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Abstract Consider the higher-order neutral delay differential equation

(•) 7-6*)+ Σ PtMt-τd- Σ rjX(t-Pj))+ Σ qkx(t~uk) = 0 ,
dt n\ ί=i j=i / k=i

where the coefficients and the delays are nonnegative constants with n ̂  1 odd. Then a
necessary and sufficient condition for the oscillation of (*) is that the characteristic
equation

F(λ):=λn + λn ΣPie~λτi-λ" Σ rje-*"* Σ ^ " A u k = 0
i = l j=l k=l

has no real roots.

1. Introduction. Neutral delay differential equations are differential equations in
which the highest order derivative of the unknown function appears both with and
without delays. The problem of oscillations of neutral equations is of both theoretical
and practical interest. For example, the equations of this type appear in networks
containing lossless transmission (see [3], [10]). The oscillation theory of neutral equations
has been extensively developed during the past few years (see [4]-[10]).

In this paper, we consider the oscillation of higher-order neutral delay differential
equations

(1.1) £-,(**)+ Σ Prft-τd- Σ rjx(t-Pj))+ £ qkx(t-uk) = 0 ,
dtn\ )

where the coefficients and the delays are nonnegative constants with n^\ odd.
Let ψeC([ί o -Γ,ί o ] ,R), where Γ=max{τi, ρp uk: 1</<L, l^j^M, 1

By a solution of (1.1) with initial function φ at t0, we mean a function
x e C([t 0 -Γ, oo), Λ) such that x(t) = φ(t) for f o -Γ</<ί o >*W + Σf=iA χ ( ί -- τ f)-
Σ j i i rjx(t~Pj) i s «-times continuously differentiable, and x satisfies (1.1) for all t^t0.
Using the method of steps, it follows that for every continuous function φ, there is a
unique solution of (1.1) vaild for t^t0. For further questions on existence, uniqueness
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and continuous dependence, see Bellman and Cooke [1], Driver [2] and Hale [3].

As is customary, a solution is said to be oscillatory if it has arbitrarily large zeros

and nonoscillatory if it is eventually positive or eventually negative. The characteristic

equation of (1.1) is

(1.2) F(λ): = λn + λn X Pie-λτi-λn Σ r y r A " + £ qke~λUk = 0 .
i=l j=l k=ί

Our aim is to give a necessary and sufficient condition for all solutions of (1.1) to

be oscillatory. We have:

THEOREM. All solutions of(\Λ) oscillate if and only if the characteristic equation

(1.2) has no real roots.

The proof of this theorem will be given in Section 3.

For the case n=l, the above result was proved recently by Grammatikopoulos,

Sficas and Stavroulakis [5] (see also [8], [9]). For n even, the above result can be proved

by similar arguments and is omitted.

2. Lemmas. In this section we establish some useful lemmas which will be used

in the proof of our main theorem.

In (1.1), without loss of generality we assume that 0 < τ 1 < τ 2 < • < τ L , 0 <

Pi<p2<' " <PM> τi^Pj 0 = 1 , 2 , , L ; y = l , 2 , , M ) , and 0^uί<u2<- • <uN.

Let P = Σf=1Λ, Λ-ΣjiiOand β = Σί-ifc

LEMMA 1. If x{t) is a solution o/(l . l), then each one of the following functions

I-a), Γ
Jt-c

t-b

x(t — a\ I x(u)du, x(t) (if x(t) is continuously differentiable)

is also a solution 0/(1.1), where a and b are real numbers.

The proof is trivial and is omitted.

LEMMA 2. If (1.2) has no real roots, then we have

(2.1) Q > 0 with τL < max{/?M, uN} .

The proof is trivial and is omitted.

LEMMA 3. Assume that there is a nonoscillatory solution 0/(1.1). Then there is a

nonoscillatory solution w(t) 0/(1.1) such that either

w(ί)e(I): = |w(ί)6C 2 π ([Γ*, oo), R): ( - l)kwik\t)>0, lim wik\t) = 0, £ = 0, 1, 2, , n

or
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, oo), R): w<*>(ί)>0, lim w<*>(ί)=oo, k = 0, 1, 2, , n L

'->«> J
Γ* ^ t0 is sufficiently large.

PROOF. AS the negative of a solution of (1.1) is also a solution of the same equation,

it suffices to consider that x(t) is an eventually positve solution of (1.1). Set

L M

(2.2) z(t) = x(t) + Σ Pix(t -τd-Σ rAι ~ Pj) >

and
L M

(2.3) w(ί) = z(ί) + Σ Pt<t -τd-Σ rtft - Pj).

By Lemma 1, z(t) and w(ί) are solutions of (1.1). Then we have

(2.4) * ( Λ ) W = - Σ

(2.5) vv<">(ί)=-Σ
fc=l

and so z(n~ι\t) is eventually strictly decreasing. Also all the derivatives of z of order

less than or equal to n— 1 are monotonic functions. From (2.4) it follows that either

(2.6) I i m z ( n - 1 ) ( ί ) = - o o
ί->oo

or

(2.7) lim z{n-1)(t) = L*

ί->oo

is finite.

If (2.6) holds, then

lim zik\ή= - oo , k=0, 1, 2, , n-1 ,

which imply

lim w(n\t) = oo ,
f->oo

a n d s o

l i m wik\t) = oo , w(k\ή > 0 e v e n t u a l l y , k = 0 , 1 , 2 , •••,« .
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Obviously, z(ί)eC"([ίo + ί, oo), R) and w(ί)eC2π([ί0 + 2Γ, oo), R). That is, w(ί)e

(II).

If (2.7) holds, then integrating (2.7) from ίx to f, with tί sufficiently large, and

letting H o o we find

- ^ " 1 ) ( ί 1 ) = - Σ ^ Γx(s-uk
fc=l Jtl

)ds

which implies that xeL1[t1, oo). Thus, from (2.2), zeL1^^ oo) and since z is mono-

tonic, it follows that

(2.8) limz(ί) = 0,

ί->oo

and so L = 0. As the function z(π~υ(ί) decreases to zero, it follows that

(2.9) z<»-
Also (2.8) implies that consecutive derivatives of z must alternate sign and tends to zero

as /->oo. Thus, in view of (2.9) and the fact that n is odd, we have

(2.10) z(ί)>0.

Using the same arguments as to w(t) we have

( - \)kwik\t)>0 , lim w(k)(ί) = 0, k = 0, 1, 2, , n .

Thus, w(ί) 6 (I) and the proof is completed.

LEMMA 4. Assume that (2.1) holds, and that there is a nonoscillatory solution x(t)

0/(1.1). Then

(i) ifx(t)e(ϊ), then there is a solution z(t) 0/(1.1) which belongs to Class (I), such

that

A+(z): = {λ > 0; z(w)(ί) + λnz(t) < 0} Φ 0

(ii) //x(ί)e(II), then there is a solution z(i) 0/(1.1) which belongs to Class (II),

such that the set

PROOF, (i) Let x(t)e(l). Set

(2.H) z(ί) = x(ί)+ Σ pAt-τd- Σ rjx(t-Pj) .
ί = l 7 = 1

It is easy to see that z(ί)e(I).

We consider the following two cases:

Case 1. uN^τL. As x(t) is positive and decreasing, it follows from (2.11) that
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(2.12) z(ί)<x(ί)+ Σ PiX(t-Td<(l +PMt-UN) .
i = l

On the other hand,

(2.13) z<»>(ί) = - £ qkx(t-uk)^-qNx(t-uN) .
fc=l

Combining (2.12) and (2.13) we obtain z(n)(t) + (qN/(l + P))z{t)^0. Thus λ =

(qn/(l+P))VneΛ+(z).

Case 2. PM>TL>UN From (2.11) we obtain

(2.14) ( l+P)x(ί-τ L )>z(ί)

and, as z(ί)>0, it follows that (1 + P)x(ί — τL)>rMx(ί — pM), that is,

(2.15) x(t + (pM- τL)) > (rM/(l + P))x(t).

Let k be the first positive integer such that τL — uN^k(pM — τL). Then by (2.13) we

have

ί) + qNx(t - uN) = z(w)(0 + qNx(ί - τL + (τL - wN))

z(π)(ί) + ί N χ(t - τL + A:(pM - τL))

(by (2.15))

(by (2.14))

Thus λ = (qNrk

M/{l + P)k+1)1/n e Λ+(z). The proof of Part (i) is completed,

(ii) Letx(ί)e(Π). Set

L M

z(t)= -x(ή-

It is easy to see that z(£)e(II). As x(ί)and z(ί) are positive and increasing, it follows that

(2.16) z(t)< Σ

and

(2.17) x(ί)< Σ j ^

Let k be the first positive integer such that u1^kp1. Then
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-Pi) (by (2.17))

(by (2.16))

Thus, λ = (qί/Rk)1/neA~(z), and so A~(z)φ0. The proof of the lemma is completed.

LEMMA 5. Assume that (2.1) λtfW s, and that there is a nonoscillatory solution x(t)

o/(l.l). Then

(i) if x(t)e(l) with A+(x)Φ0, then the set A+(x) has an upper bound which is

independent of x;

(ii) if x(t)e(Π) with A~(x)Φ0, then the set A~(x) has an upper bound which is

independent of x.

PROOF, (i) Let x(ί) e (I) with A+(x) φ 0. Set

L M

z(t) = x(t)+ Σ Σ
i=ί 7 = 1

It is easy to see that z(t) e (I), and so

(2.18) ( - \fz{k\t) is positive and decreasing for k = 0, 1,2, •••,«.

We consider the following cases:

Case 1. pM>τL- From (2.18) we have

j
ί = l j = l

which implies

( - l)kx*\t) > (rM/(\ + P)X - l)kxik)(t - (pM - τL))

for fc = 0, 1,2, ",n. Let M* = rM/(l+P), w = pM-τL>0. Then

(2.19) ( - lfxik)(t)>M*(- l)kx(k\t-w), fe = 0, 1, 2, • , n .

Now, we want to prove that Ao= — (1/vv) In M*^A+(x). Otherwise, λoeA+(x)

which means that

Set
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Then

and by (2.19) we have

(2.20) y(t)>M*y(t-w).

Let φ{t) = eλoty(t). Then

and so φ(t) is non-increasing. Thus, φ(t) < φ(t — w) which implies

y(t)^e~λowy(t-w) = M*y(t-w).

It contradicts (2.20).

Case 2. uN>τL. For k = 0, 1, 2, , n,

which implies

(2.21) ( - l)*z<*>(ί)<(l +P)(- l)kx(k\t-τL).

On the other hand, for fc = 0, 1, 2, • , /i,

which implies

(2.22) ( - l)-+*-^-+*>(t)< - ^ ( ( i V )

For wπ>τL, there is a b>0 such that uN>τL + nb. Integrating (2.22) from t to ί + 6, we
obtain

Noting that (-l)n + f c-1z ( n + f c-1 )(ί + b)>0, We have

(_l)«^-2z(n + fe-l)(ί)<

and then after n steps we obtain

that is,

(2.23) ( - l)kz

Combining (2.21) and (2.23), we obtain
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(1 +P)(-lfx{k\t-τL)>qNbn(-l)^k\t-(uN-nb)),

that is,

( - l)kx(k\t)>M*(- l)kxik)(t-w*),

where M* = qNbn/(\+P), w* = uN — τL — nb>0. Then, as in Case 1, we can show that

Ao= —(1/w*) In M * is an upper bound of Λ+(x).

(ii) Let x{t)e(II) with Λ~(x)Φ0. Set

(2.24) z(t) = - x(t) - t PiΛt ~ τd + Σ 0*C - Pj)
i = l j = l

It is easy to see that z(t)e (II) and, for fc=0, 1, 2, , n, x(k\t) and z(k)(ί) are positive

and increasing. It follows that

(2.25) jfi\t)< J rjX^t-p^Rx^it-p,)

for A: = 0, 1, 2, , n. We now want to show that >l0 = (l/p1) In R is an upper bound of

Λ~(x). Otherwise, λoeΛ~(x) which means that

(2.26) -x

Set y(t) = xin-ίXt) + λox
in-2Xt)+ +λΛ

0-
1x(t). Then, from (2.25),

(2.27) y(t)<Ry(t-Pl),

and, from (2.26),

y(t)-λ0y(t)=χ(nXt)-λn

0x(t)>o.

Let (/>(ί) = ^ " λ o ^ ( ί ) . Then

and so φ(ί) is non-decreasing. Thus, φ(t)^φ(t — px) which implies

This contradicts (2.27) and the proof is completed.

3. Main result. Our main result is the following:

THEOREM. All solutions 0/(1.1) oscillate if and only if the characteristic equation

(1.2) has no real roots.

PROOF. Assume first that (1.2) has a real root λ. Then, obviously, (1.1) has a

nonoscillatory solution x(t) = eλt.

Assume, conversely, that there is a nonoscillatory solution of (1.1). Then we want

to prove that (1.2) has a real root. Otherwise, assume that (1.2) has no real roots. Then,
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by Lemma 2, (2.1) holds. Thus, F(oo) = F(-oo)=oo, and oc: = minλeRF(λ)>O. This

implies

(3.1) -λn-λn Σ Pie-λτi + λn Σ rje-λpJ- Σ
ι = l j=l fc

or

L M N

(3.2) λ" + ;i" Σ Pίeλτi-λn Σ r 3e
λp*- Σ

i = l j = l fc=l

By Lemmas 3 and 4, if (1.1) has a nonoscillatory solution, then (1.1) has a

nonoscillatory solution x(t) which belongs to Class (I) with Λ+(x)Φ0 or to Class (II)

with Λ~(x)Φ0.
We consider the following two cases:

Case 1. x(t)e(ϊ) with Λ+(x)Φ0. Let λeΛ+(x). By Lemma 5(i) there is a λo>0

such that 20 is an upper bound of Λ+(x) which is independent of x. Let Γ=max{pM, MN},

and set

(3.3) y(t) = Txx(t): = x(ί) + Σ Pix{t-τt) - Σ

Obviously, y(ί) is a solution of (1.1) and y(t)e(ΐ). Then

(3.4) /n\t)=-Σ<lAt-uk).
k=l

Set

(3.5) z(t)= T2y(t):= -/^(ή + λy^-^ή-λ^-^ήΛ- • -A""1^)

It is easy to see that z{ή is also a solution of (1.1) with z(ί)e(I), and so z(t) can be

expressed as

(3.6) z(t)= \C°dt1 \dt2" I z{n-ι\s)ds .
Jί Jfl Jίn-2

From (3.4) and (3.5), we have

)= -/2n\t)-λn/n\t)=
k=l

for t sufficiently large since λeΛ+(x). Let φ(t) = eλtzin~ί)(ή. Then

φ

and so φ(t) is decreasing. Set
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(3.7) w(t)=T3z(t):=zin-1)(tH Σ p^-'Kt-τ,)- Σ

N Γt-uk M Γt-pj

Σ ft z(u)du + λn Σ rj z(u)d
k=l Jt-T J=1 Jt-T

By Lemma 1, w(ί) is a solution of (1.1). Then

N M

w(ί)=- Σ qkz(t-T)-λn Σ r/z(ί-T)-z(ί-p7.)),
k=l j=l

N M

As z(t)e(I), it follows that w(t)e(I). Let

(3.8) μ =

We now show that

(3.9) *

Indeed,

= - Σ ίt^-^ί-Γί-A- Σ

N Γt-uk M Γt-pj >

k=l Jt-T ./=1 Jί-Γ >

N / Γt-uk \ / L

+ Σ ftί — ̂ ( π l ) ( ί — T ) + ̂ π z(u)du ) + ( z ί"~1 )(ί)+ Σ / 7 i z ( n l )(^"~ τ i)
*=1 V J ί - Γ / V i= l

M iV Λί~«k M Γt-pj \

— Σ r/ z ( l l~ 1 )( ί""Pj)+ Σ ft z(u)du + λn Σ 0 z(w)d« I.
j=l fc=l J ί-Γ J=1 Jt-T /

Noting that z(n~1\t) = φ{t)e~λt with φ(t) decreasing, we obtain from (3.6),
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N Γt-Uk N Γt-uk Λoo Λoo ί*ao

λ"Σ<lk\ z(")du= Σ <7^π du\ dtΛ dt2 \ ^-ι\υ)iυ
k=l Jt-T k = 1 Jt-T Ju Jti Jtn-2

Σ 4kΦ(t-T)λn Γ Ukdu Γ°A2 Γ e-λvdvκ Σ
k = 1 Jt-T Jtl Jtn-2 k =fc=l

Similarly,

Σ r/n Γ βJz(u)du^ Σ rjφ(t-
7=1 Jt-T J = l

Then we have

Σ ^Λpj~ Σ

A i 0 ( i - T ) ( - α + α) (by (3.2) and (3.8))

= 0.

Thus, (3.9) holds which means that (λn + μ)1/neΛ+(w).

Set

and set x o = x, xί = Ux0, and in general,

We observe tht xk(t)e(ΐ) with /l + ( jc f c )^0, and that λeΛ+(x) = Λ + (xo) implies
1 / G ^ + ( w ) = yl+(x1) and after k steps we obtain

Λ + (xk), Jfc=l,2, •••

which is a contradiction since Λo is a common bound for all Λ+(xk).

Case 2. x(ί)e(Π) with Λ~{x)Φ0. Let AG/1"(X). By Lemma 5 (ii), there is an

upper bound λ0 of Λ~(x) which is independent of x. Let ft = min{τ l5 p l 5 wx}, and set

(3.10) y(ί)=Γ 1 x(ί):= - x ( 0 - Σ A * ( i - * i ) + Σ ^ ί - p ^ ) ,
i=l i=l

(3.11) z(ί)=Γ 2 j ( ί) :=j ( w ) (ί) + ^ ( π - 1 ) ( ί ) + +λ"-1y(t)

It is easy to see that y{t) and z(t) are solutions of (1.1), and that y(ί)e(Π), z(ί)e(Π).

From (3.10), (3.11),

z(w)(ί) - Az(M" 1\ή=yi2n\ή - λn/n\t) = Σ ^fc(x(π)(ί - Mk) - λnx(t -
J t = l
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since λeΛ~{x). Let 0(ί) = ̂ " λ ί z ( π - 1 ) (ί) . Then

φ(ή = e~λt(zin\ή-λz{n~'\ή)^0 ,

and so φ(t) is increasing. Set

(3.12) w(t)=T3z(t):=-z<n-lXt)-ΣPiZ(n-ί)(t-τi)+ Σ
i=ί j=l

+

Then

N Γt-b L Γt-b

Σqk\ z(u)du+ΣPiλ"\ z{μ)du.
k=l Jt-uk i-1 Jt-τi

W= Σ qΛt-b)+λn Σ
fc = 1 ί = l

As z(ί)e(Π), it follows that

w<*>(ί)= Σ ̂ -^r-feJ + A" Σ Pii^'Kt-fy-z^-'Xt-τ^oo
fe=l i = l

as /->oo for k = 1, 2, •••,«. Obviously, w(ί)->oo as ί ^ o o . Thus, w(ί)e(II). Let

(3.13) μ = a/(P + Q/λn + R).

We now show that

(3.14) - win\t) + (A" + μ)w(ί) ̂  0 .

Indeed,

- win\t) + (Aπ

ft-fc \

\ z(u)du
Jt-Xi /

Σ qί-z(n-1\t~
Jί-uk

JV Λf-l» L Γt-b \

Σ f t z(w)dM+Σ^A z(iι)dιι .
*=1 Jί-uk i=l Jί-ti /

+

For z(ί)e(Π), there is a t* such that for

λ; = 0, 1,2, •••,«.

Then it is possible to extend the definition of z(k)(t) to t<t* such that for

k = 0, 1, 2, , n, zik\t) is continuous and increasing on (—00,00) and z(fc)(ί)->0 as
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t-> — oo. Then z(t) can be expressed as

fί fίl fίn-2
(3.15) z(t)=\ dtγ dt2"- z^-'Ws.

J — oo J — oo J — oo

Noting that z(n~1)(ί) = </>(ί)̂ λί with φ(ί) increasing, we have by (3.15)

587

rt-b rt-b ru ftl fίπ_2

z{u)du^φ{t-b) du\ dtΛ dt2" \ eλsds
Jt — Uk Jt — Uk J — 00 J — 00 J — 00

Similarly,

Then

)ΛM < φ(t - b)(eλit~b)- eλit"τi)

Σ r

^ φ(t- b)eλt(- α + α) = 0 . (by (3.1) and (3.13))

It follows that (3.14) holds which means that (Λn + μ)1/πeΛ~(w).

Set w(t)=Ux(t): = ^ ( ^ ( Γ i ^ ί ) ) ) , and let xo = x9 x± = Ux0, and in general,

and, as in Case 1, we are led to a contradiction. This proves the theorem.
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