Tôhoku Math. Journ. 39 (1987), 385–389.

EINSTEIN KAEHLER SUBMANIFOLDS OF A COMPLEX LINEAR OR HYPERBOLIC SPACE

MASAAKI UMEHARA

(Received June 27, 1986)

Introduction. Einstein Kaehler submanifolds of a complex space form have been studied by several authors. In the case of codimension one, Smyth [4] and Chern [2] showed them to be either totally geodesic or certain hyperquadrics of a complex projective space. In this classification, Takahashi [5] showed that the Einstein condition can be weakened to the condition that Ricci tensor is parallel. Recently, Tsukada [6] studied the case of codimension two and obtained the same classification. In this paper we completely classify Einstein Kaehler submanifolds of a complex linear or hyperbolic space and prove the following:

THEOREM. Every Einstein submanifold of a complex linear or hyperbolic space is always totally geodesic.

Note that our theorem holds for any codimension.

1. Preliminaries. It is well-known that the Kaehler metric $g = 2 \sum_{\alpha,\beta=1}^{n} g_{\alpha\bar{\beta}} dz^{\alpha} d\bar{z}^{\beta}$ of a Kaehler *n*-manifold *M* can be locally constructed from a certain real-valued smooth function *f* by

$$g_{lphaareta}=\partial^2 f/\partial z^lpha\partial arareta^eta~~(lpha,\,eta=1,\,\cdots,\,n)$$
 ,

where (z^1, \dots, z^n) is a local complex coordinate system. Such a function f, which is called primitive, is determined up to the real part of a holomorphic function. If the metric g is real analytic, the *diastasis* $D_{\mathcal{M}}(p, q)$ is introduced (cf. [1]), which is a real analytic function defined on a neighborhood of the diagonal set $\{(p, p); p \in M\}$ of the product space $M \times M$ and satisfies the following properties:

(1) The function $D_{\mathcal{M}}(p, q)$ is uniquely determined by the Kaehler metric g.

(2) $D_{M}(p, q) = D_{M}(q, p)$, and $D_{M}(p, p) = 0$.

(3) For $p \in M$ fixed, $D_{\mathcal{M}}(p, q)$ is a primitive function of g with respect to the variable q.

EXAMPLE 1. Let (ξ^1, \dots, ξ^N) be the canonical complex coordinate system in \mathbb{C}^N . Then the diastasis of \mathbb{C}^N is given by

M. UMEHARA

$$D(p, q) = \sum\limits_{\sigma=1}^N |\xi^\sigma(p) - \xi^\sigma(q)|^2 \qquad (p, q \in C^N) \;,$$

namely the square of the Euclidean distance.

EXAMPLE 2. The complex hyperbolic space CH^N of holomorphic sectional curvature -2 is a ball $\{q \in C^N; \sum_{\sigma=1}^N |\xi^{\sigma}(q)|^2 < 1\}$, whose diastasis is given by

$$D(p,\,q) = \, - \log \Bigl(1 - \sum\limits_{\sigma=1}^{N} | \, \xi^{\sigma}(q) \, |^2 \Bigr)$$
 ,

where $p = (0, \dots, 0)$.

Though the diastasis depends only on the metric, it is compatible with that of the ambient space. Using it, we can prove the following two facts:

LEMMA 1.1 ([7; Lemma 1.2]). Let M be a Kaehler manifold, and $p \in M$ an arbitrarily fixed point. Then a neighborhood U of p is holomorphically and isometrically immersed into \mathbb{C}^N if and only if the metric is real analytic and there exist holomorphic functions ϕ^1, \dots, ϕ^N defined on U such that

$$egin{aligned} D_{ extsf{M}}(p,\,q) &= \sum\limits_{\sigma=1}^{N} |\phi^{\sigma}(q)|^2 \qquad (q\in U) \;, \ \phi^{\sigma}(p) &= 0 \qquad (\sigma=1,\;\cdots,\;N) \;. \end{aligned}$$

LEMMA 1.2 ([7; Lemma 1.3]). Let M be a Kaehler manifold and $p \in M$ an arbitrarily fixed point. Then a neighborhood U of p is holomorphically and isometrically immersed into CH^N if and only if the metric is real analytic and there exist holomorphic functions ϕ^1, \dots, ϕ^N defined on U such that

$$\begin{split} \exp\{-D_{\rm M}(p,\,q)\} &= 1 - \sum_{\sigma=1}^N |\phi^{\sigma}(q)|^2 \qquad (q \in U) \;, \\ \phi^{\sigma}(p) &= 0 \qquad (\sigma = 1,\;\cdots,\;N) \;. \end{split}$$

Let $\Lambda(M)$ be a set of **R**-linear combinations of real analytic functions $\{h\bar{k} + k\bar{h}, where h and k are holomorphic functions on <math>M\}$. Obviously $\Lambda(M)$ is an associative algebra. In [8], the author proved the following:

LEMMA 1.3 ([8; Proposition 3.5]). Let ϕ^1, \dots, ϕ^N be non-constant holomorphic functions on a complex manifold M such that $\phi^{\sigma}(p) = 0$ ($\sigma = 1, \dots, N$) for a fixed point $p \in M$. Then

- (1) $\exp(\sum_{\sigma=1}^{N} |\phi^{\sigma}|^2) \notin \Lambda(M)$,
- $(2) \quad (1-\sum_{\sigma=1}^{N}|\phi^{\sigma}|^2)^{-lpha} \notin \Lambda(M) \ (lpha>0).$

386

2. Einstein Kaehler submanifolds of a complex linear or hyperbolic space. Let M be a Kaehler *n*-submanifold of a Kaehler manifold of constant holomorphic sectional curvature 2c. Then the Ricci tensor, denoted by Ric_M, satisfies

(2.1)
$$\operatorname{Ric}_{M} \leq (n+1)cg,$$

where g is the Kaehler metric of M. The equality holds if and only if M is totally geodesic. This inequality is an immediate consequence of the Gauss equation (cf. [3; p. 177]). In particular, the Ricci tensor is always negative semi-definite if $c \leq 0$.

Now we suppose that $c \leq 0$ and M is an Einstein manifold. Then the Ricci tensor $\operatorname{Ric}_{M} = 2 \sum_{\alpha,\beta=1}^{n} K_{\alpha\overline{\beta}} dz^{\alpha} d\overline{z}^{\beta}$ is related to the Kaehler metric $g = 2 \sum_{\alpha,\beta=1}^{n} g_{\alpha\overline{\beta}} dz^{\alpha} d\overline{z}^{\beta}$ by

(2.2)
$$K_{\alpha\bar{\beta}} = -\mu g_{\alpha\bar{\beta}} \qquad (\alpha, \beta = 1, \cdots, n) ,$$

where $\mu \ge 0$ is a constant. On the other hand, it is known (cf. [3; p. 158]) that the Ricci tensor is given by

(2.3)
$$K_{\alpha\bar{\beta}} = -\partial^2 \log G/\partial z^{\alpha} \partial \bar{z}^{\beta}$$
 $(\alpha, \beta = 1, \dots, n)$,

where G denotes the determinant of the Hermitian matrix $(g_{\alpha\bar{\beta}})_{\alpha,\beta=1,\dots,n}$. In case $\mu \neq 0$, (2.2) and (2.3) imply that $(1/\mu)\log G$ is a primitive function of g. Since the primitive function is determined up to the real part of a holomorphic function, we have

$$D_{M}(p, *) = (1/\mu)(h + \bar{h} + \log G)$$
,

locally for a holomorphic function h, that is,

(2.4)
$$\exp\{\mu D_{\mathcal{M}}(p, *)\} = |\exp(h)|^2 G$$

where $p \in M$ is a fixed point. First of all we consider Einstein Kaehler submanifolds of C^{N} .

THEOREM 2.1. Let M be an Einstein Kaehler n-submanifold of C^{N} $(n \ge 1)$. Then M is totally geodesic.

PROOF. Since M is an Einstein manifold, it satisfies (2.2) and (2.3) on a sufficiently small coordinate neighborhood $\{U; (z^1, \dots, z^n)\}$ of a fixed point $p \in M$. If M is not totally geodesic, then (2.1) implies that $\mu > 0$. By a homothetic transformation of \mathbb{C}^N , we may sssume $\mu = 1$. By Lemma 1.1, there exist holomorphic functions ϕ^1, \dots, ϕ^N on U such that

$$egin{aligned} D_{ extsf{M}}(p,\,q) &= \sum\limits_{\sigma=1}^{N} |\,\phi^{\sigma}(q)\,|^2 \qquad (q\in U) \;, \ \phi^{\sigma}(p) &= 0 \qquad (\sigma=1,\;\cdots,\;N) \;. \end{aligned}$$

So we have

$$g_{lphaareta} = \sum\limits_{\sigma=1}^{N} (\partial \phi^{\sigma} / \partial z^{lpha}) \overline{(\partial \phi^{\sigma} / \partial z^{eta})} \qquad (lpha, \ eta = 1, \ \cdots, \ n) \ .$$

Since the matrix $(g_{\alpha\bar{\beta}})$ is Hermitian, its determinant G is real-valued. So $G \in \Lambda(U)$. On the other hand, M satisfies (2.4), that is,

$$\exp\{D_{\scriptscriptstyle M}(p,\,*)\} = |\exp(h)|^2 G$$
 .

Hence we have

$$\exp \left(\sum\limits_{\sigma=1}^{N} | \phi^{\sigma} |^2
ight) = | \exp(h) |^2 G \in arLambda(U)$$
 .

But this contradicts (1) of Lemma 1.3.

Now we consider the hyperbolic case with c = -1.

LEMMA 2.2. Let M be a complex n-manifold and $\{U; (z^1, \dots, z^n)\}$ a complex local coordinate neighborhood of M. If $f \in \Lambda(U)$, then $f^{n+1} \det(\partial^2 \log f/\partial z^\alpha \partial \overline{z}^\beta) \in \Lambda(U)$.

PROOF. For the sake of simplicity, we put $f_{\alpha} = \partial f / \partial z^{\alpha}$, $f_{\bar{\beta}} = \partial f / \partial \bar{z}^{\beta}$ and $f_{\alpha\bar{\beta}} = \partial^2 f / \partial z^{\alpha} \partial \bar{z}^{\beta}$ ($\alpha, \beta = 1, \dots, n$). Then

$$\partial^2 \log f/\partial z^lpha \partial \overline{z}^eta = f_{lpha ar{eta}}/f - f_lpha f_{ar{eta}}/f^2$$
 ,

and we have

$$f^{n+1} \det(\partial^2 \log f/\partial z^{lpha} \partial \overline{z}^{eta}) = f \det(f_{lphaar{eta}} - f_{lpha}f_{ar{eta}}/f)$$

 $= f \detegin{pmatrix} f_{1ar{1}} - f_{1}f_{ar{1}}/f & \cdots & f_{1ar{n}} - f_{1}f_{ar{n}}/f & 0 \ dots & dots &$

Hence $f^{n+1} \det(\partial^2 \log f/\partial z^\alpha \partial \overline{z}^\beta)$ is finitely generated by holomorphic or antiholomorphic functions on U. In addition, it is real-valued, because the matrix $(\partial^2 \log f/\partial z^\alpha \partial \overline{z}^\beta)$ is Hermitian. So we conclude $f^{n+1} \det(\partial^2 \log f/\partial z^\alpha \partial \overline{z}^\beta) \in \Lambda(M)$. q.e.d.

THEOREM 2.3. Let M be an Einstein Kaehler n-submanifold of $CH^{\mathbb{N}}$ $(n \geq 1)$. Then M is totally geodesic.

388

q.e.d.

PROOF. By (2.1), the Ricci tensor of M is negative definite. Hence $\mu \neq 0$ and M satisfies (2.4) on a sufficiently small coordinate neighborhood $\{U; (z^1, \dots, z^n)\}$ of a fixed point $p \in M$. By Lemma 1.2, there exist holomorphic functions ϕ^1, \dots, ϕ^N defined on U such that

(2.5)
$$D_{\mathcal{M}}(p, q) = -\log\left(1 - \sum_{\sigma=1}^{N} |\phi^{\sigma}(q)|^{2}\right) \quad (q \in U) ,$$
$$\phi^{\sigma}(p) = 0 \quad (\sigma = 1, \cdots, N) .$$

Now if we put $f = 1 - \sum_{\sigma=1}^{N} |\phi^{\sigma}|^2$, then

(2.6)
$$G = (-1)^n \det(\partial^2 \log f / \partial z^{\alpha} \partial \overline{z}^{\beta}) .$$

From (2.4), (2.5) and (2.6), we have

$$f^{-\mu} = (-1)^n |\exp(h)|^2 \det(\partial^2 \log f / \partial z^lpha \partial \overline{z}^eta)$$
 .

Hence

$$f^{n+1-\mu} = (-1)^n |\exp(h)|^2 \{f^{n+1} \det(\partial^2 \log f / \partial z^{lpha} \partial \overline{z}^{m{eta}})\}$$
 .

By Lemma 2.2, we obtain

$$\left(1-\sum\limits_{\sigma=1}^{N}|\phi^{\sigma}|^{2}
ight)^{n+1-\mu}=f^{n+1-\mu}\,{\in}\,{\it A}(U)$$
 .

Then (2) of Lemma 1.3 implies $n + 1 - \mu \ge 0$. On the other hand, $n + 1 - \mu \le 0$ by (2.1). Thus $\mu = n + 1$ and M is totally geodesic.

q.e.d.

References

- [1] E. CALABI, Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
- [2] S. S. CHERN, On Einstein hypersurfaces in a Kaehlerian manifold of constant holomorphic sectional curvature, J. Differential Geom. 1 (1967), 21-31.
- [3] S. KOBAYASHI AND K. NOMIZU, Foundation of Differential Geometry, vol. 2, Wiley-Interscience, New York, 1969.
- [4] B. SMYTH, Differential geometry of complex hypersurface, Ann. of Math. 85 (1967), 246-266.
- [5] T. TAKAHASHI, Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan 19 (1967), 199-204.
- [6] K. TSUKADA, Einstein Kaehler submanifolds with codimension 2 in a complex space form, Math. Ann. 274 (1986), 503-516.
- [7] M. UMEHARA, Kaehler submanifolds of complex space forms, to appear in Tokyo J. Math.
- [8] M. UMEHARA, Diastases and real analytic functions on complex manifolds, to appear in J. Math. Soc. Japan.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305 JAPAN