S? is

non-singular. Let πxi: ^ —> ΔQx Jo be the holomorphic map induced by
vf4. Then ττ~£(O, 0) consists of eight components isomorphic to P 1 x P1

intersecting in the following way: The points (<*>,£) of V19 F2, F 3, V4,
V5, F 6, F 7, F 8 meet the point (0, ς) of F 5, F 6, F 7, F8,(o, Γ 1 ) of F 4, V19 F 3 , F 2,
respectively. The points (η9 oo) of F x, F2, F 3, F4, F 5, F 6, F 7, F 8 meet
the points {η, 0) of F2, F 3, F 4, Vί9 F 6, F7, F 8, F 5 , respectively. Let o, p
and q be the sections of πxi defined in the same way as in (1-vii), (1-viii)
and (1-x), respectively. Then o(0, 0), t>(0, 0) and q(0, 0) are the points
(1,1) of Vί9 F 5 and F 2, respectively.

(1-xii) Over ΔιnxΔ0.
Let Sf be the same manifold as in (1-x), and let τrxil: Sf -> Δ1/2xΔ0

be induced by tar8. Let o, p and q be the sections of πxii defined in the
same way as in (1-vii), (1-ix) and (1-x), respectively. Then clearly
7ΓχΛ(0, 0)(o(0, 0), q(0, 0)) is isomorphic to πς\09 0)(o(0, 0), q(0, 0)) in (1-x),
and p(0, 0) is a point of F 4 .

(1-xiii) Over Δ^xΔ^.
Let Sf be the same manifold as in (1-vii), and let τrx i i i: £f —> Δ^xΔ^

be the holomorphic map induced by tD .̂ Let o and p be the sections of
τrxi i i defined in the same way as in (1-vii), and let

q: Δ^ x Δί/2 B (S, ί) h-> [1, σjb9 s,t]e£^ .

Then clearly π^ (0, 0)(o(0, 0), p(0, 0)) is isomorphic to 7^(0, 0)(o(0, 0),
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t>(0, 0)) in (1-vii), and q(0, 0) is the point [1, σ4] of V2.

(1-xiv) Over AQxΔι/2.
Let Sf be the same manifold as in (1-viii), and let π x i v : y - > z ί 0 x J 1 / 2

be the holomorphic map induced by vf2. Let o, p and q be the sections
of π x i v defined in the same way as in (1-vii), (1-viii) and (1-xiii), respec-
tively. Then clearly 7^(0, 0)(o(0, 0), £(0, 0)) is isomorphic to π MO, 0)
(ϋ(0, 0), £(0, 0)) in (1-viii), and q(0, 0) is the point (1, σ4) of Vs.

(1-xv) Over J1/2xI1/2.
Let S* be the same manifold as in (1-ix), and let πXΎ: <9* —> J1/2xJ1/2

be the holomorphic map induced by τflβ Let o, p and q be the sections
of πxγ defined in the same way as in (1-vii), (1-ix) and (1-xiii), respec-
tively. Then clearly ττ^(O, 0)(o(0, 0), q(0, 0)) is isomorphic to 7 ^ ( 0 , 0)(o(0
0), q(0, 0)) in (1-xiii), and p(0, 0) is a point of F 3 .

(2-i) Over 4»x(©/Λ(4)).
Let J^ = ξf2x.^Jhz, where h: (p, [», α>]) H* (/Sp, [y + 1/2, α)]). Then

we can obtain the family π^. 6^ —> Δ^x(ξ>/Γ0(4)) together with sections
o, q in the same way as in (1-i). Let p be the quasi-section of TΓ, defined
by

p: (s, [α>]) H> { K 8, i/, ω] |i/ = 0, 1/2} .

Then πf^O, [α>]) consists of the components isomorphic to those of
TΓΓ^O, [<#]) in (1-i). But the points [oo, y] of V meet the points [0, y +
1/2] of itself. p(0, [ω]) is the pair of the points [<74, 0], [σ4, 1/2] of V.

(2-ii) Over J 0x(«/Λ(4)).
Let ,J^ = ξ?2x^Jhz, where fe: (2?, [j/, ω]) h-> (α2p, [7/ + 1/2, ω]). Then

we obtain the family πn: £S —> Jo x (§/Γ0(4)) together with sections o and
q in the same way as in (1-ii). Let p be the quasi-section of πn defined
by

Then TΓΠ^O, [ω]) consists of the component V" whose normalization is iso-
morphic to P1xE{ω)\gz, where g: {η, [y\)\-»( — η, [y + 1/2]), thus an el-
liptic surface with two double fibers. £(0, [ω]) is a point on the double

FIGURE 2-ii
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curve of V.

(2-iii) Over Λ/2x(£/Λ(4)).
Let J ^ be the same manifold as in (2-i), and let g: [p, y, ft)] h->

[oίzβV, —y, (*)\. Then we obtain the family πm: Sf —> J1/2x(^/Γ0(i)) to-
gether with sections o, q. Let J) be the quasi-section of πm defined by

p: (s, [ft)]) H-> {Ks1/2, 8,y,ω]\y = 0, 1/2} .

Then τrΓπ(0, [ft)]) is isomorphic to πτ\0, [ft)]) in (2-i), o(0, [ft)]), q([0, [ft>]) are
the points [1, 1/4], [1, 1/2] of Vίf respectively, and p(0, [ft)]) is a pair of
points one on V2 and the other on V4.

(2-iv) Over (<ρ/Γ0(4))x £ . .
Let ιS%f = . ^ x g7

2/Λz, where A: ([&, τ], p) H+ ([a? + τ, τ], α2ί>) Then we
obtain the family π i v : ^"—>(φ/Γβ(4))x/«, together with the sections o, q in
the same way as in (1-iv). Let p be the quasi-section of τriv defined by

t>: (W, «) ^ {[«, r, 1, ί] |a? = 1/4, 1/4 + τ} .

Then ^ ( [ τ ] , 0) consists of two components Vx and F 2 isomorphic to
E(2τ)xPηKzxgz, where λ: ([a?], 57) h- ([a? + τ], -77), ^: ([a?], ί?) ^> ([x + 1/2],
57"1)> with the points [x, 00] and [x, 0] of yx meeting the points [x, 0]
and [x, 00] of F 2, respectively. p([τ], 0) is the pair of the points [1/4, 1]
and [1/4 + τ, 1] of V,.

(2-v) Over (£/Γ0(4))xΛ
Let j y = . ^ 2 x gyfcz, where A: ([a;, τ], p) \-^ ([a? + τ, τ], /32p). Then

we obtain the family π v : ^ —• (£>/Γ0(4))x Jo together with the sections
0 and q, in the same way as in (1-v). Let p be the quasi-section of π v

defined in the same way as in (2-iv). Then ^^([r ] , 0) consists of com-
ponents: V1 isomorphic to that of πτϊ([τ], 0) in (1-iv), and V2 isomorphic
to E(2τ)xP1/gz

t where g: ([a?], ξ) H> ([a? + τ + 1/2], Γ 1 ) . The points [x, 00]
of Fi meet the points [x, 0] of F 2 . And o([τ], 0), q([τ], 0) are the points
[0, 1] of V19 V2, respectively, p([τ], 0) is the pair of the points [1/4, 1]
and [1/4 + τ, 1] of V,.

(2-vi) Over (£/Γ0(4)) x ΔU2.
Let &* be the same manifold as in (2-iv), and let τrvi: £f —• (φ/Γ0(4)) x

Λ/2 be the holomorphic map induced by ψ2xφ2. Let 0, q and £ be the
sections and the quasi-section of πΎi defined in the same way as in (1-vi)
and (2-iv), respectively. Then clearly π~l([τ], 0)(o([τ], 0), p([τ], 0)) is iso-
morphic to πτϊ([τ], 0)(o([r], 0), p([τ], 0)) in (2-iv), and q([τ], 0) is the point
[0, σ<] of V2.

(2-vii) Over d^xl^.
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Let *$/ = ^ | J c o X j w , g = [#°μ*]. Then we obtain the family πΎii: S^-*
4 x 4 together with sections o and q in the same way as in (1-vii).
Let p be the quasi-section defined by

p: (β, ί) h-> {[σif ± l , β , ί ] } .

Then π~n(0, 0) consists of six components isomorphic to those of π7π(0, 0)
in (1-vii). The points [0, ξ] of V1 (resp. F2) meet the points [°o, ξ] of Vr

(resp. F2) and the points [η, 0] of Vι meet the points [η, <χ>] of F2.
£(0, 0) is the pair of the points [σ4, 1] and [σ4, — 1] of Vx.

(2-viii) Over 4 x 4 .
Let ^ = J^/gz, where j ^ = X , ^ ^ , g - [λ *oj"*L and let τr v i i i :^->

4 x 4 be the holomorphic map induced by vf%. Let t> be the quasi-
section of 7Γviii defined by

p:(s,t)ϊ->{[±sv\l,s, t]}.

Then S? has two isolated singular points isomorphic to those of J^£,
and TΓvHiίO, 0) consists of two components whose normalization is isomorphic
to P'xPyK*, with h:(η,ξ)\-+( — η, —ξ). The points [η, oo] of Fx (resp.
y2) meet the points [)?, 0] of V2 (resp. FJ, and the points [0, ξ] of F t

(resp. F2) meet the points [oo, ξ] of Fi (resp. F2). t>(0> 0) is a point on the
double curve of F l β

(2-ix) Over 4 / 2 x 4
Let J ^ be the same manifold as in (2-vii), and let g = [θoXoμ^].

Then we obtain the family ττix: S^ —> 4/2 x 4 together with the sections
o and q in the same way as in (2-vii). Let p be the quasi-section of
ττix defined by

p: (8, ί) ^ {[±σ4s
1/2, σ4, β, ί]} .

Then τrΓχ(0, 0) is isomorphic to TΓ-^O, 0) in (2-vii), o(0, 0), q(0, 0) are the
points [1, crj, [1, —1] of Vί9 respectively, and t>(0, 0) is a pair of points
of F3 and F4.

(2-x) Over 4 x 4 -
Let J ^ = J^U^XJQ, g = [#°μ*]. Then we obtain the family πx: S^—>

Δ^XAQ together with the sections o and q in the same way as in (1-x).
Let p be the quasi-section of π defined by

p: (s, t) h-* {[σ4, 1, a, ί], [σ4, ί
2, β, ί]} .

Then TΓxXO, 0) consists of seven components isomorphic to those of
^xX(0, 0) in (1-x), and intersecting as in Figure 2-x. In particular, the
points [0, ξ] of Vx (resp. [0, ξ] of F2, [57, 0] of Vlf [η, 0] of F2, (0, ξ) of F.)
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FIGURE 2-X

meet the points | > , ξ] of F 2 (resp. [oo, f] of V19 (77, 0) of V8, (77, 00) of
V8, (°°, ί) of F3). K0, 0) is the pair of the points [σ4, 1] of Vx and (<τ4, 1)
of F».

(2-xi) Over i o χ j o .
Let J ^ = J^I^XJQ, g = [λ* ° μ*]. Then we obtain the family π x i : *$̂ —»

J o x J o together with sections 0 and q in the same way as in (1-xi). Let
p be the quasi-section of ττix defined in the same way as in (2-viii). Then
^x/(0, 0) consists of four components Vlf V2, V3 and V4 isomorphic to
P1xP1, and intersect in the following way: The points (<*>,£) of Vx

(resp. V2) meet the points (0, ξ) of V3 (resp. V4), the points (0, ζ) of V1

(resp. V2) meet the points (oo, f 1 ) of V3 (resp. V4), the points (77, 00) of
Vi (resp. V8) meet the points (77, 0) of V2 (resp. V4), and the points (77, 0)
of Vx (resp. V8) meet the points ( — 77, 00) of V2 (resp. V4). And p(0, 0)
is the point obtained by identifing the point (0, 1) of V1 with the point
(00, 1) of V3.

(2-xii) Over J 1 / 2 xJ 0 .
Let Jάf = eJ^Ίj1/2χj0, g = [ ^ λ ^ j M j , Then we obtain the family

ττxi i: ^ —> J 1 / 2 xJ 0 , together with sections o and q in the same way as in
(2-x). Let £ be the quasi-section of ττxii defined in the same way as in
(2-ix). Then TΓ-^O, 0) is isomorphic to π-\09 0) in (2-x), and ftO, O) is the
pair of the points obtained by identifing the points (0, 1) and (0, —1) of
F 3 with the points (°°, 1) and (oo, —l) of itself, respectively.

(2-xiii) Over J
We can obtain the family τrxi i i: Sf —> A^x J1/2, together with the

section o and the quasi-section p of ττxili in the same way as in (2-vii).
Let q be the section of πxiil defined in the same way as in (1-xiii). Then
clearly 7^(0 , 0)(o(0, 0), p(0, 0)) is isomorphic to ττ7ίi(0, 0)(o(0, 0), p(0, 0)), and
q(0, 0) is the point [1, σ4] of V2.

(2-xiv) Over AύxΔU2.
We can obtain the family π x i v : £f —> Aox J1/2, together with the
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section o and the quasi-section p of πxiγ in the same way as in (2-viii).
Let q be the section of ττxiv defined in the same way as in (1-xiv). Then
clearly 7Γ"/v(0, 0)(o(0, 0), # 0 , 0)) is isomorphic to TΓ^MO, 0)(o(0, 0), p(0, 0)),
and q(0, 0) is the point [1, σ4] of F 2 .

(2-xv) Over zf1/2xI1/2.
We can obtain the family πxγ: S^—> Δ1/2x I1/29 together with the section

o and the quasi-section p of ττxv in the same way as in (2-ix). Let q be
the section of 7ΓXV defined in the same way as in (1-xv). Then clearly
^xv(0, 0)(o(0, 0), (0, 0)) is isomorphic to 7^(0, 0)0(0, 0), p(0, 0)), and q(0, 0)
is the point [1, — σ4] of F 2 .

(3-i) Over Δ».
Let j y = g\ x E(σs), and let g: (p, [y]) \-> (α3p, [σ3y]) be the automor-

phism of J ^ . Then g has three fixed points, and the singular points
of J^IQZ are isomorphic to Ns of (II) in Section 2. Thus we can obtain
the family πc. S^ —> 4» Let o, $) and q be the sections of πί which map
s e J M to [1, 8, 0], [σ6, s, 0] and [1, β, 1/2] 6 <P% respectively. Then ΓΓ^O)
consists of three components y i f l, y"2>1, F 3 ι l isomorphic to Σ2t three com-
ponents F1>2, F 2 j 2, F 3 ) 2 isomorphic to P 2 , and a component F isomorphic
to a non-singular model of PγxE(σz)lgz, with (/: ()?, [̂ /]) H> (0-3)7, [σ3l/])

. Thus F is an elliptic surface over P1 with two singular fibers of types
IV* and IV. These components intersect as in Figure 3-i. In particular,
the points [0, y] of F meet the point [00, y] of itself. o(0), ί>(0) a n<l
are the points [1, 0], [cr6, 0] and [1,1/2] of F, respectively.

- p i

FIGURE 3-i

(3-ii) Over Δo.
Let ^ = J^/g z , where J ^ = ξf6xE(σ3), g: (p, [?/])h->(/32p, [α8y]). Then

£f is non-singular. Let πn: S^ —> JQ be the holomorphic map induced by
φ6. Let 0, £ and q be the sections of πn which map s e Δo to [1, s, 0],
[s, s, 0] and [1, s, 1/2] 6 S^, respectively. Then πTi\0) consists of two
components Vx and F 2 both isomorphic to PιxE(σ3). The points (0, [y])
and (oo, [y]) of V1 meet the points (oo, [σzy]) and (0, [y]) of F 2 , respec-
tively. (See Figure 1-ii.) o(0), q(0) are the points (1, [0]), (1, [1/2]) of F,
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respectively, and £(0) is the point (1, [0]) of V2.

(3-iii) Over Δ1/2.
Let S? = J*7g z, where j * ' = &zxE(σ3), g: (p, [#]) H* (α3/32p, [σ3̂ /]), and

let 7Γm: ^ —> Δ1/2 be the holomorphic map induced by φz. Let o, p and q
be the sections of πm which map s e Δί/2 to [1, s, 0], [σβs, s, 0] and [1, s,
1/2] G S^9 respectively. Then TΓΠKO) consists of a component V whose
normalization is isomorphic to PιxE(σd). The points (0, [y]) meet the
points (oo, [σ3y]). And o(0), £(θ) and q(0) are the points (1, [0]), ( — 1 , [0])
and (1, [1/2]) of V, respectively.

FIGURE 3-iii

(3-iv) Over Δm.
Let s>/ = £?2 x E(σ8), and let g be the automorphism of .$/ defined

in the same way as in (3-i). Then we obtain the family πiΎ: Sf —> J1/ft

together with sections o and q in the same way as in (3-i). Let p be
the section of π i v which maps seAιn to [σQsm, s, 0]eS^. Then π7v(0) is
the unramified double covering space of πγ\0) in (3-i), o(0), q(0) are the
points [1, 0], [1, 1/2] of V, respectively, and p(0) is a point of Vl,2f

where V and V'U2 are copies of V and Vlt2 of πϊ\0), respectively.

(4-i) Over 4m.
Let j * = ϊ?3xE(σ3)/hz, where h: (p, [y]) H* (βp, [y + (1 - α,)/3]). We

obtain the family π x\ S^ —> Δ^ together with the sections o and q in the
same way as in (3-i). Let p be the quasi-section of π± which maps
8 6 4 to {[σ6, s, ft(l - α 8)/3]|fc = 0, 1, 2 } c ^ . Then πrx(0) consists of the
components isomorphic to those in (3-i). But the points [0, y] of V
meet the points [oo, y + (1 — σ3)/3], t>(0) is the triple of the points [σ6,
k(l - <73)/3], k = 0, 1, 2, of V.

(4-ii) Over z/0.

Let J ^ = g7, x E(σ5)/hz, where λ: (p, [?/]) h-> (a3p, [y + (1 - ff8)/3]),
and let g: [p, y] h^ [/3p, σ3?/] be the automorphism of J ^ \ Then we obtain
the family πn: S^ —> z/0, together with sections o and q, in the same
way as in (3-ii). Let p be the quasi-section of πn which maps seΔ0 to
{[σ3V

/3, s, 0]\k = 0, 1, 2 } c ^ . Then 7^(0) consists of the component V
whose normalization is isomorphic to P1 x E(σ3)/hz, with h: (η, [y]) h->
(0V7, [2/ + (1 — ̂ s)/3]). Thus F is an elliptic surface over P1 with two
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FIGURE 4-ii

triple fibers. The points [0, y] meet the points [°°,03y]. And o(0), q(0)

and p(0) are the points [1, 0], [1, 1/2] and a point on the double curve of

V, respectively.

(4-iii) Over z/1/3.
Let Sf be the same manifold as in (4-i), and let τriU: S? —> Δm be

the holomorphic map induced by φs. Let o, q and p be the sections and
quasi-section of πni which maps s e Δ1/3 to [1, s, δ], [1, s, 1/2 + 3] e S^ and
{[σ9s\ 8, k(l - σa)/3 + δ]\k = 0, 1, 2 } c ^ , respectively, where δ = 1/3. Then
JO(O), q(0) and |>(0) are the points [1/3], [1, 5/6] of V, and a point on the
double curve of V, respectively.

(4-iv) Over z/_1/3.
If we set δ=—1/3, we obtain the family πiΎ: S^ -^ zί_1/3 together

with the sections o, q and the quasi-section p, in the same way as in
(4-iii).

(5-i) Over Δw.
Let s^f = %ΊxE(0*)f and let g: (p, [T/]) I-> (α439, [σ4y]) be the auto-

morphism of J / . Then J^/g z has two singular points isomorphic to
N2f and a singular point isomorphic to N4. Thus we obtain the family
π x\ & -^ 4x>. Let o and q be the sections of πif which map s e Δ^ to
[1, 8, 0] and [1, s, 1/4] 6 S^9 respectively. Then πτ\0) consists of two
components Vltlf V2Λ isomorphic to Σz, two components Vlt2, V2i2 iso-
morphic to Σ2, three components F1>3, F2 f 3, F 3 isomorphic to P 2 , and a
component V isomorphic to a non-singular model of P1 x E(σ4)/gz, where
S- (Vf [v]) h ^ (σ*V> [σiV])' Thus F is an elliptic surface over P1 with two
singular fibers of types III* and III. These components intersect as in

- p i

FIGURE 5-i
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Figure 5-i. In particular, the points [0, y] of V meet the points [<*>,
σ4y] of itself. And o(0) and q(0) are the points [1, 0] and [1,1/4] of V,
respectively.

(5-ii) Over Δo.
Let S? = J*7g z, where Sif = gf4x#(σ4), g: (p, [#]) h^ (βp, [σ4y]). Let

TΓϋi ̂  —»Jo be the holomorphic map induced by ^4, and let o and q be
the sections of πn defined in the same way as in (5-i). Then ππXO) con-
sists of a component V whose normalization is isomorphic to PιxE(σi).
The points (0, [y]) meet the points O , [<742/]). And o(0), q(0) are the
points (1, [0]), (1, [1/4]) of V, respectively. (See Figure 3-iii.)

(5-iii) Over Δm.
Let J%f = £f2x2ί7(σ4), and let g: (p, [y]) H* (aJ3p, [βύj]) be the auto-

morphism of j$Λ Then J^7g z has four singular points isomorphic to
N2. Thus we obtain the family πm: 6^ —> Δ1/2 together with sections o
and q defined in the same way as in (5-i). Then τrΓπ(O) consists of five
components isomorphic to those of 7rγ\Qf [σ4]) in (1-i). But the points
[oo, y] of V meet the points [0, σ4y] of itself.

(6-i) Over Δ^.
Let ^/ = gf2 x E(σ4)/hz, where h: (p, [?/]) ̂  (^p, [̂  + (1 + O/2]). Then

we obtain the family π x: £f —> J^, together with sections o and q in the
same way as in (5-i). Then TΓΓ^O) consists of eight components iso-
morphic to those of TΓΓXO) in (5-i). (See Figure 5-i). In particular, the
points [oo, y] of V meet the points [0, y + (1 + <τ4)/2] of itself.

(6-ii) Over Δo.
Let j& = r^,xE{σA)lhz

y where λ: (p, [T/]) H* (α2p, [7/ + (1 + ^)/2]), and
let g be the automorphism of J ^ defined in the same way as in (5-ii).
Then we obtain the family πn: S^ —> ΔQ, together with the sections o and
q in the same way as in (5-ii). Then TΓΠXO) consists of the component
V isomorphic to P1 x E(σ4)/hz, where h: (η, [y]) κ> ( — η9 [y + (1 + tfJ/2]),
with the points [0, y] meeting the points [°°, <742/]. (See Figure 2-ii.)

(6-iii) Over Δ1/2.
Let >s/ = ^ 4 x E(σ,)/hz

f where h: (p, [»]) H> (/52p, [3/ + (1 + σ4)2]). Then
we obtain the family πm: 6^ —> Δ1/2f together with sections o and q in the
same way as in (5-iii). Then τrπl(O) consists of the five components iso-
morphic to those of πΓii(0) in (5-iii). But the points ([0, y + (1 + σA)/2])
of V meet the points [00, y] of itself o(0) and q(0) are the points [1, 1/2]
and [1, 3/4], respectively. (See Figure 1-i.)

(6-iv) Over ΔlU.
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Let g: [p, y] i—»[α4/3p, σAy] be the automorphism of j y , where ,jy is
the same manifold as in (6-i). Then we obtain the family πiy:S^—> Δ1/4

together with sections o and q in the same way as in (6-i). Then τrΓv(O)
is isomorphic to πγι(0) in (6-i). o(0) and q(0) are the points [1, 1/2] and
[1, σ4/2] of V, respectively.

(7-i) Over 4 .
Let J ^ = g\ x 2£(0-3), and let g: (p, [#]) ι-> (α6p, [ — (73?/]) be the auto-

morphism of j y . Then J^/gz has three singular points isomorphic to
Nβ, N3 and N2, respectively. Thus we obtain the family π{: S^ —> Δw.
Let o and q be the sections of πi9 which map seΔ^ to [1, s, 0] and [1,
8, 1/3], respectively. Then πτ\0) consists of components V1Λf F1>2, F1>3,
V1Λ, V1Λf V2Λ, V2,2, V3 isomorphic to Σ6, Σ4, Σ9, Σ29 P\ Σ2f P\ P\ respec-

tively, and a component V isomorphic to a non-singular model of
P'xEiσ^/g*, where g: (η, [y]) \-> (σjη, [ — σ^y]). Thus V is an elliptic sur-
face over P 1 with two singular fibers of types II* and II. These com-
ponents intersect as in Figure (7-i). In particular, the points [0, y] of
V meet the points [co, y] of itself. o(0) and q(0) are the points [1, 0]

and [1, 1/3] of V, respectively.

. pi

FIGURE 7-i

(7-ii) Over Jo.
Let Sf = J^/gz, where j ^ = ^ 6 x E(σ9), g: (p,

Let 7ΓH: S^ —> z/0 be the holomorphic map induced by φ6, and let o and q
be the sections of π π defined in the same way as in (7-i). Then TΓΠ^O)

consists of the component V isomorphic to P1xE{σz). The points (0, [y])
meet the points (co, [ — a3y])m

(7-iii) Over Δm.
Let j y = WdxE(σs)f and let g: (p, [T/]) I->(a6βp, [ — σ3y]) be the auto-

morphism of jaΛ Then J^/gz has four singular points isomorphic to N2.
Thus we obtain the family πm: & —> Δί/2, together with the sections o and
q defined in the same way as in (7-i). Then TΓΠKO) consists of five com-
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ponents isomorphic to those of πτ\0, [tf3]) in (1-i). But the points [oo, y]
of V meet the points [0, — σ3y] of itself.

(7-iv) Over Λ/3.
Let Szf = if2xi7(σ3), and let g be the automorphism of Jzf defined

in the same way as in (7-iii). Then J^/gz has three singular points iso-
morphic to JV3. Thus we obtain the family 7riv: S? —> Jι/3, together with
the sections o and q defined in the same way as in (7-i). Then τrΓv(O)
consists of seven components isomorphic to those of 7iγ\0) in (3-i). But
the points [°°, #] of V meet the points [0, —(τ3y] of itself.

REFERENCES

[ I ] F. ENRIQUES ET F. SEVERI, Memoire sur les surfaces hyperelliptique, Acta Math., 32
(1909), 283-392, 33 (1910), 321-403.

[2] R. C. GUNNING, Lectures on Riemann Surfaces, Princeton Univ. Press, 1965.
[3] G. KEMPF ET AL., Toridal Embeddings, I, Lecture Notes in Math. 339, Springer-Verlag,

Berlin-Heidelberg-New York, 1973.
[4] K. KODAIRA, On compact analytic surfaces II, Ann. Math., 77 (1963), 563-626.
[5] T. ODA, Lectures on torus embeddings and applications (Based on joint work with K.

Miyake), Tata Inst. of Fund. Res., 1978.
[6] D. MUMFORD, Abelian Varieties, Oxford Univ. Press, 1970.
[7] D. MUMFORD, A new approach to compactifing locally symmetric varieties, in Discrete

subgroups of Lie groups, Oxford Univ. Press, 1975.
[ 8 ] D. MUMFORD, Geometric Invariant Theory, Springer-Verlag, Berlin-Heidelberg-New York,

1965.
[9] D. MUMFORD AND K. SUOMINEN, Introduction to the theory of moduli, in Algebraic

Geometry, Oslo, 1970.
[10] U. PERSSON, On degenerations of algebraic surfaces, Memoire of Amer. Math. Soc, 189

(1977).
[II] T. SUWA, On hyperelliptic surfaces, J. Fac. Sci. Univ. Tokyo Sec. I, 14 (1970), 469-476.
[12] K. UENO, On fiber spaces of normally polarized abelian varieties of dimensions 2, I, J.

Fac. Sci. Univ. Tokyo, Sec. I. A, 17 (1971), 37-95.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, 980 JAPAN






