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Introduction. Einstein Kaehler submanifolds of a complex space form
have been studied by several authors. In the case of codimension one,
Smyth [4] and Chern [2] showed them to be either totally geodesic or
certain hyperquadrics of a complex projective space. In this classification,
Takahashi [5] showed that the Einstein condition can be weakened to the
condition that Ricci tensor is parallel. Recently, Tsukada [6] studied the
case of codimension two and obtained the same classification. In this
paper we completely classify Einstein Kaehler submanifolds of a complex
linear or hyperbolic space and prove the following:

THEOREM. FKEwvery Einstein submanifold of a complex linear or hy-
perbolic space is always totally geodesic.

Note that our theorem holds for any codimension.

1. Preliminaries. It is well-known that the Kaehler metric g =
2307 ooy 92502°d2? of a Kaehler m-manifold M can be locally constructed
from a certain real-valued smooth function f by

05 = Ofloz9 (@, B=1, -, m),

where (2%, ---, 2") is a local complex coordinate system. Such a function
f, which is called primitive, is determined up to the real part of a holo-
morphic function. If the metric g is real analytic, the diastasis Dy(p, q)
is introduced (cf. [1]), which is a real analytic function defined on a
neighborhood of the diagonal set {(», p); p€ M} of the product space
Mx M and satisfies the following properties:

(1) The function D,(p, ¢) is uniquely determined by the Kaehler
metric g.

(2) Du(p, @) = Dy(g, p), and Dy(p, p) = 0.

(8) For peM fixed, Dy(p, q) is a primitive function of g with
respect to the variable q.

EXAMPLE 1. Let (g, ---, £¥) be the canonical complex coordinate
system in C¥. Then the diastasis of C" is given by
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N
Dip, 9) = X 1¢°(p) — £°(9) F o (p,gel),
namely the square of the Euclidean distance.

EXAMPLE 2. The complex hyperbolic space CH” of holomorphic sec-
tional curvature —2 is a ball {geC"; 2L, |£°(q)|* < 1}, whose diastasis is
given by

D(p, q) = —log(l - é l&(q) |2> ,

where p = (0, ---, 0).

Though the diastasis depends only on the metric, it is compatible
with that of the ambient space. Using it, we can prove the following
two facts:

LemMA 1.1 ([7; Lemma 1.2]). Let M be a Kaehler manifold, and
PEM an ardbitrarily fired point. Then a meighborhood U of p 4s holo-
morphically and isometrically immersed into CV if and only if the metric
is real analytic and there exist holomorphic functions ¢', ---, " defined
on U such that

D,(p, q) = éllq&"(q) F (qeU),
¢°’P)=0 (¢6=1,--+,N).

LEMMA 1.2 ([7; Lemma 1.8]). Let M be a Kaehler manifold and
PEM an arbitrarily fixed point. Then a neighborhood U of p is holo-
morphically and isometrically immersed into CHY if and only if the

metric s real analytic and there exist holomorphic functions ¢, -, ¢¥
defined on U such that

exp{-Dulp, O} =1 - 3 l#@F  (@e V),
¢ﬂ(p):0 (0219"'yN)'

_ Let AM) be a set of R-linear combinations of real analytic functions
{hk + kh, where h and k are holomorphic functions on M}. Obviously
A(M) is an associative algebra. In [8], the author proved the following:

LEMMA 1.3 ([8; Proposition 3.5]). Let ¢, -+, ¢” be non-constant holo-
morphic functions on a complex manifold M such that ¢°(p) =0 (¢ =
1, -+, N) for a fized point pe M. Then

(1) exp(Xl,|¢’)) & A(M),

(2) Q-5 ¢ e AM) (a>0).
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2. Einstein Kaehler submanifolds of a complex linear or hyperbolic
space. Let M be a Kaehler n-submanifold of a Kaehler manifold of
constant holomorphic sectional curvature 2¢c. Then the Ricei tensor,
denoted by Ric,, satisfies

2.1) Ricy < (n + l)eg
where g is the Kaehler metric of M. The equality holds if and only if
M is totally geodesic. This inequality is an immediate consequence of
the Gauss equation (cf. [3; p. 177]). In particular, the Riceci tensor is
always negative semi-definite if ¢ < 0.

Now we suppose that ¢ <0 and M is an Einstein manifold. Then

the Ricei tensor Ric, = 2 3% 5, K;3d2°dz* is related to the Kaehler metric
9 = 235 p=1 9a3d2"dz? by

(2'2) Ka:i = — U5 (av 18 = 1’ M) n) ’

where g =0 is a constant. On the other hand, it is known (cf. [3; p.
158]) that the Ricci tensor is given by

(2.3) K,; = —d°log G/02°0z* (a, B=1, -+, m),

where G denotes the determinant of the Hermitian matrix (9.5)a s=1,...,n:
In case g+ 0, (2.2) and (2.3) imply that (1/¢)log G is a primitive function
of g. Since the primitive function is determined up to the real part of
a holomorphic function, we have

Dy(p, *) = U/p)(h + h + log G) ,

locally for a holomorphic function %, that is,
(2.4) exp{¢tDy(p, *)} = |exp(h)['G ,

where pe M is a fixed point. First of all we consider Einstein Kaehler
submanifolds of C¥.

THEOREM 2.1. Let M be an Einstein Kaehler m-submanifold of C¥
(m=1). Then M is totally geodesic.

ProoF. Since M is an Einstein manifold, it satisfies (2.2) and (2.3)
on a sufficiently small coordinate neighborhood {U; (2!, .-, 2")} of a fixed
point pe M. If M is not totally geodesic, then (2.1) implies that g > 0.
By a homothetic transformation of C¥, we may sssume ¢ = 1. By Lemma
1.1, there exist holomorphic functions ¢!, -+, " on U such that

Dup, 0 = 3¢ @F  (@e D),
¢a(p)=0 (O'=1,"',N).
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So we have
N P
9ep = Z‘I(a¢o/aza)(a¢u/azﬂ) (a’ B = 1’ Y n) .
Since the matrix (g,;) is Hermitian, its determinant G is real-valued. So
G e A(U). On the other hand, M satisfies (2.4), that is,
exp{Dy(p, »)} = |exp(h) ['G .

Hence we have
N
exp(3 16°F) = lexp) G & (V) .

But this contradicts (1) of Lemma 1.3. q.e.d.

Now we consider the hyperbolic case with ¢ = —1.
LEMMA 2.2. Let M be a complex m-manifold and {U; (2, ---, 2")}

a complex local coordinate meighborhood of M. If fedA(U), then
fr det(0® log f/02%02Z%) € A(U).

PrOOF. For the sake of simplicity, we put f, = 0f/02% f;= 0f/oZ*
and f,; = 6°f/02°9%* (@, 3 =1, +-+,m). Then
0*log f[02°02° = fupl f — fufil [*
and we have
S det(d® log f/02°07%) = f det(fo5 — fuf3lS)
fa— LSl o fa— LS 0

= o FRIF e Fa— FASF O
FIF e FIf 1
fi o fa £ Farfa £
_ rdet| - N B SR
it T e
Flf e Fif 1 fiofs f

Hence f™*'det(d®log f/02°0%*) is finitely generated by holomorphic or anti-
holomorphic functions on U. In addition, it is real-valued, because the
matrix (0°log f/02°0%°) is Hermitian. So we conclude f"*det(o*log f/02°0%Zf) €
AM). q.e.d.

THEOREM 2.3. Let M be an Einstein Kaehler n-submanifold of CHY
(m=1). Then M is totally geodesic.
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PrROOF. By (2.1), the Ricci tensor of M is negative definite. Hence
L+ 0 and M satisfies (2.4) on a sufficiently small coordinate neighborhood
{U; (&, +++, 2")} of a fixed point pe M. By Lemma 1.2, there exist holo-
morphic functions ¢, - -, 4" defined on U such that

(2.5) Dup, @ = —log(1 - R 1s@F)  (@e V),
¢’®)=0 (6=1,---,N).

Now if we put f =1 — 37, |¢°[*, then

(2.6) G = (—1)"det(0* log f/02*0%?) .

From (2.4), (2.5) and (2.6), we have

S = (—1)"|exp(h)|* det(0* log f[02%0Z?) .
Hence

St = (=1)"|exp(h) P{f"** det(d® log f/0232°)} .
By Lemma 2.2, we obtain

(1-gler) " = e,

Then (2) of Lemma 1.3 implies » +1— ¢#=0. On the other hand,
n+1—p=0Dby (2.1). Thus g=n+ 1 and M is totally geodesic.
q.e.d.
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