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In this paper, we make further and more precise investigation into
the idele groups of algebraic number fields than in our previous paper

[4]
Here we state, as an example, a theorem obtained in §7 in a some-

how weakened and simplified form, which, even so, includes the main
result [4, Theorem 2] as a special case:

THEOREM. Let L be a finite Galois extension of an algebraic number
field F, and V an open subgroup of the idele group LA of L which
contains Lx Lx

 + and satisfies (*) V° = V for any σ e Gal (L/F) and
(**) LX

A=FX

A- V NzMF*). Then F$nV= F% n V-N~L}F(FX).

Our basic tool is Terada's theorem on transfers of a finite group,
which is generalized in §4.

In the final section, we point out a few results on capitulation of
ideals easily derived from what we obtain the previous sections.

1. Preliminaries. For an algebraic number field F, we denote the
ring of adeles of F by FA, and the idele group by F2. Let F2 = Ff Fx

be the decomposition of FA into the product of its non-Archimedian part
Ff and its Archimedian part Fx. The connected component of the unity
of Fx is denoted by Fx

+, and the topological closure of Fx F*+ in FA
by F*. Let F&b be the maximal abelian extension of F in the algebraic
closure of F. The Artin map [ , F]: F% -> Gal (FJF) of class field theory
is an open, continuous and surjective homomorphism, whose kernel is F*.

Let K be a finite abelian extension of F, and put Q = Gal (K/F).
Then g acts on Ki naturally. Let GKίF be the Weil group of the ex-
tension ϋΓover F. This is the extension of the idele class group KA/KX

by g, which corresponds to the canonical class ξκ/F in the cohomology
group iΓ(g, KZ/K*). (See Weil [7] and Hochschild and Nakayama [2],
or Iyanaga [3, Ch. 5, §6].) There exists a surjective homomorphism
ΦK,F GK,F —> Gal (KΛ/F) whose kernel is K*jKx and whose restriction to
the subgroup KA/KX coincides with the homomorphism induced by the



102 K. MIYAKE

Artin map [ , K]: Kϊ -» Gal (KJK). Let VKfF be the transfer of GKίF

to the abelian subgroup KX/KX. Then it may naturally be regarded as
a homomorphism of Gκ>F/G'KίF to KA/KX where G'K,F is the commutator
subgroup of GKfF. The homomorphism φK}F induces a homomorphism

φκy GK,F -> Gal (f;b/F) - Gal (KJF)/G*l (KJF)' .

By the properties (A) and (D) of Weil groups, we have a commutative
diagram

K2

Gal (Fa b/F).

2. Our problem. If an open subgroup U of Kjt contains Kx-Kx

+,
then it contains the kernel K* of the Artin map of K, and determines
a finite abelian extension Kv of 1L By [4, Theorem 1], we immediately
see:

PROPOSITION 1. The αbeliαn extension KΌ of K is α Galois extension
of F if and only if

(*) Uσ = U for any σ eg - Gal (K/F) .

We only consider an open subgroup U of K% which contains Kx-Kx+
and satisfies (*) in this paper.

Put Gu = GK,F/(U/KX) and ®u = Gal (Kn/F). Then φKtF induces an
isomorphism φσ: G^-^©^. The natural map of K%/Kx onto KA/U induces
a homomorphism of H2(g, KX/KX) to H2(g, K2/U). Let ξπ be the image
of the canonical class ξκ/F by the homomorphism. Then Gσ is the ex-
tension of KA/U by Q corresponding to ζσ. Put K'u = Kv Π F&h. Then
by class field theory, we see that FA

<IFX-N(U) is isomorphic to Gal (K'u/F)
by the Artin map of F. Here N = Nκ/F: K% —> ί\? is the norm map of
K over F.

PROPOSITION 2. // K is an abelian extension of F, then the com-
mutator subgroup G'σ of Gσ is equal to U- N~\FX)IU.

PROOF. Since K is abelian over F, the maximal abelian extension
K'u of F in KJJ contains K. Therefore, the abelian extension K'σ =
Kuf]FΆh of K corresponds to the open subgroup U-N~\FX) of K% by
class field theory. Note that C7 N~\FX) = U-N~XF*). The isomorphism
φxj now establishes the proposition.
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The isomorphism φu'.Gu —> Gal (Kv/F) induces an isomorphism φυ\
GvlG'v -> Gal (K'u/F). Put φσ = φ?o[ , K'σ/F]. Let Vσ be the transfer
of GJJ to KA/U. This may be considered a homomorphism of Gu/G'u to
KA/U. One can easily see the following by the diagram at the end of
the previous section:

PROPOSITION 3. The following diagram is commutative:

Kl ~ Kl/U

F* ^F%/FX-N(U) ^ = ^ » Gal (K'u/F).
lK'/F]

PROBLEM. HOW large is the kernel of the homomorphism cv of the
diagram*! Does the degree [K: F] divide [Fϊ Π U: FX'N(U)]Ί

Let OF be the maximal order of F. For a prime divisor p of F, let
Fp be the t>-adic completion of F, and Op the closure of 0^ in Fp. Put
UF = Fx-F*-ϊlP0* where Π*> is the direct product over all the non-
Archimedian prime divisors of F. Then F%/UF is canonically isomorphic
to the absolute ideal class group of F. Define Uκ for K in the same
way. Suppose that K is an unramified abelian extension of F. Then
FX N(UK) = UF. Furthermore, the subgroup (FX Π UK)/UF of F^/UF is
canonically isomorphic to the subgroup of the absolute ideal class group
of F consisting of the classes whose ideals become principal in K.
Therefore if, moreover, K is a cyclic extension of F, then [K: F]
certainly divides [FA Π UK : F* N(Uκ)]f which is just Hubert's Theorem
94. Adachi questioned in [1] if this would be true for any unramified
abelian extension K of F.

3. The subgroup XK/F(U) of Rom(Fϊ/F^NiU), KXJU'N~\FX)).
Put Hu = KAIU. This is a normal abelian subgroup of GUf and is
naturally regarded as a G^-module. By Proposition 2, we have
KA/U- N~\FX) = Hu/G'u. Note that the norm map N gives an isomor-
phism of this group onto the subgroup FX-N(KA

:)/FX N(U) of Fl/Fx

N(U).

PROPOSITION 4. There is a canonical isomorphism of the abelian
group HOVCL{FAIFX-N{U),K^IU'N~\FX)) onto the cohomology group
W(GU9 JIM).

PROOF. Obviously Gv acts on Hu/G'u trivially. Therefore we have
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Ή.\Gϋ9 Hu/G'u) = Horn (Gϋ9 Hσ/G'σ). Since Hυ\G'Ό is abelian, we may
identify these groups with Horn {GujG'u, Hσ/Gu). The isomorphism ψσ of
Proposition 3 now establishes the proposition.

Composing the isomorphism of Proposition 4 with the natural
homomorphism of ΈL\Gπ, HΠ) to Ή.\GU9 Hn/Gu), we have

πσ: K\GUf Hσ) -> Horn N(U), KϊlU N~\F*)) .

We put

For feXκ/F(U), put

d(f) = |Coker (/) I - [KX/U N~\F*): Im (/)] .

THEOREM 1. Let K be a finite abelian extension of an algebraic
number field F. Let U be an open subgroup of K% which contains
Kx K*+ and satisfies (*), and XK/F(U) as above. Then for feXκ/F(U),

{ad{f) \aeFϊ,a mod (F x - N(U)) e Ker (/)} c Fϊ Π U .

In this section, we reduce the theorem to Proposition 6 in §5.
Put G = Gσ and H = Hπ = Kϊ/U. Let VG->H:_G -> £T be the transfer

of G to iϊ. Then it induces a homomorphism F: G/G' -> H where G' is
the commutator subgroup of G. By Proposition 3, we have a commuta-
tive diagram

Ή=KΪ/U GIG'

FA F*/F* -N(U).

Therefore, an element x of FA belongs to U if and only if
ψ(x mod (FX-N(U))) e Ker (F).

Let π be the homomorphism of IP(G, H) to Horn (G/G', HjG') =

Ή.\G,H/G'). Then

X^(ί/) = {/°f |/elm(τr)} .

Take f = foψeXK/F(U). For αeFί, put

z = f{a mod (FX N(U))) .
Then it is sufficient to show that f(z) = 1 => ̂ { / ) e Ker (F). We have

<Z(/) = I Coker (/) | = | Coker (/) | = [H/GΊ Im (/)] since ψ is an isomorphism.
Theorem 1 now follows from Proposition 6 in §5 immediately.
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By the corollary to Proposition 6, we see at once:

COROLLARY. Let the notation and the assumptions be as in the
theorem. If there exists an f in XK/F(U) with d(f) = 1, then the degree
[K: F] divides the index [Fϊ n U:FX N(U)].

4. A generalization of Terada's theorem. Let G be a finite group,
and G' the commutator subgroup. Let End (G) be the set of all the
endomorphisms of G. For ^eEnd(G), put

This is the subgroup of G generated by the elements of the form g~ι

Φ(g) with g eG, and by the commutators of G. Denote the transfer of
G to H(φ) by Vφ. (If φ is the trivial endomorphism, then H(φ) = G. In
this case, VΦ: G -> GjG' is the natural projection.) We generalize Terada's
theorem [5] as follows:

PROPOSITION 5. Let φ be an element of End (G). Then

{geG\g-1'φ(g)eGf}c:Keτ(VΦ).

PROOF. We may assume that H(φ) is abelian. In fact: The com-
mutator subgroup H(φY of H(φ) is normal in G. Put G = GjH{φ)f. It
is obvious that φ induces an endomorphism φ of G. Then H(φ) =
(ΰ~ι - Φ(g)\geG) G' is equal to H{φ)IH{φ)\ As for VΦ, it is a homomor-
phismof G to the abelian group H(φ)IH{φ)'. Since ff^'cG'cKer (VΦ),
Vφ induces a homomorphism of G to H(φ), which coincides with the
transfer Vφ of G to H(φ) as is easily seen. Obviously,

{g eGI<T φ{g) e G'}/H(φ)' = {geG\g~1 Φ(g) e G'} .

Thus we may replace G and ^eEnd(G) by G and ^eEnd(G) to show
the theorem. We now assume that H(φ) is abelian. (Then G has to be
metabelian.)

Terada [5] showed the theorem in the case that φ is an automor-
phism of G. A clear and fairly simple proof is obtained by Terada [6]
(with the assistance of Adachi). It should be noted that Terada's setting
in [6] might seem rather special. But the proof of Reduction 1 of [6]
is applicable to show our Proposition 5 for an automorphism φ of G,
putting © = G-(φ), the semi-direct product of G and the cyclic subgroup
<̂ > of Aut(G).

Now we reduce the case of ^eEnd(G) to the case of an automor-
phism of a certain subgroup of G. Put H = H(φ). Since Ker(^) is
contained in H, we have [G:H] = [φ(G): φ(H)]. Put G, = φ{G), H, = φ(H)
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and φλ = φ\βι. Then φι is an endomorphism of Gx. Since G[ = φ(Gf), we
have

Put d = [G : JEf], and let i? = {id, - —, xd} be a set of representatives of
the cosets of G/H. Since φ(g) = # - (gr1 - φ(g)) = # mod (if), ^(β) =
{̂ (ίcx), , 0(aj«O} is a set of representatives not only of GX\HX but also of
G/H. Let F and V, be the transfers of G to if and of G, to Hlf

respectively. Then we have

V(φ(g))= VM9)) f o r geG

at once if we express them according to the definition using the set of
representatives φ(R).

Let g be an element of G such that g~ι φ(g) belongs to G'. Then
V(g) = F(^(#)) because G' is contained in Ker(F). Therefore, we have
V(g) = VΊfo(flO). Put ffl = (̂ff). Then we have F(<?) = F ^ ) and pr1

î( î) e GJ. Define Gn, ^n, Hn and firn for n ^ 2 inductively by

Gn = ^ ( f f j , ^ - ^- i l^ , jffn = 0»-i(fl»-i) and srra = φnMn-d .

Then 0n e End (Gn), G; = ^^(G^,) , Hn = {(Γ1. ^(^r) | g e Gn> Gl and g-1 -

n̂(flrn) e G .̂ Let Fn be the transfer of Gn to iϊn. Then we also have
K-i(0n-i) = K(ί/n) Since G is finite, the series G'ΏG^G^ i)GnZD -
become stable. That is, there exists an integer m such that Gm — Gm+1 =
Φm(Gm). Then ^m is an automorphism of Gw. Therefore, by Terada's
theorem, we have Vm(gm) = 1. Since y(flr) = V^g,) = = VJpJ, the
proof of Proposition 5 is now completed.

COROLLARY. For φ e End (G), ίfee mdex [G : H(φ)] divides the index

PROOF. Let f:G-+G/G' be the map defined by f(g) = g~1-φ(g)
mod (G') Then this is a homomorphism. Since Im (/) = H(φ)/Gf, we
have [#($: G'] - [G : Ker (/)]. Therefore, [G: Jff(̂ )] = [G: G'] [H(^): G']"1 =
[G: G'] [G : Ker (Z)]"1 - [Ker (/): G']. This divides [Ker (VG^mΦ)): G'] be-
cause Ker(/) is a subgroup of Ker (VG^H{Φ)). q.e.d.

5. Cohomological interpretation. Let G be a finite metabelian
group, and H an abelian subgroup containing the commutator subgroup
Gf of G. Since H is a normal subgroup, G acts on ίZ" through the inner
automorphisms of G. The action of G induced on HjGr is trivial.
Therefore

IP(G, Jϊ/G') = Horn (G, HjG') = Horn (G/G;,
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Let π be the homomorphism

π: ΈL\G, H) -* IP(G, H/G') = Horn (G/G\ H/G')

induced by the natural map of H onto HjG'. For /e lm(π), put

d(f) = |Coker (/)| - [H/G': Im

PROPOSITION 6. Let G be a finite metabelian group, and H an
abelian subgroup containing G'. Let VG->H be the transfer of G to H.
Then for /elm(π),

{xd{f) \xeG, f(x mod (G')) = 1} c Ker (VG^H) .

PROOF. Let ζ be a cocycle in Z*(G, if). Composing ζ with the
natural projection of H to HjG', we have an element/of Hom(G, H/G'),
which is regarded as an element of Horn (G/G', HjGr). Put φ(x) = x ζ(x)
for xeG. Then this is an endomorphism of G. It is obvious that
Hz>H{φ), and that Im (/) = H(φ)/G'. Therefore, we have d(f) = [H: H(φ)].
Let x be an element of G such that

f(x mod (GO) - ζ(x) mod (G') = 1 .

Then x~λ 0(#) belongs to G'. Therefore by Proposition 5, we have
VG^H{φ)(x) = 1. As is well known,

VG-.mΦ)(x) =

Because ίZ" is abelian, we have

V^mΦ)(VG^H(x)

Therefore

The proposition is proved.

COROLLARY. Let the notation and the assumptions be as in Propo-
sition 6. // there exists an f in Im (π) such that d(f) = 1, then [G: H]
divides [Ker (Vσ^H)' G'l

PROOF. Suppose that d(f) = 1 for /elm(τr). Corresponding to /,
take a cocycle ζeZ\G, H), and define ^eEnd(G) as in the above proof.
Then H = H(φ) because d(f) = 1. By the corollary to Proposition 5, we
have the desired result.

6. The subgroup X°K/F(U) of XK/F(U). As was in §3, let K be a
finite abelian extension of F, g = Gal (K/F) and U an open subgroup of
Kί which contains Kx Kl+ and satisfies the condition (*) of Proposition 1.
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Let Hi = (KA/UY be the subgroup of Hv consisting of the elements
fixed by g, i.e.,

Hi = {x e Hu I xσ = x for v σ e g} .

Composing with the natural map of KA/U onto KAIU-N~\FX), we have
a homomorphism,

(F2/F* N(U), (K2/U)') ->Hom (F$/F

Denote the image of this homomorphism by Xκ/F(U). This is a subgroup
of XK/F(U) defined in §3. In fact: R\GUf Hi) is equal to Horn (Gϋf Hi) =
Horn (Gu/G'u, Hi), since Gπ acts on iϊ£ trivially. Therefore, the isomor-
phism ψu:FA

</Fx N(U)->Gu/G'u induces an isomorphism of Ή.\GUf Hi)
onto Hom(FH/Fx-N(U), Hi). If we naturally map W(Gϋ9 Hi) onto a
subgroup of Ή}(GUf Hn), then we see at once that it is mapped by πv
onto Xκ/F(U), which is, therefore, certainly a subgroup of XK/F(U).

7. The case of cσ. In this section, we investigate the case of the
homomorphism

cσ:FϊlF* N{U)-*Kϊ/U,

which is induced by the inclusion map c: F% ̂ > KZ. Obviously, cσ belongs
to Horn (F5/Fx N(U),(Kϊ/Ί7)β). Applying Theorem 1 to the image of
iv in X°K/F(U), we have

THEOREM 2. Lei Kbe a finite abelian extension of F. Let U be an
open subgroup of KA which contains Kx Kx

+ and satisfies (*). Put
d(U) = [Ki : Fϊ U N-\F*)]. Then

{ad{U)\ae FX

Λ n (U'N~\FX))} aFϊnU .

We extend this theorem to the case of a Galois extension of F. Let
L be a finite Galois extension of F, and ίΓ the maximal abelian extension
of F in L. We specify the norm maps of the extensions L/F, L/K and
K/F as NL/Ft NL/K and iSΓ^, respectively. Because K is the maximal
abelian extension of F in L, we have

,px NL/F(Lϊ) = Fx - NK/F{KX

A) .

Therefore

(1) KX

A=NL/K{LX

A) N-K)F{FX).

Let V be an open subgroup of LA which contains Lx Lx

+ and
satisfies

( * ) Vσ = V for any σ e Gal (L/ί7) .



IDELE GROUPS 109

Put J7= Kx NL/K(V). Then this is an open subgroup of KX which
contains Kx Kx

+ and satisfies (*) for U. Put

Note that UaV and Nκ)F{Fx)dNιJF{Fx). The norm map 2Vi/jr induces
an injective homomorphism of Lx

4/NιjF(Fx) to K%INγ/F(Fx). Therefore,
we have

d(V) = [NL/x{Lϊ) Ni)r{F*): Fϊ' U-N~K)F{FX)} .

Here F$d = {αd |αe2^} = NL/κ(Fϊ). Then by (1), we have

d(F) = [Ki: Fϊd - U N?/F(F*)] .

Put W= U-Nκ)F(Fx) for the simplicity, and let e{V) be the exponent
of the finite abelian group FZ W/F^ W. Then e(V) divides d. Put
d = m - β( F). Since e( F) divides [Fί W: F ί d T7], we see that d{ U) - e( V)
divides d{V). By the choice of e(V), we have

Therefore, as is easily seen, [FY{V): FT{V) ΓΊ W] is relatively prime to m.
If a is an element of F$ Π V Nϊ}F(Fx), then (αe(F))w = αrf - iVL/*(α)

is an element of W. Therefore ae{V) belongs to W since m is relatively
prime to [F¥{V):F¥{V) Π W]. By Theorem 2, then, we see that (a

e{V))d{U)

belongs to U. We have shown the following generalization of Theorem 2.

THEOREM 3. Let L be a finite Galois extension of F. Let V be an
open subgroup of LA which contains Lx L£+ and satisfies (*), and put
d(V) = [Lϊ:F% V NijF(Fx)]. Then we have

{αd(F) I a 6 F5 Π V- NifF(Fx)} c β n F .

More precisely, let K be the maximal abelian extension of F in L,
and put U = Kx NL/K(V) and d(U) = [KX

A:F
X

Λ-U N~κ)F{Fx)l Let e(V)
be the exponent of

Fϊ-U. N-K)F{FX)IFX/L'^ U N-K)F(FX) .

Then d(U) e{V) divides d(V)> and

{ad{U)e<V)\aeFϊ n V Nι}F(Fx)} aFϊ n U .

Moreover, [L: if] e(F)"1 is relatively prime to the index
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The case of d(V) = 1 of Theorem 3 is worth being pointed out, by
which [4, Theorem 2] is obtained at once as a special case.

THEOREM 4. Let L be a finite Galois extension of F, and K the
maximal abelian extension of F in L. Let V be an open subgroup of
LA which contains L* L*+, and suppose that V satisfies (*) above and
the following (**):

(**) Li =Fϊ V'Nϊ}F(Fx).

Then the open subgroup U = Kx- NL/K(V) of K% satisfies

KZ =F5.U-N?/r(Fx).
Furthermore, we have

Fϊ n V- N-LjF(Fx) = F*Λ n U NK)F(FX) = Fϊ f]V = Fϊ ΠU .

The degree [L : K] is relatively prime to the index [FA : FA Π U]. The
degree [K: F] divides the indices

[Fi Π V: F*-NL/r(V)] = [Fϊ Π U: F*-NK/F(U)] .

One can easily see the theorem by Theorem 3 except the last as-
sertion, which is also easily seen by Corollary to Theorem 1.

8. On capitulation of the ideals. In this final section, we point
out some consequences of our results obtained above, on capitulation of
the ideals of F.

Let K be an unramified abelian extension of F. Let CF be the
absolute ideal class group of F, and HF(K) the subgroup of CF corre-
sponding to K, which consists of the classes containing norms of the
ideals of K. Let PF{K) be the subgroup of CF consisting of the classes
whose ideals become principal in K. If we take the open subgroups UF

of FA and Uκ of KA defined in the last paragraph of §2, then we may
canonically identify C, with Fi/UFf HF(K) with FX-N(K^)/UF and PF(K)
with (Finuκ)/uF.

Let K be the absolute class field of K. This is the abelian extension
KUκ of K corresponding to Uκ. Therefore, GUκ is isomorphic to © =
Gai(K/F). The maximal abelian extension K'Uκ of F in KUκ is the
absolute class field F of F. Since K is unramified over F, we have

F* N(UK) = F».N(UK N-\F*)) = UF .

Identifying F^IFX-N(UK) with CFf we see that the norm map N maps
K^IUK'N~\FX) isomorphically onto HK(K). The homomorphism πUκ in
§3 induces the homomorphism

πκ/F : IP(Gal (K/F), Cκ) - Horn (CF, HF(K))
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where Cκ is the absolute ideal class group of K. We use

Xκ/F = W H ^ G a l (K/F), Gκ))

in place of XK/F(UK), which are naturally isomorphic. For feXκ/F, put

d(f) = |Coker (/)| - [HF(K): Im (/)] .

By Theorem 1 and its corollary, we have:

THEOREM 5. Let K be an nnramified abelian extension of F, and
the notation as above. Then for any feXκ/Ff

{xd^\xeKev(f)}<zPF(K) .

If there exists an f in Xκ/F such that d(f) = 1, then the degree [K: F]
divides \PF(K)\.

Put n = [K: F], and CF(n) = {x e CF\xn = 1}. Then n divides \CF(n)\.
Put m = I CF(n) \/n, and

CF(n)m = {xm\xeCF(n)} .

THEOREM 6. The notation and the assumption being as above,

CF(nr c PF(K) c CF(n) .

PROOF. We use Theorem 2 for Uκ. Put CF = {xn\xeCF}. By the
norm map JV, KA/UK- N~\FX) is isomorphic to HF(K), and the subgroup
Fϊ Uκ-N-χFx)/Uκ N-\Fx) is isomorphically mapped onto CF. There-
fore d(Uκ) = [HF(K): CF], The endomorphism x\->xn of CF gives an
exact sequence

1 -> CF(n) -+Cr-+Ct-+1.

Therefore \CF(n)\ = [CF: Cf\. Since n = [K: F] = [CF : JB,(JBΓ)], we have
m = d(Uκ). It is obvious that, for aeFl, a belongs to F2nUx- N~\FX)
if and only if an belongs to UF. Therefore, we may canonically identify
FϊnUκ N-\F*)/UF with CF(n), and {ad{U^\aeFi Π (Uκ N-\F*))}jUF

with CF(n)m. The theorem now follows from Theorem 2 at once.

REMARK. If K is the absolute class field F of F, then n=[K: F] = CF,
CF(n) = CF and m = 1. Therefore, Theorem 6 becomes the principal
ideal theorem in this case.

Instead of the cohomological formulation as in Theorem 5, we can
apply Proposition 5 directly as follows:

Let F be the second class field of F, that is, the absolute class field
of F. Put © = Gal (F/F). For φ e End (©), put
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and let K(φ) be the subfield of F corresponding to Q(φ). Then K(φ) is
contained in F. Denote the endomorphism of Gal (F/F) = ©/©' induced
by φ by φ. Then for g e ©, we have g~ι φ(g) 6 ©' if and only if
0(# mod (©')) = gmod(®'). Let [ , F/F] be the Artin map.

THEOREM 7. Lei a be an ideal of F. If φ([a, F/F]) = [α, F/F] for
^eEnd(@), then a becomes principal in K(φ).

REMARK. Let a be an automorphism of the field F, and k the sub-
field of F fixed by a. Take an automorphism τ of F such that τ\F = a.
Then τ induces an automorphism φ of @ = Gal (F/F) through the inner
automorphism of Gal(F/fc). Since the inner automorphisms of © act on
Gal (F/F) = ©/©' trivially, the effect of φ e End (Gal (F/F)) is independent
of the choice of τ, and determined by α. It is easy to see that Q(φ) is
the commutator subgroup of Gal (F/k). Therefore, K(φ) is the maximal
abelian extension of k unramified over F. In other words, K(φ) is the
genus field of the cyclic extension F over k. By [4, Theorem 1], one
can now easily see that Theorem 7 gives Terada's principal ideal theorem
in the genus field of [6] in this case.
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