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In this paper, we make further and more precise investigation into
the idele groups of algebraic number fields than in our previous paper
[4].

Here we state, as an example, a theorem obtained in §7 in a some-
how weakened and simplified form, which, even so, includes the main
result [4, Theorem 2] as a special case:

THEOREM. Let L be a finite Galois extension of an algebraic number
field F, and V an open subgroup of the idele group L5 of L which
contains L*- L%, and satisfies (x) V° =V for any ocGal(L/F) and
(#x) Ly = F3-V-Nzjp(F*). Then FiNV =F;nNV-Ny(F).

Our basic tool is Terada’s theorem on transfers of a finite group,
which is generalized in §4.

In the final section, we point out a few results on capitulation of
ideals easily derived from what we obtain the previous sections.

1. Preliminaries. For an algebraic number field F, we denote the
ring of adeles of F by F,, and the idele group by F%. Let F5 = F7-F%
be the decomposition of F§ into the product of its non-Archimedian part
F¥ and its Archimedian part FX. The connected component of the unity
of FX is denoted by FX,, and the topological closure of F*-FZ%, in F%
by F* Let F,, be the maximal abelian extension of F in the algebraic
closure of F. The Artin map [-, F']: F¥ — Gal (F,/F') of class field theory
is an open, continuous and surjective homomorphism, whose kernel is F*.

Let K be a finite abelian extension of F, and put g = Gal (K/F).
Then g acts on K naturally. Let G, be the Weil group of the ex-
tension K over F'. This is the extension of the idele class group K;/K*
by g, which corresponds to the canonical class &, in the cohomology
group H¥g, K;/K*). (See Weil [7] and Hochschild and Nakayama [2],
or Iyanaga [3, Ch. 5, §6].) There exists a surjective homomorphism
dx,r: Gx,r — Gal (K,,/F') whose kernel is K*/K* and whose restriction to
the subgroup Kjy/K* coincides with the homomorphism induced by the
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Artin map [+, K]: K} — Gal (K,,/JK). Let Vg, be the transfer of G »
to the abelian subgroup K /K*. Then it may naturally be regarded as
a homomorphism of Gg, /Gx - to K;/K* where G, is the commutator
subgroup of G ;. The homomorphism ¢x , induces a homomorphism

G r: G r — Gal (Fu/F) = Gal (K,,/F)[Gal (K./F')" .

By the properties (A) and (D) of Weil groups, we have a commutative
diagram

K3 K;/K* Vir Gir/Grr
L l % |7
F} F%/F* - Gal (F,,/F).

2. Our problem. If an open subgroup U of K contains K*-KX,,
then it contains the kernel K* of the Artin map of K, and determines
a finite abelian extension K, of K. By [4, Theorem 1], we immediately
see:

PROPOSITION 1. The abelian extension K, of K is a Galois extension
of F if and only if

(%) U=U for any oeg = Gal (K/F).

We only consider an open subgroup U of K} which contains K*- KX,
and satisfies (x) in this paper.

Put G, = Gx;/(UK*) and ®, = Gal (K,/F). Then ¢, induces an
isomorphism ¢,: G, — ®,. The natural map of K /K* onto K}/U induces
a homomorphism of H*g, K;/K*) to H*g, K;/U). Let & be the image
of the canonical class &x, by the homomorphism. Then G, is the ex-
tension of K;/U by g corresponding to &,. Put K, = K, N F,. Then
by class field theory, we see that F;/F*-N(U) is isomorphic to Gal (K;/F")
by the Artin map of F. Here N = Ny,,: Ki — F; is the norm map of
K over F.

ProrosITION 2. If K is an abelian extension of F, then the com-
mutator subgroup Gy of G, is equal to U- N (F*)/U.

Proor. Since K is abelian over F, the maximal abelian extension
K; of F in K, contains K. Therefore, the abelian extension K =
K, N F,, of K corresponds to the open subgroup U-N(F*) of KX by
class field theory. Note that U- N-'(F*) = U- N"'(F*. The isomorphism
¢y now establishes the proposition.
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The isomorphism ¢,: G, — Gal (K,/F') induces an isomorphism ¢,:
G,/G, — Gal (K,;/F). Put o, = 7'o[-, K;/F']. Let V, be the transfer
of G, to K;/U. This may be considered a homomorphism of G,/G;, to
K;/U. One can easily see the following by the diagram at the end of
the previous section:

ProproSITION 3. The following diagram is commutative:

Kx/U Vv G/ Gy

.

F* F*/F*N(U) —/————————"_. Gal (K'y/F).
A A/ ()] - Ky /F] a

PROBLEM. How large is the kernel of the homomorphism ¢, of the
diagram? Does the degree [K: F'] divide [F; N U: F*-N(U)]?

Let O; be the maximal order of F. For a prime divisor p of F, let
F, be the p-adic completion of F, and O, the closure of O, in F,. Put
Uy = F*-F%-TI,0F where ][], is the direct product over all the non-
Archimedian prime divisors of F. Then F%/U, is canonically isomorphic
to the absolute ideal class group of F. Define U, for K in the same
way. Suppose that K is an unramified abelian extension of F. Then
F*-N(Ug) = Up. Furthermore, the subgroup (F5 NUx)/U, of F5/U, is
canonically isomorphic to the subgroup of the absolute ideal class group
of F consisting of the classes whose ideals become principal in K.
Therefore if, moreover, K is a cyclic extension of F, then [K: F]
certainly divides [F N Ux: F*-N(Ug)], which is just Hilbert’s Theorem
94. Adachi questioned in [1] if this would be true for any unramified
abelian extension K of F.

3. The subgroup X, (U) of Hom (F}/F*-N(U), KX/U-N"(F*)).
Put H, = K5/U. This is a normal abelian subgroup of G,, and is
naturally regarded as a Gy-module. By Proposition 2, we have
x/U+- N (F*) = H;/G,. Note that the norm map N gives an isomor-
phism of this group onto the subgroup F*-N(K})/F*-N(U) of F%|F*-
N(U).

PROPOSITION 4. There is a canonical isomorphism of the abelian
group Hom (F5/F*-N(U), Ki/U-N"(F*)) onto the cohomology group
HY Gy, Hy/GY).

PROOF. Obviously G, acts on H,/Gy trivially. Therefore we have
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H'(Gy, Hy/G}) = Hom (Gy, H,/G,). Since H,/G, is abelian, we may
identify these groups with Hom (G,/G), H,/G,). The isomorphism +, of
Proposition 3 now establishes the proposition.

Composing the isomorphism of Proposition 4 with the natural
homomorphism of HYG,, H,) to H'(G,, H,/G,), we have

s H(Gy, Hy) — Hom (F'5/F*-N(U), K;|/U-N"Y(F™)) .
We put
Xup(U) = my(H'(Gy, Hy)) -
For fe X.,-(U), put
d(f) = |Coker (f)| = [KZ/U- N7(F*): Im (f)] .

THEOREM 1. Let K be a finite abelian extension of an algebraic
number field F. Let U be an open subgroup of K; which contains
K*-K%, and satisfies (x), and X, (U) as above. Then for fe X, (U),

(" |a e F¥, amod (F* - N(U)) eKer (N} CFin U .

In this section, we reduce the theorem to Proposition 6 in §5.

PutG=G,and H=H, = Ki/U. Let Vi:G— H be the transfer
of G to H. Then it induces a homomorphism V:G/G' — H where G’ is
the commutator subgroup of G. By Proposition 3, we have a commuta-
tive diagram

<

K; H=K}/U G/G

Fi FY/F*-N(U).

Therefore, an element « of F% belongs to U if and only if
Jr( mod (F*- N(U))) e Ker (V).

Let # be the homomorphism of HYG, H) to Hom (G/G', H/G') =
HY(G, H/G'). Then

Xeo(U) = {Foyp|feIm (@)} .
Take f = foor€ Xg,n(U). For aeF, put
2z = +(a mod (F*- N(U))) .

Then it is sufficient to show that fz) = 1=2"" eKer (V). We have
d(f) =| Coker (f)| = |Coker (f)| =[H/G": Im (f)] since 4 is an isomorphism.
Theorem 1 now follows from Proposition 6 in §5 immediately.
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By the corollary to Proposition 6, we see at once:

COROLLARY. Let the motation and the assumptions be as in the
theorem. If there exists an f imn Xy -(U) with d(f) = 1, then the degree
[K: F'] divides the index [F; NU: F*-N(U)].

4. A generalization of Terada’s theorem. Let G be a finite group,
and G’ the commutator subgroup. Let End (G) be the set of all the
endomorphisms of G. For ¢<cEnd (G), put

H(g) = (g7 -4(9)|geG)-G .
This is the subgroup of G generated by the elements of the form g*-
é(g) with ge @G, and by the commutators of G. Denote the transfer of
G to H(¢) by V,. (If ¢ is the trivial endomorphism, then H(¢) = G. In

this case, V,;: G — G/G’' is the natural projection.) We generalize Terada’s
theorem [5] as follows:

PROPOSITION 5. Let ¢ be an element of End (G). Then
{9eGlg-g(9) e G’} CKer (V) .

PROOF. We may assume that H(¢) is abelian. In fact: The com-
mutator subgroup H(¢)' of H(¢) is normal in G. Put G = G/H(g)'. It
is obvious that ¢ induces an endomorphism ¢ of G. Then H(¢) =
G- 4@)|geG -G is equal to H(¢)/H()'. As for V,, it is a homomor-
phism of G to the abelian group H(¢)/H(¢)'. Since H(¢) < G' < Ker (Vy),
V, induces a homomorphism of G to H(4), which coincides with the
transfer Vs of G to H(¢) as is easily seen. Obviously,

{geGlg9(9) e GYHg) ={geG|i™- 4@ eG}.

Thus we may replace G and ¢cEnd (@) by G and #cEnd(G) to show
the theorem. We now assume that H(g) is abelian. (Then G has to be
metabelian.)

Terada [5] showed the theorem in the case that ¢ is an automor-
phism of G. A clear and fairly simple proof is obtained by Terada [6]
(with the assistance of Adachi). It should be noted that Terada’s setting
in [6] might seem rather special. But the proof of Reduction 1 of [6]
is applicable to show our Proposition 5 for an automorphism ¢ of G,
putting ® = G-{p), the semi-direct product of G and the cyclic subgroup
{($) of Aut (G).

Now we reduce the case of ¢ cEnd (G) to the case of an automor-
phism of a certain subgroup of G. Put H = H(g). Since Ker (¢) is
contained in H, we have [G: H] = [¢(G): ¢(H)]. Put G, = ¢(G), H, = ¢(H)
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and ¢, = ¢ls,. Then ¢, is an endomorphism of G,. Since G, = ¢(G'), we
have

H, = H($) =<97"-6:(9)]geG) -G .

Put d =[G: H], and let R = {x,, ---, x;} be a set of representatives of
the cosets of G/H. Since ¢(9) =g-(97-¢(9)) = gmod (H), ¢(R) =
{6(x), - -+, #(x;)} is a set of representatives not only of G,/H, but also of
G/H. Let V and V, be the transfers of G to H and of G, to H,,
respectively. Then we have

V(g(9) = Vilg(g))  for geG

at once if we express them according to the definition using the set of
representatives ¢(R).

Let g be an element of G such that ¢ -¢(g) belongs to G’. Then
V(g) = V(¢(g)) because G’ is contained in Ker (V). Therefore, we have
V(g) = Vi(¢(g)). Put g, = ¢(g). Then we have V(g) = Vi(g) and g¢i*-
6.(9,) € G;. Define G,, ¢,, H, and g, for » = 2 inductively by

G, =6,.(G,.), ¢.= ¢n—1|0,, , H,=¢,,(H,,) and ¢, =6,.(9,-.) .
Then ¢,€End (G,), G, = ¢..(G:_), H, =<97"-¢.(9)]9€G,) -G, and g;"-
6.(9,) €G,. Let V, be the transfer of G, to H,. Then we also have
V.i(9.-1) = V.(g.). Since G is finite, the series GOG,0G,D---DOG,D---
become stable. That is, there exists an integer m such that G,, = G,.., =
6m(G,). Then ¢, is an automorphism of G,. Therefore, by Terada’s
theorem, we have V,(g,) = 1. Since V(g) = Vi(g,) = --- = V,.(9.), the
proof of Proposition 5 is now completed.

COROLLARY. For ¢cEnd (G), the index [G: H(p)] divides the index
[Ker (Vanw) : G'].

PrROOF. Let f:G — G/G' be the map defined by f(g) =97 ¢(9)
mod (G'). Then this is a homomorphism. Since Im (f) = H(¢)/G', we
have [H(¢): G'1=[G : Ker (f)]. Therefore, [G: H(¢)] =[G: G']-[H(¢): G’ =
[G: G']-[G: Ker ()] = [Ker (f): G']. This divides [Ker (Vi_yy): G'] be-
cause Ker (f) is a subgroup of Ker (V.. q.e.d.

5. Cohomological interpretation. Let G be a finite metabelian
group, and H an abelian subgroup containing the commutator subgroup
G’ of G. Since H is a normal subgroup, G acts on H through the inner
automorphisms of G. The action of G induced on H/G' is trivial.
Therefore

HY(G, H/G') = Hom (G, H/G') = Hom (G/G’, H/G’) .



IDELE GROUPS 107

Let © be the homomorphism
n: H(G, H) — HY(G, H/G') = Hom (G/G’, H|/G")
induced by the natural map of H onto H/G’. For feIm (%), put
d(f) = |Coker (f)| = [H/G": Im (f)] .
PROPOSITION 6. Let G be a finite metabelian group, and H an

abelian subgroup containing G'. Let V,., be the transfer of G to H.
Then for felm (x),

{x*" 2 e @, flxmod (G')) = 1} C Ker (Vyy) .

Proor. Let { be a cocycle in Z}G, H). Composing { with the
natural projection of H to H/G’', we have an element f of Hom (G, H/G"),
which is regarded as an element of Hom (G/G’, H/G'). Put ¢é(x) = x - {(x)
for xe€G. Then this is an endomorphism of G. It is obvious that
H > H(g), and that Im (f) = H(¢)/G’. Therefore, we have d(f) = [H: H(¢)].
Let = be an element of G such that

flxmod (G") = {(x)mod (G') = 1.

Then z7*-¢(x) belongs to G'. Therefore by Proposition 5, we have
Veoug(@®) = 1. As is well known,

Vooro(®) = Vieng(Van(®)) .
Because H is abelian, we have
Vino(Veu(@)) = Ve p(a)#1
Therefore
Von(@®?) = Vo y(@H ) = Vi p(x) = 1.

The proposition is proved.

COROLLARY. Let the notation and the assumptions be as in Propo-
sitton 6. If there exists an f im Im (%) such that d(f) = 1, then [G: H]
divides [Ker (Vqooy) : G'].

ProoF. Suppose that d(f) =1 for felm (w). Corresponding to f,
take a cocycle { € Z(G, H), and define ¢ ¢ End (G) as in the above proof.
Then H = H(¢) because d(f) = 1. By the corollary to Proposition 5, we
have the desired result.

6. The subgroup X3 ,(U) of X;,»(U). As was in §3, let K be a
finite abelian extension of F, g = Gal (K/F') and U an open subgroup of
K which contains K* - K. and satisfies the condition (x) of Proposition 1.
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Let H} = (K;/U)* be the subgroup of H, consisting of the elements
fixed by g, i.e.,

H) ={xeH,|x° =« for YVoeg}.

Composing with the natural map of K;/U onto K;/U-N"(F*), we have
a homomorphism,

Hom (F/F*-N(U), (Kf/U)*) — Hom (F/F*-N(U), K;/U-N"(F*)) .

Denote the image of this homomorphism by X32,(U). This is a subgroup
of X,(U) defined in §3. In fact: H(G,, HY) is equal to Hom (G, H) =
Hom (G,/G}, HY), since G, acts on HJ trivially. Therefore, the isomor-
phism «;: F5/F*-N(U) — G,/G; induces an isomorphism of HY(G,, H;)
onto Hom (F;/F*-N(U), H}). If we naturally map HYG,, H}) onto a
subgroup of HY(G,, H;), then we see at once that it is mapped by 7,
onto X3,,(U), which is, therefore, certainly a subgroup of X, (U).

7. The case of ¢,. In this section, we investigate the case of the
homomorphism

¢ F3/F*-NU)— K;/U,

which is induced by the inclusion map ¢: F'; = KX. Obviously, ¢, belongs
to Hom (F;/F*-N(U), (K;/U)). Applying Theorem 1 to the image of
¢ty in X3,-(U), we have

THEOREM 2. Let K be a finite abelian extension of F. Let U be an
open subgroup of Ki which contains K*- K%, and satisfies (x). Put
d(U) =[Ki:F5-U-N7*(F*)]. Then :

{0 ]ae FiN(U- N FNDCFinU.

We extend this theorem to the case of a Galois extension of F. Let
L be a finite Galois extension of F, and K the maximal abelian extension
of F in L. We specify the norm maps of the extensions L/F, L/K and
K/F as N, N;x and Ng,,, respectively. Because K is the maximal
abelian extension of F' in L, we have

F~. NL/F(L:) = F*. NK/F(K:) .

Therefore
(1) K; = NL/K(L:) . NI_()F(FX) .

Let V be an open subgroup of L; which contains L*-LX, and
satisfies

(*) Ve=V  for any ceGal(L/F).
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Put U= K*-Np (V). Then this is an open subgroup of K; which
contains K* - K%, and satisfies (x) for U. Put

d=[L:K],

d(V) =I[LX:F;-V-Njz(F9)],

dU) =[K; : F5-U-Ngjpo(F)] .
Note that Uc V and Ng/z(F*) C N;/»(F*). The norm map N, induces
an injective homomorphism of L;/N7/.(F*) to Ki/Ngz(F*). Therefore,
we have

(V) = [Ny (LX) Ngjp(F*) : F- U - Ngjz(F)] .
Here F%¢ = {a*|ac F%} = N, (F%). Then by (1), we have
d(V) = [Ki: Fi* - U-Ngjz(F)] .

Put W = U- N (F*) for the simplicity, and let e(V) be the exponent
of the finite abelian group F%-W/F;*-W. Then ¢(V) divides d. Put
d =m-e(V). Since (V) divides [F5- W : F3*- W], we see that d(U) - e(V)
divides d(V). By the choice of ¢(V), we have

i CF5 W = (F5 )" - W .

Therefore, as is easily seen, [F;*"': F';*"' N W] is relatively prime to m.

If a is an element of FX N V-Nz/z(F*), then (¢*")™ = a’ = Ny «(a)
is an element of W. Therefore a°”’ belongs to W since m is relatively
prime to [F*7: F5*” N W]. By Theorem 2, then, we see that (a*")¥»
belongs to U. We have shown the following generalization of Theorem 2.

THEOREM 3. Let L be a finite Galois extension of F. Let V be an
open subgroup of Lj which contains L* - LY, and satisfies (x), and put
d(V)=[L5: FX-V-Nz(F*)]. Then we have

(@ ]aecFiNV-Ngp(F)}CFinV.

More precisely, let K be the maximal abelian extension of F im L,
and put U= K*- N, (V) and d(U) = [K}: FX-U- Nx;(F*)]. Let e(V)
be the exponent of

F; -U- Ngis(F)[F305 . U - N&y(F) .
Then d(U)-e(V) divides d(V), and
(@' PaeFiNV-Nijp(F)CFinU.
Moreover, [L: K]-e(V)™ is relatively prime to the index
[Fie™: F3*" N U - Ngjp(F)] .
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The case of d(V) = 1 of Theorem 3 is worth being pointed out, by
which [4, Theorem 2] is obtained at once as a special case.

THEOREM 4. Let L be a finite Galois extension of F, and K the
maximal abelian extension of F in L. Let V be an open subgroup of
L% which contains L* - LX., and suppose that V satisfies (x) above and
the following (*x):

() i =Fi-V-Nge(F) .
Then the open subgroup U = K*- N, (V) of K} satisfies
Ki = F;-U- Ngjz(F) .
Furthermore, we have
FinNV-Np(F*)=FinNU-Ngjz(F*)=F;nV=FinU.

The degree [L : K] is relatively prime to the index [F5 : FiNU]. The
degree [K : F'] divides the indices

[Fin V:F* N, (V)] = [FiNnU:F* Ng(U)].

One can easily see the theorem by Theorem 3 except the last as-
sertion, which is also easily seen by Corollary to Theorem 1.

8. On capitulation of the ideals. In this final section, we point
out some consequences of our results obtained above, on capitulation of
the ideals of F'.

Let K be an unramified abelian extension of F. Let C, be the
absolute ideal class group of F, and H,(K) the subgroup of C, corre-
sponding to K, which consists of the classes containing norms of the
ideals of K. Let Pp(K) be the subgroup of C, consisting of the classes
whose ideals become principal in K. If we take the open subgroups U,
of F; and Uy of K} defined in the last paragraph of §2, then we may
canonically identify C, with F%/U,, H.(K) with F*- N(K})/U and P(K)
with (F5 N Uy)/Us.

Let K be the absolute class field of K. This is the abelian extension
Ky, of K corresponding to Ug. Therefore, G,, is isomorphic to & =
Gal (K/F'). The ma~ximal abelian extension K; of F in K, is the
absolute class field F' of F. Since K is unramified over F, we have

F*.N(Uyg) = F*- N(Ug- N'(F¥) = U, .
Identifying F%/F*-N(Ug) with C,, we see that the norm map N maps

i/Ug+ N7Y(F*) isomorphically onto Hi(K). The homomorphism z,, in
§3 induces the homomorphism

T r - HY(Gal (K/F), Cx) — Hom (Cp, Hx(K))
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where Cy is the absolute ideal class group of K. We use
XK/F = g, r(H'(Gal (K/F); Cx)
in place of X, (Ug), which are naturally isomorphic. For fe X, put

d(f) = |Coker (f)| = [Hx(K): Im (f)] .
By Theorem 1 and its corollary, we have:

THEOREM 5. Let K be an unramified abelian extension of F, and
the motation as above. Then for any fe X r

(z* |z e Ker ()} < Po(K) .

If there exists an f in X, such that d(f) =1, then the degree [K:F]
divides | Px(K)|.

Put n = [K: F'], and Cz(n) = {x € Cz|2" = 1}. Then n divides |Cy(n)]|.
Put m = |Cy(n)|/n, and

Ci(n)™ = {a™|2x € Cp(n)} .
THEOREM 6. The notation and the assumption being as above,
Cy(n)™ c Po(K)c Cyp(n) .

ProOF. We use Theorem 2 for U,. Put C: = {a2"|xeC;}. By the
norm map N, K;/U,- N7}(F*) is isomorphic to H,(K), and the subgroup
F;.Ug- N (F*)]Ug- N}(F) is isomorphically mapped onto C%. There-
fore d(Uyx) = [H(K):C?]. The endomorphism z+xz" of C, gives an
exact sequence

1-Ci(n)—>Cr—Cr—1.
Therefore |Cp(n)| = [Cy: C2]. Since n =[K:F]=|[C,: Hy(K)], we have
m = d(Uyg). It is obvious that, for a € F'Y, a belongs to F; N Ug - N"{(F™)
if and only if a" belongs to U,. Therefore, we may canonically identify
FinNnUg- N (F)/U, with Cp(n), and {a®’%®|aecF; N (Ug- N (F*)}Ur
with Cp(n)™. The theorem now follows from Theorem 2 at once.

REMARK. If K is the absolute class field  of F, then n=[K: F]=C,,
Cy(n) =C, and m =1. Therefore, Theorem 6 becomes the principal
ideal theorem in this case.

Instead of the cohomological formulation as in Theorem 5, we can
apply Proposition 5 directly as follows:

Let F' be the secogd class field of F, that is, the absolute class field
of F. Put ® = Gal (F/F). For ¢cEnd(®), put
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D(p) =<g7" - 8(9)|ge®) -G,

and let K(g) be the subfield of F' corresponding to $(¢). Then K(g) is
contained in . Denote the endomorphism of Gal (F/F) = ®&/®' induced
by ¢ by ¢. Then for ge®, we have g'-4(9)e® if and only if
#(g mod (®')) = g mod (&"). Let [-, F/F] be the Artin map.

THEOREM 7. Let a be an ideal of F. If ¢([a, FIF]) = [a, F/F] for
6 e End (@), then a becomes principal in K(g).

REMARK. Let a be an automorphism of the ﬁeldNF, and & the sub-
field of F fixed by a. Take an automorphism z_of F such that 7|, = a.
Then ¢ induces an automorphism ¢ of ® = Gal (F/F) through the inner
automorphism of Gal (F/k). Since the inner automorphisms of & act on
Gal (F/F) = ®/® trivially, the effect of ¢ € End (Gal (F/F)) is independent
of the choice of 7, and determinedwby a. It is easy to see that H(g) is
the commutator subgroup of Gal (F/k). Therefore, K(¢) is the maximal
abelian extension of k& unramified over F. In other words, K(g) is the
genus field of the cyclic extension F' over k. By [4, Theorem 1], one
can now easily see that Theorem 7 gives Terada’s principal ideal theorem
in the genus field of [6] in this case.
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