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1. Introduction. Let M be a connected hypersurface of the m=-
dimensional sphere S™ of radius 1. O(n + 1) acts on S as an isometry
group. M is said to be homogeneous if it is an orbit of a certain sub-
group of O(n +1). M is said to be isoparametric if it has constant
principal curvatures. If M is homogeneous then it is isoparametric.
E. Cartan investigated the converse problem and he gave an affirmative
answer in some special cases ([2], [3], [4], [])- But, recently, Ozeki and
Takeuchi gave examples of isoparametric hypersurfaces which are not
homogeneous in [8], using a result of Miinzner [7]. On the other hand,
homogeneous hypersurfaces of S™ are investigated in detail by Hsiang
and Lawson [6] and by Takagi and Takahashi [10].

In the present paper, we give an additional differential geometric
condition for isoparametric hypersurfaces of S* to be homogeneous, using
the result to Miunzner. Our main results are the following Theorems A
and B. To state them, we need some notations. Let T, .-+, T, and T
be tensor fields on a manifold. T is said to be generated by T, ---, T,
if T is a constant linear combination of tensor fields, each of which is
a tensor product of some members of T, ---, T, or its contraction. We
denote this fact by T = P(T, ---, T,). Let M be a Riemannian manifold.
Let M, and M, be the tangent spaces at p, e M. Then M, and M, are
vector spaces with the inner products given by the Riemannian metrie.
A linear isometry L of M, onto M, is extended naturally to an isomorphism
of the tensor algebra T(M,) onto T(M,), which is denoted also by L.
For an oriented hypersurface M of S*, we denote by G, H, V and V*H
the first and second fundamental forms, the covariant differentiation and
the m-th covariant differential, respectively. By G, we denote the
inner product for 1-forms on M induced naturally from G.

THEOREM A. Let M be an oriented isoparametric hypersurface of
S™ with g distinct principal curvatures. Then, for any m>g—1, V*H
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18 generated by G,G™', H,VH, ---,V**H.

THEOREM B. Let M be a closed isoparametric hypersurface of S*
with g distincet principal curvatures. Then, M is homogeneous if and
only if the following condition (*) is satisfied:

(*) For every p, qe M, there exists a linear isometry L: M,— M, satis-
Sfying L(V"H), = (V"H), for each m < g — 2.

2. Proof of Theorem A. Let S" be {pe R""||p| =1}, M be an
oriented hypersurface of S* and N be a unit vector field on M normal
to M and tangent to S™ at every point. Define ¢: R x M — S by 4(8, p) =
(cos 0)p + (sin )N(p) and ¢,: M — S™ by ¢,(p) = ¢(6, p), where we regard
N(p) to be in S*. Let I be an open interval containing 0. To prove
the theorem, we may assume I and M are sufficiently small so that
U=¢(IxM) is open in S* and that ¢: IxM —U is a diffeomorphism.
Hence ¢,(M) is a hypersurface of S” for e I. Define 9:U— R by
0(¢(9, p)) = 6. Then ¢,(M) is a level hypersurface of the function 6.
The vector field N = gradd on U is a unit vector field normal to each
level hypersurface of # and tangent to S” at every point, and N(¢(0, p)) =
—(sin @)p + (cos ) N(p) in R"*'. For brevity, we denote by (,) or G
the Riemannian metrics of M, S* and R**'. We denote by D and o the
covariant differentiations of S* and R"*, respectively. Then, A = —DN
gives a symmetric transformation of the tangent space U, at peU
satisfying AN = 0. We call a vector or vector field X on U horizontal
if (X, N)=0.

LemMMA 1. If X 4s horizontal, then (DyA)X = A’X + X and moreover,
Jor the m-th covariant differential D™A, there exists a polynomial P,(x)
satisfying (D"A)(N, -+, N)X = P, (A)X.

Proor. Let X(p)e M, be an eigenvector of A with the eigenvalue
Ao = cot §,, where §,€ (0, 7). Then, we have ¢,X(p) = (sin(d, — 8)/sin 6,) X(p)
in R*™ and
(1.1) A($,X(p)) = (cot(f, — 6))¢s X (D) .
Let X be a vector field defined by X(¢s(p)) = #sX(p). Then, we have
AX = (cot(d, — 6))X and Dy X = 9y X = —(cot(d, — 6))X, from which follows,
(DyA)X = Dy(AX) — A(DyX) = (cot*(6,—6) + 1) X = A°X + X. Hence, for
any horizontal vector X, we have (DyA)X = A*X + X, since X is a linear
combination of eigenvectors of A. Now, we note that the m-th order
derivative of cot(d, — @) is a polynomial in cot(d, — ) and that (D™A)
(N, +++, N) =Dy +-- DyA for each m. Then, the latter assertion is easily
seen by induction on m. q.e.d.
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A is called the Weingarten map when we regard A as a transfor-
mation of horizontal vectors.

LEMMA 2. Let V and V' be open domains of M, and ~:V —V' be
an isometry which leaves the Weingarten map A invariant. Then, there
exists a unique isometry ¥:.S" — S satisfying ¥y = .

PrROOF. Let m:U— M be the projection defined by =(4(d, p)) = p.
Define ¥: z7Y(V) -z (V') by ¥($6, p)) = ¢s0o¥(p). Then ¥og, = ¢,oy
and oA = Aoy, If Xe M, then ¢,X =(cos )X — (sin9)AX and ¢ X =
(cos O)y X — (sin O)yAX in R**'. Hence ||y X || = ||gso¥X]|. On the other
hand, we see ¥ N = N by T og, = ¢gpoap. Thus, T:n (V) —->zx(V') is an
isometry which is extended to an isometry ¥ of S®, since S" is simply
connected. The uniqueness is obvious. g.e.d.

Now, we assume that M has g distinet constant prinecipal curvatures,
that is, Weingarten map A has ¢ distinct eigenvalues A, Ay, +++, A, at
each point, which are constant and have the same multiplicities on M.
Let A, =cotd,, 0<6,<6,< - <0,<m and m,; be the multiplicity of \,.
Then, by (1.1), each level hypersurface of 6 also has g distinct constant
principal curvatures. Miinzner proved the following Lemmas 3, 4 and 5
in [7].

LEmMMA 3. (i) 6, =6, + ¢ — Vx/g, (i) m, = m,,, where © + g = 1.

LEMMA 4. Define the function f:U— R by f(q) = cos(g(d, — 6(g))).
Then (gradf, gradf) = ¢*(1 — f*) and Af = —g(g + n — 1)f + ¢, where
A s the Laplace operator on S™ and ¢ = (m, — m,)g*/2.

ALEMMA 5. Let U= froe R**|r >0, pe U}. Define the function
F:U— R by F(rp) = rf(p). Then F is a homogeneous polynomial of
degree g satisfying AF = ¢r*™® and (grad F, grad F') = ¢* ¥, where ¢ =
(m, — m,)9*/2 and A is the Laplace operator on R"*.

LEMMA 6. Denote by X the vector field x°0/ox" + - - - + x"0/ox™ in R™.
Then 0x0*F = (9 — k)o*F, where «° ---, 2" are Cartesian coordinates of
R and 0*F denotes the k-th covariant differential.

PROOF. We note 040, = 0,05y — 0;, 0; = 030, and 0zF = gF, since F
is a homogeneous polynomial of degree g. Then the lemma easily follows
by induction on k. q.e.d.

LEMMA 7. D?*f is generated by f, D*f, D*f, ---, D*'f and G, where
D™f denotes the m-th covariant differential.

ProoF. Let S*={(x° «', -+, 2") € R""| >t (x*)* =1}. We may regard
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(a*, +++,2") as a local coordinate system around pe UcS". Then the
function f is given by the function F as follows: f(z, ---, ") = F((1 —
(@)2—e e — (™)), 2, -+, 2"). «° is a function given by %z, :--, 2") =
1 - (@)?—---—(@"))". Here, we need a notation. Let T be a covariant
tensor field of degree k£ on S*. We denote by T(%, - -- 1,3,) the component
Typooiniy= T (8]0, - -+, 0/02™, 06/0x™) with respect to the basis d/ox", - - -, 0/0x".
Then we have

(1.2)  G@) = 05 + 2/}, G(da?, da’) = 05 — x'x’,  Diy,i(0/02")
= hi:‘ith(ji)a/axh . (DE)G) = —xifx®, (D)(Gi) = —2°G(ji) .

We use the same notation as above to denote a component of a covariant
tensor field 7 on R"*' with respect to the basis o/ox o/ox’, - -, 6/ox". In
this case, (0 T) (%4 * * « 1,%,) = 0y (T(3; - - - 3,3,)) for any vector field Y, which
may be written as 0,7 (i, + -+ 1,%,). We denote 0;;,;T by 0,T. Then,
0;T (% «++it) =0T (Jiy +++ 1:0,). We note 0™T (Jp+++ Jo; T+ ++ 1) iS sym-
metric in every pair of indices j,, -, ;.
By Lemma 5, it is sufficient to prove

(1.8) (D)@ -+ 4y)

k

= 2 0 F (0 + - Odggyy +++ Gyguay @000+ » v who/(—2°)°
8=0 ¢

+ P(f, Df, v, DM G)( o0 1)

where ¢ runs through the permutations of order k satisfying (k) > .-+ >
o(s +1) and o(s) > -+ >0(1). We prove it by induction on k. It is
trivial for k = 1. Hence, we assume (1.3) for 1, ---, k. Then, by (1.2),
we have

(D) iy -+ )
LU CRERE N TR Y WElclRRATe/ ) CRRRE AR ARRED
= I) + dI) + dII) + dV) + V),

where

@ = Z 2L[*FQ - - Oturiony * * * Toiein)

= OFQ0 -+ iy - 0] o - o (=)
8+1

(D) = 3 S FQ ++ Oigy -+ rarn) X 33 [ —aet0 ) o041

8=1 o

X xlo) oo g v(t+l)x olt—1) o oo gl [(— )t |
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WD = 55 3 3 0 Cliresio)

x0*F(0 - - O"a(k) c T Whopn) *** Togean) X L@ o oo glow/(—a0)*

(IV) '_Z ZakF(O Oza(k) tre ia(s+1) X Z{ Ei qu(ikﬂ".a(t))('—xu/xo)

X gtote) oo a(t+1)w ‘att=1) « o glow [(— g0t |
(V) = P(f, D'f, -+, D*'f, G)(lasta ++ - %) -
Then,

I = Z Z " F(Q - - O'Lr(k+1)7/r(k) C ot Depy) X XTW e gt [(—g0)*

where z(k + 1) > z(k) > --- >7(s + 1) and z(s) > --- > 7(1). By (1.2),

(D) + (AV) = 3 S 0FO - Oy i) X 35 (D) i)

8

X gt o oo gplotuglot—1 « oo glo [(—g0)*

= —‘Z Z x°0,0* ' F'(0 - 0?’0(10) © Tggern)

a-—l

X 2.‘ [xia(a) o oo glottnglet—1) oo xia(l)/(_xo)"’l] X G(ik+1ia(t)) .
t=1

k k n
() = =373, 3. 3, 20,0 ' F(0 - - O@p(k) te iP(r+1)iP(r-1) v iP(a))

8=1 p r=su=l
8— 1

X [atet=1 oo gt [(—2) ]G (lsrtom)

where o(k) > -+ > p(s) and p(s —1) > .- > p(1). Let X be as in Lemma
6. Then, (II) + (IV) + (III) is equal to

A
-2 Z 0x0*'F(0 - O"fp(k) “ Tprantor—n *** o)

8=1 r=s
e al

X [atete=n o e gfo [(—2°)* |G (U srlorm) -
By Lemma 6, (II) + III) + (IV)

k

= —3, Z Z (9 —k+ 1)0**F(O -- O’Lp(ln te iP(r+1)iﬂ(r—1) ce iP(a))

8=1 r=s
e al

X [atete=1 « o e gto [(—2°)* Gt sT0 ()

=—(@9—Fk+ I)Z[Z .0 F(0 - - O%T(k n°° iaT(a+1))

X iT®) . u glarin) /(—x°)‘:\G(zk+lz,) )
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where 7(s) =s for s=1,--+,t —1, vs)=s+1 fors=¢, ---,k —1and
0 runs through the permutations of {v(1), ---,v(k — 1)} satisfying
oYk —1) > +++ >0v(s +1) and &v(s) > --- > év(1). By the induction
hypothesis, we have (II) + (III) + (IV)

=~ — b+ DX D i+ G

+ P(f, D'f, -+, D*7°f, @) (sl * +* 01) -
This completes the proof. q.e.d.
We denote also by H the covariant tensor field of degree 2 on U
defined by H(X, Y) = (AX, Y).
LEMMA 8. D 'H s generated by G, D9, H, DH, --- and D°*H along
each level hypersurface of 6.

PrOOF. We note H = —D%, f=cos(9(6,—6)) and 6 = 6, — (1/g)cos™* f
on U. Hence we have
D™ f = (df/d6)D™0 + .- + (d™f/d6™) (D)™
for every m. Conversely, we have
—D*'H = D°*'6 = (d6/df)D°**'f + -+ + (d°'0/df* ) (Df)"* .

Then, by Lemma 7, we have the assertion. q.e.d.

We denote by & the set of all C~ functions on U and by 2% the
set of all C~ horizontal vector fields on U. For X, Y e 2%, we denote
by VY the horizontal part of D;Y. Then D;Y =V,Y 4+ H(X, Y)N.
Along M, this V coincides with the covariant differentiation. Every
C= covariant tensor field 7 of degree k on U is regarded as a field
G X oo X Z — &, which is denoted also by 7. We define a field

VT: 24X+ XZ% > F by
k
(VT)(XIG+1’ Xky Tty Xl):Xk+1(T(Xk! ) Xl))_lz:.‘ll T(Xk; ) VX,,.HXH tt XL) .

Let us consider a field T: 2% X - -+ x 2% — & defined as follows:
T(Xk! M) Xi’ ) Xl):(DmH)("'! Xln M N; M) Xi, ) Ny Ct le "') ’

where N appears m — k + 2 times in (D™H )(++---- ). We call such a T
fundamental field of type (m, k).

LEMMA 9. Let T be a fundamental field of type (m, k). Then, T is
generated by G, G, H,VH, «-., V**H and V*2H.

Proor. Let T, T, and T, be fundamental fields defined by
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T(X, X)) = (D"H)(N, -+, N; X,, X))
T.(X,) = (D"H)(N, -+-, N; N, X))
T, = (D"H)(N, --+, N; N, N) .
Then, by Lemma 1, T, = P(H,G,G™), T, =0 and T, =0. Let S and S
be fundamental fields of type (m, k) defined by
S(Xk’ ct Yy Xi, . 'Xl) = (DmH)(' ) N’ Xi9 . ')
S,(Xk, tt Yy Xi' ) Xl) = (DmH)(. ) Xiy N, ** ') ’
where we transposed only N and X; in (D™H)(------ ). Then, by the
Ricei formula, S — S is generated by G and fundamental fields of types
(m—2,9), j<k, as S* has the constant curvature. Repeating the
transpositions as above, we arrive at one of the fundamental fields T, 7"
and T defined as follows:
T(Xkr ct Yy Xl) = (DMH)(XIH tt Xs: Nr Tty N, X2r XL)
T,(ka ttty XL) = (DMH)(ka ey X29 N; Tty N, N’ X1)
T”(Xk’ Sty Xl) = (DmH)(Xky ] Xn Nr *t Yy N; N’ N) .
T—S, T"—Sor T" — S is generated by G and fundamental fields of
types (m — 2, 7), 1 = k. Hence it is sufficient to prove the assertion only
for the fields 7, 77 and T”. We prove it by induction on m. We assume
it is valid for 0,1, ---, m. Let T be a fundamental field of type (m + 1,
k + 1) defined by
T(Xk+1r Xlu M) Xx) = (DMHH)(XIHU Xk’ t X3, Nr Tty N; er Xx) .
But the right hand term is written as follows:

Xy (D"H)(Xyy -+, Xy N, -+, N; X, X))
k
- ggx (DMH)(X’” Tt DXk+1X‘i’ ) X3! N! ) N, Xzy Xl)

- E (DMH)(XIH tt ety Xar N, tt DXk+1N, ) N; X2’ Xl)
- (DmH)(Xk’ tt Xa’ N’ Y N; ka+1X2, X1)
- (DmH)(Xky Yy st N7 ) N; XZ, DXk+1X1)
= Xk+1((DmH)(ka ) X39 N, ctty N; Xzy Xl))
k
- Z;(DMH)(XIH ) VXk+1Xi7 ) Xsr Ny ) N; Xz, Xl)
- (DmH)(Xky ] Xs, N, R N; VXk+1X2’ Xl)
- (DmH)(Xk’ ) X3, N, -, N; Xzy VXk+1X1)

= S H(Xyey X)D"H)(Xy, o+, N, oo+, Xy N, -+, N: X,y X))
1=3
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+ Z (DMH)(XIH ) Xs; N, M) AXk+1’ Tty N; Xz; Xl)

- H<Xk+1’ Xz)(DmH)(Xk’ ] Xay N, ) N; N9 Xl)

- H(Xk+17 Xl)(DmH)(XIu ct 0y Xs; N’ ] N; X2) N) .
The above equality says T = VS + R, where S is a fundamental field of
type (m’ k) deﬁned by S(Xkr ) Xl) = (DmH)(XIn Y XS, N’ ) N; Xz» XI)
and R is a field generated by fundamental fields of types (n, 7), where
n<mand j<k+ 1. Hence, by assumption, T = P(G,G™, H, ..., V*"'H).
The proofs for 7' and T” are similar to the above. So we omit them,
noting

(D"H)N, -+, N, X,N, -+, N;N,N) =0 for Xe.2z5. q.e.d.
LEMMA 10. Regard D™H as a fundamental field of type (m, m + 2).
Then D™H = V™H + R, where R 1is a field generated by G, G, H, VH,
.., VmtH,
PrOOF. Note that
(DmH)(Xm+2y tt Yy Xs; X?.r Xl)
= (VDM_IH)(XmHy ) Xa; Xzy X1)

+ % H(Xm+2r Xi)(Dm—lH)(Xm+l! Y Xi+1) N, Xi—n tt Xa; Xzy X1) .
Then, we get the assertion by Lemma 9 and induction on m. q.e.d.

By Lemmas 8 and 10, we complete the proof of Theorem A.

3. Proof of Theorem B. First, we note the following result due
to Miinzner ([7]).

LEMMA 11. Let M be a connected closed isoparametric hypersurface
of S with g distinct principal curvatures. Then, the function f in
Lemma 4 is extended to a unique analytic function on S™ denoted also
by f such that M = f7'(t,), t, = cos(g6,) € (—1, 1).

REMARK. (i) In particular, M is oriented by

N=g'1— f*gradf.
Hence, we can define H, A, --- over M.

(ii) Let ¢: Rx M — S" be as in Section 2. Define @: (—1, I)x M — S
by @(t, p)=¢((cos™ t,—cos™' t)/g, ). Then, f(@¢, p))=t, U=0(—1, L)X M)
is open in S™ and @: (—1, 1) x M — U is a diffeomorphism.

Let 7: M — M be the universal covering. Then, by the pull back,

M has the structure G, H, A, V, --- which are briefly denoted also by
G H, AV, --..
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LEMMA 12. Under the condition (*) in Theorem B, M admits a
transitive group of isometries leaving A invariant.

PrOOF. Since our proof is quite similar to that in Singer [9] and
Ambrose and Singer [1], we only give a sketch. Let B be the orthonormal
frame bundle over M. Let j,, ---, 7, be a sequence of g integers, where
1<7, - 5i=<n—1. Let p[j,---Jj]: B— R’ be a mapping defined by

(Olgg -+ 5.DO®) = (H(5:3.), VH(Gsgog ), + -+ VI H (G, » + + §2323)) »
where b = (¢; Y, -+, Y,_) and V" H(j, - - - JsJ.0) = (V" H) (Y;,, --+,Y.

Y;,Y;). Let o={p[j,---7.]} be the finite sequence of all such p[j,---j.]’s.
Then p can be regarded as a mapping of B to R+ -+ + R*™'. Let
C = {beB|pb) = p(a)}, where a = (p; X,, -+, X,_,) is a fixed element of
B satisfying H(X,, X,) = \,0;,. Let C be the component of C containing
a. Under the condition (*), C is a subbundle of B with the structure
group K, where K is the component of the group K = {h € O(n — 1)|0(ah) =
o(a)} containing the identity. Let (w,;) and (w,) be the Riemannian
connection form and the canonical form. Let E; and E,;; be the vector
fields dual to @w; and ®;;. Let o(n —1) and f be the Lie algebra of
O(n — 1) and K. A bi-invariant metric of O(n — 1) gives the orthogonal
decomposition o(n — 1) = f + m. Let ¥ be the orthogonal projection of
o(n — 1) onto ¥, (4,;) = 7(w;;) and 7,; = ¢;; — ®;;. Then (¢,;) defines a
connection form of C and 7;(E,) is constant on C for each ¢, j and k.
Here, we used the fact that do(Z,(b)) has the expression

{++s VH(EG.5), -+« VI H Gy ++ 32505 ++°}

which is the same for every b€ C, by Theorem A. Then, on C, dw, and
d¢,; are constant linear combinations of wedge products of w, and ¢,;.
Here, we note that the curvature form (2,;) of the Riemannian connection
is written as 2,; = OW\; + D(w; A @;) on C. Though C is not always
simply connected, it has the group structure such that {w;} and some
members of {¢,} give the Maurer Cartan form, and C acts on M as

transitive group of isometries; Frame b = (¢;Y,, ---,Y,_,) corresponds to
an isometry «+ such that (X;) =Y, where ¢ = (p; X, ---,Y,_,) is the
fixed frame. Hence it is obvious that rec A = Ao, q.e.d.

By Lemma 12, M is locally homogeneous, that is, for every p, ¢ € M,
there exist neighborhoods V and V' of » and ¢ in M, respectively and
an isometry : V —V’ leaving A invariant. Then, by Lemma 2, there
exists an isometry ¥: S* — S™ such that ¥ |, = . To prove Theorem B,
it is sufficient to show ¥'(M) = M. But it is obvious by Lemma 11 and
the fact that M and ¥(M) are closed isoparametric hypersurfaces and
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that MN¥ (M) contains the open subset V’. The necessity of (*) is also
obvious.

REMARK. Miinzner ([7]) proved that, for a connected isoparametric
hypersurface of S*, g is 1, 2, 3, 4 or 6.
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