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1. Introduction. A foliation j^~ of a Riemannian manifold (M, g)
is said to be totally geodesic if every leaf of ^ is a totally geodesic
submanifold of (M, g). In [6], Johnson and Whitt studied some properties
of Killing fields on complete connected Riemannian manifolds admitting
codimension-one totally geodesic foliations by compact leaves. In [7], the
author studied one of these properties of Killing fields on closed Rieman-
nian manifolds admitting not necessarily compact codimension-one totally
geodesic foliations and proved the following: Let (M, g) be a closed
connected Riemannian manifold and J?~ be a codimension-one totally
geodesic foliation of (M, g). Then any Killing field Z on (AT, g) preserves
^ 7 that is, the flow of Z maps each leaf of ^ to a leaf of ^ 7

In this paper, we extend this result to higher codimensions by study-
ing Jacobi fields along geodesies on totally geodesic leaves. We prove
the following.

THEOREM. Let (M, g) be a connected complete Riemannian manifold
and ^ be a totally geodesic foliation of (M, g). Assume that the bundle
orthogonally complement to ^~ is also integrable. Then any Killing
field Z on (M, g) with bounded length, i.e., g(Z, Z) ^ const. < °° on M,
preserves

The proof will be given in Section 3. In Section 4, we give some
examples and study a related topic.

2. Preliminaries. Let (M, g) be a connected complete Riemannian
manifold and ^ be a codimension-g totally geodesic foliation of (ikf, g).
Denote by D the Riemannian connection of (M, g) and by R the curva-
ture tensor of D. We also denote g(X, Y) by (X, Y). Let c: R -+ M be
a geodesic parametrized by arc length on a totally geodesic leaf L of ^
and Y(t) be a Jacobi field along c. Then Y(t) satisfies the Jacobi equation
Dc,(t)De,{t)Y(t) + RtY(t) = 0 where RtY(t) = R(Y(t), c\t))c\t). Set x = c(0).
W e c h o o s e a n o r t h o n o r m a l b a s i s {Eλ, -",EpfXlf ---,Xq} of TXM w i t h
Ex = c'(0), E2, -- ,Epe Txjr and Xlf , Xq e Tx^rL where dim(L) = p
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and dim(ikf) = n = p + q. By the parallel translation along c, we get a
parallel frame field {Ei9 Xa} = {Eί(ί), , Ep(t), X,(t), , Xq(t)} along c. As
L is a totally geodesic submanifold of (M, g), the frame field [Ei9 Xa}
satisfies the following properties: Et(t) = c'(t), Et(t) e Tc{t)L for i = 1, , p
and Xa(t) e Tc{t)L

λ for α = 1, •••,?. With respect to this frame field
{#«, JCJ we represent Y(t) as Y(t) = Σ?«i uJ^E^t) + Σ U vβ(ί)Xβ(ί). Note
that (R(Eit), c'(t))c'(t)y Xa(t)) = (R(Xa(t), c\t))c'(t), £?4(ί)> = 0, since L is
totally geodesic. Thus ^(ί) and va{t) satisfy the following differential
equations

d*ut(f)/dt2 + Σ %(ί)Λ,y(ί) = 0 for i = 1, , p

g

d2va(t)/df + Σ vb(t)Rab(t) = 0 for a = l, ,q,
6=1

where Rίj(t) = (R(Ei(t), c\t))c\t\ Ej(t)) and Rab(t) = (R(Xa(t), c\t))c\t\ Xb(t)).
Hence we have the following.

LEMMA 1. Let Y(t) be a Jacobi field along c. Then the orthogonal
projections V(t) and H(t) of Y(t) to TL and TLL are also Jacobi fields.

Now assume that the bundle £ίf = {(x, v) e TM; v 1 Tx^ xeM} or-
thogonally complement to ^~ is integrable. Then the following is known.

THEOREM (Blumenthal and Hebda [1]). Let (M, g, ^ Π be as above.
Then the universal covering space M of M is topologίcally a product
LxH, where

(1) L (resp. H) is the universal covering space of the leaves of ^
(resp. Sίf\

(2) the canonical lifting j^~ (resp. £ίf) of ^~ (resp. έ%f) to M is
the foliation by leaves of the form Lx{h), heH (resp. {l}xH, leL), and

(3 ) the projection P: ikf —> L onto the first factor is a Riemannian
submersion.

We identify a vector field X on L with the one X on fit that is
tangent to ^ and is P-related to X. We call X the canonical lifting
of X. When X is defined only on a subset A of L (e.g., A is a geodesic
on L), we also define the canonical lifting X of X to fit that is defined
only on the subset P~\A) in fit and satisfies the above conditions.

3. Proof of Theorem. Let fit be the universal covering space of M
and Jr (resp. 3f) be the canonical lifting of ^ (resp. Sίf) to M. We
continue to use the notations in Section 2. Let Lx{h}f heH, be a leaf
of ^ and c: R-> Lx {h} be a geodesic parametrized by arc length. By
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Lemma 1, any Jacobi field Y(t) along c decomposes into the sum of two

Jacobi fields W(t) + H(t), where W(t) e TjΓ and H(t) e TSff. Hereafter,

we consider only the Γj^-component H(t) of Y(t) and call it an H-Jacobi

field. Note that the dimension of the space of H-Jacobi fields along c is

equal to 2q. Let {£**(£), Xa(t)} be a parallel frame field along c given in

Section 2. Denote by Hc{t) the leaf of έ%f passing through c(t), that is,

L E M M A 2. There exist q H-Jacobί fields VΊ(ί), •••, Vq[t) along c with
the following properties:

( 1 ) F α (0) = XJfi) for a = 1, . . . f ί f

( 2 ) Sc>wVa(t) = V'a(t) where "'" means the covariant differentiation
with respect to c'(t) and Sc>(t) is the second fundamental form of the leaf
HeW in the normal direction c'(ί) given by (Sc>{t)X, Y) = — <c'(ί), DXY)
for X, YeTc{t)Hcit), and

( 3 ) VΊ(ί)» "*» Vq(t) are linearly independent for all teR.

PROOF. For each a = 1, , q, take a smooth curve ca: ( — ε, ε) —> M
in £Γβ(0) with cα(0) = c(0) and ci(0) = -3Γβ(0). Identify c with the geodesic
Poc on L, where P:M->L is the natural projection, and lift c'(0) ca-
nonically along curves cα for a = 1, , g. For each α = 1, , q define
* ; : (-ε, ε ) x Λ ^ i ί ί by Fa(s, t) = expCα(8)ίc'(0), and set 7β(ί) = Fu.(d/d8\{0,t)).
We show that Fα 's satisfy the above properties. By the construction,
we have PoFa(s, t) = c(t). It follows that Va(t) is an H-Jacobi field for
each α. Clearly Va satisfies Property (1). For each Xh, we have <Sβ/(ί)Vβ,
Xb) = -{DvXhJ c'(t)) = <X6, Z)F/(ί)> - <X6, A'(.,V.> if we locally extend
Va, Xb and c\t) to suitable vector fields. On the other hand, for each
Ei9 (Dc,(t)Va, Et) = -<V.,-Dβ'W^*> = 0 as j r " is totally geodesic. Thus
we have Se'lt)Va(t) = Fί(ί) which is Property (2). Finally we show that
Vβ(t)'s are linearly independent. Suppose not. Then there exist t0 and
(xa)eR* with (a?β) ^ 0 and Σί«i ».V.(<o) = 0. Set TF(ί) = Σί«i ».Vβ«).
hence W(ίo) = 0. Further, by Property (2), we have W\Q = Σί=i XaV'JLQ =
ΣiUiX&'wVaito) = iSβ'(<o,TΓ(ίo) - 0. As TΓ(ί) is an iJ-Jacobi field, we have
W(t) = 0 and (xa) = 0, which is a contradiction.

Now represent Va(t) as Va(t) = Σ ί - i Λα(ί)^(Q and set Sα6 = (Sc,(t)Xa(t),

Xb(t)}. Let A(ί) (resp. S(ί)) be a (g, g)-matrix whose (α, 6)-component is

Aab(t) (resp. Sβfc(t)). Denote by A'(ί) ίresp. I A(t)dtj the componentwise

differentiation (resp. integration) with respect to the parameter t. Then,

by Lemma 2, (2), we have A'(t) = S(t)A(t). Note that det A(t) Φ 0 by

Lemma 2, (3), and A"(ί) + R{t)A(t) = 0, where Λ(ί) is a (?, g)-matix (Λ.»(ί)).
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The following lemma is proved in Goto [4] and Eschenburg and 0' Sullivan
[3] (A(ί) is a Legendre tensor in the sense of [3]). But we give a proof
for convenience. We also refer to these literatures and Eschenburg and
O'Sullivan [2] for generalities on Jacobi fields.

S ί
A~\s) *A~\s)ds, where *A is the trans-

0

posed matrix of A. Then B{t) satisfies the following matrix Jacobi
equation

B"(t) + R(t)B(t) = 0 .

PROOF. By differentiating B(t) with respect to t, we have B\t) =

A'(ί) \A-\s)*A-\s)ds + *A-\t) and B"(t) = A"(t) Γ A~\s)*A~\s)ds +

A\t)Ar\t) *A~\t) + (* A"1)^). As (* A *A"1)'(ί) = *A'(f) *A~\t) + *A(f)(*A'1)\t)t

we have (*A"1)'(t) = -*A"1(i)*A'(i)*A-1(i). It follows that B"(ί) +
R{t)B{t) = *A-1(ί)(*A(ί)A'(ί)- *A'(t)A(t))A-1(ί) ^A-1^)^ *A-\t)(*A(t)S(t)A(t)-
*A(t)S(t)A(t))A~\t) *A-χ(ί) = 0 by the remark preceding Lemma 3.

It follows from Lemma 3 that the space of ίf-Jacobi fields consists
of the elements of the form A(t)x + B(t)y for x,ye Rq.

LEMMA 4. Let Y(t) be an H-Jacobi field given by A(t)x + B(t)y for
x, yeR9. If B{t)y Φ 0 for some t, then the norm \Y(t)\ = <Γ(ί), Y(t))1/2

of Y(t) is unbounded.

PROOF. Assume that |Γ(ί)| <: N < oo for t e (-oo, oo). Set

+ x,

where (x, y) denotes the standard inner product of x, y e Rq. By assump-
tion we have |(Γ(t), *A"1(%)| ^ N\*A~\t)y\, that is, Λ(t) ^ N\*A~\t)y\.
Note that *A"1(ί)t/ ^ 0 for all t e R because y Φ 0 and A(ί) is invertible
for all ίei2.

Case 1: (α?, y) ^ 0. For t ^ 0, we have Λ(ί) = Γ ^A-Wyl'ώ + (a?, y).
Thus Λ(ί) > 0 for t > 0. Set fc(ί) = l/λ(ί) for ί > 0. Then k\t) =
- l A-̂ Qi/IVΛ t̂). Hence we have fc'(t) ^ -1/iV2 < 0, which is impossible
because k(t) is defined on (0, oo) and positive everywhere on (0, oo).

Case 2: (a?, y)< 0. For t e ( - oo, 0) we have h(t) = - Γ |*A-1(s)if|2<fe -
(a?, i/). Then Λ(ί) is positive on (-oo, 0). Set k(t) = l/h(t). Then by the
same computation as in Case 1, we have k'(t) = \*A~\t)y\2/h\t) ̂  1/N2 > 0
which is impossible because k{t) is defined on (—oo, 0) and positive every-
where on (— oo, 0).
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We now finish the proof of Theorem. Recall that Z preserves
if and only if [Z,E]eΓ(Tj^) for all EeΓ(Tjr-). Let Z be a Killing
field with bounded length. We denote also by Z the canonical lifting of
Z to M and perform the proof on M. As Z is a Killing field, the restric-
tion to c is a Jacobi field along c. By Lemma 1, the ^-component ZH

of Z is an U-Jaeobi field. By the assumption that (Z, Z) is bounded on
c and by Lemma 4, ZH is of the form A{t)u for some ueRg. Thus
ZH(t) = Σga=iUaVa(t). Let E be the canonical lifting of a vector field on
L. In order to prove that Z preserves J?~ it suffices to see that
[ZH, E] = 0. Now let x be any point of M and c be a geodesic with
c(0) = x and c'(0) = 2?β. We use the same notation as above. Lift Poc'
canonically on the vertical leaf Hx passing through x and denote it by c',
too. Then E = c' along the orbit of the flow generating Z* and passing
through x. It follows that [ZH, E] = DZHE - DEZH = DZHC' - DCZ

H =
[ZH,<f] = ΣiUiUa[Va,c'] = 0 by Lemma 2 and the fact that [Va, c'] =
Fa*([d/ds, 3/3ί]|(M)) = 0.

4. Concluding remarks. First we give two examples.

EXAMPLE 1. Let E2 be the flat Euclidean plane with coordinates
(x, y). Define ^ to be the orbits of the flow d/dx. Then ^" is a
codimension-one totally geodesic foliation of E2. Let Z be a Killing field
generated by rotations, e.g., Z = y d/dx — xd/dy. Then the function
(Z, Z} is unbounded and Z does not preserve ^ 7 This implies that we
cannot drop the assumption on the boundedness of (Z, Z).

EXAMPLE 2. Let EB be the flat Euclidean space with coordinates
(a?, y, z). Define ^~ to be the orbits of the flow sin(2πz)d/dx + cos(2πz)d/dy.
Then &~ is a one-dimensional totally geodesic foliation of E\ Note that
the complementary orthogonal bundle is not integrable. The parallel
vector field Z = d/dz does not preserve ^ 7 This implies that we cannot
drop the integrability condition of the complementary orthogonal bundle.
In this case, we can define Va as in Lemma 2. But they do not satisfy
Property (2) of Lemma 2. Consequently, Lemma 3 no longer holds good.

On the behavior of compact leaves of J?~ by the flow of a Killing
field Z, we have the following under weaker assumptions.

PROPOSITION. Let (M, g) be a complete connected Rίemannίan mani-
fold and j^~ be a minimal foliation with integrable complementary
orthogonal bundle. Assume that ^~ has a compact leaf Lo. Then any
flow-generating Killing field maps LQ to a leaf of
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For the proof, we use the notion of calibration introduced by Harvey
and Lawson [5]. In this case, the volume form Xjr of leaves, which is
a smooth p-form on M, gives a calibration of ^ 7 The existence of a
calibration implies the homologically mass-minimizing property of compact
leaves. It follows that any flow-generating Killing field maps Lo to a
leaf of ^r.

Note that the assumption on the integrability of the complementary
orthogonal bundle cannot be removed. In fact, we can construct a codi-
mension-2 totally geodesic foliation on the flat torus Γ3 from Example 2.
This example shows that Proposition does not hold good in this case.
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