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Abstract. In 1973, Lawson and Simons conjectured that there are no stable currents in
any compact, simply connected Riemannian manifélti which is 1/4-pinched. In this paper,
we regardV as a submanifold immersed in a Euclidean space and prove the conjecture under
some pinched conditions about the sectionalatures and the principal curvatures ®f".
We also show that there is no stabpleurrent in a submanifold o/ and thep-th homology
group vanishes when the shape operator oftitemanifold satisfies certain conditions.

1. Introduction. For any compact Riemannian manifald”, a theorem of Federer
and Fleming [1] asserts that any non-trivial integral homology clagg, iV, Z) corresponds
to a stable current. By using techniques from the calculus of variations in geometric measure
theory together with the Federer-Fleming theorem, Lawson and Simons [3] showed that there
are no stable currents in a sphef®, and there is no stablg-current in submanifolds im-
mersed inS™ with sufficiently small second fundamiahform. The result of [3] on subman-
ifolds of $™ has been extended to submanifolds of a Euclidean spédagr of S”'t x ™2 by
Xin [4] and Zhang [5], respectively.

In [3], Lawson and Simons conjectured that there are no stable varifolds, in particular,
there are no stable currents in any cauip simply connected Riemannian manifaif”
which is 1/4-pinched. As variants of the above conjecture, there have been many results on
stable minimal submanifolds and stable harmonic maps. However, the original conjecture by
Lawson and Simons is still open. In 1985, with comparison theorems, Howard [2] proved
that there is a constad{m, p) > 1/4 such that there is no stablecurrent inM™ when
M™ is §(m, p)-pinched. However, the expression&in, p) is complex and unfortunately
M, —o008(m, p) = 1.

In this paper, we regard such a compact Riemannian mantitdas a submanifold
immersed in a Euclidean spa&& ™ with essential codimensidn We shall prove that there
are no stable currents iM"™ if one of the following conditions is satisfied:

1) The sectional curvaturégy, > (k/4)(ho—wmo)2, wherergandug are the maximum
and the minimum of the principal curvaturesmf”, respectively;

2) au > (1/4)(» — )2, wherex andyu are any two principal curvatures of.

The condition 1) indicates that Lawson-Simons’ conjecture is triéif — 1.0)2 < 1 on
M™,
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With condition 2), we can prove that if any two principal curvatukeg of a compact
submanifoldM™ (m > 3) in E™t* satisfy the inequality 3- 2v/2 < A/u < 3+ 24/2, then
M™ is homeomorphic to a sphere.

Let N" be a compact submanifold immersed in the manifdti satisfying the above
condition 1) or 2) and a p-rectifiable set inV". By using the shape operatots associated
with the immersionNV* — M™, we introduce a selfadjoint linear operaigr* on p-space
T, S C T, N. We shall show that there is no stalglecurrent inN" if, for anyx € N and any
p-subspacé in T, N, tr 04 < 0.

2. Preiminaries. We use the same notation as in [3, 5] throughout this paper. In this
section, we recall several formulas employedb]. Also, we prove three lemmas which will
be used in the proof of our main theorems.

Let M™ be anm-dimensional compact Riemannian manifold with metrjc) and Levi-
Civita connectiorv. Denote by(S, &) an oriented p-rectifiable set inM™. The set of recti-
fiable p-currents is defined by

(e.¢]
Np(M) = {S = nS,

Sn = (Sp, £0), M(S) = Y _nHI(S,) < oo} :
n=1

n=1

S € R,(M) is called an integrap-current if S and the boundaryS are both rectifiable
currents. The space of integradcurrents is denoted by, (M). The direct sund, (M) =
@p 3, (M) together with the boundary operatr. 3,(M) — J.(M) forms a differential
chain complex.

FEDERERFLEMING THEOREM[1]. For each p > Othereisa natural isomorphism
Hy(3.(M)) = H,(M, Z).

Moreover, for each @ € H,(3+(M)) there exists a current S € « of “least mass’, that is,
M(S) < M(S)foral & € a.

Let¢, : M™ — M™ be a 1-parameter group of local diffeomorphisms generated by
a smooth vector field € C(TM). A currentS € %,(M) is said to be stable if for each
X € C(T M) there is are > 0 such that

M(¢=S) = M(S)

for all |#] < e. This implies that for anyX € C(T M) we have

dM(qs S) =0 @ M (¢=S) >0
di ULy T A2 T T
Let (S, &) be an orientedp-rectifiable set. Ther is an H”-measurable section of
AP TM over S with the property that fof{”-almost allx € S, & is a simplep-vector
of unit length representing, S. For such a pai¢s, &), let

d2
Qe (X) = ﬁ”(br*éﬂ

t=0



NONEXISTENCE OF STABLE CURRENTS 493

Then the second variation formula derived by Lawson and Simons [3] can be given by

2
=Y n / Qg, (X) dHP (x).
t=0 n Sn

d
(2.1 WM(@*S)
If X = Vf forsomef e C3(M), and{ei, e} ( =1,2,...,p; a = p+1,...,m)isan
orthonormal basis of M with £ = e1 A --- A e, then (see [3, p. 436])

2
(2.2) Qs (X) = [ D (a¥ (e, ei) } +2) (¥ (ei). )+ Y (Vx. o X, @),
1 o 1

whereaX (¢;) = V,; X andVy ., X = Vx Ve, X — Vyye X.

For a p-rectifiable setS in M™, it is known that forH”-almost all pointst € S, there
exists an approximatg-spacel, S C T, M, to S. Now we introduce an operat@* on 7, S
and establish the relationship betwaef and Q.

Lety : M™ — E™*K be an isometric immersion @™ into the Euclidearin +k)-space
E™* andD the Levi-Civita connection of”+*. Denote by (E™+*, M) the normal bundle
of M™ in E™**. For a smooth section € C(V(E™t* M)), let A, be the shape operator
determined bw. At x € M™, A, : .M — T, M is a selfadjoint linear operator, which is
defined by

AvX = —(Dxw)",

whereX e C(T M). Let {v;} be an orthonormal basis of the normal sp&geE” %, M) and
A, = A,,. For a given integep € (0, m), let V be ap-dimensional subspace i, M and
{e;} an orthonormal basis df. Define a selfadjoint linear ma@4 : V — V associated with
the immersiory by

(2.3) 0'x =Y [ 2(Z<A§X ,ei)ej — BfX) —(tr Ay —tr BA)BAX} ,

A i
whereX € V andB, is a map orV associated witt, defined by
(2.4) B X = Z(AAX, eie; .

1

04 is independent of the choice of basesgt E" X, M) andV. Its trace is given by

(2.5) tr 0% = (Q%i.ei) =) [ 2> (Asei. eq)? — (I Ay —tr By)r B{| ,

i A i,a

where{e,} is an orthonormal basis ¢f+ which is the orthogonal complement Bfin 7,, M.
Let (S, &) be an orientedp-rectifiable set. Atx € S, we associate a tangeptspace

V =TS Cc TyM. Choose an orthonormal bagis, ¢, } of T, M such that{e;} is a basis of

Vandé =e; A--- Ae,. We now considep; given by (2.2) as a quadratic form defined on

the set

26) 6=’ e C(TM)|ve E™* vT(x) = orthogonal projection of onto T M} .
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Note that atc € M™, {e;, e4, v;} is an orthonormal basis & **. Therefore,

trQs =Y Qe+ Qclea)+ Y Qc(vi).
i o A

Making use of the proof given in [5], we obtain

LEMMA 1[5]. Let M™ bea submanifold immersed in E”**. Then

tr Q¢ =tr Q4.
LEMMA 2. Letx1,x2,...,Xm Y1, Y2,..., ym bereal numbers satisfying
2.7 D @)= "a)?=1. ) xaya=0.
a a a
Then for given real numbersky, ko, . . ., k,,, we have

2 1
2
<Zkaxa)’a> = Z(kmax—kmin) ,
a

where kmax = MaXi<q<mika}, kmin = MiN1<q<m{ky}.

PrROOF.  In order to get the maximum of the functioh = (3_, kaxaya)? under the
constraints (2.7), partially differentiating

2
F = (Zkaxa.Va> + Cl[Z(xa)z - 1j| + CZ[Z()’a)Z - 1] + C3Zxa)7a

with respect to each variable and equating to zero, we obtain

2kqya Zkhxb)’b +2C1x4 + C3y, =0,
b

2kgxq Zkbxbyb +2C2y, + C3x, =0,
b

whereC1, C2, C3 are Lagrange multipliers. Set = Y, ks (x)%, v = Y ka(va)2 w =
> . kaxayq. Then the above equations can be rewritten as

(2.8) 2wkgy, + 2C1x4 + C3y, = 0,

(2.9 2wkaxq +2C2y, + C3x4 = 0.
By using the constraints (2.7), from (2.8) and (2.9) we have
2w?+2C1 =0, 2wv+C3=0; 2wu+C3=0, 2w?+2C;=0.
Hence,
(2.10 C1=C2=—w2=—f, C3 = —2wv = —2wu.
If w=0,thenf =0.
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Now assume thab # 0. ThenC1 = C2 # 0, andC3 = —2wv = —2wu giveSu = v.
From (2.8) and (2.9) we obtain
2C1[(xa)* = ()?1 = 0.
Hence,(x,)? — (v2)2=0, a =1,2,..., m. Without loss of generality, we may suppose
xs=ys(s=1,...,k); x;=—-y@t=k+1,...,m).
Then (2.8) or (2.9) implies
Qwks; +2C1+ C3)xs, =0 (s=1,...,k),
Qwk; —2C1+C3)x;, =0 (t=k+1,...,m).

Now, 3, xava = 3. (x5)% — 3, (x1)%; from (2.7 ) we have) " (x,)? = Y, (x)? = 1/2.
Hence there are at least anand arg such thatrs, # 0 andx,, # 0. Therefore we obtain

(2.11 2wksy +2C1+C3 =0, 2wk,y—2C1+C3=0.
From (2.11) and (2.10) we get
2C1+ C 2C1-C

which imply thatw = (1/2)(ks, — ki,). Consequentlyf = w? < (1/4)(kmax — kmin)?-

A similar argument proves the following

LEMMA 3. Letx1,x2,...,%m; Y1, Y2, ..., ym bereal numbers satisfying
Z(xa)z = Z()’a)z =1, Zana =0.
a a a
If given real numbersks, ko, ..., k,, satisfy

1
kakb>Z(ka—kb)2(resp.,z), a,b=212....m,

then

2
2 <Z kaana> - Zka(xa)z Zkh()%)z <0 (resp., ).
a a b

3. Mainresults. In this section, we assume that” is an immersed submanifold in
E™k with essential codimensidn i.e., M™ can be immersed iB”**, but not inE™*! with
[ <k.

Let {v;} be an orthonormal basis of the normal sp&GeéE™+*, M), and associate the
shape operatod, = A,,. From the Gauss equation ™M™, the sectional curvature of the
2-planeX AY C TyM is

(3.1) K(XAY) =) [AX, X)AY,Y) = (A, X, Y)%],
A
whereX andY are mutually orthogonal unit vectors h M.
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THEOREM 1. Let M™ be a compact submanifold in E”**. Denote by 1 and o the
maximum and the minimum of the principal curvatures of M™, respectively. If the sectional
curvatures of M satisfy

@2 Ku > 300~ 10,
then there are no stable currentsin M™ and H, (M, Z) = Ofor any p € (0, m).

ProOOE For each fixed index, there is an orthonormal badig,} in 7, M such that
3.3 AE,=koE;,, a=12,....m

Let (S, &) be an orienteg-rectifiable set in™. With a pointx € S, associate a tangent
p-spaceV = T,S C T, M. Choose an orthonormal bagis, ¢, } of T, M such thatle;} is a
basis ofV. Also, let

(3.4) e = Ze?Ea , eq = ZegEa.

Then

(35) D=1, > (=1, Ze”e“ =0,
a a

and

Ake,' = Z e?kMEa
a

Hence we have
(Arei, ea) = Ze"e“km :

From Lemma 2 we see thit= (3_, ¢! O[km)z under the constraints (3.5), has the maximum
(1/4) (kmax — kmm) , Wherekmax = MaXi<qg<m{kia}, kmin = MiNi<q<m{kis}. Therefore,

1
(3.6) (Asei, eq)? < 700 = 10)% .

In (3.6), Ao and o are the maximum and the minimum of the principal curvatures/8f,
respectively, which are independent of the index
Combining (3.1) and (2.5), we obtain

(3.7 tr 04 = Z K(ei Aey) + Z (Asei, eq)?

Ao

From (3.6) and (3.7), the condition (3.2) implieg2"* < 0.
Let# be the set given by (2.6). iff € 0, vT is the gradien¥f of the functionf (x) =
(v, x) onM™. ForX € 0, let ¢, be the flow generated by and set
d2
0s(X) = M(cbz*S)

’

t=0
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whereS € R, (M). Then from (2.1) we have
(3.8) tr Og = Zn/ tr Qs, dH” (x).
n S”

From Lemma 1, we get tQg, = tr 04 < 0. Hence, trQs < 0. This implies that there is
no stablep-current inM™ for any p € (0, m). Federer-Fleming’s theorem then shows that
H,(M,Z)=0,p=12,....m—1.

A similar argument as in Theorem 1 proves the following

THEOREM 2. Let M™ be a compact submanifold immersed in a simply connected
space form Ntk (¢) with ¢ > 0. Denote by 1o and uo the maximum and the minimum
of the principal curvatures of M™, respectively. If the sectional curvatures of M™ satisfy

k 2
Ky > Z(Xo—uo) —c,
then there are no stable currentsin M and H,(M,Z) =0for 1 < p <m — 1.

THEOREM 3. Let M™ be a compact submanifold immersed in E”*%. If any two prin-
cipal curvatures A, u of M™ satisfy

At > 20— w?
> p— f—
I’L 4 I’L ’
then there are no stable currentsin M™ and H,(M, Z) =0for p =1,2,...,m — 1.
PrROOF. As in the proof of Theorem 1, for each fixed indexfrom (3.3) and (3.4) we

have
Ajei = Ze?kkaEa . Ajey = Z egkkaEa s
a a
wheree! ande, satisfy the conditions (3.5). Hence we have

(Ayei, eq) = E efedkia

A, =Y (Arei,ei) + Y (Areas ea) = Y (€ kra + Y _ (€0 kra s
o,a

i o i,a

B, =) (Ase;, e) Z(e“)zkm

1

Therefore
ZZ(AAei, eq)? — (trA;, — trBy)trB;,

@ ,
= Z [2( Ze?egk)\a) - Z(e?)zkm Z(ez)zkkb} .
io a a b

(3.9)
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From Lemma 3 and the assumption of Theorem 3, (3.9) then implies that
ZZ(AM, eq)? — (trA; —trB)trB; < 0.

i,a
Hence, from Lemma 1, we obtainQe, = trQ4 < 0. Consequently, from (3.8), we have
trQs < 0. O

REMARK 1. The inequality.u > (1/4)(x — n)? is equivalent to

[ —B=2vV2)ullr — B3+ 2V2)u] <0,

which is also equivalent to

A
(3.10) 3-2V2< 2 <3+2/2.
n

By the same proof as used for the second part of Theorem 1 in [6], we can prove the
following

THEOREM 4. Let M™ (m > 3) be a compact connected and orientable submanifold
immersed in E”** . If any two principal curvatures i, . of M™ satisfy the inequality (3.10),
then M™ is homeomor phic to a sphere.

THEOREM 5. Let M™ beasubmanifoldin E”**. Supposethat itsprincipal curvatures
satisfy one of the following conditions:

ClL  ip = (1/H0.— w2,

C2. thesectional curvatures Ky > (k/4)(ho — 10)%,
where Ao and o are the maximum and the minimum of the principal curvatures of M™,
respectively. Let N” be a compact submanifold immersed in M™ and p € (0,n) a given
integer. If, for any x € N" and any p-subspace V in T, N, the selfadjoint map Q4 on V
associated with theimmersion N — M™ satisfies

trQA <0,
then thereis no stable p-currentin N" and H,(N, Z) = H,—,(N, Z) = 0.

PROOF. LetV, V, D be the Levi-Civita connections a¥", M™, E"** respectively.
Associated with the immersioN” — E™1* the shape operatot'v determined by €
C(V(E™*k, N)) is given by

AY = —(Dyn)T,
whereY € C(TN). In particular, ifv € C(V (M, N)),
(3.12) AY = —(Dyv) = —[Vyv +h(w, V)T = —=(=A,Y + Vi) =AY,
where#h is the second fundamental form of the immersigft — E”t*. Also, if v €
C(V(E™* M), then
(3.12) AY = (=AY + Vi) = A1),

At x € N", we take an orthonormal badis,, 7.} of Vi (E"1k, N) so that{v,} and{n,} are
bases oV, (M, N) andV, (E"**, M), respectively. Leti; = A,, andA, = A,,. Denote by



NONEXISTENCE OF STABLE CURRENTS 499

04’ the selfadjoint linear operator dn associated with the immersiow! — E™** defined
by (2.3). It follows from (3.11) and (3.12) that

(3.13 trod =tro4 + A(V),
where
AV) =) [2(Asei, €a)? — (Aeq, €a)(Auci €i)] .

a,i,o

By using Lemma 3 with the condition C1, or Lemma 2 with C2, we then obtain) <
0. If tr@4 < 0, then (3.13) implies ®4" < 0, and from (3.8), ©©s < 0. The proof is
completed.

REMARK 2. If M™ = E™, thenKy = A0 = uo = 0 in E™, and Theorem 4 reduces
to Theorem 1 of Xin [4].
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