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Introduction. Let D be a domain in Cn and Aut(D) the group of
all biholomorphic transformations of D onto itself. Let p be a point of
3D, the boundary of D. Throughout this paper, we say that the condi-
tion (*) is fulfilled for (D, p) if

( . there exist a compact set K in D, a sequence {fcj in K and a
sequence {φv} in Aut(JD) such that lim φy(kv) = p.

u—>oo

Moreover, a point pedD is said to be a strictly pseudoconvex boundary
point of D if there exist an open neighborhood U of p and a C2-smooth
strictly plurisubharmonic function p:U-^R such that Dp[U={ze
U\ρ(z) < 0} and dρ{z) Φ 0 for all zedDf]U.

In 1977, it was shown by Wong [14] that if D is a bounded strictly
pseudoconvex domain in Cn with C°°~smooth boundary and Aut(-D) is non-
compact, then D is biholomorphically equivalent to the open unit ball B71

in C\ It was later extended by Rosay to the following:

THEOREM R (Rosay [12]). Let D be a bounded domain in Cn with a
strictly pseudoconvex boundary point p e 3D. Assume that the condition
(*) is fulfilled for (D, p). Then D is biholomorphically equivalent to Bn.

Here it seems natural to ask what happens when the point p is a
weakly pseudoconvex boundary point of D. In a recent work of Greene
and Krantz [3] the weakly pseudoconvex domain

E(m)= \zeCn\ - 1 + Σ k Γ + KI2m<θ} , 0<meZ

in Cn is studied exclusively in connection with this problem and the
following characterization of it is obtained as their main result:

THEOREM G-K (Greene and Krantz [3]). Let D be a bounded domain
in Cn with Cn+1-smooth boundary such that p = (1, 0, , 0) e 3D. Assume
that there are neighborhoods U, V of p in Cn such that, up to a local



344 A. KODAMA

bίholomorphism, UΠdD and Vπ3E(m) coincide. Assume further that the
condition (*) is fulfilled for (D, p). Then D is biholomorphically equiv-
alent to the domain E(m).

Their proof is very interesting, but contains a difficult and com-
plicated lemma [3; Lemma 4.3], which was shown by the uniform estimates
for the d-equation on D. A glance at the proof of Theorem G-K tells
us that the global Cn+1-smoothness assumption on 3D cannot be avoided
with their technique. However, in view of Theorem R it would be nat-
urally expected that the same conclusion is also true if only D has a
C2-smooth boundary near the point p. The main purpose of this paper
is to clear up this matter. In fact, employing the same technique as in
our previous papers [6], [7] instead of using the 9-equation on D9 we can
avoid their hard part and obtain more general results without any smooth-
ness assumption on 3D.

In order to state our results, we here introduce the following nota-
tion: For every integer k = 1, , n and every real number a > 0, we
set

p(k,a;z) = -1 + Σ k l 2

a n d

E(k, a) = {z e Cn I ρ(k, a; z)< 0} .

So E(m) = E(n — 1, m); and if ft = w or a = 1, then E(k, a) is nothing
but the open unit ball Bn. Moreover, note that 3E(k, a) is not smooth
in general. (Consider, for example, the domain .£7(1, 1/4) = {(zlf z2) 6
C2| —1 + |zj 2 + |z2|

1/2 < 0} in C\) In this notation, we can prove the
following:

THEOREM I. Let D be a bounded domain in Cn satisfying the follow-
ing conditions:

( i ) p = ( l f 0 f - . . , 0 ) 6 3 Z ) ;

(ii) there is an open neighborhood U of p such that D ΓΊ U =
E(k, α)Π U;

(iii) the condition (*) is fulfilled for (D, p).
Then D is biholomorphically equivalent to the domain E(k, a).

In the theorem of Greene and Krantz [3], we may assume without
loss of generality that there exists an open neighborhood U of p =
(1,0, , 0) such that Df] U = E(m)f] U (see the proof of [3, Theorem
1.1]). Moreover, any smoothness of 3D is not assumed in our theorem.
Therefore Theorem I is a natural generalization of Theorem G-K.
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Clearly the condition (ii) of Theorem I imposes crucial restrictions
on the boundary of D, and so we want to remove it. This cannot be
achieved in full generality at this moment. But, under some additional
condition on the convergence φv(kv) —> p we can prove the following
theorem. (For the definition of R-lim, see Section 1.)

THEOREM II. Let Dbe a bounded domain in Cn with p = (1, 0, , 0) 6
3D. Assume that there exist an open neighborhood U of p and a continu-
ous function p:U'—>R such that:

( i ) DnU={zeU\p(z)<0};
(ii) ρ(z) = p(k, a; z) + R(z), zeU with

R{z) = o(k - 1|2 + Σ k l 2 + ( Σ I*
\ <=2 \j=k+l

in a neighborhood of p; and assume further that:
(iii) There exist a compact set K in D, a sequence {kv} in K and a

sequence {φu} in Aut(D) such that

R-lim φXkv) = p ,
I*—»oo

Then D is biholomorphically equivalent to the domain E(k, a).

Taking account of the case of strictly pseudoconvex boundary points,
it is reasonable that R(z) has the estimate as in (ii). Moreover, it should
be remarked that, in some sense, the assumption (iii) is not so strong.
Indeed, in the model case D = E(k, a) with a Φ 1, we have the following:
For any convergent sequence <pu(K) -> p, there exists a sequence {φj in
Aut(JD) such that R-lim ôo ΦXK) = p (see Example 2 in Section 1).

Next we assume that a complex manifold M can be exhausted by
biholomorphic images of a complex manifold D, that is, for any compact
subset K of M there exists a biholomorphic mapping fκ from D into M
such that Kdfκ(D). Then, how can we describe M using the data of
JD? In connection with this, Fridman [2] showed that if a complete
hyperbolic manifold M of complex dimension n in the sense of Kobayashi
[5] can be exhausted by biholomorphic images of a bounded strictly
pseudoconvex domain D in Cn with O-smooth boundary, then M is bi-
holomorphically equivalent either to D or to the open unit ball B71. The
following theorem tells us that the analogue is still valid for the weakly
pseudoconvex domain E(k, a) with arbitrary a > 0.

THEOREM III. Let M be a hyperbolic manifold of complex dimension
n in the sense of Kobayashi [5]. Assume that M can be exhausted by
biholomorphic images of the weakly pseudoconvex domain E(k, a). Then
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M is biholomorphίcally equivalent either to E(k, a) or to Bn.

Our proofs of the theorems above are based on the normal family
arguments developed in our previous papers [6], [7] and Pincuk [10], [11].
Although there are some overlaps with those papers, we carry out the
proofs in detail for the sake of completeness and self-con tainedness.
After some preliminaries in Section 1, Theorems I, II and III will be
proven in Sections 2, 3 and 4, respectively. In the final Section 5, we
mention the analogues of Theorems I and II in the case where D is a
not necessarily bounded hyperbolic domain in C\

Thanks are due to Professor S. G. Krantz who sent his joint paper
[3] with R. E. Greene to the author. The author would also like to express
his thanks to Professor H. Fujimoto for his valuable advice.

1. Preliminaries. For later purpose, we shall recall some definitions
and study the structure of the model space E(k, a) with arbitrary a > 0.

Let M and N be complex manifolds and Hol(iV, M) the family of all
holomorphic mappings from N into M. A sequence {/„} in Hol(iV, M) is
said to be compactly divergent on N if, for any compact sets L, K in
N, M9 respectively, there exists an integer v0 such that fXL) Π K — 0
for all v ^ v0. After Wu [15], we shall define the tautness of complex
manifolds as follows:

DEFINITION 1. A complex manifold M is said to be taut if Hol(iV, M)
is a normal family for any complex manifold N, i.e., any sequence in
Hol(iNΓ, M) contains a subsequence which is either uniformly convergent
on every compact subset of N or compactly divergent on N.

Let dM, dN be the Kobayashi pseudodistances of M, N, respectively
[5]. The following distance-decreasing property will play an important
role in the proofs of our theorems: Let f:N-+M be a holomorphic
mappping. Then

(1.1) dM(f(p), f(q)) ^ dN(V, Q) for allp,qeN.

Consequently, every biholomorphic mapping / from JV onto M is an
isometry with respect to dN and dM; and if N is a complex submanifold
of My then dM(p, q) ^ dN(p, q) for all p, qeN.

Throughout this paper we use the following notation: For a point
z = (zlt , zn) of Cn and a mapping f=(f19 , /„) from a set S into Cn,
we set

z' = (zi> ' # "> Zk) 9 z" = (zk+1, , zn) , fz = (z19 , zn-i) ,

' / = ( / i , •••,/»-!) and \u\' = i:\uA2 for u = (ulf , ut) eCι .
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Thus we can write the function p(k, a; z) and the domain E(k, a) in the
form

ρ(k,a;z)= - 1 + | * T + Iz 'T
E(k, a) = {{z\ z") eCkxCn~k\\z'\2+\z"|2α < 1} .

Recall that juiomain D in Cn is called a Reinhardt domain if ((expi/^tfj^,
• , (expi/^fl jzj e Z> whenever (zlf •• , 2 n ) e ΰ and S^Λ, j = 1, , w.
Moreover, we say that it is complete if (zj, , z°n) e Z>, z = (zlf , zn) e Cn

and l^ l ̂  |z; |, i = 1, •••,%, implies ^ e ΰ . We now assert that £/(&, α) is
a bounded pseudoconvex complete Reinhardt domain in Cn containing the
origin o. Hence, by a result of Pflug [9] it is complete hyperbolic in
the sense of Kobayashi [5]. Since E(k, a) is obviously a bounded complete
Reinhardt domain in Cn containing the origin, we have only to check
that the domain

B = {(xlf •• ,xn)eRn|(exp xlf , exp xn) e E(k, a)}

is geometrically convex in Rn [8; p. 120]. To do so, let us take arbitrary
points x = (xlf , xn), y — (y19 , yn) of B and arbitrary numbers λ, μ > 0
such that λ + μ = 1. Then, by using Holder's inequality twice we obtain
the following:

Σ exp[2(λa?t + μy<)\
i=l

( k \λ / k \μ Γ / n \λ / n \fi~\a

Σexp2α<) •(Σexp2y<) + ( Σ exp2a?y) Σ exp2τ/i

^ [Σexp2a?< + ( Σ exp 2^ VT [ Σ exp 2^ + ( Σ exp2^VT < 1 ,
|_i=l \i=fc+l / J Li=l \j=k+l J J

which shows \x + μy e B. Thus β is convex, as desired.
Next, setting S = {(0, z") eCkx Cn~k \ \ z"\ = 1}c3£;(fc, α), we would like

to show that dE(k, a) is real analytic and strictly pseudoconvex at every
point contained in an open neighborhood W of S. It is easy to see that
there is an open neighborhood W of S on which p(k, a; z) is real analytic
and dp(kf a; z) Φ 0 for all ze W. Once dE(k, a) is shown to be strictly
pseudoconvex at every point (0, z") e S, one can obtain a desired neigh-
borhood W by the continuity of the Levi form. On the other hand, by
direct calculation we obtain that

Σ IW, a;
i,3=l

for every ξ = (ξ', f") e Cfe x Cn"fc and every zeW; and

Σ «
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ξ e Cn Σ[3|0(fc, a; q)/dzi]ξi = ol = \ξ e Cn Σ «/& = θl

for every q = (0, 2") 6 S. Hence dE(k, a) is actually strictly pseudoconvex
at every point of S, as desired.

We study the biholomorphic automorphism group A\xt(E(k, a)) of
E(k, a). Denoting by M(r, s) the set of all rxs complex matrices for
positive integers r, s, we consider the closed Lie subgroup SU(k, 1) of
GL{k + 1, C) consisting of all matrices

IA b\ AeM(k,k), beM(k,l)

V d) ' c e M(l, k) , de M(l, 1)

satisfying the relations

*AA - jcc = Eh, *bb - \d\* = - 1 , (bA = dz and de t7 = 1 ,

where Ek is the unit matrix of degree k. For each 7 eSU(k, 1) represent-
ed as in (1.2) and each Ue U{n — k), the unitary group of degree n — k,
we define the transformation Ψ(Ύ, U) by

12' ^ (Az' + b)/(cz' + d)

for (z', z") 6 Ch x Cn~k (think of z'f z" as column vectors). Then, using
the equality |cz' + d\2 - \Az' + b\2 = 1 - |z'|2 for all 2;eCfc, one can check
that each Ψ(7, U) gives rise to a biholomorphic automorphism of E(k, a).
In fact, according to Sunada [13] the identity component Auto(E(k, a)) of
the Lie group Aut(E(k, a)) coincides with the group

G(fc, a) = {Ψ(y, U)\ΎSSU(k, 1), UeU(n- k)}

provided that a Φ 1. More precisely, we here assert that Aut(£r(fc, a)) =
G(fc, α) in our case. To verify this assertion, observe that the G{k, a)-
orbit passing through the origin 0 6 E(k, a) is of lowest dimension in the
set of all G(fc, α)-orbits, i.e., dim(G(fc, a)-o) < dim(G(fc, a) z) for any point
z e E(k, a) \ G(fc, α) 0. Hence

flf G(fe, α) o = G(fc, α) o = {(z', 0) e C*xCn"*112'| < 1}

for each geAut(E(k, a)). This combined with a well-known theorem of
H. Cartan [8; p. 67] assures that every element g of Aat(E(k, a)) can be
expressed as g = ψg lg for some ψgeG(k, a) and lgeGL(n; C). In partic-
ular, lg can be written in the form

lg(zff z") = {Azr + Bz", Dz") , (z', z") 6 C* x Cn~k ,

where A e SU(k) = SL(fc; C) ΓΊ C7(Λ), 5 e Jlf(fc, n - k) and D e GL(w - fe; C).
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Then the fact lg(dE(k, a)) = dE(k, a) yields that

2 Re(Az', Bz") + | Bz'J + | Όz'V = I z'V , (*', *") 6 dE(k, a) ,

where ( , •) denotes the standard Hermitian inner product on Ck. Con-
sequently, B = 0, DeU(n-k) and lβ(z?, z") = (Az'f Dz") for AeSU(k),
De U(n — fc) Finally, noting that both groups SU(k) and Z7(w — fc) are
naturally imbedded in G(fc, a), we conclude that ίy e G(k, a) and so
Aut(E(k, a)) = G{k, a), as desired.

Next we consider an arbitrary sequence {p^=1 in E(k, a) which con-
verges to the point p = (1, 0, , 0) edE(k, a). Then there exists a se-
quence {ψ\,}~=1 in Aut(E(k, a)) such that

(1.4) ψXpη = (0, ., 0, I) with 0 ^ I < 1

for all v = 1, 2, . Indeed, since the product group SU(k)x U(n— k) is
naturally identified with a subgroup of Kut{E{ky a))f we may assume that

(1.5)

for v = 1, 2,

(1.6)

= (a?M 0, , 0, yv) with 0 ^ a?v, yu < 1

Consider the one-parameter subgroup

cosh t

0

sinh t

0

0

sinh t

0

coshί

, teR

of SC7(A;, 1) and set fv = y(7(O, •#-*)» ^ = tanh-^-ajJ for v = 1, 2, .
Then it is easily seen that each ψv{pv) has the desired form as in (1.4).

Summarizing the above, we obtain the following:

LEMMA. The domain E{k, a) has the following properties:
(1) E(k, a) is complete hyperbolic in the sense of Kobayashi [5], In

particular, it is a taut domain [4].
(2) The boundary dE(k, a) of E(k, a) is real analytic and strictly

pseudoconvex near the point q = (0, , 0, 1) edE(k, a).
(3) Aat(E(k, a)) is a connected Lie group consisting of all biholo-

morphic transformations of E(k9 a) as defined in (1.3).
(4) Let {2)*)"=! be a sequence in E(k, a) which converges to the point

p = (1, 0, , 0) 6 BEik, a). Then there is a sequence {α/rv}~=1 in Aut(2?(fc, a))
such that fXp") = (0, , 0, Q with 0 ^ tv < 1 for all v = 1, 2, .

Finally we shall define the R-limit. Let us fix a domain D in Cn

such that p = (1, 0, , 0) edD and the conditions (i), (ii) in Theorem II
are satisfied for D. Without loss of generality, we may assume that
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the neighborhood U of p is a small open Euclidean ball with center at p
satisfying the following inequalities:

2 Refe - 1) + A\\ZX - 1|2 + Σ l̂ l2 + ( Σ N 2 ) Ί
L i=2 \j=k+l / J

^ p{z) S 2 Re(Zl - 1) + BW - 1|2 + Σ W + ( ± Iz/Yi
L i=2 \j=k+i J J

for every point z e Z7, where A and JB are arbitrarily given constants
with 0 < A < 1 < B. Now, denoting by N the unit vector (1,0, , 0),
we consider the half line L(z) = {z + tN\t ^ 0} in Cn = R2n for each
point z e D Π U. Then 2 has a unique farthest point ζ(z) in the set 3D Π
L(z)Π Ϊ7, so that each point zeDf)U can be written uniquely in the
form z = ζ(z) + x(z)N, χ(z) < 0. In particular, for a given sequence {pv}
in D converging to p we have

(1.7) p» = ζ(p>) + λ(p ')# ζ(p") =

X(pv) < 0

for all sufficiently large y. Clearly ζ(pv)—>p and λ(p v)-^0 as v—> 00.

DEFINITION 2. In the notation above, we say that {pv} converges
restrictedly to p, and write R-lim^oo pv = p, if the sequence

is a bounded sequence in R.

We shall present two examples of sequences {pv} in D which con-
verge restrictedly to p. We set, for an arbitrary ε > 0,

Φ(z) = (Im ZιY + ΣlzJ2 + ( Σ k
<=2 \i=fc+l

C(e) = {2 6 Cw I Re ^ ^ 1 - ε [Φ(z)]1/2} .

So, if α = 1, the region C(ε) is nothing but a cone with vertex at p and
axis in the direction of —N. The following example tells us that if {pv}
converges to p non-tangentially in the usual sense, then it converges
restrictedly in our sense.

EXAMPLE 1. Assume that 3D is C^smooth near the point p and {pv}
converges to p through the region C(ε) for some ε > 0. Then we have
R-lim ôo p* — p.

In fact, by our assumption, 3D is a C -̂smooth real hypersurface near
p and the vector N is perpendicular to 3D at p with respect to the
Euclidean structure on Cn = R2n. Thus we can write uniquely p" — ζv +
XVN with some ζv e 3D and V < 0 for all sufficiently large v.

In order to check that the sequence {Re(ζϊ — l)/λ"} is bounded, we
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may assume (by passing to a subsequence if necessary) that Re(ζϊ — 1) Φ 0
for all v = 1, 2, . . . . Since R(ζ>) = o((Re(ζϊ - I))2 + Φ(C)) and

2 Re(Cϊ - 1) + (Re(ζϊ - I))2 + Φ(C") + Λ(C) = P(?) = 0

for all large v, it follows that l i m ^ Φ(ζv)/Re(ζϊ - 1) = - 2 . On the other
hand, we know by assumption that

Re(pϊ - 1) £ - β [Φ(pl')]1/t = - ε [Φ(C^)]1/2 < 0

for all sufficiently large v. Thus

ζϊ - 1) - [Re(pϊ - 1) - Re(ζϊ - l)]/Re(Cϊ - 1)

- 1)/Re(ζϊ - 1)1 - 1

Obviously this implies that R-lim^oo Pv = V-

EXAMPLE 2. Let {ku} be a sequence of points contained in a compact
subset of E(k, a), a Φ 1, and let l im,^ 0\,(fcv) = (1, 0, , 0) for some
sequence {φu} in AxΛ(E(k, α)). Then there exists a new sequence {φv} in
Aut(#(fc, α)) such that R-lim^oo ΦXK) = (1, 0, , 0).

Indeed, changing <pu into a suitable biholomorphic automorphism
φv = / v o^ v , / v e SU(k) x Z7(w — Λ)cAut(£7(A;, α)) if necessary, we may assume
as in (1.5) that

φXK) = (α?M 0, , 0, yv) = C + λyiV

with 0 ^ ^ , » y < l , ζ v=(ζϊ, 0, , 0, a)edE(k, a), X"<0 and JNΓ= (1, 0, , 0).
Here it can be seen that ζv and xv are uniquely determined by φu(k»).
Now, we claim that R-lim^oβ ^(fcj = (1, 0, , 0). To this end, note
that {fcj lies in a compact subset of E(k, a) and recall the structure of
Xat(E(k, a)). Then one can choose an r, 0 < r < 1, in such a way that
φv{kv) e i)(r) for all v = 1, 2, , where we have set

J9(r) = {(», 0, , 0, y) e Rn \ x2 + (y/r)2a ^ 1, 0 ^ a?f y) .

Let us choose a unique point g" = ζv + ^"iV, λ" ^ μ" < 0, such that

(1.8) (ζϊ + ^ ) 2 + (ζ£/r)2α = 1 for each v .

Then, substituting (ζ^)2α = 1 — (ζϊ)2 into (1.8) and rearranging the result,

we obtain

(1 - ζϊ)(l + ζϊ)/rto = (1 - ζϊ - μ")(l + ζϊ + μ")

for all v. Consequently

(l - Qϋ/μ" = (i + cr + /O/[i + CΪ + i«u - d +
-> r2α/(ί*2α - 1) as v -> oo .
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Since |(ζϊ - l)/λ1 ^ |(ζϊ ~ l)//ι>| for all v, we conclude that{ (ζϊ - l)/λv} is
a bounded sequence.

2. Proof of Theorem I. Passing to a subsequence if necessary, we
may assume that {kv} converges to some point koeK and {φj converges
uniformly on compact subsets to a holomorphic mapping φ: D-+ Z)cC\
Let us define the holomorphic function Ψp on Cn by

Ψp(z) = expfo - 1) , z = (zlf , zn) e C* ,

where p = (1, 0, , 0)edE(k, a)Γ\dD. Then obviously r p is a holomor-
phic function for E(k, a)ΠU = Df]U peaking at p in the sense that

Ψp{p) = 1 and \Ψp{z)\ < 1 for all z e ^TTT7\ {p} .

This combined with the maximum principle for the holomorphic function
Ψpoφ defined on an open neighborhood of k0 yields at once that φ(z) — p
for all zeD. We can therefore assume that

lim φXk0) = p and pv: = v̂(fcβ) e f l n ί / = E(k9 a)ΠU

for v = 1, 2, •••. As in Greene and Krantz [3], we choose a sequence
[fX=ι in Aut^fc, a)) such that

(2.1) 9": = ψΛp») = (0, ., 0, tv) with 0 ^ «„ < 1

for all v = 1, 2, . The existence of such a sequence of autmorphisms
was already shown in Section 1. We have now two cases to consider.

Case 1. {ςfl'}Γ=i has an accumulation point q in E(k, a). We shall
prove that D is biholomorphieally equivalent to E(kf a) in this case. We
may assume without loss of generality that

lim <f = qe E(k, a) .
l>—»oo

Now let us fix a family of relatively compact subdomains D3 of D such
that

(2.2) D = U DjZ) Z)DJ+1ZDDJ^ => A 9 fc0

and choose an integer j >̂ 1 arbitrarily. Since φu(z) —> p uniformly on
Dj, there exists an integer v(i) such that

9>XDy)cZ)n ί/ - #(fc, α) Π Ϊ7 for all v ^ j (i) .

So we can define biholomorphic mappings / v : Dά —> £7(fc, α) by setting

(2.3) f(z) = 1rMz)), s e A for v ^ v(i) .

Since E(k, a) is taut and f%ko)-+qeE(k, a)f we can assume by taking a
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subsequence if necessary that {/v} converges uniformly on compact subsets
to a holomorphic mapping f(j): Dj -> E(k, a). By the usual diagonal argu-
ment, we may further assume that {/*} converges uniformly on Dj to
the holomorphic mapping f(j) for all j = 1, 2, . Accordingly, we can
define a holomorphic mapping f:D-+ E(k, a) by f(z) = f{j){z), z e Dd for
i = l,2 f •••.

Setting Ev = ψv(E(k, a) Π U) = ψv,(Z? Γi CO for v = 1, 2, , we consider
the biholomorphic mappings gu: EV—>D defined by

<T(z) = ψΛψΛ*)) f zzEv for v = 1, 2, .

Then it is clear that

(2.4) pop = id^. and / Ό ^ = id,*^,

for all v ^ v(i), j = 1, 2, •••. Let £" be an arbitrary subdomain of
E(k, a) with compact closure. Then ψz\Ef)dE{k9 a)ΠU for all sufficiently
large v. Passing to a subsequence if necessary, we can therefore assume
that {g*} converges uniformly on every compact subset of E(k, a) to a
holomorphic mapping g: E{k, a) -> D(zCn. Once g{E{k, a))<zD is shown,
the equations (2.4) imply that g°f — id^ and fog = idE{k>a); consequently,
/ gives a biholomorphic mapping from D onto E(k9 a). Thus we have
only to show that g(E(k, a))aD. To this end, take a subdomain E' of
E(k, a) with compact closure such that /(A), fΦjaE' for all v > v0J

where D1 is the domain appearing in (2.2) and u0 is a large integer. Then,
for any point zeD1 there is a sequence {zJΓ=1 in £" such that gH{z^) — z
for all % and ^ -> 2;0 for some point zoeE'. Hence z = linv^ gH(z^ =
g(zo)€g(E(k, a)), and accordingly, D1(zg{E{k1 a)). On the other hand, be-
ing the local uniform limit of regular holomorphic mappings {gv}9 the
mapping g is either regular on E{k, a) or the Jacobian determinant of g
vanishes identically on E(k, a). But, g(E(k9 a)) contains a non-empty
open set in Cn, as we have already seen above. Hence we conclude that
g: E(k, a)-*Cn is regular on E(k, a) and so g(E(k, a))aD by [1; Lemma
0] or [8; p. 79], completing the proof in Case 1.

Case 2. {gp}"=1 has no accumulation point in E(k, a). In this case
we show that both domains D and E(k9 a) are biholomorphically equivalent
to the open unit ball Bn. We may assume that

= (0, •••,(), 1) =:qedE(k,a) .

Since q is a strictly pseudoconvex boundary point of E(k9 a) by the
lemma in Section 1, there exist a small open neighborhood W of q and a
C2-strictly plurisubharmonic function p: W-+R such that
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(2.6) Wa{(«', z") eC"xCn~k\\z'\£ 1/2}

(2.7) E(k, a) Π W = {z e W\ p(z) < 0} and dp(z) Φ 0, z e W

(2.8) O ^ g ) / ^ , , dp(q)/dzn_u dp(q)ldzn) = (0, , 0, 1) .

To simplify the notation, we set

a« = (1/2) 'ff(Xa)IBz&i , bfj = V(Kq)ldz<Sz,

for 1 ^ i, j ^ n and consider the coordinate changes as follows:

H,: uj -zs (1 ^ i ^ % - 1) , «„ = «„-- 1

iϊ2: vy = u3- (1 ^ i g n - 1) , vn = wn + Σ α ^ ^ y .

Clearly, J3Ί is a globally defined change of coordinates and H2 is a well-
defined change of coordinates in a sufficiently small neighborhood of
u = o. In the new coordinates v — (v19 , vn), we have by Taylor's
formula

ρ{v) = 2 Re vn + Σ M A " + o(|v|2)

in a neighborhood of the origin,

g = (0, . . . ,0) and 9W = (0, « ,0, δy)

with δv = (ίy — 1)[1 + ann(tv — 1)] for v = 1, 2, , where £v are the numbers
given by (2.1). Hence

(2.9) l i m a , ί,/|«J) = (0, - 1 ) .

In particular, we may assume that 0 < |<5J < 1 for all v — 1, 2, . Since
Q>il)ι^i,i^n-ι is a positive definite Hermitian matrix of degree n — 1, it is
diagonalizable. Thus, after a suitable change of coordinates (v19 •••, vn_i)
in C71"1, we can obtain a new coordinate system w = (w19 , wn), wn = vn,
with respect to which p can be written in the form

(2.10) p(w) = 2 Re wn + \'w\2 + A(w)

in a small neighborhood of t h e origin, where 'w = (wlf •••, wn-i) a s in
Section 1 and

A(w) = 2 __
V=i

with some constants clf , cneC. In particular, there are a continuous
function r(x) and a constant C > 0 such that

(2.11) r{x) -* 0 as a; -> 0
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(2.12) \A(w)\ ̂  C\w\ \wn\ + r(M 2 )M 2 near w = o .

Let {Dj}f=1 be the increasing family of relatively compact subdomains
of D defined in (2.2). Then, as in (2.3) we can define a family of biholo-
morphic mappings fu = ψv°(φ»\Dj) for v ^ v(j)> j = 1, 2, which converges
uniformly on compact subsets to a holomorphic mapping /: D->E(k, a)aCn

with f(k0) = qedE(k, a). Taking now the plurisubharmonic function pof
defined on an open neighborhood of k0 instead of the holomorphic function
Ψpoφ in Case 1, we can see that f(z) = q for all zeD. Let us fix an
integer j ^ 1 arbitrarily. Then, since p(z) —> q uniformly on D3, there
exists an integer vά such that

fΦύaEQc, a)f)W for all v ^ v ά .

We define mappings Lv: Cn -> Cn and i^v: Ds -+ Cn by setting

(2.13) Lv(w) = ('w/l/lδj, - ^ R ) , w - ('w, wn) 6 Cn

(2.14) F»(z) = Lu(f(z)) , zeD3-

for all v ^ vi9 where δv are the numbers appearing in (2.9). Then Lv are
non-singular linear transformations of Cn and Fu are biholomorphic
mappings D3 into Cn. Moreover, it is easily seen by construction that

(2.15) F\k0) = (0, , 0, -1) and F\Dά)^ Wv

for all v ^ vjf where

(2.16) Wv = Lv(ί7(fc, a)ΠW) = {weCn\ L~\w) 6 W, jOoL"1^) < 0}

for v = 1, 2, . Now we would like to show that some subsequence of
{Fv} converges uniformly on every compact set in D to a holomorphic
mapping F: D —• Cn. To see this, we set

p\w) - [poLΛw)V\K\ and A"(«;) = [AoL;\w)]/\du

for p = 1, 2, . It follows then from (2.10), (2.12) that

(2.17) (T(w) - 2 Έ,e(-δ,wJ\δu\)

(2.18) \A%w)\ ^ [C\/\δJ

in a neighborhood of the origin. Now, for the sake of simplicity we put

vf = Fv{z) for each point zeD3 .

Since L~\wv) = fv(z) —> q = o uniformly on iλ, , it follows from (2.11) and

(2.18) that |Av(wv)|/|wv|2 -> 0 uniformly on D iβ This combined with the
inequality p\wv) < 0 for v ^ ^ yields that

(2.19) l^l2 + 2 Re(δ,</|δJ) > \w^ + A ^ ) ^ M2/2 ^ 0



356 A. KODAMA

for all v ^ v0 and all z e Djf where v0 is a large integer depending on D,.
Here we may assume by (2.9) that |1 + (δj\δu\)\ < 1/3 for v ^ v0. Thus
{Fβ^o forms a normal family, because F*n for every v ^ v0 can now be
regarded as a holomorphic mapping from Dά into the taut domain
C\{l/2, 1}. Moreover 2^({fcβ})Π{-l} ^ 0 for all j ; by (2.15). Hence we
may assume that {Fζ}u^o converges uniformly on compact subsets to a
holomorphic function on Dά. By (2.19) this means that {F%±»0 is uniform-
ly bounded on every compact subset of Djf and consequently some sub-
sequence of {F%±Vo converges uniformly on compact subsets to a holomor-
phic mapping from Dj into Cn. Hence, passing again to a subsequence
if necessary, we may assume that {Fu} itself converges uniformly on
every compact set in D to a holomorphic mapping F: D->Cn.

Here we consider the following domain & and the mapping C:

(2.20) & = {w 6 C" 12 Re wn + |'w|2 < 0}

(2.21) C: ('w, wn) h- (i/"2 'w/(wn - 1), (wn + l)/(wn - 1)) .

It is easily seen that there is an open neighborhood X of & such that
C gives rise to a biholomorphic mapping from X into Cn and C(^) = I?\
In particular, & is a strictly pseudoconvex domain with real analytic
boundary. Now we wish to show that F{D)a^. For this let us fix a
point zeD arbitrarily. Then, since wu = Fv(z) ->2*Xz) and Lz\wv) =
fu(z)->q = o as y-» oo, we obtain from (2.9), (2.17) and (2.18) that

2 Re Fw(z) + |'jP(β)|2 = lim ^(w*) ^ 0 ,

which says that F(D)a&. But, thanks to the strict pseudoconvexity of
^ , the image F(D) can meet the boundary d& only when F is a constant
mapping from D into 3 ^ . Consequently, F{D)<z&, since by (2.15) F(D)
contains the point (0, , 0, —1) of &.

Next we prove that F: D -> & is, in fact, a biholomorphic mapping
from D onto &. Observe first that L~\W,) = E(k, a)f]W for all v and
ψ~\E(k, a) Π W) -> {p} by the choice of TF as in (2.6). Hence there is an
integer v0 such that

ψ;\Lz\ Wv))cE{k, a)ΠU=Df)U for all v ^ v0

and so we can define holomorphic mappings G": WV-*Ώ by setting

Gv = φ-'oψ-'oL'1 for v ^ v0 .

Clearly we have GlΌdF
v = id^. and FvoG1' = id^(2)i) for all y ^ max(v(i), v0),

i = 1, 2, . On the other hand, for an arbitrarily given subdomain &'
of & with compact closure in & one can choose an integer v(&') in
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such a way that &'cWv for all v^v{&'), because ρ\w) -> 2 Re wn +
\'w\2 < 0 uniformly on &' by (2.9), (2.17) and (2.18). Therefore, passing
to a subsequence if necessary, we may assume that {Gu} converges uni-
formly on compact subsets to a holomorphic mapping G: & -* D(zCn.
With exactly the same method as in Case 1 one can now check that

and F defines a biholomorphic mapping from D onto the domain

Finally, assuming the correctness of Theorem II, we shall complete
the proof by showing that D and E(k, a) are both biholomorphically
equivalent to Bn. For this purpose, let us choose a sequence of positive
numbers xu in such a way that

xv 11 and pv: = (xu, 0, , 0) e Df] U

for v = 0, 1, 2, . Since D is now biholomorphically equivalent to J5n,
there exists a sequence {σJΓ=i in Aut(D) such that σu(p°) — pv for v =
1, 2, •••. In particular, we have R-lim^ σXp°) = (1, 0, , 0). More-
over DΓϊU = E(k, a) Π U = {z e U\p(k, a; z) < 0} by assumption. As an
immediate consequence of Theorem II, D is biholomorphically equivalent
to E(k, a). q.e.d.

3. Proof of Theorem II. By the change of coordinates uγ — zx — 1,
Uj = Zj (2 ^ j ^ n), we have p = (0, , 0) and p can be written in the
form

ρ(u) = 2 Re u, + \u'\2 + \u"\2a + R(u) , R{u) = o{\u'\% + \u"\2a)

in a neighborhood of the origin u = o. For any given constants A, B
with 0 < A < 1 < B, we can therefore assume that

(3.1) 2Reu, + A(\u'\2 + \u"\2a) ̂  P(u) ̂ 2Reu1 + B(\u'\2 + | ^ T )

on U by shrinking U if necessary. So the holomorphic function Ψp(u) =
exp u± on Cn is peaking for Df] Uat p = o. Hence, by the same reasoning
as in Case 1 of the proof of Theorem I we may assume without loss of
generality that

(3.2) φXz) -> p uniformly on compact subsets of D

(3.3) R-lim φv(K) = p and pv: = φXkv) eDnU, v = 1, 2, .
\>—>OO

Therefore, writing

(3.4) pv = ζv + VN with some ζuedDf)U, xv < 0

uniquely as in (1.7) and taking a subsequence if necessary, we obtain by
the assumption (iii) that
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lim Re ζϊ/|λv| = d0 for some finite number d0 ^ 0 .

For the sake of simplicity, we set

Tv = ivl1" , 8V = |λ11/(2α) for v = 1, 2, .

The proof is now divided into two cases as follows:

Case 1. d0 = 0. In this case, it follows at once from (3.1) that

(3.5) (Re ζϊ/|λ1, ζϊ/rM ζj/sM R{?)l\\>\) - (0, 0, 0, 0)

as v —>oo for each i, j" with l < j i < i λ ; < ; / 5 ^ % . Let us choose a sequence
of relatively compact subdomains D3 of D such that

Z) = U ΰ p -DDj+1i)Dά-D ZDD^K ,
i=i

where if is the compact subset of D as in the theorem, and fix an in-
teger i ^ 1 arbitrarily. Since <pv(u)-+p uniformly on D3, there exists an
integer v(j) such that

(3.6) φXD^dDΠ U for all v ^ v(j) .

Now define mappings hv, Lv and F* by

h(u) = ( ^ - ζϊ, •••, wn - ζ ; ) , tteC"

Lv(w) = (-wj\v, wjrv9 , w j n , wfc+1/sM , wn/8j , weCn

Fv{n) = Lvohuoφχu) , w e A

for all v ^ v(i). Then both fcv and Ly are biholomorphic transformations
of Cn, while F1* are biholomorphic mapping from D3 into Cn. It is clear
that

(3.7) F*(K) = (-1, 0, • , 0) and F^D^d Wu

for all v ^ v(j), where

(3.8) Wv = {w 6 C-1 (L.ofcj-Xw) e ί/, po(Lshv)-\w) < 0}

for j ; = 1, 2, . Now we claim that some subsequence of {Fv} converges
uniformly on compact subsets to a holomorphic mapping- F: D-*Cn. For
this, we set

for v = 1, 2, and

y for v ^ y(i) .
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Then, since (Lυohv)-\Fv(Dά)) = φv(Dά)(zDr\ U for v ^ v(j), we obtain by
(3.1), (3.7) and (3.8) that

0 > p\vf) ^ 2 Re(-λ vwϊ + ζϊ)

+ A-Π-VWΪ + ζϊl2 + Σlnwϊ + ζ?l2 + ( Σ M j + C
L i=2 \ί=*+l

and so

0 > 2 Re(wϊ + ζϊ/|λ1) + A Γ Σ |WΪ + ζj/rj2 + ( Σ \w) + ζj/sj2)"

for all v ^ v(j). Hence, if we define a domain W(k, a, A) in Cn and
holomorphic mappings Φv: D5 -> Cn, y ^ v(i), by setting

(3.9) W(fc, α, A) - \w e Cn \ 2 Re w, + A Γg \Wi\
2 + (.Σ+ i | ^ Γ)Ί < θ[

(3.10) Φ* = (FΓ + Re ζϊ/|λ1, Fί + ζί/rM , Fi + β/r,,

then every Φu gives rise to a holomorphic mapping from D3 into W(k, a, A).
On the other hand, it is easily seen that W(k, a, A) is biholomorphically
equivalent to the domain E(k9 a) via the correspondence CA: (wlf , wn) \-*
fe, ••-,«») given by

(3.11) CA: \z< = (2AY/^wJ(w1 - 1) , i = 2, , k

U - (2A)1/{2a)'Wj/(w1 - l)1 / α , i = fc + 1, • , n .

Hence ϊΓ(fc, α, A) is taut by the lemma in Section 1 and {Φv} forms a
normal family. Moreover, it follows from (3.5) and (3.7) that

Φ\K) = ( - 1 + Re ζϊ/|λt Cϊ/rM , ζϊ/rM ζ ϊ+A, , ζ^/sv)

- > ( - l , 0, •••, 0)6 W(k, a, A) as v -> oo ,

that is, {Φv} is not compactly divergent on Dj. Therefore we may assume
that {Φv} converges uniformly on compact subsets to a holomorphic map-
ping Φ: Dj-* W(k, α, A). Here it is obvious from (3.5) and (3.10) that
lim^oo Fv — Φ uniformly on compact subsets of Dj. By the usual diagonal
argument, we may further assume that {F1*} itself converges uniformly
on every compact subset of D to a holomorphic mapping F: D-+ Cn.

We wish to prove that the image F(D) is contained in the domain
W(k, a) : = W(k, a, 1) defined in (3.9) with A = 1. To this end, recall that
R(u) = o{\uf\2 + \u"\2a). So there is a continuous function r(x) such that

(3.12) r(x) -> 0 as x -> 0
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(3.13) \R(u)\ ̂  r(\uj + \u'Ή'[\u'\% + \u'Ή near the origin .

Since {Lv°hp)~\w) —> o uniformly on compact sets, these combined with
(3.5) yield that

\R"(w)M ^ r(xj) yu^0 as »-*<*>

uniformly on every compact subset of Cn, where we have set

Σ|w4 + ζϊ/n|2 + \w"
i=2

Now take a point ueD arbitrarily and set again wu = Fv(u). Then
wv -> F(u) as v -> oo and it follows from (3.7), (3.8) that

(3.14) 0 > |0"(O/|λ1 = 2 Re(wϊ + ζϊ/|λ1) + \rvw\ + ζϊ

+ Σ k + Cϊ/rJ2 + ( Σ Wi + Cί/βJ1)" +

i=2 \j=k+l /

for all sufficiently large v, and so letting v tend to infinity, we have

0 ^ 2 Re Fx{u) + Σ \Fiiv)\% + ( Σ

Clearly this means F(u)e W(k, a) and accordingly F(D)aW(k, a).
Next step is to show that F(D)cW(k, a). Observe first that the

interior of the closure W(k, a) coincides with W(k, a) in our case. Hence
the problem reduces to showing that F: D-+Cn is an open mapping. We
define biholomorphic mappings Gv: Wv-^> D, v — 1, 2, , by

where Wv are the domains given by (3.8). Clearly we have

(3.15) Gy°F\Di = id^ and F^G^F,iDj) = iάF,[Dj)

for all v ^ v(j)t j = 1, 2, •••. Let W be an arbitrary subdomain of
W(Jc, a) with compact closure. Then we obtain by (3.5) and (3.14) that

P%w)/M -> 2 Re wx + Σ l^l2 + ί Σ kil2V < 0

uniformly on W. Thus there exists an integer v(W') such that

(3.16) W'a Wv for all v ^ v(

Now, by the compactness of K we may assume that ku^koe K. Then
F(k0) = l i n w Fv(/bJ = (-1, 0, , 0) e W(k, a). Choose open neighborhoods
W'y D' of the points ( — 1, 0, •••, 0), k0 with compact closures in W(k, a),
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D, respectively, in such a way that Fφ')cW. There exists an integer
v(D', W) so large that

(3.17) F\Dr)(Z W for all v ^ v{D', W) .

Once it is shown that F: D-*Cn is injective on D', F(D) contains the
non-empty open set F{Df), accordingly, we may conclude by the same
reasoning as in the proof of Theorem I that F(D)<z W(Je, a). Now assume
that F(Uι) = F(u2) = w for some ulf u2eD\ It follows then from (1.1)
and (3.15) - (3.17) that

= dβy(W')(u13 u2) ^ dD(ulf u2)

for all v ^ max(v(TF'), v(D', W')), and so letting v -> °o W e have ut - u2,
as desired.

Finally we assert that F: D-+ W(k, a) is a biholomorphic mapping
from D onto W(Jc, a). Indeed, thanks to the fact (3.16) we may assume
without loss of generality that {Gv} converges uniformly on every compact
set in W(k9 a) to a holomorphic mapping G: W(k, a) —> DaC71. Then,
repeating exactly the same argument as in the proof of Theorem I, we
can verify that 'G(W(k, a))<zD and F defines a biholomorphic mapping
from D onto W(k, a). Since the domain W(k, a) is biholomorphically
equivalent to E(k, a) via the correspondence Cι defined by (3.11), we have
completed the proof in the first case.

Case 2. d0 Φ 0. The following proof will be presented in outline,
since the details of the steps can be filled in by consulting the corre-
sponding passages in Case 1.

Passing to a subsequence if necessary, we may assume by (3.1)
together with the estimate R(u) = o(\u'\2 + |w"|2α) that

(3.18) (Re ζϊ/|λ1, Cf/n, C5/«w Λ(C)/|V|) - (d0, dif djt 0)

for each ΐ, j with l^ίtίkKj^n, where dί9 dj are some finite complex
numbers. Let us define holomorphic mappings Fv and Φv in the same
manner as in Case 1. Then, repeating exactly the same arguments as
in Case 1, we can show that some subsequence of {Φή converges uniform-
ly on compact subsets of D to a holomorphic mapping Φ: D-^>W(k, a, A),
where W(k9 a, A) is the domain in Cn defined by (3.9). Clearly this com-
bined with (3.10), (3.18) guarantees that some subsequence of {Fu} also
converges uniformly on compact subsets to a holomorphic mapping F:
D -> C\ In exactly the same way as in Case 1, it can be shown that F
defines a biholomorphic mapping from D onto the domain
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W'(k, a) = {w 6 C" 12 Rβ(wx + d, + K|2/2)

+ Σlw, + d,!2 + ( Σ \ws + djA" < o l ,
i=2 \ί=A;+l / j

which is obviously biholomorphically equivalent to W(k, a) via a parallel
translation in Cn. Therefore, we have shown that D is also biholomor-
phically equivalent to E(k, a) in Case 2. q.e.d.

4. Proof of Theorem III. To begin with, we fix a family {Ms\f=1

of relatively compact subdomains of M such that

(4.1) M= U l p ••• DJIίi+xDilίyD ••• DJI^Sfc.,
i=i

where &0 is an arbitrarily fixed point of M. Since M can be exhausted
by biholomorphic images of E(k, a), there exists a sequence {̂ }Γ=i of
biholomorphic mappings from E(k, a) into M such that

AEQc, a)) , y = 1,2, . . . .

We set

9>v = tv"1: fΛE(k, a)) -> E(k, a) , v = 1, 2, .

Without loss of generality, we may assume that {φv} converges uniformly
on every compact set in M to a holomorphic mapping φ: M—> E(k, a)cCn.
Replacing ψv, φv by suitable holomorphic mappings of the form ψv°σ~L,
σuoφu with some σv e Aut(E(k, a)), if necessary, we may further assume
that

= (0, , 0, tu) with 0 ^ ίy < 1

for all v = 1, 2, . Again we have two cases to consider.
Case 1. {<Γ} has an accumulation point q in E(k, a). We claim that

M is biholomorphically equivalent to E(k, a). We may assume that qf —> g
and {<pv} converges uniformly on compact subsets to a holomorphic mapping
φ:M-^E(k, α), since 2£(fc, α) is taut and {φXK)} lies in a compact subset
of E(k, a). Here we assert that φ:M-+E(k,a) is injective. Indeed,
suppose that φ(xλ) = ?>(a?2) — ̂  for ^ , x2eikί. It follows then from (1.1)
that

— ^ψv(E{k,a))\^U ^2) = dM\Xly X2)

for all sufficiently large v. Consequently, we have xx = x2, because M is
hyperbolic and dE(kta)(<pAxj), φv(x2)) -> dE{ki(x)(z, z) = 0 as v -> 00. Therefore,
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identifying M with the bounded domain φ(M)<zE(k, a) and replacing the
system ({/*}, {g% D, {D5}) by {{φv}f {ψX M, {Mό}) in Case 1 of the proof of
Theorem I, we can show that M is biholomorphically equivalent to
E(k, a).

Case 2. tov}Γ=i has no accumulation point in E(k, a). In this case,
we shall prove that M is biholomorphically equivalent to the open unit
ball Bn. Without loss of generality, we may assume that:

(4.2) lim qv = (0, • , 0, 1) = : q e dEφ, a)
VI—>OO

(4.3) φλ%) —> Q uniformly on compact subsets of M .

Hence there exists an integer v3- such that

φXMϊ)(zE(k, a)ΠW for al l ι>^vi9

where Ms is an arbitrary subdomain of M appearing in the sequence (4.1)
and W is the same neighborhood of q as that defined in Case 2 of the
proof of Theorem I. Introducing a new coordinate system w = (wlf , wn)
in Cn as in Case 2 of the proof of Theorem I, we define biholomorphic
mappings Lv: C

n -+ Cn and Fv\ Ms -+ Cn for v ^ vs by

Lv(w) - ('w/χ/\δj, -wjδv) , w = ('w, wn) e Cn

F"(x) = LMx)) , xeMj

as in (2.13) and (2.14). Then it can be shown that some subsequence of
{Fv} converges uniformly on compact subsets to a holomorphic mapping
F:M-^>&, where ^ i s the domain in Cn defined in (2.20). Indeed, con-
sidering the biholomorphic mappings

G\w) - fXL;\w)) , w 6 Lu(E(k, a) Π W) = Wv

for v = 1, 2, , one can check that F is a biholomorphic mapping from
M into & = Bn. In particular, M can be regarded as a bounded domain
in Cn. Therefore, repeating the same argument as in Case 2 of the
proof of Theorem I, we conclude that M is biholomorphically equivalent
to the domain & = Bn. q.e.d.

5. Concluding remarks. Let D be a domain in Cn and p a point of
D. Then we say that D is hyperbolically imbedded at p if, for any
neighborhood W of p in Cn, there exists a neighborhood V of p in Cn

such that

Vd W and dD(Df] (Cn \ l f ) , ΰ ί l F ) > 0 .

Note that, if D is a bounded domain in O, then D is hyperbolically
imbedded at every point p of D.



364 A. KODAMA

REMARK 1. In Theorems I and II, the boundedness assumption on
D can be replaced by the following weaker one: D is a not necessarily
bounded hyperbolic domain in Cn which is hyperbolically imbedded at
p = (l, 0, ..-, 0)edD.

Indeed, by the existence of a local peaking function for D at py one
can extract in the same manner as in [7; Lemma 2] a subsequence of
{9^}cAut(D) which converges uniformly on compact subsets of D to the
constant mapping Cp(z) = p, zeD. Hence, the rests of the proofs of
Theorems I and II will go through without any change.

REMARK 2. By a simple modification of the proof of Theorem II,
one can see that the analogue of Theorem II is also valid for more general
domains

E = \(zlf .• , ^ 6 C ^ x .
K

where 0 ^nteZf 0 < ateR for i = 2, , s and 1 ^ n^eZ.
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