
Tόhoku Math. Journ.
39 (1987), 385-389.

EINSTEIN KAEHLER SUBMANIFOLDS OF A COMPLEX
LINEAR OR HYPERBOLIC SPACE

MASAAKI UMEHARA

(Received June 27, 1986)

Introduction. Einstein Kaehler submanifolds of a complex space form
have been studied by several authors. In the case of codimension one,
Smyth [4] and Chern [2] showed them to be either totally geodesic or
certain hyperquadrics of a complex protective space. In this classification,
Takahashi [5] showed that the Einstein condition can be weakened to the
condition that Ricci tensor is parallel. Recently, Tsukada [6] studied the
case of codimension two and obtained the same classification. In this
paper we completely classify Einstein Kaehler submanifolds of a complex
linear or hyperbolic space and prove the following:

THEOREM. Every Einstein submanifold of a complex linear or hy-
perbolic space is always totally geodesic.

Note that our theorem holds for any codimension.

1. Preliminaries. It is well-known that the Kaehler metric g =
2 Σ«,JS=I g<χβdzadzβ of a Kaehler w-manifold M can be locally constructed
from a certain real-valued smooth function / by

ga} = d2f/dzadz? (α, β = 1, , n) ,

where (z\ •••, zn) is a local complex coordinate system. Such a function
/, which is called primitive, is determined up to the real part of a holo-
morphic function. If the metric g is real analytic, the diastasis DM(p, q)
is introduced (cf. [1]), which is a real analytic function defined on a
neighborhood of the diagonal set {(p, p);peM} of the product space
MxM and satisfies the following properties:

(1) The function DM(p, q) is uniquely determined by the Kaehler
metric g.

(2) DM(p, q) = DM(q, p), and DM(p, p) = 0.
(3) For peM fixed, DM(p, q) is a primitive function of g with

respect to the variable q.

EXAMPLE 1. Let (f1, " ,ξN) be the canonical complex coordinate
system in CN. Then the diastasis of CN is given by
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D(P, g) = Σ I r(2>) - £*(?) I2 (P> qeCN),

namely the square of the Euclidean distance.

EXAMPLE 2. The complex hyperbolic space CHN of holomorphic sec-
tional curvature —2 is a ball {qeCN; Σf=i \ξσ(θ)\2 < 1}> whose diastasis is
given by

D{p, q) = -

where p = (0, , 0).

Though the diastasis depends only on the metric, it is compatible
with that of the ambient space. Using it, we can prove the following
two facts:

LEMMA 1.1 ([7; Lemma 1.2]). Let M be a Kaehler manifold, and
peM an arbitrarily fixed point. Then a neighborhood U of p is holo-
morphically and isometrically immersed into CN if and only if the metric
is real analytic and there exist holomorphic functions φ1, , φN defined
on U such that

LEMMA 1.2 ([7; Lemma 1.3]). Let M be a Kaehler manifold and
peM an arbitrarily fixed point. Then a neighborhood U of p is holo-
morphicaΐly and isometrically immersed into CHN if and only if the
metric is real analytic and there exist holomorphic functions φ\ , φN

defined on U such that

exv{-DM(V, 9)} = 1 - Σ 1^(9)I2 (9e U) ,

φσ(p) = 0 (<τ = l, • • . , # ) .

Let A(M) be a set of iί-linear combinations of real analytic functions
{hk + kh, where h and k are holomorphic functions on M}. Obviously
Λ(M) is an associative algebra. In [8], the author proved the following:

LEMMA 1.3 ([8; Proposition 3.5]). Let φ\ , φN be non-constant holo-
morphic functions on a complex manifold M such that φ°(p) = 0 (σ =
1, , N) for a fixed point peM. Then

(1) exp(Σf=1|^l2)ίΛ(M),
(2) ( l - Σ f - i l ^ i r ίΛCaf) (α>0).
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2. Einstein Eaehler submanif olds of a complex linear or hyperbolic
space. Let M be a Kaehler w-submanifold of a Kaehler manifold of
constant holomorphic sectional curvature 2c. Then the Ricci tensor,
denoted by Ric^, satisfies

(2.1) Ric^ *^(n + l)cg ,

where g is the Kaehler metric of M. The equality holds if and only if
M is totally geodesic. This inequality is an immediate consequence of
the Gauss equation (cf. [3; p. 177]). In particular, the Ricci tensor is
always negative semi-definite if c s* 0.

Now we suppose that c ^ 0 and M is an Einstein manifold. Then
the Ricci tensor Ric^ = 2 Σ M ~ I Kcrβdzadzβ is related to the Kaehler metric

by

(2.2) Ka-β = -μgaJ (a, β = 1, , n) ,

where μ ^ 0 is a constant. On the other hand, it is known (cf. [3; p.
158]) that the Ricci tensor is given by

(2.3) K*-β = - 3 2 log GIdz«dz? (α, β = 1, , n) ,

where G denotes the determinant of the Hermitian matrix (^)α,i8=i,...,n
In case μφQ, (2.2) and (2.3) imply that (l/μ)\ogG is a primitive function
of g. Since the primitive function is determined up to the real part of
a holomorphic function, we have

DM(p, *) = a/μ)(h + h + logG) ,

locally for a holomorphic function h, that is,

(2.4) exp{μDM(p, *)} = |exp(fe)|2G ,

where p e M is a fixed point. First of all we consider Einstein Kaehler
submanifolds of CN.

THEOREM 2.1. Let M be an Einstein Kaehler n-submanifold of CN

(n ^ 1). Then M is totally geodesic.

PROOF. Since M is an Einstein manifold, it satisfies (2.2) and (2.3)
on a sufficiently small coordinate neighborhood {U; (z1, , zn)} of a fixed
point peM. lί M is not totally geodesic, then (2.1) implies that μ>0.
By a homothetic transformation of CN, we may sssume μ = 1. By Lemma
1.1, there exist holomorphic functions φ\ •••, φN on U such that
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So we have
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9aj = Σ (dφ'ldsr)(dφ'ldzf) (a, β = 1, , n) .
σ = l

Since the matrix {gaj) is Hermitian, its determinant G is real-valued. So
GBΛ(U). On the other hand, Λf satisfies (2.4), that is,

exp{DM(p, *)} =

Hence we have

e x p f Σ IΦ° \2) = I
\<J=1 /

But this contradicts (1) of Lemma 1.3. q.e.d.

Now we consider the hyperbolic case with c = — 1.

LEMMA 2.2. Let M be a complex n-manifold and {U; (z\ •• ,z'!)}
a complex local coordinate neighborhood of M. If feA(U), then
fn+1 det(d2 log fldz«dz*) e Λ( U).

PROOF. For the sake of simplicity, we put fa = df/dz", f-β = df/dzβ

and fa-f = d*f/dzadzβ (a, β = 1, , n). Then

a2 log f/dz'dz* = fa}lf -

and we have

/»+1 det(32 log f/dz"dzη = f dβt(/β? - fj l

0\

= /dβt,

= /dβt

U-fJϊlf fnn-fJήlf 0

\ Λlf ••• fήlf 1/

If 11 --fin fl\

Jnl

1/

= deti

Λ fl\

Jnϊ * * " Jnn Jn

\fϊ •••Λ /

Hence / n + 1 det(92 log f/dzadzβ) is finitely generated by holomorphic or anti-
holomorphic functions on U. In addition, it is real-valued, because the
matrix (32log f/dz"dzβ) is Hermitian. So we conclude fn+1 det(32 log f/dzadzβ) e
Λ(M). q.e.d.

THEOREM 2.3. Let M be an Einstein Kaehler n-submanifold of CHN

(n ^ 1). Then M is totally geodesic.
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PROOF. By (2.1), the Ricci tensor of M is negative definite. Hence
μ Φ 0 and M satisfies (2.4) on a sufficiently small coordinate neighborhood
{U; (z\ •••, zn)} of a fixed point peM. By Lemma 1.2, there exist holo-
morphic functions φ1, , φN defined on U such that

(2.5) DM(p, q) = - l o g ( l - Σ |*'(β)I2) ( β e P ) ,

0 (p) = O ( ( 7 - 1 , -. , iV).

Now if we put / = 1 - Σf=i IfΊ 2 , then

(2.6) G = ( - l)n det(32 log f/dzadzβ) .

From (2.4), (2.5) and (2.6), we have

/ - ' = (-1)" I exp(fe) Γ det(32 log f/dz"dzβ) .

Hence

By Lemma 2.2, we obtain

\n+l-μ

σ=l

Then (2) of Lemma 1.3 implies n + 1 — μ ^ 0. On the other hand,
n + 1 — μ ^ O b y (2.1). Thus μ = w + 1 and M is totally geodesic.

q.e.d.
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