THE DEFICIENCIES AND THE ORDER OF HOLOMORPHIC MAPPINGS OF C^{n} INTO A COMPACT COMPLEX MANIFOLD

Seiki Mori

(Received July 3, 1978, revised October 24, 1978)

1. Introduction. Edrei and Fuchs [1] proved several interesting results about the relations between the order and deficiencies of meromorphic functions of one complex variable. In particular, they showed that a meromorphic function with two deficient values is of positive lower order and that an entire function of finite order with maximal deficiency sum 2 is of positive integral order and of regular growth. Generalizations of these results were given by Toda [6], Noguchi [5] and the present author [4] for meromorphic mappings into a complex projective space $\boldsymbol{P}^{N} \boldsymbol{C}$.

In this note, we generalize results of Edrei and Fuchs concerning the relations between deficiencies and the lower order to the case of holomorphic mappings of the n-dimensional complex Euclidean space \boldsymbol{C}^{n} into a compact complex manifold M with a positive line bundle.
2. Notation and Terminology. Let $z=\left(z_{1}, \cdots, z_{n}\right)$ be the natural coordinate system in \boldsymbol{C}^{n}. We put $\|z\|^{2}=\sum_{j=1}^{n} z_{j} \bar{z}_{j}, B(r)=\left\{z \in \boldsymbol{C}^{n} \mid\|z\|<r\right\}$, $\partial B(r)=\left\{z \in C^{n} \mid\|z\|=r\right\}, \quad d^{c}=(\sqrt{-1} / 4 \pi)(\bar{\partial}-\partial), \quad \psi^{\prime}=d d^{c} \log \|z\|^{2}, \quad \psi_{k}=$ $\psi \wedge \cdots \wedge \psi\left(k\right.$-times) and $\sigma=d^{c} \log \|z\|^{2} \wedge \psi_{n-1}$.

For a divisor $D(\nRightarrow 0)$ in C^{n}, we write

$$
n(r, D) \equiv \int_{\operatorname{supp} D \cap B(t)} \psi_{n-1} \quad \text { and } \quad N(r, D) \equiv \int_{0}^{r} n(t, D)(d t / t) .
$$

Let M be an m-dimensional compact complex manifold with a positive line bundle, hence a smooth projective algebraic variety by a famous embedding theorem of Kodaira. Let L be a positive line bundle over M and $\left\{U_{\alpha}\right\}$ be an open covering of M such that the restriction $L_{\mid U_{\alpha}}$ is trivial. Then L is determined by the 1 -cocycle $\left\{f_{\alpha \beta}\right\}$ which are non-zero holomorphic functions on $U_{\alpha} \cap U_{\beta}$ and satisfies $f_{\alpha \beta}=f_{\alpha \gamma} \cdot f_{\gamma \beta}$ on $U_{\alpha} \cap U_{\beta} \cap U_{r}$. A holomorphic section $\phi=\left\{\dot{\phi}_{\alpha}\right\} \in H^{\circ}(M, \mathcal{O}(L))$ of $L \rightarrow M$ is given by holomorphic functions ϕ_{α} on U_{α} which satisfy the relation $\phi_{\alpha}=f_{\alpha \beta} \phi_{\beta}$ on $U_{\alpha} \cap U_{\beta}$. A metric h in L is given by positive C^{∞} functions h_{α} in U_{α} such that $h_{\alpha}=\left|f_{\alpha \beta}\right|^{2} h_{\beta}$ on $U_{\alpha} \cap U_{\beta}$. Thus, if $\phi=\left\{\phi_{\alpha}\right\}$ is a section
of $L \rightarrow M$, then the function $|\dot{\phi}|^{2}=\left|\dot{\phi}_{\alpha}\right|^{2} / h_{\alpha}$ is well defined on M and is called the norm of φ. We put $\omega=\omega_{L}=d d^{c} \log h_{\alpha}$, which represents the Chern class $c_{1}(L)$ of L, and call it the curvature form of the metric h.

Let f be a holomorphic mapping of C^{n} into M. We define

$$
T(r, f) \equiv T_{L}(r, f) \equiv \int_{0}^{r}(d t / t) \int_{B(t)} f^{*} \omega \wedge \psi_{n-1}
$$

and call it the characteristic function of f, where $f^{*} \omega$ denotes the pull back of the form ω by f. We note that $T(r, f)$ is independent of the choice of the metric h in L up to an $O(1)$-term (see [2], p. 182).

Let $|L|$ denote the complete linear system of effective divisors on M given by the zeros of a holomorphic section of $L \rightarrow M$.

Let $\widetilde{D} \in|L|$ be an effective divisor given by the zeros of a holomorphic section $\phi \in H^{\circ}(M, \mathscr{O}(L))$ with $|\phi| \leqq 1$ on M. Assume that $\phi(f(z)) \not \equiv 0$ and let

$$
m(r, \widetilde{D}) \equiv \int_{\partial B(r)}\left(\log \left(1 /|\phi|^{2}(f(z))\right)\right) \sigma \quad(\geqq 0)
$$

Using Nevanlinna's first main theorem, Griffiths and King proved the following (see [2], p. 174 for the case of meromorphic functions and p. 184 for the case of divisors).

Theorem A. Let g be a holomorphic mapping of \boldsymbol{C}^{n} into M and let $\widetilde{D} \in|L|$ be an effective divisor given by $\phi \in H^{\circ}(M, \mathcal{O}(L))$ such that the divisor (ϕ) of ϕ is equal to $\widetilde{D},|\phi| \leqq 1$ and $\phi(f(z)) \not \equiv 0$. Then

$$
\begin{equation*}
N\left(r, f^{*} \widetilde{D}\right)+m(r, \widetilde{D})=T(r, f)+O(1) \tag{1}
\end{equation*}
$$

where $O(1)$ depends on \widetilde{D} but not on r.
In the case where $f^{*} \widetilde{D}$ passes through the origin, the definition of $N\left(r, f^{*} \widetilde{D}\right)$ must be modified by means of the Lelong numbers and, furthermore, the $O(1)$ term must be replaced by the term of $O(\log r)$. (Cf. Griffiths and King [2].)

For a divisor $\widetilde{D} \in|L|$ on M, we define the deficiency of \widetilde{D} by

$$
\delta(\widetilde{D}, f) \equiv 1-\lim _{r \rightarrow \infty} \sup N\left(r, f^{*} \widetilde{D}\right) / T(r, f)
$$

We define the order λ and the lower order μ of f as follows: $\lambda=$ $\lim \sup _{r \rightarrow \infty}(\log T(r, f)) / \log r$ and $\mu=\lim _{\inf _{r \rightarrow \infty}}(\log T(r, f)) / \log r$.
3. Let $f: \boldsymbol{C}^{n} \rightarrow M$ be a holomorphic mapping of finite order λ and $f\left(\boldsymbol{C}^{n}\right)$ is not contained in any divisor belonging to $|L|$. Let $\widetilde{D}_{1}, \cdots, \widetilde{D}_{m+1} \in$ $|L|$ be divisors on M such that $\widetilde{D}=\widetilde{D}_{1}+\cdots+\widetilde{D}_{m+1} \in\left|L^{m+1}\right|$ has normal crossings and let $\phi^{j}=\left\{\phi_{\alpha}^{j}\right\} \in H^{0}(M, \mathcal{O}(L))$ be holomorphic sections such
that the divisor (ϕ^{j}) of ϕ^{j} is equal to \widetilde{D}_{j} and $\left|\phi^{j}\right| \leqq 1$ on M for $j=1, \cdots$, $m+1$. Set $D_{j}=f^{*}\left(\widetilde{D}_{j}\right)$. Then the system $\left\{\dot{\phi}^{1}, \cdots, \phi^{m+1}\right\}$ has no common zeros, since \widetilde{D} has normal crossings. Thus the function $h=\left\{h_{\alpha}\right\} \equiv \sum_{j=1}^{m+1}$ $\left|\phi_{\alpha}\right|^{2}$ is a positive C^{∞} function on M satisfying $h_{\alpha}=\left|f_{\alpha \beta}\right|^{2} h_{\beta}$ on $U_{\alpha} \cap U_{\beta}$. Hence we may take h as a metric on L. Note that, if η^{1} and η^{2} are two holomorphic sections of $L \rightarrow M$, then its ratio η^{1} / η^{2} is a global meromorphic function on M. Since \widetilde{D} has normal crossings, there is an i (say $i=1$) such that $f^{*}\left(\widetilde{D}_{i}\right)$ does not contain the origin. By Theorem A for the case of divisors, we have

$$
\begin{aligned}
T(r, f) & =N\left(r, f^{*}\left(\widetilde{D}_{1}\right)\right)+m\left(r, \widetilde{D}_{1}\right)+O(1) \\
& =N\left(r, D_{1}\right)+\int_{\partial B(r)}\left(\log \left(h_{\alpha}(f(z)) /\left|\phi_{\alpha}^{1}\right|^{2}(f(z))\right)\right) \sigma(z)+O(1) \\
& =N\left(r, D_{1}\right)+\int_{\partial B(r)}\left(\log \left(\sum_{j=1}^{m+1}\left|\phi_{\alpha}^{j}(f(z)) / \phi_{\alpha}^{1}(f(z))\right|^{2}\right)\right) \sigma(z)+O(1)
\end{aligned}
$$

or
(2) $T(r, f)=N\left(r, D_{1}\right)+\int_{\partial B(r)}\left(\max _{1 \leq j \leq m+1} \log \left|\dot{\phi}_{\alpha}^{j}(f) / \dot{\phi}_{\alpha}^{1}(f)\right|^{2}\right) \sigma+O(1)$.

Note that $T(r, f) \geqq n\left(r / 2, D_{1}\right) \cdot \log 2$. Hence $n\left(r, D_{1}\right)$ has the order not exceeding the order $\lambda(<\infty)$ of f. Hence there exists an integer q with $\int^{\infty} t^{-q-1} d n\left(t, D_{1}\right)<\infty$, and an entire function $F(z)$ with the divisor $(F)=D_{1}(\nexists 0)$ and of order at $\operatorname{most} \max \left(q\right.$, ord. $\left.D_{1}\right)$ by Lelong [3].

Now, let $\gamma_{\rho}\left(z, z_{0}\right)$ be an automorphism of $B(\rho)$ such that $\gamma_{\rho}\left(z, z_{0}\right)=0$ for $z_{0} \in B(\rho)$. We write $\psi_{\rho}\left(z, z_{0}\right)=\psi \circ \gamma_{\rho}\left(z, z_{0}\right)$ and $\sigma_{\rho}\left(z, z_{0}\right)=\sigma \circ \gamma_{\rho}\left(z, z_{0}\right)$. If $z_{0}=(r, 0, \cdots, 0), \zeta=\left(\zeta_{1}, \cdots, \zeta_{n}\right)$ and if

$$
\gamma_{\rho}\left(\zeta, z_{0}\right)=\frac{\rho}{\rho-(r / \rho) \zeta_{1}}\left(\zeta_{1}-r,\left(1-(r / \rho)^{2}\right)^{1 / 2} \zeta_{2}, \cdots,\left(1-(r / \rho)^{2}\right)^{1 / 2} \zeta_{n}\right)
$$

then we have

$$
\begin{equation*}
\frac{\left(1-(r / \rho)^{2}\right)^{n}}{(1+(r / \rho))^{2 n}} \sigma(\zeta) \leqq \sigma_{\rho}(\zeta, z) \leqq \frac{\left(1-(r / \rho)^{2}\right)^{n}}{(1-(r / \rho))^{2 n}} \sigma(\zeta) \tag{3}
\end{equation*}
$$

for $\zeta \in \partial B(\rho)$. Hence we see that $\sigma_{\rho}(\zeta, z) \equiv(1+Q) \sigma(\zeta)$, where

$$
Q \leqq\left\{\left(\tau_{\rho}+1\right)^{n}-\left(\tau_{\rho}-1\right)^{n}\right\} /\left(\tau_{\rho}-1\right)^{n} \quad \text { for } \quad \tau_{\rho}=\rho / r>1
$$

4. We now prove the following theorem which yields a relation between the lower order and the deficiencies.

ThEOREM 1. Let $f: \boldsymbol{C}^{n} \rightarrow M$ be a holomorphic mapping of finite order λ such that the image $f\left(C^{n}\right)$ is not contained in any divisor in $|L|$ and let $\widetilde{D}_{1}, \cdots, \widetilde{D}_{m+1} \in|L|$ be divisors on M such that $\widetilde{D}=\widetilde{D}_{1}+\cdots+\widetilde{D}_{m+1}$
has normal crossings. If $\tau>\tau_{0}$, then
(4) $T(r, f) \leqq(5 n / 2 \tau) T(\tau r, f)+\max _{1 \leqq j \leqq m+1} N\left(\tau r, f^{*} \widetilde{D}_{j}\right)+O(\log r) \quad(r \rightarrow \infty)$, where $\tau_{0} \in R$ is the maximal real number of τ_{0} such that

$$
\left\{\left(\tau_{0}+1\right)^{n}-\left(\tau_{0}-1\right)^{n}\right\}\left(\tau_{0}-1\right)^{-n}=5 n \cdot\left(2 \tau_{0}\right)^{-1}
$$

Proof. Since ϕ^{j} / ϕ^{1} is a meromorphic function on M and since F is an entire function on C^{n} with $(F)=D_{1}$, we see that $\left(\phi^{j}(f(z)) / \phi^{1}(f(z))\right) \cdot F(z)$ is an entire function without poles on C^{n}. Hence the function $\log \left(\left|\phi^{j}(f) / \phi^{1}(f)\right||F|\right)$ is a subharmonic function on C^{n}. Thus, for $\|z\|=$ $r<R$, (2) implies

$$
\begin{aligned}
\log \mid & \left.\mid \phi^{j}(f(z)) / \phi^{1}(f(z))\right\}\left.F(z)\right|^{2} \leqq \int_{\partial B(R)}\left(\log \left|\left\{\phi^{j}(f(\zeta)) / \phi^{1}(f(\zeta))\right\} F(\zeta)\right|^{2}\right) \sigma(\zeta, z) \\
= & \int_{\partial B(R)}\left(\log \left|\phi^{j}(f(\zeta)) / \phi^{1}(f(\zeta))\right|^{2}\right) \sigma(\zeta, z)+\int_{\partial B(R)}\left(\log |F(\zeta)|^{2}\right) \sigma(\zeta, z) \\
\leqq & \int_{\partial B(R)}\left(\log \left|\phi^{j}(f(\zeta)) / \phi^{1}(f(\zeta))\right|^{2}\right) \sigma(\zeta) \\
& \quad+(5 n / 2 \tau) \int_{\partial B(R)}\left(|\log | \phi^{j}(f(\zeta)) /\left.\phi^{1}(f(\zeta))\right|^{2} \mid\right) \sigma(\zeta)+\int_{\partial B(R)}\left(\log |F(\zeta)|^{2}\right) \sigma(\zeta, z) \\
= & N\left(R, D_{j}\right)-N\left(R, D_{1}\right)+(5 n / 2 \tau) \int_{\partial B(R)}\left(|\log | \phi^{j}(f(\zeta)) /\left.\phi^{1}(f(\zeta))\right|^{2} \mid\right) \sigma(\zeta) \\
& \quad+\int_{\partial B(R)}\left(\log |F(\zeta)|^{2}\right) \sigma(\zeta, z)+O(\log R) \quad(j=1, \cdots, m+1),
\end{aligned}
$$

hence

$$
\begin{aligned}
& \text { (5) } \quad \max _{1 \leqq j \leqq m+1} \log \left|\left\{\phi^{j}(f(z)) / \phi^{1}(f(z))\right\} F(z)\right|^{2} \\
& \leqq \max _{1 \leqq j \leq m+1} N\left(R, D_{j}\right)-N\left(R, D_{1}\right)+(5 n / 2 \tau) \int_{\partial B(R)}\left(\max _{1 \leq j \leqq m+1}|\log | \phi^{j}(f(\zeta)) /\left.\phi^{1}(f(\zeta))\right|^{2} \mid\right) \sigma(\zeta) \\
& \quad+\int_{\partial B(R)}\left(\log |F(\zeta)|^{2}\right) \sigma(\zeta, z)+O(\log R)
\end{aligned}
$$

by (1) for the case of meromorphic functions. Since $\max _{1 \leq j \leq m+1}\left|\phi^{j}(f)\right|$ $\phi^{1}(f) \mid \geqq 1$, we see $\max _{1 \leq j \leqq m+1}|\log | \phi^{j}(f) / \phi^{1}(f)| |=\max _{1 \leqq j \leqq m+1} \log \left|\phi^{j}(f) / \phi^{1}(f)\right|$ and we have

$$
\begin{aligned}
\int_{\partial B(R)} & \left(\max _{1 \leqq j \leqq m+1}|\log | \phi^{j}(f(\zeta)) /\left.\phi^{1}(f(\zeta))\right|^{2} \mid\right) \sigma(\zeta) \\
& =\int_{\partial B(R)}\left(\max _{1 \leqq j \leqq m+1} \log \left|\phi^{j}(f(\zeta)) / \phi^{1}(f(\zeta))^{2}\right|\right) \sigma(\zeta) \leqq T(R, f)+O(1)
\end{aligned}
$$

Therefore, integrating both sides of (5) on $\partial B(r)$, we obtain

$$
\begin{aligned}
\int_{\partial B(r)} & \left(\max _{1 \leqq j \leqq m+1} \log \left|\left\{\phi^{j}(f(z)) / \dot{\phi}^{1}(f(z))\right\} F(z)\right|^{2}\right) \sigma(z) \leqq \max _{1 \leqq j \leqq m+1} N\left(R, D_{j}\right)-N\left(R, D_{1}\right) \\
& +(5 n / 2 \tau) T(R, f)+N\left(R, D_{1}\right)+O(\log R),
\end{aligned}
$$

since

$$
\begin{gathered}
\int_{\partial B(r)}\left\{\int_{\partial B(R)}\left(\log |F(\zeta)|^{2}\right) \sigma(\zeta, z)\right\} \sigma(z)=\int_{\partial B(R)}\left(\log |F(\zeta)|^{2}\right) \sigma(\zeta) \\
=N(R,(F))=N\left(R, D_{1}\right) .
\end{gathered}
$$

Thus we have

$$
\begin{aligned}
T(r, f) & =\int_{\partial B(r)}\left(\max _{1 \leq j \leq m+1} \log \left|\phi^{j}(f(z)) / \phi^{1}(f(z))\right|^{2}\right) \sigma(z)+N\left(r, D_{1}\right)+O(1) \\
& =\int_{\partial B(r)}\left(\max _{1 \leq j \leqq m+1} \log \left|\left\{\phi^{j}(f(z)) / \phi^{1}(f(z))\right\} F(z)\right|^{2}\right) \sigma(z)+O(1) \\
& =\max _{1 \leqq j \leqq m+1} N\left(R, D_{j}\right)+(5 n / 2 \tau) T(R, f)+O(\log R) \quad(R \rightarrow \infty) .
\end{aligned}
$$

This completes the proof of Theorem 1 with $R=\tau r$.
Corollary 1. Under the same assumption as in Theorem 1, if f is transcendental and is of lower order μ and if $\gamma \equiv \max _{1 \leqq j \leqq m+1}(1-$ $\left.\delta\left(\widetilde{D}_{j}, f\right)\right\}<1$, then

$$
\begin{array}{lll}
\mu \geqq \frac{\log (1 / \gamma(2-\gamma))}{\log \tau} & \text { for } & \gamma \neq 0 \\
\mu \geqq 1 & \text { for } & \gamma=0
\end{array}
$$

where $\tau=\max \left(\tau_{0}, 5 n / \gamma(1-\gamma)\right)$.
Proof. Using a method similar to that of Edrei and Fuchs [1], we deduce these inequalities from (4).

Corollary 2. Under the same assumption as in Theorem 1, if f is transcendental and if there are $m+1$ divisors $\widetilde{D}_{j} \in|L| \quad(j=1, \cdots$, $m+1)$ on M such that $\widetilde{D}=\widetilde{D}_{1}+\cdots+\widetilde{D}_{m+1} \in\left|L^{m+1}\right|$ has normal crossings and $\delta\left(\widetilde{D}_{j}, f\right)>0$ for $j=1, \cdots, m+1$, then the lower order μ of f is positive.

We next give an estimate for $K(f) \equiv \lim \sup _{r \rightarrow \infty} \sum_{j=1}^{m+1} N\left(r, D_{j}\right) / T(r, f)$. A similar estimate for the case of meromorphic mappings into $\boldsymbol{P}^{N} \boldsymbol{C}$ was given by Noguchi [5].

THEOREM 2. Let $f: C^{n} \rightarrow M$ be a holomorphic mapping of finite order λ which is not a positive integer. Assume that the image $f\left(C^{n}\right)$ is not contained in any divisor belonging to $|L|$. Then, for any $m+1$ divisors $\widetilde{D}_{j} \in|L|, j=1, \cdots, m+1$ on M such that $\widetilde{D}=\widetilde{D}_{1}+\cdots+\widetilde{D}_{m+1}$ has normal
crossings and $f^{*} \widetilde{D}_{j} \nexists 0 \quad(j=1, \cdots, m+1)$, we have

$$
K(f) \equiv \lim _{r \rightarrow \infty} \sup \sum_{j=1}^{m+1} N\left(r, f^{*} \widetilde{D}_{j}\right) / T(r, f) \geqq k(\lambda)
$$

where $k(\lambda)$ is a positive constant depending only on λ and is not less than $\left\{2 \Gamma^{4}(3 / 4)|\sin \pi \lambda|\right\} /\left\{\pi^{2} \lambda+\Gamma^{4}(3 / 4)|\sin \pi \lambda|\right\}$. In particular, if $0 \leqq \lambda<1$, then $k(\lambda)$ satisfies $k(\lambda) \geqq 1-\lambda$, where $\Gamma(\cdot)$ denotes the gamma-function.

Proof. Since $f^{*} \widetilde{D}_{1} \equiv D_{1} \nexists 0$, there is Lelong's canonical function F with $(F)=D_{1}$ and of order at most $\max \left(q\right.$, ord. $\left.D_{1}\right)$, where q is the least integer satisfying $\int^{\infty} t^{-q-1} d n\left(t, D_{1}\right)<\infty$. Thus, by (2) we have

$$
\begin{aligned}
T(r, f) & =N\left(r, D_{1}\right)+\int_{\partial B(r)}\left(\log \sum_{j=1}^{m+1}\left|\phi^{j}(f(z)) / \phi^{1}(f(z))\right|^{2}\right) \sigma(z)+O(1) \\
& =\int_{\partial B(r)}\left(\max _{1 \leq j \leq m+1} \log \left|\left\{\phi^{j}(f(z)) / \phi^{1}(f(z))\right\} F(z)\right|^{2}\right) \sigma(z)+O(1)
\end{aligned}
$$

or

$$
T(r, f) \leqq \sum_{j=1}^{m+1} \int_{\partial B(r)}\left(\log ^{+}\left|\left\{\phi^{j}(f(z)) / \phi^{1}(f(z))\right\} F(z)\right|^{2}\right) \sigma(z)+O(1)
$$

Now we can write $\left\{\hat{\phi}^{j}(f(z)) / \phi^{1}(f(z))\right\} F(z) \equiv G_{j}(z) \cdot \exp \left(P_{\dot{j}}(z)\right)$, where G_{j} is the canonical function associated with the divisor $f^{*} \widetilde{D}_{j} \equiv D_{j}$ and P_{j} is a polynomial of degree not greater than the order of $\left\{\phi^{j}(f) / \phi^{1}(f)\right\} F$. We also see that

$$
T(r, f) \geqq \int_{\partial B(r)}\left(\log ^{+}\left|\phi^{j}(f(z)) / \phi^{1}(f(z))\right|^{2}\right) \sigma(z)-O(1)
$$

hence

$$
\begin{aligned}
\int_{\partial B(r)} & \left(\log ^{+}\left|\exp \left(P_{j}(z)\right)\right|^{2}\right) \sigma(z) \\
& \leqq \int_{\partial B(r)}\left(\log ^{+}\left|G_{j}(z) \exp \left(P_{j}(z)\right)\right|^{2}\right) \sigma(z)+\int_{\partial B(r)}\left(\log ^{+}\left|G_{j}(z)\right|^{-2}\right) \sigma(z) \\
= & \int_{\partial B(r)}\left(\log ^{+}\left|\left\{\phi^{j}(f(z)) / \phi^{1}(f(z))\right\} F(z)\right|^{2}\right) \sigma(z)+\int_{\partial B(r)}\left(\log ^{+}\left|G_{j}(z)\right|^{-2}\right) \sigma(z) \\
\leqq & \int_{\partial B(r)}\left(\log ^{+}\left|\phi^{j}(f) / \phi^{1}(f)\right|^{2}\right) \sigma(z)+\int_{\partial B(r)}\left(\log ^{+}|F|^{2}\right) \sigma(z) \\
& \quad+\int_{\partial B(r)}\left(\log ^{+}\left|G_{j}\right|^{-2}\right) \sigma(z) \leqq T(r, f)+T_{1}(r, F)+T_{1}\left(r, G_{j}\right)+O(1)
\end{aligned}
$$

Here $T_{1}(r, F)$ and $T_{1}\left(r, G_{j}\right)$ are characteristic functions of F and G_{j}, respectively. Hence the order of $\exp \left(P_{j}\right)$ is not greater than the order λ of f, since F and G_{j} are of order at most λ. Thus

$$
T(r, f) \leqq \sum_{j=1}^{m+1} \int_{\partial B(r)}\left(\log ^{+}\left|G_{j}\right|^{2}\right) \sigma(z)+O\left(r^{q}\right),
$$

where q is the largest integer not greater than $[\lambda](<\lambda)$. Therefore, putting $n(t)=\sum_{j=1}^{m+1} n\left(t, D_{j}\right)$ and using a method similar to that of Noguchi [5], we have the conclusion of Theorem 2.

Corollary 3. Let $f: C^{n} \rightarrow M$ be a holomorphic mapping such that the image $f\left(\boldsymbol{C}^{n}\right)$ is not contained in a divisor in $|L|$. If there are $m+1$ divisors $\widetilde{D}_{j} \in|L| \quad(j=1, \cdots, m+1)$ on M such that $\widetilde{D}=\widetilde{D}_{1}+\cdots+\widetilde{D}_{m+1}$ has normal crossings and $\delta\left(\widetilde{D}_{j}, f\right)=1$ for $j=1, \cdots, m+1$, then f is of positive integral order or of infinite order.

References

[1] A. Edrei and W. H. J. Fuchs. On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc., 93 (1959), 293-328.
[2] P. A. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130 (1973), 145-220.
[3] P. Lelong, Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans C^{n}, J. d'Analyse Math., 12 (1964), 365-407.
[4] S. Mori, On the deficiencies of meromorphic mappings of \boldsymbol{C}^{n} into $\boldsymbol{P}^{\boldsymbol{N}} \boldsymbol{C}$, Nagoya Math. J., 67 (1977), 165-176.
[5] J. Noguchi, A relation between order and defect of meromorphic mappings of \boldsymbol{C}^{n} into $\boldsymbol{P}^{N} \boldsymbol{C}$, Nagoya Math. J., 59 (1975), 97-106.
[6] N. Toda, Sur la croissance de fonctions algebroïdes à valeurs deficientes, Kōdai Math. Sem. Rep., 22 (1970), 324-337.

Mathematical Institute
TôHoku University
Sendai, 980 Japan

