TOTALLY GEODESIC FOLIATIONS AND KILLING FIELDS, II

GEN-ICHI OSHIKIRI

(Received May 30, 1985)

1. Introduction. A foliation \mathscr{F} of a Riemannian manifold (M,g) is said to be totally geodesic if every leaf of \mathscr{F} is a totally geodesic submanifold of (M,g). In [6], Johnson and Whitt studied some properties of Killing fields on complete connected Riemannian manifolds admitting codimension-one totally geodesic foliations by compact leaves. In [7], the author studied one of these properties of Killing fields on closed Riemannian manifolds admitting not necessarily compact codimension-one totally geodesic foliations and proved the following: Let (M,g) be a closed connected Riemannian manifold and \mathscr{F} be a codimension-one totally geodesic foliation of (M,g). Then any Killing field Z on (M,g) preserves \mathscr{F} , that is, the flow of Z maps each leaf of \mathscr{F} to a leaf of \mathscr{F} .

In this paper, we extend this result to higher codimensions by studying Jacobi fields along geodesics on totally geodesic leaves. We prove the following.

THEOREM. Let (M, g) be a connected complete Riemannian manifold and \mathscr{F} be a totally geodesic foliation of (M, g). Assume that the bundle orthogonally complement to \mathscr{F} is also integrable. Then any Killing field Z on (M, g) with bounded length, i.e., $g(Z, Z) \leq \operatorname{const.} < \infty$ on M, preserves \mathscr{F} .

The proof will be given in Section 3. In Section 4, we give some examples and study a related topic.

2. Preliminaries. Let (M,g) be a connected complete Riemannian manifold and \mathscr{F} be a codimension-q totally geodesic foliation of (M,g). Denote by D the Riemannian connection of (M,g) and by R the curvature tensor of D. We also denote g(X,Y) by $\langle X,Y\rangle$. Let $c\colon R\to M$ be a geodesic parametrized by arc length on a totally geodesic leaf L of \mathscr{F} and Y(t) be a Jacobi field along c. Then Y(t) satisfies the Jacobi equation $D_{c'(t)}D_{c'(t)}Y(t)+R_tY(t)=0$ where $R_tY(t)=R(Y(t),c'(t))c'(t)$. Set x=c(0). We choose an orthonormal basis $\{E_1,\cdots,E_p,X_1,\cdots,X_q\}$ of T_xM with $E_1=c'(0),\ E_2,\cdots,E_p\in T_x\mathscr{F}$ and $X_1,\cdots,X_q\in T_x\mathscr{F}^\perp$ where $\dim(L)=p$

and $\dim(M)=n=p+q$. By the parallel translation along c, we get a parallel frame field $\{E_i,\,X_a\}=\{E_1(t),\,\cdots,\,E_p(t),\,X_1(t),\,\cdots,\,X_q(t)\}$ along c. As L is a totally geodesic submanifold of (M,g), the frame field $\{E_i,\,X_a\}$ satisfies the following properties: $E_1(t)=c'(t),\,E_i(t)\in T_{c(t)}L$ for $i=1,\,\cdots,\,p$ and $X_a(t)\in T_{c(t)}L^1$ for $a=1,\,\cdots,\,q$. With respect to this frame field $\{E_i,\,X_a\}$ we represent Y(t) as $Y(t)=\sum_{i=1}^p u_i(t)E_i(t)+\sum_{a=1}^q v_a(t)X_a(t)$. Note that $\langle R(E_i(t),\,c'(t))c'(t),\,X_a(t)\rangle=\langle R(X_a(t),\,c'(t))c'(t),\,E_i(t)\rangle=0$, since L is totally geodesic. Thus $u_i(t)$ and $v_a(t)$ satisfy the following differential equations

$$d^2u_i(t)/dt^2+\sum\limits_{j=1}^pu_j(t)R_{ij}(t)=0 \quad ext{for} \quad i=1,\;\cdots,\;p$$
 $d^2v_a(t)/dt^2+\sum\limits_{b=1}^qv_b(t)R_{ab}(t)=0 \quad ext{for} \quad a=1,\;\cdots,\;q\;,$

where $R_{ij}(t) = \langle R(E_i(t), c'(t))c'(t), E_j(t) \rangle$ and $R_{ab}(t) = \langle R(X_a(t), c'(t))c'(t), X_b(t) \rangle$. Hence we have the following.

LEMMA 1. Let Y(t) be a Jacobi field along c. Then the orthogonal projections V(t) and H(t) of Y(t) to TL and TL^{\perp} are also Jacobi fields.

Now assume that the bundle $\mathscr{H} = \{(x, v) \in TM; v \perp T_x \mathscr{F}, x \in M\}$ orthogonally complement to \mathscr{F} is integrable. Then the following is known.

THEOREM (Blumenthal and Hebda [1]). Let (M, g, \mathscr{F}) be as above. Then the universal covering space \widetilde{M} of M is topologically a product $L \times H$, where

- (1) L (resp. H) is the universal covering space of the leaves of $\mathscr F$ (resp. $\mathscr H$),
- (2) the canonical lifting $\widetilde{\mathcal{F}}$ (resp. $\widetilde{\mathcal{H}}$) of \mathcal{F} (resp. \mathcal{H}) to \widetilde{M} is the foliation by leaves of the form $L \times \{h\}$, $h \in H$ (resp. $\{l\} \times H$, $l \in L$), and
- (3) the projection $P: \tilde{M} \to L$ onto the first factor is a Riemannian submersion.

We identify a vector field X on L with the one \widetilde{X} on \widetilde{M} that is tangent to $\widetilde{\mathscr{F}}$ and is P-related to X. We call \widetilde{X} the canonical lifting of X. When X is defined only on a subset A of L (e.g., A is a geodesic on L), we also define the canonical lifting \widetilde{X} of X to \widetilde{M} that is defined only on the subset $P^{-1}(A)$ in \widetilde{M} and satisfies the above conditions.

3. **Proof of Theorem.** Let \widetilde{M} be the universal covering space of M and $\widetilde{\mathscr{F}}$ (resp. \mathscr{H}) be the canonical lifting of \mathscr{F} (resp. \mathscr{H}) to \widetilde{M} . We continue to use the notations in Section 2. Let $L \times \{h\}$, $h \in H$, be a leaf of $\widetilde{\mathscr{F}}$ and $c: R \to L \times \{h\}$ be a geodesic parametrized by arc length. By

Lemma 1, any Jacobi field Y(t) along c decomposes into the sum of two Jacobi fields W(t)+H(t), where $W(t)\in T\widetilde{\mathscr{F}}$ and $H(t)\in T\widetilde{\mathscr{H}}$. Hereafter, we consider only the $T\widetilde{\mathscr{H}}$ -component H(t) of Y(t) and call it an H-Jacobi field. Note that the dimension of the space of H-Jacobi fields along c is equal to 2q. Let $\{E_i(t), X_a(t)\}$ be a parallel frame field along c given in Section 2. Denote by $H_{c(t)}$ the leaf of $\widetilde{\mathscr{H}}$ passing through c(t), that is, $H_{c(t)}=\{P(c(t))\}\times H$.

LEMMA 2. There exist q H-Jacobi fields $V_1(t)$, ..., $V_q(t)$ along c with the following properties:

- (1) $V_a(0) = X_a(0)$ for $a = 1, \dots, q$,
- (2) $S_{c'(t)}V_a(t) = V_a'(t)$ where "'" means the covariant differentiation with respect to c'(t) and $S_{c'(t)}$ is the second fundamental form of the leaf $H_{c(t)}$ in the normal direction c'(t) given by $\langle S_{c'(t)}X, Y \rangle = -\langle c'(t), D_XY \rangle$ for $X, Y \in T_{c(t)}H_{c(t)}$, and
 - (3) $V_1(t), \dots, V_n(t)$ are linearly independent for all $t \in \mathbb{R}$.

Proof. For each $a=1,\;\cdots,\;q,\;$ take a smooth curve $c_{\mathfrak{a}}\colon (-\varepsilon,\;\varepsilon) \to \tilde{M}$ in $H_{c(0)}$ with $c_a(0) = c(0)$ and $c'_a(0) = X_a(0)$. Identify c with the geodesic $P \circ c$ on L, where $P: \widetilde{M} \to L$ is the natural projection, and lift c'(0) canonically along curves c_a for $a=1, \dots, q$. For each $a=1, \dots, q$ define $F_a: (-\varepsilon, \varepsilon) \times \mathbf{R} \to \tilde{M} \text{ by } F_a(s, t) = \exp_{\varepsilon_a(s)} tc'(0), \text{ and set } V_a(t) = F_{a^*}(\partial/\partial s|_{(0,t)}).$ We show that V_a 's satisfy the above properties. By the construction, we have $P \circ F_a(s, t) = c(t)$. It follows that $V_a(t)$ is an H-Jacobi field for each a. Clearly V_a satisfies Property (1). For each X_b , we have $\langle S_{c'(t)} V_a$, $\langle X_b \rangle = -\langle D_{v_a} X_b, c'(t) \rangle = \langle X_b, D_{v_a} c'(t) \rangle = \langle X_b, D_{c'(t)} V_a \rangle$ if we locally extend V_a , X_b and c'(t) to suitable vector fields. On the other hand, for each E_i , $\langle D_{c'(t)}V_a, E_i \rangle = -\langle V_a, D_{c'(t)}E_i \rangle = 0$ as \mathscr{F} is totally geodesic. Thus we have $S_{a'(t)}V_a(t) = V'_a(t)$ which is Property (2). Finally we show that $V_a(t)$'s are linearly independent. Suppose not. Then there exist t_0 and $(x_a) \in \mathbf{R}^q$ with $(x_a) \neq 0$ and $\sum_{a=1}^q x_a V_a(t_0) = 0$. Set $W(t) = \sum_{a=1}^{q} x_a V_a(t)$, hence $W(t_0) = 0$. Further, by Property (2), we have $W'(t_0) = \sum_{a=1}^q x_a V'_a(t_0) =$ $\sum_{a=1}^q x_a S_{c'(t_0)} V_a(t_0) = S_{c'(t_0)} W(t_0) = 0$. As W(t) is an H-Jacobi field, we have W(t) = 0 and $(x_a) = 0$, which is a contradiction.

Now represent $V_a(t)$ as $V_a(t) = \sum_{b=1}^q A_{ba}(t) X_b(t)$ and set $S_{ab} = \langle S_{c'(t)} X_a(t), X_b(t) \rangle$. Let A(t) (resp. S(t)) be a (q, q)-matrix whose (a, b)-component is $A_{ab}(t)$ (resp. $S_{ab}(t)$). Denote by A'(t) (resp. $\int_a^b A(t) dt$) the componentwise differentiation (resp. integration) with respect to the parameter t. Then, by Lemma 2, (2), we have A'(t) = S(t)A(t). Note that $\det A(t) \neq 0$ by Lemma 2, (3), and A''(t) + R(t)A(t) = 0, where R(t) is a (q, q)-matix $(R_{ab}(t))$.

The following lemma is proved in Goto [4] and Eschenburg and O'Sullivan [3] (A(t)) is a Legendre tensor in the sense of [3]). But we give a proof for convenience. We also refer to these literatures and Eschenburg and O'Sullivan [2] for generalities on Jacobi fields.

Lemma 3. Set $B(t) = A(t) \int_0^t A^{-1}(s) *A^{-1}(s) ds$, where *A is the transposed matrix of A. Then B(t) satisfies the following matrix Jacobi equation

$$B''(t) + R(t)B(t) = 0.$$

PROOF. By differentiating B(t) with respect to t, we have $B'(t) = A'(t) \int_0^t A^{-1}(s) *A^{-1}(s) ds + *A^{-1}(t)$ and $B''(t) = A''(t) \int_0^t A^{-1}(s) *A^{-1}(s) ds + A'(t) A^{-1}(t) *A^{-1}(t) + (*A^{-1})'(t)$. As $(*A *A^{-1})'(t) = *A'(t) *A^{-1}(t) + *A(t)(*A^{-1})'(t)$, we have $(*A^{-1})'(t) = -*A^{-1}(t) *A'(t) *A^{-1}(t)$. It follows that $B''(t) + R(t)B(t) = *A^{-1}(t)(*A(t)A'(t) - *A'(t)A(t))A^{-1}(t) *A^{-1}(t) = *A^{-1}(t)(*A(t)S(t)A(t) - *A(t)S(t)A(t))A^{-1}(t) *A^{-1}(t) *A^{-1}(t) = 0$ by the remark preceding Lemma 3.

It follows from Lemma 3 that the space of H-Jacobi fields consists of the elements of the form A(t)x + B(t)y for $x, y \in \mathbb{R}^q$.

LEMMA 4. Let Y(t) be an H-Jacobi field given by A(t)x + B(t)y for $x, y \in \mathbf{R}^q$. If $B(t)y \neq 0$ for some t, then the norm $|Y(t)| = \langle Y(t), Y(t) \rangle^{1/2}$ of Y(t) is unbounded.

PROOF. Assume that $|Y(t)| \leq N < \infty$ for $t \in (-\infty, \infty)$. Set

$$h(t) = |(Y(t), \ ^*A^{-1}(t)y)| = \left| \left(\int_0^t A^{-1}(s) \ ^*A^{-1}(s) ds \ y + x, \ y
ight)
ight|,$$

where (x, y) denotes the standard inner product of $x, y \in \mathbf{R}^q$. By assumption we have $|(Y(t), {}^*A^{-1}(t)y)| \leq N|{}^*A^{-1}(t)y|$, that is, $h(t) \leq N|{}^*A^{-1}(t)y|$. Note that ${}^*A^{-1}(t)y \neq 0$ for all $t \in \mathbf{R}$ because $y \neq 0$ and A(t) is invertible for all $t \in \mathbf{R}$.

Case 1: $(x,y) \ge 0$. For $t \ge 0$, we have $h(t) = \int_0^t |*A^{-1}(s)y|^2 ds + (x,y)$. Thus h(t) > 0 for t > 0. Set k(t) = 1/h(t) for t > 0. Then $k'(t) = -|*A^{-1}(t)y|^2/h^2(t)$. Hence we have $k'(t) \le -1/N^2 < 0$, which is impossible because k(t) is defined on $(0, \infty)$ and positive everywhere on $(0, \infty)$.

Case 2: (x, y) < 0. For $t \in (-\infty, 0)$ we have $h(t) = -\int_0^t |*A^{-1}(s)y|^2 ds - (x, y)$. Then h(t) is positive on $(-\infty, 0)$. Set k(t) = 1/h(t). Then by the same computation as in Case 1, we have $k'(t) = |*A^{-1}(t)y|^2/h^2(t) \ge 1/N^2 > 0$ which is impossible because k(t) is defined on $(-\infty, 0)$ and positive everywhere on $(-\infty, 0)$.

We now finish the proof of Theorem. Recall that Z preserves \mathscr{F} if and only if $[Z, E] \in \Gamma(T\mathscr{F})$ for all $E \in \Gamma(T\mathscr{F})$. Let Z be a Killing field with bounded length. We denote also by Z the canonical lifting of Z to M and perform the proof on M. As Z is a Killing field, the restriction to c is a Jacobi field along c. By Lemma 1, the \mathcal{H} -component Z^{H} of Z is an H-Jacobi field. By the assumption that $\langle Z, Z \rangle$ is bounded on c and by Lemma 4, Z^H is of the form A(t)u for some $u \in \mathbb{R}^q$. $Z^{H}(t) = \sum_{a=1}^{q} u_{a}V_{a}(t)$. Let E be the canonical lifting of a vector field on L. In order to prove that Z preserves $\widetilde{\mathscr{F}}$ it suffices to see that $[Z^H, E] = 0$. Now let x be any point of M and c be a geodesic with c(0) = x and $c'(0) = E_x$. We use the same notation as above. Lift $P \circ c'$ canonically on the vertical leaf H_x passing through x and denote it by c', too. Then E = c' along the orbit of the flow generating Z^H and passing through x. It follows that $[Z^H, E] = D_{Z^H}E - D_EZ^H = D_{Z^H}c' - D_{c'}Z^H =$ $[Z^{\scriptscriptstyle H},\,c']=\sum_{a=1}^q u_a[V_a,\,c']=0$ by Lemma 2 and the fact that $[V_a,\,c']=$ $F_{a*}([\partial/\partial s, \partial/\partial t]|_{(0,t)}) = 0.$

4. Concluding remarks. First we give two examples.

EXAMPLE 1. Let E^2 be the flat Euclidean plane with coordinates (x, y). Define \mathscr{F} to be the orbits of the flow $\partial/\partial x$. Then \mathscr{F} is a codimension-one totally geodesic foliation of E^2 . Let Z be a Killing field generated by rotations, e.g., $Z = y \partial/\partial x - x \partial/\partial y$. Then the function $\langle Z, Z \rangle$ is unbounded and Z does not preserve \mathscr{F} . This implies that we cannot drop the assumption on the boundedness of $\langle Z, Z \rangle$.

EXAMPLE 2. Let E^s be the flat Euclidean space with coordinates (x, y, z). Define \mathscr{F} to be the orbits of the flow $\sin(2\pi z)\partial/\partial x + \cos(2\pi z)\partial/\partial y$. Then \mathscr{F} is a one-dimensional totally geodesic foliation of E^s . Note that the complementary orthogonal bundle is not integrable. The parallel vector field $Z = \partial/\partial z$ does not preserve \mathscr{F} . This implies that we cannot drop the integrability condition of the complementary orthogonal bundle. In this case, we can define V_a as in Lemma 2. But they do not satisfy Property (2) of Lemma 2. Consequently, Lemma 3 no longer holds good.

On the behavior of compact leaves of \mathscr{F} by the flow of a Killing field Z, we have the following under weaker assumptions.

PROPOSITION. Let (M, g) be a complete connected Riemannian manifold and \mathscr{F} be a minimal foliation with integrable complementary orthogonal bundle. Assume that \mathscr{F} has a compact leaf L_0 . Then any flow-generating Killing field maps L_0 to a leaf of \mathscr{F} .

For the proof, we use the notion of calibration introduced by Harvey and Lawson [5]. In this case, the volume form $\chi_{\mathscr{F}}$ of leaves, which is a smooth p-form on M, gives a calibration of \mathscr{F} . The existence of a calibration implies the homologically mass-minimizing property of compact leaves. It follows that any flow-generating Killing field maps L_0 to a leaf of \mathscr{F} .

Note that the assumption on the integrability of the complementary orthogonal bundle cannot be removed. In fact, we can construct a codimension-2 totally geodesic foliation on the flat torus T^3 from Example 2. This example shows that Proposition does not hold good in this case.

REFERENCES

- [1] R. BLUMENTHAL AND J. HEBDA, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier Grenoble 33 (1983), 183-198.
- [2] J. ESCHENBURG AND J. O'SULLIVAN, Growth of Jacobi fields and divergence of geodesics, Math. Z. 150 (1976), 221-237.
- [3] J. ESCHENBURG AND J. O'SULLIVAN, Jacobi tensors and Ricci curvature, Math. Ann. 252 (1980), 1-26.
- [4] M.S. Goto, Manifolds without focal points, J. Differential Geom. 13 (1978), 341-359.
- [5] R. HARVEY AND H. LAWSON, JR., Calibrated foliations, Amer. J. Math. 103 (1981), 411-435.
- [6] D. L. JOHNSON AND L. B. WHITT, Totally geodesic foliations, J. Differential Geom. 15 (1980), 225-235.
- [7] G. OSHIKIRI, Totally geodesic foliations and Killing fields, Tôhoku Math. J. 35 (1983), 387-392.

DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
TÔHOKU UNIVERSITY
KAWAUCHI, SENDAI 980
JAPAN