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Abstract. We present a theory of intersection on the complex projective line for ho-
mology and cohomology groups defined by connections which are regular or not. We apply
this theory to confluent hypergeometric functions, and obtain, as an analogue of period rela-
tions, quadratic relations satisfied by confluent hypergeometric functions.

l Introduction. The main objective of this paper is to provide a systematic method

of deriving new quadratic relations for confluent hypergeometric functions, especially, in sev-

eral variables. Classical examples of the quadratic relations are the inversion formula for the

gamma function

Γ(a)Γ(l-a) =
sin(πa)

and LommeΓs formula for Bessel functions

a l ( ) a i )

πz

The essence of our method is to regard these quadratic relations as analogs of Riemann's

period relations, which are quadratic relations for periods on a compact Riemann surface.

Periods are integrals of holomorphic 1-forms (1-cocycles) over closed paths (1-cycles) on the

Riemann surface. The naturality of the pairings of the cohomology and homology groups of

the Riemann surface yields period relations. The coefficients of the period relations can be

understood as intersection numbers of the cycles and the cocycles.

We regard integral representations of confluent hypergeometric functions as pairings of

cocycles of a certain cohomology group and cycles of a sort of homology group. We will

introduce the intersection pairing between the cohomology group and its dual, which naturally

induces the intersection pairing between the homology group and its dual. The naturality of

the pairings yields quadratic relations for confluent hypergeometric functions, as in the case

of Riemann's period relations.

We note that the existence of the quadratic relations is an immediate consequence of the

commutativity of the dualizing functor and the integration functor, which yields the coho-

mology groups, for D-modules. However, the authors would like to emphasize that we are
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interested in deriving explicit formulas for hypergeometric functions, and that such a general

fact is not satisfactory for us.

Let us explain what the cohomology and homology groups are and where the diffi-

culty lies. Let ω be a rational 1-form on the complex projective line P with the polar set

x = {x\,... , xm] such that the residue at any simple pole is not an integer. Let Cω and C-ω

be the locally constant sheaves over X = P\x of analytic functions u(t) and u~] (t) satisfying

V-ωu(t) = 0 and Vωιt~ι(t) = 0, respectively, where Vω = d + ωΛ and V_ω — d — ωA.

Note that such u(t) is expressed as c exp(/r ω) (c <E C). We consider the twisted cohomology

groups Hx (Ω (x), V±ω) = Ω1 Oc)/V±ω(Ω°(jc)), where Ω*(JC) denotes the vector space of ra-

tional &-forms admitting poles in x, and the twisted homology groups H\ (X, C±ω). When the

1-form ω admits only simple poles, the intersection pairing for Hι (Ω*(JC), V±ω) and that for

the twisted homology groups H\ (X, C±ω) are studied. Following de Rham's original work in

[3], Kita and Yoshida gave evaluation formulas for intersection numbers of homology in [11].

Subsequently, evaluation formulas for intersection numbers for cohomology were established

and some quadratic relations for Lauricella's Fp's were given in [1]. It is fundamental in

these papers that Hι(Ω*(JC), Vω) is isomorphic to

where E^(x) denotes the space of smooth fc-forms on X with compact support, and that both

of Hι(Ω*(x), V_ω) and H\(X, Cω) can be regarded as the dual space of Hι(E*(x), V J .

For a rational 1-form ω with higher order poles, the groups Hι(E*(x), Vω) and H\(X, Cω)

are well-defined, but H\Ωm(x), Vω) is not isomorphic to H\E*(X), Vω) in general and

H\ (X, Cω) is too small to form a fundamental system of solutions for a confluent hyperge-

ometric system of differential equations. In order to generalize results in [1] and [11], we

need to find suitable cohomology and homology groups to express confluent hypergeometric

functions.

To this end, we modify the isomorphic theorem for an integrable connection provided

by the first author in [13] by replacing the asymptotic parts by C°° objects. The key role is

played by the isomorphism

iω . ti \\L \X), vω) —> tl yb (X), Vω) Ϊ

where S*(x) is the complex of the space of rapidly decreasing &-forms on X (see Sec-

tion 2). This isomorphism induces the intersection pairing between H^(Ω*(x), Vω) and

//'(Ω (x),V_ω)by

LX

In order to evaluate intersection numbers, we give an explicit form for the image φ e Ω1 (x)

under the isomorphism ιω.

We introduce a homology group H\ (C?(X), dω) so that the pairings between an element

φ of Hι(Ω*(x), Vω) and a basis of H\(C?(X), dω) form a fundamental system of solutions

for a confluent hypergeometric system of differential equations (see Section 3). We show
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the perfectness of the pairing between Hι(S*(x), Vω) and H\(C?(X), dω). This together

with the perfect pairing between Hι(Ω*(x), Vω) and Hι(Ω*(x), V_ω) shown in [7] induce

the perfect pairing between H\ (C?(X), dω) and Hi (C~ω(X), d-ω). We present a formula to

evaluate intersection numbers between H\ (C^(X), 3ω) and H\ (C~ω(X), d-ω) by comparison

theorems given by Malgrange in [14]. We give an explicit intersection matrix 4 for certain

elements of Hχ(Cfω{X), d±ω) by this formula.

We have begun with the wedge product of globally defined differential forms to discuss

our method of deriving quadratic relations. An anonymous referee advised us that we should

start from the Poincare-Verdier duality between the locally constant sheaves Cω and C-ω on

the real blowing up space of P with the centers in x (see, e.g., [9, Chapter 3]), which induces

duality of cohomology groups. Although we agree that it is a modern and attractive approach,

we do not think that it will drastically simplify our discussions, because we need explicit

constructions of isomorphisms between cohomology groups and the Poincare duality.

Different approaches to derive quadratic relations for confluent hypergeometric functions

are given by Sasaki and Yoshida in [21] and by Haraoka in [6].

2. Twisted de Rham cohomology groups. Let n\,... , nm be natural numbers sat-

isfying
m

n\ > Π2 > - - > nm , n — Tjw/ > 3

ι = l

and let x\,... , xm be m distinct points on the complex projective line P. Put

a = #{/ I ri[ > 1}, x = {x\,... , xm}, X = P \ x

and let

be a rational 1-form, where α/;* e C, α/;/If. Φ 0 for all /, α i ; i ^ Z in case nx• = 1, and

Throughout this paper, we assume this condition on the parameters α/;£ is satisfied. For the

1-form ω on P, we denote by Vω = d + ωΛ the connection with respect to ω on X; note that

V ω oV w = 0.

A smooth function / defined in a neighborhood C/, of x/ is said to be rapidly decreasing

at Xi if / satisfies

1 d
lim 3- f{t) = 0

for any p, q, r e {0, 1, 2,...}, where ί is a complex coordinate system around JC/. Let S°(JC)

be the vector space of smooth functions on P which rapidly decrease at X[ for any /, and Skix)

the vector space of smooth A:-forms ζ on P such that the coefficients in the expression of ζ in
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terms of a complex coordinate system t around xι rapidly decrease at X[ for any /. We denote

the sheaf over P of such &-forms by Sk(x).

A smooth function / defined on U[ \ {JC/} is said to grow ί-poly normally at JC/ if there

exists r e N such that (f - JC/)Γ f(t) is smooth on ί//. Let P°(x) be the vector space of smooth

functions / on X which grow ί-poly normally at X{ for any /, and Pk(x) the vector space

of smooth Worms ζ such that the coefficients in the expression of ζ in terms of a complex

coordinate system t around JC, grow ί-polynormally at X[ for any /. We denote the sheaf over P

of such fc-forms and that of such (/?, g)-forms by Vk (x) and V{p'q) (JC), respectively. Note that

Γ(X,V{p>q)) = P ( M ) and that the stalk V%'q) oϊV{p'q) at*/ is equal to S^q\\/{t - *,-)],

where <?if is the stalk of the sheaf £ ( ^ ) of smooth (/?, g)-forms over P at x t.

We define three complexes with differential Vω:

( Ω (JC), Vω) : Ω ° ( J C ) ^ > Ω 1 ( J C ) ^ > 0 — > 0 ,

( S (JC), Vω) : S°(x) ^ S\x) ^ > 52(x) ^ > 0,

(/>•(*), Vω) : P°(x) ^ > P ^ J C ) ^ > P 2(x) ^ > 0,

where Ωk(x) is the vector space of rational A:-forms on P admitting poles at x. The k-th

cohomology groups Hk(Q (x), Vω), Hk(Sm(x), Vω) and Hk(P9(x), Vω) of the above com-

plexes are called rational, rapidly decreasing and ί-polynormally growing twisted de Rham

cohomology groups with respect to Vω, respectively. The inclusions

(Ω ( c), V J C (P#(x), Vω), (5#(x), Vω) c (P*(x), V J

of complexes induce the following isomoφhisms among twisted de Rham cohomology groups.

THEOREM 2.1 (cf. [12, Theorem 2], [13, Proposition 3.1], [14, p. 82 ii]). We have

Hk(Ω (x), Vω) - Hk(P'(x), Vω) - Hk(S*(x), Vω).

Fork φ 1, Hk(Ωm(x), Vω), Hk(P9(x), Vω) andHk(S'(x), Vω) vαnwA.

It is shown in [10] that the dimension of Z/1 (Ω*(JC), Vω) is rc — 2, which is equal to the

rank of the associated confluent hypergeometric system of differential equations. See also

[20].

REMARK 2.1. Let Ek(x) be the space of smooth £-forms on X, and Ek(x) the space

of smooth /:-forms with compact support on X. When the 1-form ω admits only simple poles

with non-integral residue, we have the isomoφhisms (cf. [2, Corollary 6.3])

Hι(Ω (x), Vω) - Hl(E'(x), Vω) - Hι(E'(x), Vω),

which were fundamental for the study of intersection numbers in [11]. On the other hand, we

have

Hι(Em(x), Vω) J£L Hι(Ω (x), Vω), Hl(E'(x), Vω) ^ Hι(Ωm(x), Vω)

for a rational ω with higher order poles. This is the reason why we introduce rapidly decreas-

ing and /:-polynomially growing twisted de Rham cohomology groups.
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The first author proved an isomorphism theorem in [13], which yields essentially the

following isomorphism

Hι(Ω (x),Vω)~H](S (x),Vω),

for a rational 1-form ω with non-integral residues at simple poles. In order to derive explicit

formulas for intersection numbers, we will give an elementary proof of Theorem 2.1 in the

rest of this section.

We start with proving the following lemma on the 3 equation. Let Ωp(x) be the sheaf of

meromorphic p-forms over P admitting poles on x.

LEMMA 2.2. (1) The sequence of sheaves

0 _> ΩP(X) Jί> V^°\x) -ίU V{pΛ\x) —> 0

is exact for p = 0, 1.

(2) The sequence

0 — • Γ(P, Ωp(x)) -^> Γ(P, V{p^\x)) - ^ Γ(P, V{pΛ)(x)) — • 0

is exact for p = 0, 1.

PROOF. It is well-known that 3 is surjective on the germ of smooth (p, l)-forms (see,

e.g., [5, p. 25]). Let U 3 JC/ be an open set and suppose that we are given g e V^p'l)(U).

By definition, there exists a number r such that (t — XiYg is a smooth function. From the

surjectivity for smooth (/?, l)-forms, there exists a smooth (p, 0)-form / such that 3 / =

(t — XiYg. Since (t — JC/) commutes with 3, we have 3(//(ί — ;c/)r) = g. Hence, 3 is

surjective. It is clear that the kernel of 3 : P ( / ? 0 ) -> V^p^ is the germ of meromorphic

functions with poles at x.

The second statement follows from the well-known vanishing of Hι(P, Ωp(x)) (see,

e.g., [4, p. 141, 17.17]) and a long exact sequence. q.e.d.

Proof of

Hk(Ω\x), Vω) - Hk(P9(x), Vω).

Let us consider the double complex

I aI a + ω I a + ω

0 1 ( ) ^ ^ '

where each row is exact and Vω = d + ω = d + d + ω. Since Hk(P, Ωp(x)) vanishes for

k > 1, we obtain the following double complex

a + ω la + ω
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By a standard argument in homological algebra, W (Γ(P, Ω9(x)), Vω) is equal to the coho-

mology of the associated single complex of the double complex

0 —> Γ(P, Vm)(x)) - ^ - » Γ(P, V(0Λ)(x)) —> 0

9 +ω 3 + ω

( ) )
q.e.d.

We next consider the ring CXi [[t, t]] of formal power series around JC; . Put

^ = C*, [[ί, Π], ^ = ^ Λ Θ J*. dt, J^. = F°x. dt A dt,

It is known that the sequence

0 — • 5* (JC) —> 4 — • J*. — • 0

is exact, where £* is the stalk at JC, of the sheaf Sk of smooth A:-forms over P.

LEMMA 2.3. 77z<? Λ-/A cohomology group Hk(Jr*., Vω) of the complex

vanishes for k = 0, 1, 2.

PROOF. Suppose that there exists a non-zero / e .7*?. such that Vω/ = 0. Since

3 / = 0, / consists of terms cv(t — x/)y. Let TV be the minimum number such that cyy 7̂  0.

The leading term of (3 + ωΛ)f is

(δ(/i/, 1)N + ai;n.)cN(t - Xi)N~nidt,

which does not vanish by our assumption on the parameters α/;Λ/. and α ί ; i . This contradicts

Vω/ = 0, which implies H°(fi;.(x), Vω) = 0.

Suppose that / = f\dt + fcdt e T\. satisfies Vωf = 0. Since /2 does not contain

terms (t - jcz)~μ (μ e N), there exists F G ̂ J. such that dF = f2dt. The element

/ - VωF = fxdt - (3 + ωΛ)F + /2dί - 3F =: gdt e Px.dt,

satisfies

~d(9dt) = Vωgdt = Vω(/ - VωF) = Vω/ - Vω o V ω F = 0,

which implies that g consists of terms cv(t — ;c/)y. Express ω as an element of j^.dt, put

G= Y^bv(t-xi)v (N eZ)
v=N

and write down the equation VωG = gdt. We can easily find that there exist a unique G

such that VωG = gdt by our assumption on the parameters a/;W|. and αr/; 1. Hence we have

V ω (F + G) = / , which implies Hλ (JF;. (JC), Vω) = 0.
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For any / 6 T\., we have already seen that there exists Fdt e T^.dt such that dFdt =

VωFdt = f, which implies H2(P*X. (JC), Vω) = 0. q.e.d.

Proof of

Hk(S'(x),Vω)~Hk(P'(x),Vω).

Since the sequence

0 — Sk

Xί(x) — Vk

Xi(x) - > J*. - > 0

is exact and <S*(JC) is a fine sheaf, we have the following exact sequence of complexes

(1) o —• (s (*), vω) —• (p (x), vω) —> 0 ( ^ ., vω) —• o.

The previous lemma shows that the fc-th cohomology groups of the complexes (5*(JC), Vω)

and (P # (JC), Vω) are isomoφhic. q.e.d.

Let us now explicitly construct a cocycle in Hι(S*(x), Vω) corresponding to ^ of

//^Ω C c), Vω) under the isomorphism

ιω : Hι(Ωm(x), Vω) -• / / ' ( ^ W , V ω ).

By Lemma 2.3, for each JC/, there exists

(2) G/ = G?+G?= ^ c y ( ί - x / ) y + J ] Cv{t - XiY z PXi

v=-N v=N+\

such that

VωGι = φ e Qι

x.(x) C Tl

x. ,

where iV is a sufficiently large integer. The exact sequence

0 —5<> (*) — * * — . ? £ — 0

implies that there exists a smooth function F, around JC/ such that the formal Taylor series of

Fi at Xi is equal to GJ. We have

(3) fi = G\ + Fi e V%{x), φ - Vωfι G Sx

x.{x).

Though each // is defined only in a small neighborhood £/; of JC;, we can regard hi // to be

defined on X, where hi is a smooth function on P such that

*/(*) = 1, ί €V ί ,

0<hi(t) < 1, ί G ί//\ V/,

for Xi G Vi C ί/, . The element

(4) iωiφ) — φ •
i=\ 1=1

belongs to ker(Vω : S 1 ^ ) -> 52(JC)) and is cohomologous to φ in Hι(Pm(x), Vω).
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We close this section with the following proposition which is necessary to define inter-

section numbers later.

PROPOSITION 2.4. The k-th cohomology group Hk(S*(x), d) of the complex

( S (JC), d) : S°(x) Λ> S\x) ^ S2(x) -1* 0

is isomorphic to the k-th de Rham cohomology group H^R(P, C) of P. In particular, we have

the isomorphism is given by

S2(x) 3 φ\-> I φ eC.
Jp

PROOF. It is known that the sequence

is exact. The exact sequence

0 —Sj,(*) — £ * — . ? £ — 0

yields the following exact sequence of complexes

m

0 — * (S*(x), d) —*• (E , d) — • (&(K ,d)-^0,

where (£"*, d) is the de Rham complex on P. Then Hk(S*(x), d) is isomoφhic to H^R(P, C).

Note that the isomoφhism from H2(S*(x), d) to HQR(P, C) is given by the natural inclusion

and the map from HpR (P, C) to C is by φ \-^ fp φ. q.e.d.

3. Twisted homology groups. Let Cω be the locally constant sheaf over X of ana-

lytic functions which belong to the kernel of the connection V_ω. Since a solution of the

differential equation V_ω/(ί) = 0 can be locally expressed as cexp(/5

r ω) (c e C) around

any point s in X, Cω is determined by the multi-valued function

\«, i ί— JC/) '-1 exp : r
U V ( ί - ^ i ) 2(ί-jcf )

2

on X. Let C^(X) be the vector space of finite sums of formal products p t 0 uPi (t), where pf

is a smooths-chain inP\{x/ | nt — 1} and uβi(t) is abranchof w(ί) on pt ΠX such that uPi(t)

can be continuously extended to 0 at every point of pt Π x if the set p, Π x is not empty. We

define a boundary operator 3ω on C™(X) as 3ω : p 0 wp(ί) h^ θp 0 wp(Olap, where 3 is the

ordinary boundary operator and up(t)\dp is the restriction of up(t) on dp. Since 9ω o 3ω = 0,

we have the complex with boundary operator dω

( C ( X ) , dω) : C^(Z) ^ > Cf(x) ^ > C^(X) — • 0.

The S-th homology group of this complex is denoted by Hk(C?(X), 9ω).
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We define a pairing between Sk(x) and C£(X) by

J PυV J Pv

where

φ e Sk(x),

Since we have (φ + Vω/, γ + dωg) = (φ, γ) for φ e ker(Vω : Sk(x) , / e
Sk~l(x), γ e keτ(dω : Cf (X) ^ C£_,(X)) and ^ G C^+1(X) by the Stokes theorem, this

pairing descends to the pairing of Hk(S*(x), Vω) and Hk(C?(X), dω).

Let us now introduce some elements of CJ^(X). Fix x and α, take xo € X and c G C \ {0},

and define wo = wo(O and u^1 = u^ι{t) around

l ω = c" 1 exp ί / -ω)

note that the product of them is identically 1 around

nι• — 1 sectors 5 ^ , . . . , 5zΐn._j and nx• — 1 sectors 5~

ί// of x/ such that

lim wo(0 = 0, lim

For x { such that Π[ > 2, there are

.. , S^n._{ in a small neighborhood

«o'(') = O,

respectively, where UQ is the analytic continuation of u$ defined around JCO along a path from

xo to a point near JCZ . We arrange them as in Figure 1. Note that S^,... , S*n. _ j are arranged

clockwise and that S^,... , S^n._γ are arranged counterclockwise (cf. Theorem 4.4).

Let p*k(t) be a path from x; to ί in the sector S*k. We assign a branch of wp+ ( r )O) on

FIGURE 1. Sectors.
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p*k(t) by the integral

e x p ( ί ω )
along the path from t to s € pi-k(t) in the path - A ; * ( 0 The formal product

(5) Y&W = PΪkM®up+kωω

is an element of Cf (X) such that

Similarly, we have an element

(6) y-k(

such that

ri (

For jc, such that Π[ = 1, let pf.χ be a loop turning around xι counterclockwise and terminating

at t, and let p~{ = —p^.γ - We assign a branch of u + ̂  (s) on p ^ (ί) and that of u - ^ (s) on

PΪ \ ^) ^y m e integrals

along the path from the ending point t to s e p^(t) in the path —pp^ (t), respectively. We can

regard

(7)

(8)

Cf(X),

by dividing p^, into two simply connected paths, where c, = exp(2π V^Tα, ; i). Note that

dω(Y+i (0) = ^ Γ γ ( f O 1 - ? O cf 1 ) = ί ® 1,

3-ω(ϊVi(0) = -^—r(t ® 1 - f ® cf 1 ) = ί ® 1
Q — 1

Any γpk(t) can be extended along a path to a general point ί e l s o that d±ω(γpk{t)) =

t 0 1. Since

t 0

LEMMA 3.1. //φ e Hl(S'(x), Vω)

then φ = 0in H{(Sm(x), Vω).
, y) = 0 for all y e H\(C?(X), dω)9
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PROOF. For / such that nι > 1, we define a function //.* on S*k as

, f ( fs \
fi;k(t) = (φ, Y?k(t)) = exp / w φ(s).

Jp^k{t) \Jt /

Since s is nearer to X[ than to t in S*k, exp(/r

5 ω) is bounded as t -> x; in 5£ί

that //;A:(/) is well-defined and rapidly decreases at JC, in 5 ^ . Since

499

= exp ^ I (exp ( J

which implies

dt

we have Vω/^ -^ = ψ> By a suitable choice of a path, we see that as t -> x t in the neighboring

sectors S^ι_ι and 5 ^ of 5,- ,̂ exp(/r

5 ω) is bounded on S*k U 5Γ/—1 U S^, which implies that

// /t can be extended to »S'~/_1 and S^ and that //;^(0 rapidly decreases at xι in 5 ^ U S^_{ U

5Γ}. Indeed, fix a sufficiently small real positive number r and assume that t e S~ι_ι and

\t - Xi\ < r. Take to e Sj:k and t\ e S+k so that

arg(ί0 - Xi) = arg(ί - | ί 0 - Xi I = r , - X[ \ = r .

Regard p ^ as a path connecting the segment [x;, ίi], the arc from t\ to ίo and the segment

[to, t]. When 5 is not on the segment [x,, to], we can estimate exρ(/r

5 ω) by exp(/f

5 ω) =

exp(/r

ίo ω) exp(// ω) and show the boundedness. When s is on the segment [JCZ , to], it is easy

to estimate exp(/r

5 ω) and show the boundedness.

For i such that n/ = 1, we define //; i on ί// as

By estimating the integral, we can easily show that ft ; \ rapidly decreases at xι. Note that //; i

is single-valued on £// and that Vω//; i = φ.

Each // ;A:(0 can be extended to X. By assumption, all

fi;k(t) - fj.j(t) = {φ,Yij;kl)

vanish, which means that the functions //^(O determine / e S°(x) satisfying Vωf = φ.

q.e.d.

THEOREM 3.2. The pairing between Hι(S*(x), Vω) and H\(C?(X), dω) is perfect.

PROOF. Put A = IJ, S^. and consider the homology group H\(X, A; Cω). It is

easy to prove by the Mayer-Vietris exact sequence that the dimension of this homology

group is equal to n — 2. Since three exists a surjective linear map from H\(X, A; Cω) to

n' := dimeHλ(C?(X), dω) < dimcHi(X,
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Lemma 3.1 asserts that φ = 0, provided the map H\(C?(X), dω) 3 γ H> {φ, γ) e C

defined by a vector φ in the (n — 2)-dimensional vector space Hι(Sm(x), Vω) is the zero map.

Therefore, n! > n — 2 and hence n' = n — 2, which implies that the pairing is perfect, q.e.d.

4. Intersection pairings. There is the natural pairing between Sk(x) and P2~k(x) by

(9) I φΛψ, φeSk(x), ψ e P2~k(x)\
Jx

the integral converges since φ A ψ e S2(x). Since we have

(yωφ) Λη = d(φΛη) + (-l)k+ιφ A {V.ωη)

for φ e Sk(x), η G Pι~k(x), this pairing descends to a pairing (,) between Hι(S*(x), Vω)

and Hι(P*(x), V_ω), which is called the intersection pairing. By the isomorphisms in The-

orem 2.1, this intersection pairing naturally induces a pairing between Hι ( Ω (JC), V+ ω) and

THEOREM 4.1 ([17]). The intersection number of φ e Hι(Ω*(x),Vω) and ψ e

Hι(Ωm(x),V-ω)isgivenby

(φ, ψ) = 2πV-l2^Res r = X /(G / ψ),

where Gj is a sufficiently large finite part of the formal Laurent series solution G for the

equation VωG = φ at xι in (2).

PROOF. The explicit form of the image φ under the isomorphism ιω : Hι (Ω*(JC), Vω)

-• Hι(Sm(x), Vω) (see (3), (4)) yields

, Ψ) = j ί φ - Σ > / Vω(fi) + fi - dhΛ(φ, Ψ) = j ί φ - Σ > / Vω(fi) + fi - dhΛ A ψ.

Note that

and that its support is Uί=i ^/ ^ o r anY ^ > 0, we have

if we take a sufficiently small £//.

Since the support of dh{ is C// \ V/, we have

- f fi.dhiAψ = - f (Gl+Fi).dhiΛψ
Jx JUi\Vi

= - f d(hi (G/ ψ)) - ί dhi A (Fi ψ).
JUi\Vi JUi\Vi
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The Stokes theorem and the residue theorem together with the property

JO on 3Ui,

11 on 3 Vι ,

imply

- f d(hi (G? if)) = - ί hi (Gί if) + ί Λf (G? tfr)
Jt//\v; ./at/,- ./av

= / Gj ψ = 2π V ^ R e s ^ (G.ί ^)
Λv

On the other hand, since

d(hι (F/ ψ)) = dhi A (Fι ψ) + hid(Fi ψ),

we have

- ί dή/ Λ (F/ ψ) = - ί d(A/ (F/ iA)) 4- ί A/d(F/ ^)
ytZ/XV/ JUi\Vi JUi\Vi

= - / A/ (F/ -ψ)+ hid(Fi VO
J dίlί\d Vi J Ui \ Vi

= f Fi-if+ f hid(Fi ^r) .
JdVi JUi\Vi

Since F/ if is smooth on ί// for a sufficiently large N, for any ε > 0 we can take a sufficiently

small Ui such that

av
<ε, f < ε.

q.e.d.

The intersection numbers for suitable bases of Hx (Ω*(JC), V±ω) are evaluated in [17]. It

is shown in [7] that the determinant of the intersection matrix oϊHι(Ωm{x), V±ω) is

which implies that the intersection form between the twisted cohomology groups is perfect.

In order to define the intersection pairing between H\ (C^(X), dω) and H\ (C~ω(X), d-ω)

by the duality in Theorem 3.2, we introduce spaces of temperate currents as follows. By a

semi-norm similar to that for Schwartz's space of rapidly decreasing functions, the space

Sk(x) becomes a Frechet space. The space S2~k(x) of continuous C-linear functional on

Sk(x) is called the space of temperate currents of degree 2 — k. Taking the dual complex of

(S*(x), Vω), we have a complex with differential V_ω:

Since

(S (JC), V_ω) : S°(x) ^ ^ S\x)

ί Vω(§) Λ η = (-1)A + 1 f ξ A V.ω{η),
Jx Jx
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for ξ e Sk(x), η € Pι~k(x) and γ e C"+ 1 (X), we have natural inclusions of complexes

(p (x), v_ω) c (S (JC), v_ω), (C(X), aω) c (s w, v_ω),

which induce the maps

(10) H :Hι(P (x),V-ω)^Hι(S*(x),^-ω),

(11) 12 • H{(C?(X),dω) -• H'(5 (x),V_ω),

respectively, where Hι(S'(x), V_ω) is the first cohomology group of the complex

(S Oc), V_ω).

THEOREM 4.2. ΓAe maps q and 12 are isomorphisms.

PROOF. It was proved in [14, p. 81, i)] that

Therefore, the map i\ is an isomorphism by virtue of Theorem 2.1.

The injectivity of 12 follows from the perfectness (Theorem 3.2) of the pairing between

the homology and cohomology groups. Since the dimensions of both sides agree, the map 12

is an isomorphism. q.e.d.

By Theorems 2.1 and 4.2, we get the isomorphisms

(12) y + : / / 1 ( C . - « m 3 - ω ) - * / / 1 ( S W , V ω ) ,

(13) r : Hi(C?(X), dω) -» Hl(P'(x), V_ω).

The intersection number of γ+ e Hi (C?(X), dω) and γ~ € H\ (C~ω{X), 3_ω) is defined by

/ ,
= ί Γ(γ+)

THEOREM 4.3. Let

V

γ- = Y^bμp~ ® u-±(t) e Hx{C-ω{X), d-ω).

If the set (J υ μ(P^ ^ Pμ) is finite and pj" α«J p μ intersect transversally at each point of

p+ Π p~ Π X, then the intersection number (y+, γ~) is equal to

where Iυ(p*, p^) w ί/ie topological intersection number of p^ and p~ at v G X.

PROOF. Let δ^ be a delta r-current which has support on A. Then, we have

Fγ- = Σ bβSp- up- .
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Let reg be the regularization

reg : Hι(S\x), V_ω) ^ > Hι(S*W, V_ω).

Then the intersection number (y+, γ~) is equal to

reg(F y +)Λreg(F κ -).

Hence we are going to evaluate this integral.

If we regard the operator Vω as an operator on the 2r -dimensional real manifold X

(r = 1), it is holonomic at degree r — 1 and hypo-elliptic (resp. hypo-analytic [8, Theorem

4.3.3]) on X. Indeed, for any current F of degree r and G of degree r — 1, if V ± ω G = F and

F is smooth (resp. real analytic) at a point p, then G is also smooth (resp. real analytic) at p.

Moreover, the singularity spectrum of G is contained in that of F. Hence, when reg(Fy+) =

Fγ+ + V_ωG y+ and reg(Fy-) = Fγ- + V ω G κ -, the wedge product of G y+ and Gγ- is

well-defined. We note that φ[l] = (φ,l) does not always exist for a temperate 2-current,

because 1 is not a rapidly decreasing 0-form. Therefore, to evaluate fχ τtg(Fy+) A veg(Fy-)

through evaluation of integrals of currents, we need a more precise description of Gγ±.

By using the Heaviside function, we can express a solution Gy+ of veg(Fy+) = Fy+ +

V_ωG y+ as

(14) Gy+ = uy+vy+, uy+eS°(x), uy+eS°(x).

Consider now the wedge product of reg(Fy+) = Fy+ + V_ωG y+ and reg(Fy-) = Fy- +

WωGy-. Then we have

reg(Fy+)Λreg(Fy-) = Fy+ Λ F y - + F y+ Λ V ω G y - + V_ωGκ+ Λ F y - •

It follows from (14) that all terms on the right hand side can be expressed as

(a rapidly decreasing smooth 0-form) Λ (a temperate 2-current).

Hence, the integrals of the 2-currents exist. Therefore, by the Stokes theorem (cf. Kita-

Yoshida[ll, 1.5]), we have

reg(Fy+) Λ reg(Fy-) = / Fy+ Λ F y - + / Fy+ Λ V ω G y -L

= ί
Jx

• [ V_ ω G y + Λ Fy- + [ V_ά
Jx Jx

7y+ A VωGγ-

ι/+ Λ

which is equal to

Σ Σ bvbμ.[up+(t)]t=υ[u-±(t)]t=υIυ(p+9 p~).
Pβ

q.e.d.
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We introduce the following explicit cycles for twisted homology groups. Assume that

the base point xo is in the upper half space H,

X[ e R, x\ < X2 < - - - < xm

and that the interior of the closure of S^{ U S7{ in X contains the set

Li = {t e Ui I Re(/ - JC/) > 0, Im(ί - */) = 0}

for / such that Π[ > 1. We define γpk(xώ by the continuation of γpk(t) in (5), (6), (7) along

a path from t e Spk passing through Ui \ L; to a point in H Π S^χ and going to JCO in H.

For * such that nι > 1, we define γ*{(xo) by the continuation of γ^x(t) along a path from

t e S^.k turning around JC/ counterclockwise in ί// and going to JCO in H U S^{, and γΓχ (χ0) by

the continuation of γΓχ (t) along a path from t e S^.k traversing L/ to a point in H Π 5 ^ and

going to xo in H. The topological path ρfk(xo) of γpk(xo) is as given in Figure 2. We define

n\-\ n2-\ nm-\

Ym V Ym\nm-\

m-\

as
1 < i < σ , k = 1,

1 < i < σ , 2 <k <m- 1

1 < / < m - 1, k = rii.

FIGURE 2. Paths.
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THEOREM 4.4. The intersection matrix /h = {y^~k, γ~ι) is

Ξ2

? p

\<D{ <D2 •- fDσ G)

whose entries are given as follows: the (n/ — 1, nx — \)-matrix Ξj is

i - 1 0 0 0 0\
0 1 1 ••• 1 1
0 1 1 ••• 1 0

0
0

the (rii — 1, m — I)-matrix D/ is

ίθ •

0 •

0 •

and the (m — 1, m — \)-matrix G is

1 1
1 0

(/-I) /

-1 1
0 0

0 0
0 0/

o\
0

o o ... o

/

G =

- 1 1

- 1 1

- 1

1 -

- 1

\-cσ+χ (l-cσ
- c σ + 2 )

505

where C[ = e x p ( 2 7 r v — l α / i ) andσ = #{j \rij > 1}.

PROOF. By applying Theorem 4.3, we have the desired intersection matrix.

It is shown in [7] that the (1, l)-minor of /h is
m }

π j

q.e.d.
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which implies that {γ^kh;k and {γrk}i;k form bases of Hx (C?(X), dω) and Hi (C~ω(X), 3_ω),

respectively.

5. Twisted period relations. Let {φ^} and {γ^} be bases of Hι(Ω*(x), V±ω) and

H\(Cfω(X), 3±ω)9 respectively. We define four (n — 2,n — 2)-matrices as

Π + = (<PΪ> Yv)β,v > Π~ = (<Pμ > Yv)μ,v ' 7ch = (ψμ, <Pv)μ,v , 4 = ( ^ n~)μ,v

The naturality of the pairings between the twisted cohomology group and the twisted homol-

ogy group implies the following (cf. [1, Theorem 2]).

THEOREM 5.1. We have twisted period relations with respect to ±ω:

J7+7h l fJ7~ = /ch, i e., 'Π-I-ιΠ+ = Ίh.

Since /ch and /h can be computed explicitly, the above identities yield quadratic relations

among confluent hypergeometric functions.

5.1. The gamma function Γ(a). The gamma function is defined by

Γ(α)
Jo t

for Re(of) > 0. Let us derive the inversion formula for the gamma function as a twisted period

relation by using Theorems 4.1 and 4.3.

We put

u(t) = e~tta, ω = -dt + a— (a φ 0), (/ii, n2) = (2, 1), (*i, x2) = (oo, 0).

Since n\ + n2 = 3, // !(Ω (X), Vω) and //i(C^(X), 9ω) are 1-dimensional. We define a

branch uo(t) of u(t) around t = 1 as

= - exp ( / ω)

note that

-ω

around t = 1. By Cauchy's integral formula, we have

l

for a φ Z, where C is described in Figure 3 and the argument of t in C belongs to [—2π, 0].

We regard the integral as the pairing of

φ+ = dt/t e Hι(Ω'(x), V+ω)

and
1

Put φ~ = d ί / ί G if1 (Ω (jc), V_ω) and define a twisted cycle ^~ by γ~ = C®

(t) e H\(C~ω(X), d-ω), where C is as described in Figure 3 and the argument of t
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arg(O

arg(ί)

= π

= —π

C
0

v\ C arg(

V2 arg(

FIGURE 3. Cycles.

belongs to [—π, π]. Apply the change of coordinate t = eπ

fc, e't'Vdt/t. Then we have
to the integral (φ~, γ~) =

(φ , -L e-se-aπS=ϊs-a
ds

= -2SΓΛ sin(πa)Γ(-a).

We evaluate (φ+, φ~) by Theorem 4.1. We need to solve

VωG =dG - Gdt + aG— = φ+ = —

around t = x\ = oo and t = X2 = 0. The formal solutions Gi and G2 around t = 00 and

ί = 0 are expressed as

Gi = -s - (a - l)s2 -(a- l)(α - 2)^3 ,

1 1

respectively, where s = \/t is a local coordinate around oo. Theorem 4.1 implies that

+ j — / -ds d t \ _ I—( l\_2τrV^T

V s=° 1 s 2 t ) \ a)~ a

Next, we evaluate (y+, γ~) from Theorem 4.3. We have C PiC = {v\, V2} (see Figure 3).

The topological intersection number of C and C' at v\ is —1 and that at vι is 1. Note that

wo(0"o l(t)\t=υχ = e~2π^~la , uo(t)uQl(t)\t=V2 = 1.

Then the intersection number (y+, γ~) is

1

The twisted period relation for φ± and γ^ is
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which is nothing but the inversion formula for the gamma function:

π

sin(7rα)

5.2. The integral f*™ e~t2/2dt. Let ω = -tdt and n\ = n = 3, x\ = oo. The

spaces Hι(Ωm(x), V± ω) and H\(Cfω(X), d±ω) are 1-dimensional. Let φ± = dt and

y + = [—oo, oo] (8) e~ι I2 , γ~ = [

The intersection number (dt, dt) is 2π->/—T as given in Theorem 4.1 and [17], and Theorem

4.3 implies (y + , y~) = 1. Since

<Λ, y+) = / e-'/2dt, (dt, y~) = / e< /2dt = >/=ϊ /

we have the twisted period relation

+oo

which yields the identity f_OQet

5.3. The Bessel function (rc = 4 ) . The Bessel function is defined by the power series

°° (_Λ\k

where z e {z e C\ Re(z) > 0}, the argument of z/2 is in (-π/2,7r/2), and a e C. It is

known that 7α(z) satisfies the Bessel differential equation

d2w 1 dw I a2\

and that Ja(z) admits the integral representation

where C' is as in Figure 3 and the argument of / on C' is in [—π, π]. By putting

(ni,π 2 ) = (2,2), (

we regard Ja(z) as the pairing ( ĵ1", γf), where

= C ® u(t) e
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Take

+ _ dt j m

Ψl ~ 2τrV^T ω

1 dt
— 6 H\a'(x), V_ω) ,

Ψχ 2πV=ϊ t
I dt i

27ΓV —1 *

where C is as in Figure 3 and the argument of t on C is in [—2π, 0]. By results in Theorem

4.1 and [17], the intersection matrix (φf, ψj)ij is

0 2/z
-2/z 0

We have

/ (C1 C\ 1 / (C1 C\ 1
iy, ^ u , Ks) — i , lyjW^ i ^ ) — — A ,

u(v\)u~ (v\) = exp(—27rv — la), u(v2)u~ (V2) = 1.

Thus the intersection number of γ^~ and γ^~ is exp(—27ΓΛ/—Tα) — 1. The twisted period

relation

implies that

= exp(—

Note that {φ£, γf) = Ja-\(z). Since

by the change of variable t = exp(—π V^T)^, we have

Hence we have a quadratic identity among the Bessel functions

2sin(7Γfl)
Ja(z)J-a+\(z) + Ja-\(z)J-a(z) =

πz

n 2 JC + c o s 2which is called LommeΓs formula. For a = 1 /2, this formula is equivalent to sin2 JC +cos2 JC

1.
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5.4. A confluent hypergeometric function of two variables (n = 5). The function

Φ2(bi,b2,c;z\,z2) defined by the power series

(*i;*i)(*2;*2) kλ k2

which converges in C 2 , is one of the confluent hypergeometric functions derived from Ap-

pelΓs hypergeometric function F\(a, b\, b2, c; z\, z2). Here (b; k) stands for b(b + l)(b +

2) (b + k — 1). This function admits the integral representation

1 Γ
Jc

where C is a path from +σo turning along a large circle containing z\,z2 and 0 counterclock-

wise and going to + o o , and the arguments of t, (t — z\) and (t — z2) is near 0 around the end

point of C (see Figure 3). Put

ω = d\og(tb^b2-c(t - z\Vbι(t - ziT^e-*)

'bx+b2-c bλ b2

t t-zi t - z i

= (2, 1, 1, 1 ) , (JCI, x2, JC3, X4) = (00, 0, z\, z2),

, dt , dt
= d t t , Pi

dt _ dt dt -z\dt _ dt dt -z2dt
ψχ = — , φ2 = - - —— = — — - , φ3 =t t-z\ ί ( ί - z i ) 1 3 t t - z 2 t(t-z2)

We have

/I 0 0 \ 1 Λ ° °
/ c h = 2πV=ϊ 0 -1/fci 0 , l-ι = ——= 0 -fti 0

\0 0 -1/62/ 2τrV-l y 0 0 -b2

Let)/+ be the element of H{(C?(X),dω) defined by

— ^ C 0 tbι+b2-c(t - zιΓbι (t - Z2Yble'1,
Γ ( l - c)(l - exp(27rx/^Tc))

where the arguments of ί, (ί — z\) and (ί — 22) is n^ar 0 around the end point of C. Let

be the element of Hx (C~ω(X), 3_ω) defined by

C (8) Γb*-b2+c(t -z\)bχ{t- Z2)bleι,

where C is a path from —00 turning along a large circle containing zι,z2 and 0 counterclock-

wise and going to — 00, and the arguments of t, (t — z\) and (t — z2) is near π around the end

point of C (see Figure 3).
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It is easy to see that

Ϊ +) ΦΦufa, c\ zuzi),

(Ψ^ /i+> = --Φ2Φ1 + 1, b2, c + 1; zi, z2),

<<P3

+, Ki+) = — Φ i Φ i M + 1, c + 1; zi, Z2)
J ι c

By putting ί = exp(7rv^T)s, we have

( 7 r ) ί " * 1 - * 2 + c ( ) * 1 ( ) V
ί τ = — ί (sΓb^+c(-s - zύ^i-s - Z2)h2e~s-

- exp(-2τr V^Tc)) Jc *exp(

; - z i , -Z2)

Similarly, we have

-fa, - c + 2; - Z l , - Z

Since the intersection number of γ* and /j~ is

7 =
c)(l - exp(2ττvc :ϊc)) Γ(c)(l - exp(-

sin(7rc)

- exp(27TVCTc))

2τrvCΓϊ

the twisted period relation yields that

Φ2Ψ1, b2, c; z\, Z2)Φ2(-b\, -in, -c + 1; - z i , -Z2) ~

+ b2z2Φ2φ\,b2 + l , c + 1; z\,z2)Φ2(~b\, -in + 1. —c + 2; -z\, -z2)).

5.5. A generalization of Φ2 (ft general). The function 02(b, c; z) = Φ2φ\,... , &r, c;

^ i , . . . , z r ) defined by the power series

\ ! —— 7 * . . . Ύ^r

which converges in C r , is one of the confluent hypergeometric functions derived from Lauri-

cella's hypergeometric function Fo(a, b\,... , br, c\ z\, .. , zr) By following the previous



512 H. MAJIMA, K. MATSUMOTO AND N. TAKAYAMA

argument, we have

Φ2(b, c; z)Φ2(-b, -c + 1; -z) - 1

eμ, c + 1; z)Φ2(-b + eμ, -c + 2; -z) ] ,

where e μ is the μ-th unit vector.
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