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AN INDECOMPOSABLE CONTINUUM AS

SUBPOWER HIGSON CORONA

By

Yutaka Iwamoto

Abstract. In this paper, we study topological properties of the sub-

power Higson coronas of proper metric spaces and show that the

subpower Higson corona of the half open interval with the usual

metric is an indecomposable continuum. Continuous surjections from

Higson-type coronas onto a Higson-type compactifications of the

half open interval are also constructed.

1. Introduction

Let ðX ; dÞ be a metric space with a metric d and let Bdðx; rÞ denote the

closed ball of radius r centered at x A X . A metric d on X is called proper if all

balls Bdðx; rÞ are compact. The Higson compactification is a compactification

defined by the coarse structure of a proper metric space and plays an important

role in the large-scale geometry [14]. Also the sublinear Higson compactification

is known as a compactification defined by the sublinear coarse structure of a

proper metric space [3], [5]. There are several ways to define a Higson type

compactification, by a coarse structure [4], [5], [14], by a large scale structure

[6], and by a closed subring of the algebra of all continuous bounded real-valued

functions [10], [11]. The subpower Higson compactification was introduced in [11]

as a compactification defined by a closed subring of the algebra of all continuous

bounded real-valued functions. And the asymptotic power dimension was studied

in [12] related to the subpower Higson corona.

In this paper, we adopt the definition associated with a closed subrings of

the algebra of all continuous bounded real-valued functions and study topological

properties of the subpower Higson compactifications and their coronas. It is
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known that a Higson-type corona nX can be realized by a discrete subspace of

a proper metric space X . The Higson corona and the subpower Higson corona

contain a copy of the Stone-Čech remainder bNnN of the natural numbers N [10],

[11]. Also it was shown that the Higson corona of the half open interval ½0;yÞ
with the usual metric is, like the Stone-Čech remainder b½0;yÞn½0;yÞ [2], an

indecomposable continuum [9]. We show that the subpower Higson corona of the

half open interval with the usual metric is also an indecomposable continuum.

Then we construct continuous surjections from Higson-type coronas onto Higson-

type compactifications of the half open interval.

2. Basic properties of the subpower Higson compactification

A (not necessarily continuous) function s : Rþ ! Rþ between the set of

positive real numbers is called asymptotically subpower (resp. asymptotically sub-

linear) if for every a > 0 there exists t0 > 0 such that sðtÞ < ta (resp. sðtÞ < at)

whenever t > t0. The set of all asymptotically subpower functions (resp. all

asymptotically sublinear functions, all positive constant functions) is denoted by

P (resp. L, H). Since every constant functions are asymptotically subpower and

every asymptotically subpower functions are asymptotically sublinear, it follows

that H � P � L.

In what follows, a metric space ðX ; dÞ is assumed to have a base point x0,

and the distance dðx0; xÞ of x A X from x0 is denoted by jxj. For a subset A of

X , the diameter of A is denoted by diamd A, that is, diamd A ¼ supfdðx; yÞ j
x; y A Ag.

Let ðX ; dÞ and ðY ; rÞ be proper metric spaces. A map f : X ! Y is called

Higson subpower (resp. Higson sublinear, Higson) provided that

lim
jxj!y

diamr f ðBdðx; sðjxjÞÞÞ ¼ 0ð�Þ fs

for each s A P (resp. s A L, s A H). Hence, a map f : X ! Y is Higson sub-

power if and only if, given asymptotically subpower function s and e > 0, there

exists a compact subset K � X such that diamr f ðBdðx; sðjxjÞÞ < e whenever

x A XnK .

Let C �ðX Þ be the set of all bounded real-valued continuous functions on

X . For a subset F of C �ðXÞ, let eF : X !
Q

f AF If , where If ¼ ½inf f ; sup f �,
f A F , be the evaluation map of F defined by ðeF ðxÞÞf ¼ f ðxÞ for every x A X .

It is known that if F � C �ðX Þ separates points from closed sets, then eF is an

embedding [15, 8.16]. Identifying X with eF ðX Þ, the closure eF ðX Þ of eF ðX Þ inQ
f AF If gives a compactification of X .
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For a proper metric space X , we consider the following three subsets of

C �ðXÞ:

CHðXÞ ¼ f f A C �ðXÞ j f satisfies ð�Þ fs for every s A Hg;

CPðXÞ ¼ f f A C �ðXÞ j f satisfies ð�Þ fs for every s A Pg;

CLðXÞ ¼ f f A C �ðXÞ j f satisfies ð�Þ fs for every s A Lg:

Then they are closed subrings of C �ðX Þ with respect to the sup-metric. Also,

they contain all constant maps and separate points from closed sets. Hence the

subrings CHðX Þ, CPðX Þ and CLðXÞ determine compactifications of X . Since H �
P � L, it follows that CLðXÞ � CPðXÞ � CHðXÞ (cf. [11]).

Let c1X and c2X be compactifications of X . We say c1X � c2X provided

that there is a continuous map f : c1X ! c2X such that f jX ¼ idX . We note

that a continuous map f : c1X ! c2X with f jX ¼ idX is unique and surjective. If

c1X � c2X and c1X � c2X , then we say that c1X and c2X are equivalent.

The Higson compactification hHðX Þ, the subpower Higson compactification

hPðXÞ and the sublinear Higson compactification hLðX Þ are compactifications

defined by closed subrings CHðX Þ, CPðXÞ and CLðXÞ respectively, that is, hAðXÞ
is equivalent to eCA

ðX Þ, where A A fH;P;Lg and CA ¼ CAðXÞ. Their coronas are

defined by nAX ¼ hAðX ÞnX for each A A fH;P;Lg. These three compactifica-

tions are referred to as the Higson type compactifications. We note that hLðX Þ �
hPðXÞ � hHðX Þ since CLðXÞ � CPðXÞ � CHðXÞ.

One of the basic property of the Higson type compactifications is the

following:

ð\Þ A bounded continuous map f : X ! R has an extension f̂f : hAðX Þ ! R

if and only if f A CAðX Þ,
where A A fH;P;Lg. This condition holds for any closed subring of C �ðXÞ which
contains all constant maps and separates points from closed sets [7, Problem

3.12.22(e)]. See [1] for a comprehensive and detailed description of this property.

In this section, we shall derive some basic properties concerning the Higson

subpower compactifications using the basic ideas of [4], [5] and [10].

The following proposition is a fundamental property of the Higson type

compactification which is derived from the property ð\Þ and can be shown by a

similar argument to that in [10, Proposition 1].

Proposition 2.1 (cf. [10]). Let X be a proper metric space. Then the sub-

power (resp. sublinear) Higson compactification is the unique compactification of
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X such that if Y is any compact metric space and f : X ! Y is continuous, then

f has a continuous extension f̂f : hPðXÞ ! Y (resp. f̂f : hLðXÞ ! Y ) if and only if

f satisfies ð�Þ fs for any s A P (resp. for any s A L).

Let ðX ; dÞ be a metric space. We call a finite system E1; . . . ;En of closed

subsets of X diverges as a power function if there exist a > 0 and r0 > 0 such

that maxfdðx;EiÞ j 1a ia ngb jxja whenever jxj > r0. If a finite system E1; . . . ;

En diverge as a power function then ð
Tn

i¼1 EiÞ \ ðXnBdðx0; rÞÞ ¼ q for some

r > 0. As in the case of Higson compactification [4, Lemma 2.2], we have the

following:

Lemma 2.2 (cf. [4]). Let ðX ; dÞ be a non-compact proper metric space. Let

E1; . . . ;En be a finite system of closed subsets of X such that
Tn

i¼1 Ei ¼ q. Let

fi : X ! Rþ be the map defined by fiðxÞ ¼ dðx;EiÞ, 1a ia n and let F ¼
Pn

i¼1 fi.

If the system E1; . . . ;En diverges as a power function then the map gi ¼ fi=F : X !
½0; 1� is Higson subpower.

Proof. First we note that the well-definedness of gi follows from the as-

sumption
Tn

i¼1 Ei ¼ q. Let a; r1 > 0 be positive numbers such that maxfdðx;EiÞ j
1a ia ngb jxj2a whenever jxj > r1. Then F ðxÞb jxj2a whenever jxj > r1. Let

s : Rþ ! Rþ be an asymptotically subpower function. Then there exists r2 > 0

such that sðtÞ < ta for every t > r2. Given e > 0, we can take r3 > 0 so that

ðnþ 1Þ=ta < e=2 for every t > r3.

Put r0 ¼ maxfr1; r2; r3g. Let x be a point with jxj > r0 and let y A

Bdðx; sðjxjÞÞ. Then we have

jgiðxÞ � giðyÞj ¼
fiðxÞ
FðxÞ �

fiðyÞ
FðyÞ

���� ����¼ fiðxÞ � fiðyÞ
F ðxÞ þ fiðyÞ

F ðyÞ �
FðyÞ � F ðxÞ

F ðxÞ

���� ����
a

dðx; yÞ
FðxÞ

���� ����þ F ðyÞ � FðxÞ
FðxÞ

���� ����a ðnþ 1ÞsðjxjÞ
FðxÞ

a
ðnþ 1ÞsðjxjÞ

jxj2a
<

ðnþ 1Þjxja

jxj2a
¼ ðnþ 1Þ

jxja <
e

2
:

Hence, diam giðBdðx; sðjxjÞÞÞa e whenever jxj > r0. Thus gi is Higson subpower

for every 1a ia n. r

For a subset A of a proper metric space X , A denotes the closure of A in the

subpower Higson compactification hPX of X . As in case of the Higson corona
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[4, Proposition 2.3] and of the sublinear Higson corona [5, Lemma 2.3], we have

the following.

Proposition 2.3 (cf. [4], [5]). Let ðX ; dÞ be a non-compact proper metric

space. For a system E1; . . . ;En of closed subsets of X , the following conditions are

equivalent:

(1) nPX \ ð
Tn

k¼1 EkÞ ¼ q,

(2) the system E1; . . . ;En diverges as a power function.

Proof. Suppose that the condition (2) does not hold. Then there exists

a sequence ðxiÞyi¼1 in X such that limi!yjxij ¼ y, jxij < jxiþ1j and dðxi;EkÞ <
jxij1=i for every i A N and 1a ka n. Let p be a cluster point of the sequence

ðxiÞyi¼1. Then p A nPX . Put ti ¼ jxij for each i A N. Let s : Rþ ! Rþ be the (non-

continuous) function defined by sðtÞ ¼ jxij1=i when t A ½ti; tiþ1Þ and sðtÞ ¼ 1 when

t A ½0; t1Þ. It is easy to see that s is an asymptotically subpower function and

dðxi;EkÞ < sðjxijÞ for every i A N and 1a ka n. Hence, if f is any element of

CPðX Þ, the condition ð�Þ fs implies that the distance between f ðxiÞ and f ðEkÞ
tends to zero as i tends to infinity. Considering the evaluation map eCPðXÞ : X !Q

f ACPðXÞ If , it follows from this fact that p A Ek for every 1a ka n. Thus

p A nPX \ ð
Tn

k¼1 EkÞ0q.

Suppose that the system E1; . . . ;En diverges as a power function. Then

we have ð
Tn

k¼1 EkÞ \ ðXnBdðx0; rÞÞ ¼ q for some r > 0. Put Fk ¼ clX ðEknBdðx0;
rþ 1ÞÞ for each k ¼ 1; . . . ; n. Then the system F1; . . . ;Fn diverges as a power

function and
Tn

k¼1 Fk ¼ q. Note that Fk \ nPX ¼ Ek \ nPX for every 1a ka n.

By Lemma 2.2 there exist Higson subpower maps gk : X ! ½0; 1�, 1a ka n, such

that Fk � g�1
k ð0Þ and

Pn
k¼1 gk ¼ 1. By Proposition 2.1, there exists an extension

Gk : hPX ! ½0; 1� of gk. Then
Pn

k¼1 Gk ¼ 1 and Fk � G�1
k ð0Þ. However, the con-

dition
Pn

k¼1 Gk ¼ 1 leads that nPX \ ð
Tn

k¼1 EkÞ �
Tn

k¼1 Fk �
Tn

k¼1 G�1
k ð0Þ ¼ q.

r

We note that the implication ð1Þ ) ð2Þ for the case n ¼ 2 of the above

proposition was in fact shown by Kucab and Zarichnyi in [13].

Proposition 2.4 (cf. [10]). Let X be a proper metric space and let Y

be a closed subset of X with the induced metric from X. Then the closure Y

of Y in hPðXÞ is equivalent to the subpower Higson compactification hPðYÞ
of Y.
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Proof. By [7, Theorem 3.5.5], it su‰ces to show clhPðXÞ A \ clhPðXÞ B ¼ q if

and only if clhPðYÞ A \ clhPðYÞ B ¼ q for every pair A, B of closed subsets of Y .

It follows from Proposition 2.3 that the condition clhPðX Þ A \ clhPðX Þ B ¼ q if and

only if the system A, B diverges as a power function in X and A \ B ¼ q. This is

equivalent to the condition that the system A, B diverges as a power function in

Y and A \ B ¼ q since the metric on Y is inherited from X . r

Let ðX ; dÞ be a metric space. For any R > 0, a subset Y of X is called

R-dense in X if Bdðx;RÞ \ Y 0q for every x A X .

Corollary 2.5 (cf. [10]). Let ðX ; dÞ be a proper metric space and let Y be a

subset of X. If Y is R-dense in X for some R > 0 then YnY ¼ nPX. In particular,

nPY is homeomorphic to nPX.

Proof. Let x A nPX . Let U and V be open neighborhoods of x in hPðXÞ
such that x A V � V � U . Put E ¼ X \ ðhPðXÞnUÞ and F ¼ X \ V . By Prop-

osition 2.3, the system E;F diverges as a power function since nPX \ E \ F ¼ q.

Thus, there are a; r > 0 such that dðy;EÞ > jyja whenever y A F and jyj > r.

Since V \ nPX 0q and X is a proper metric space, we can take z A F so that

jzj > r. We may assume that R < ra. Then Bdðz;RÞ \ E ¼ q, i.e., Bdðz;RÞ � U .

Since Y is R-dense in X , q0Y \ Bdðz;RÞ � Y \U . This fact leads that x A Y

since we can take U as an arbitrarily small neighborhood of x. Hence nPX is

contained in YnY , i.e., YnY ¼ nPX . By Proposition 2.4, YnY is homeomorphic

to nPY . Thus nPY is homeomorphic to nPX . r

3. Continua as subpower Higson coronas of ½0;yÞ

Throughout this section, 0 is assumed to be the base point of the half-open

interval ½0;yÞ, that is, x0 ¼ 0 A ½0;yÞ. A metric d on ½0;yÞ defined by dðx; yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞ2

q
is called the usual metric on ½0;yÞ. For notational simplicity, we

identify t with jtj ¼ dðx0; tÞ for every t A ½0;yÞ when we consider the usual metric

on ½0;yÞ. A continuum is a nonempty, compact and connected Hausdor¤ space.

A subcontinuum is a continuum which is a subset of a continuum. A con-

tinuum is called decomposable if it can be represented as the union of two of

its proper subcontinua. A continuum which is not decomposable is said to be

indecomposable.

Let X ¼ ½0;yÞ be the half open interval with the usual metric. The inde-

composability of the Stone-Čech remainder bXnX and the Higson corona nHX

was proved in [2] and in [9] respectively. We show here that the subpower Higson
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corona nPX is also an indecomposable continuum. Let K be a proper closed

subset of bXnX with non-empty interior in bXnX . To see the indecomposability

of bXnX , Bellamy [2] constructed a continuous map f : X ! ½0; 1� such that

f �ðKÞ ¼ f0; 1g, where f � : bX ! ½0; 1� is the extension of f . Hence K is dis-

connected. We note that such the extension f � to the Stone-Čech compactifi-

cation always exists since f is a bounded continuous map. And then he con-

structed a continuous surjection from a given non-degenerate subcontinuum of

bXnX onto a given metric continuum. Our strategy is essentially the same as

the Bellamy’s. To see the indecomposability of nPX , we will construct a map

c : X ! ½0; 1� such that c�ðK 0Þ ¼ f0; 1g for a given proper closed subset K 0 of

nPX with non-empty interior in nPX , where c� : hPX ! ½0; 1� is the extension of

c. In order to ensure that a map c : X ! ½0; 1� has the extension c� : hPX !
½0; 1�, we will carefully construct c to be Higson subpower (cf. Proposition 2.1).

Then we will construct a continuous surjection from nPX onto the Higson type

compactification hAðX Þ for each A A fH;P;Lg.
The following lemma plays an essential role to analyze the subpower Higson

corona of the half-open interval ½0;yÞ.

Lemma 3.1. Let X ¼ ½0;yÞ be the half open interval with the usual metric d.

Let U and V be non-empty disjoint open subsets of hPðXÞ such that U \ nPX 0q

and V \ nPX 0q. Then there exist a natural number kb 3 and sequences ðanÞyn¼1

and ðbnÞyn¼1 with 0 ¼ b0 < a1 < b1 < � � � < bn�1 < an < bn < � � � satisfying the fol-

lowing conditions:

(1) ðanÞ1=k > 2n,

(2) bn�1 þ ðbn�1Þ1=k < an,

(3) ½bn�1; an� \U 0q,

(4) bn ¼ an þ ðanÞ2=k,
(5) ½an; bn� � V \ X ,

(6) an � bn�1 > 2n�1ðanÞ1=k,
(7) bn � an > 2nðbnÞ1=k.

Proof. Let z be a point in V \ nPX and let W be an open neighborhood

of z in hPX such that z A W � W � V . Then

nPX \ ðXnðV \ X ÞÞ \ ðW \ X Þ � nPX \ ðhPðXÞnVÞ \W ¼ q:

By Proposition 2.3, the system XnðV \ XÞ, W \ X diverges as a power function.

Hence, there exist a > 0 and r0 > 0 such that

dðt;XnðV \ XÞÞb ta whenever t A W \ X and tb r0:

179An indecomposable continuum as subpower Higson corona



Take a natural number kb 3 so that a > 2=k. Then the condition above implies

that

Bdðt; t2=kÞ � V \ X whenever t A W \ X and tb r0:ðAÞ

Then we consider the following two inequalities:

xk > x;

x2 > 2kðxþ x2=kÞ:

�
ðBÞ

Since kb 3, there is t1 > 2 such that x satisfies (B) whenever x > t1. Then we

take a1 A W \ X so that a1 > maxfr0; ðt1Þkg. This is possible since the set W \ X

is cofinal in X by the condition W \ nPX 0q. Hence, a1 satisfies the condi-

tions ð1Þ and ð2Þ. Also, the condition U \ nPX 0q allows us to make a1 satisfy

the condition ð3Þ. Then we define b1 by ð4Þ. Since a1 A W \ X and dða1; b1Þ ¼
ða1Þ2=k, we have b1 A Bdða1; ða1Þ2=kÞ � V \ X by (A). Then the condition ð5Þ
follows from the fact that the metric d is geodesic. To see that a1 and b1 satisfy

the conditions ð6Þ and ð7Þ, put a1 ¼ x. Then b1 ¼ xþ x2=k by ð4Þ. Since a1 > t1,

we have ða1 � b0Þk ¼ xk > x ¼ ðða1Þ1=kÞk and ðb1 � a1Þk ¼ x2 > 2kðxþ x2=kÞ ¼
ð2ðb1Þ1=kÞk by (B). Thus the conditions (6) and (7) are satisfied.

Suppose that bi�1 < ai < bi have been constructed for i < n. Then we con-

sider the following two inequalities:

ðx� bn�1Þk > 2ðn�1Þkx;

x2 > 2nkðxþ x2=kÞ:

(
ðCÞ

Since kb 3, there exists tn > 2n such that x satisfies (C) whenever x > tn. As

in the first step, we can take an A W \ X with an > maxfr0; ðtnÞkg so that the

conditions ð1Þ–ð3Þ are satisfied. Then we define bn by (4). The condition (5)

follows from (A) and the fact that the metric d is geodesic. Finally, to see the

conditions (6) and (7), we put an ¼ x. Then bn ¼ xþ x2=k by (4). Since an > tn, it

follows from (C) that ðan � bn�1Þk ¼ ðx� bn�1Þk > 2ðn�1Þkx ¼ ð2n�1ðanÞ1=kÞk and

ðbn � anÞk ¼ x2 > 2nkðxþ x2=kÞ ¼ ð2nðbnÞ1=kÞk. The conditions (6) and (7) are

satisfied. r

Proposition 3.2. Let X ¼ ½0;yÞ be the half open interval with the usual

metric d. If K is a proper closed subset of nPX with non-empty interior in nPX then

K is disconnected.

Proof. Let x A IntnPX K and y A nPXnK . Let U be an open neighbor-

hood of x in hPX such that U \ nPX � K . Since y B U , we can take an
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open neighborhood V of y in hPX such that y A V � V � hPXnðK [UÞ.
By Lemma 3.1, there exist a natural number kb 3 and sequences ðanÞyn¼1 and

ðbnÞyn¼1 with 0 ¼ b0 < a1 < b1 < � � � < bn�1 < an < bn < � � � satisfying the follow-

ing conditions:

(1) ðanÞ1=k > 2n,

(2) bn�1 þ ðbn�1Þ1=k < an,

(3) ½bn�1; an� \U 0q,

(4) bn ¼ an þ ðanÞ2=k,
(5) ½an; bn� � V \ X ,

(6) an � bn�1 > 2n�1ðanÞ1=k,
(7) bn � an > 2nðbnÞ1=k.

Claim 3.2.1. Let u A Bdðt; t1=kÞ. Then we have the following:

(i) If t A ½an; bnÞ then u A ðbn�1; anþ1Þ.
(ii) If t A ½bn; anþ1Þ then u A ðan; bnþ1Þ.

Proof of Claim 3.2.1. Suppose that t A ½an; bnÞ. If u < t then ub t� t1=k b

an � ðanÞ1=k b an � 2n�1ðanÞ1=k > bn�1 by the monotone increasing-property of

the correspondence s 7! s� s1=k on ð1;yÞ and ð6Þ. If t < u then ua tþ t1=k <

bn þ ðbnÞ1=k < anþ1 by ð2Þ. Thus the condition (i) is satisfied.

Next suppose that t A ½bn; anþ1Þ. If u < t then, as above, using ð7Þ, ub

t� t1=k b bn � ðbnÞ1=k > bn � 2nðbnÞ1=k > an. If u > t then ua tþ t1=k < anþ1 þ
ðanþ1Þ1=k < anþ1 þ ðanþ1Þ2=k ¼ bnþ1 by ð4Þ. Thus the condition (ii) is satisfied.

t

We define c : X ! ½0; 1� by

cðtÞ ¼

0; if b2n�2 a t < a2n�1;

t� a2n�1

b2n�1 � a2n�1
; if a2n�1 a t < b2n�1;

1; if b2n�1 a t < a2n;

b2n � t

b2n � a2n
; if a2n a t < b2n:

8>>>>>>>><>>>>>>>>:
Then it is easy to see that the function c is well-defined and continuous. Now

we shall evaluate the diameter of cðBdðt; t1=kÞÞ.

Claim 3.2.2. If an a t < anþ1 then jcðtÞ � cðuÞj < 1=2n for every u A

Bdðt; t1=kÞ.
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Proof of Claim 3.2.2. Let u A Bdðt; t1=kÞ. By the definition of c, we

check the claim by dividing it into four cases, t A ½a2n�1; b2n�1Þ, t A ½b2n�1; a2nÞ, t A
½a2n; b2nÞ and t A ½b2n; a2nþ1Þ. We show here the first two cases. The other two

cases can be shown in a similar fashion.

Suppose that t A ½a2n�1; b2n�1Þ. By Claim 3.2.1, it su‰ces to consider the

three cases that u A ðb2n�2; a2n�1Þ, u A ½a2n�1; b2n�1Þ and u A ½b2n�1; a2nÞ. If u A

ðb2n�2; a2n�1Þ then, using ð7Þ,

jcðtÞ � cðuÞj ¼ cðtÞ ¼ t� a2n�1

b2n�1 � a2n�1
a

t� u

b2n�1 � a2n�1

a
t1=k

b2n�1 � a2n�1
<

ðb2n�1Þ1=k

b2n�1 � a2n�1

<
ðb2n�1Þ1=k

22n�1ðb2n�1Þ1=k
<

1

22n�1
:

If u A ½a2n�1; b2n�1Þ then we have

jcðtÞ � cðuÞj ¼ jt� uj
b2n�1 � a2n�1

a
t1=k

b2n�1 � a2n�1
<

1

22n�1
:

If u A ½b2n�1; a2nÞ then we have

jcðtÞ � cðuÞj ¼ 1� cðtÞ ¼ 1� t� a2n�1

b2n�1 � a2n�1
¼ b2n�1 � t

b2n�1 � a2n�1

a
u� t

b2n�1 � a2n�1
a

t1=k

b2n�1 � a2n�1
<

1

22n�1
:

Thus jcðtÞ � cðuÞj < 1=22n�1 whenever t A ½a2n�1; b2n�1Þ.
Next suppose t A ½b2n�1; a2nÞ. By Claim 3.2.1, it su‰ces to consider the three

cases that u A ða2n�1; b2n�1Þ, u A ½b2n�1; a2nÞ and u A ½a2n; b2nÞ. Let u A ða2n�1; b2n�1Þ.
Since ub t� t1=k b b2n�1 � ðb2n�1Þ1=k, it follows that

b2n�1 � ua ðb2n�1Þ1=k:ðyÞ

So, using ð7Þ and ðyÞ, we have

jcðtÞ � cðuÞj ¼ 1� cðuÞ ¼ 1� u� a2n�1

b2n�1 � a2n�1
¼ b2n�1 � u

b2n�1 � a2n�1

a
ðb2n�1Þ1=k

b2n�1 � a2n�1
<

ðb2n�1Þ1=k

22n�1ðb2n�1Þ1=k
<

1

22n�1
:
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If u A ½b2n�1; a2nÞ then jcðtÞ � cðuÞj ¼ 1� 1 ¼ 0. Finally, let u A ½a2n; b2nÞ. Then,

using ð4Þ and ð1Þ, we have

jcðtÞ � cðuÞj ¼ 1� cðuÞ ¼ 1� b2n � u

b2n � a2n
¼ u� a2n

b2n � a2n

<
u� t

b2n � a2n
a

t1=k

b2n � a2n
¼ t1=k

ða2nÞ2=k

<
ða2nÞ1=k

ða2nÞ2=k
¼ 1

ða2nÞ1=k
<

1

22n
<

1

22n�1
:

Thus jcðtÞ � cðuÞj < 1=22n�1 whenever t A ½b2n�1; a2nÞ. t

Claim 3.2.3. The map c : X ! ½0; 1� is Higson subpower.

Proof of Claim 3.2.3. Let e > 0 and let s : X ! Rþ be an asymptotically

subpower function. Then there exists r > 0 such that sðtÞ < t1=k for every t > r.

Let m be a natural number such that 1=2m < e=2. Put t0 ¼ maxfr; amg. Then, for
every t > t0 and u A Bdðt; t1=kÞ, we have Bdðt; sðtÞÞ � Bdðt; t1=kÞ and jcðtÞ � cðuÞj
< 1=2m by Claim 3.2.2. Thus diam cðBdðt; sðtÞÞÞa diam cðBdðt; t1=kÞÞa 2=2m <

e for every t > t0. Hence c is Higson subpower. t

By Claim 3.2.3 and Proposition 2.1, there exists an extension C : hPX !
½0; 1� of c. By ð3Þ, we obtain a sequence ðcnÞyn¼1 such that bn < cn < anþ1 and

cn A U . Then cðc2nÞ ¼ 0 and cðc2n�1Þ ¼ 1 for every n. Let z0 and z1 be cluster

points of the sequences ðc2nÞyn¼1 and ðc2n�1Þyn¼1 respectively. Then both z0 and

z1 are contained in U \ nPX � K . It follows from the continuity of C that

Cðz0Þ ¼ 0 and Cðz1Þ ¼ 1. Hence z0 A C�1ð0Þ \ K0q and z1 A C�1ð1Þ \ K0q.

However, C�1ðð0; 1ÞÞ \ K ¼ q. Indeed, if there exists z A K such that CðzÞ ¼
t A ð0; 1Þ then z has a neighborhood W � hPX such that CðWÞ � ð0; 1Þ.
Since K \ V ¼ q, we may assume W \ V ¼ q. Then we have CðW \ XÞ ¼
cðW \ XÞ � ð0; 1Þ, i.e., W \ X � c�1ðð0; 1ÞÞ. On the other hand, c�1ðð0; 1ÞÞ �
V \ X by ð5Þ and our construction of c. So we have q0W \ X � V \ X which

implies that W \ V 0q, a contradiction. Thus CðKÞ ¼ f0; 1g, i.e., K is dis-

connected. r

As we have seen, the function c : X ! ½0; 1� constructed above is Higson

subpower. However it is not Higson sublinear. Indeed, take sequences ðanÞyn¼1,
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ðbnÞyn¼1 and kb 3 as in Proposition 3.2. Let x : Rþ ! Rþ be the function defined

by xðtÞ ¼ t2=k. Since kb 3, it follows that x is an asymptotically sublinear func-

tion. Since bn ¼ an þ ðanÞ2=k, the closed ball Bdðan; xðanÞÞ contains at least two

points an and bn. By our construction of c, we have ðcðanÞ;cðbnÞÞ A fð0; 1Þ;
ð1; 0Þg, i.e., diam cðBdðan; xðanÞÞÞ ¼ 1 for every n. Hence, c is not Higson

sublinear.

Theorem 3.3. Let X ¼ ½0;yÞ be the half open interval with the usual metric.

Then the subpower Higson corona nPX is a non-metrizable indecomposable con-

tinuum.

Proof. Let An ¼ ½n;yÞ � X . Then An is a continuum and An � Anþ1 for

every n A N. Note that nPX ¼
Ty

n¼1 An. Thus nPX is a continuum as the inter-

section of the decreasing sequence ðAnÞyn¼1 of continua. Non-metrizability of nPX

follows from the fact that nPX contains a copy of bNnN [11] which has the

cardinality 2c [8]. Finally, if nPX is expressed as the union of two non-degenerate

proper closed subsets K and L of nPX then both of K and L must have non-

empty interiors in nPX . Thus both K and L are disconnected by Proposition 3.2.

r

The following is an example, given in [9], of a proper metric on ½0;yÞ which
derives a decomposable Higson corona. We show that the same example also

derives a decomposable subpower Higson corona.

Example 3.4. There exists a proper metric r on the half open interval

½0;yÞ such that the Higson subpower corona is a decomposable continuum.

Indeed, let f : ½0;yÞ ! R2 be the embedding given by f ðtÞ ¼ ðt; t sin tÞ and

let X ¼ f ð½0;yÞÞ. Let r be the metric on X inherited from R2. We shall show

that the Higson subpower corona nPX of ðX ; rÞ is a decomposable continuum.

Put

Y ¼ fðx; yÞ A X j yb 0g;

Z ¼ fðx; yÞ A X j ya 0g;

A ¼ fðx; yÞ A R2 j xb 0; jyja xg;

B ¼ fðx; yÞ A A j yb 0g;

C ¼ fðx; yÞ A A j ya 0g:
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Then X ¼ Y [ Z, A ¼ B [ C, Y � B and Z � C. For each A � X , A denotes the

closure of A in the subpower Higson compactification hPðXÞ of X .

First we note that

nPX ¼ XnX ¼ ðYnYÞ [ ðZnZÞ:

Indeed, XnX � ðY [ ZÞnðY [ ZÞ ¼ ðYnYÞ [ ðZnZÞ. If z A XnX has an open

neighborhood U with U \ Y ¼ q then every neighborhood of z must intersect

with Z by the density of X in X , i.e., z A ZnZ.

Next we shall show that both YnY and ZnZ are subcontinua of nPX .

By Proposition 2.4, YnY is homeomorphic to nPY (notation: YnYAnPY ) and

ZnZAnPZ. It is easy to see that Y is R-dense in B for some R > 0. Hence nPY

is homeomorphic to nPB by Corollary 2.5. Thus, we have YnYAnPB. Similarly,

we have ZnZAnPC. For each n A N, let Bn ¼ fðx; yÞ A B j xb ng. Then nPB ¼Ty
i¼1 clnPBðBnÞ. Hence nPB is a continuum as the intersection of the decreasing

sequence ðclnPBðBnÞÞyn¼1 of continua. Similarly, it follows that nPC is a continuum.

Thus, both YnY and ZnZ are subcontinua of nPX .

Finally, we shall show that both YnY and ZnZ are proper subcontinua of

nPX . Let D ¼ f f ðtÞ j t ¼ p=2þ 2np; n A Ng and E ¼ f f ðtÞ j t ¼ 3p=2þ 2np; n A Ng.
Then YnY � DnD0q. It is easy to see that the systems D, Z diverges as

a power function. Hence we have D \ Z \ nPX ¼ q by Proposition 2.3, i.e.,

ðYnY ÞnðZnZÞ � DnD0q. Similarly, we have ðZnZÞnðYnY Þ � EnE0q. Thus,

both YnY and ZnZ are proper subcontinua of nPX with nPX ¼ ðYnYÞ [ ðZnZÞ.
Hence nPX is a decomposable continuum.

Let K � X be a continuum and let a; b A K be distinct two points. If there

is no proper subcontinuum of K containing both a and b then K is said to be

irreducible between a and b.

The following lemma was proved by Bellamy [2, Lemma 1] for the Stone-

Čech compactification of ½0;yÞ. The proof is valid for any compactification of

½0;yÞ. Here we give a proof for the reader’s sake.

Lemma 3.5. Every compactification að½0;yÞÞ of the half-open interval ½0;yÞ
is an irreducible continuum between 0 and every point z of að½0;yÞÞn½0;yÞ.

Proof. The connectivity of að½0;yÞÞ is obvious. Let z A að½0;yÞÞn½0;yÞ.
Suppose that there exists a proper closed subset K of að½0;yÞÞ such that 0; z A K .

Since að½0;yÞÞnK is a non-empty open subset of að½0;yÞÞ, there exists a point

t A ½0;yÞ \ ðað½0;yÞÞnKÞ. Then U ¼ K \ ½0; tÞ ¼ K \ ½0; t� is a non-empty closed
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and open subset of K since 0 A U . On the other hand, z A KnU 0q, that is, K

is not connected. r

Theorem 3.6. Let X ¼ ½0;yÞ be the half open interval with the usual metric

d. For each A A fH;P;Lg, there exists a continuous surjection xA : nPX ! hAðXÞ
from the subpower Higson corona nPX onto the Higson type compactification

hAðX Þ.

Proof. We shall construct a continuous surjection xH : nPX ! hHðXÞ from

the subpower Higson corona nPX onto the Higson compactification hHðXÞ.
Then, for each A A fP;Lg, a required surjection is obtained by the composition

aH
A 	 xH : nPX ! hAðXÞ where aH

A : hHðXÞ ! hAðX Þ is the canonical surjection

assured by the relation hHðXÞ � hAðXÞ.
Let x and y be distinct two points in nPX . Let U and V be open subsets

of hPðXÞ such that x A U , y A V and U \ V ¼ q. Then, by Lemma 3.1, there

exist a natural number kb 3 and sequences ðanÞyn¼1 and ðbnÞyn¼1 with 0 ¼ b0 <

a1 < b1 < � � � < bn�1 < an < bn < � � � satisfying the following conditions:

(1) ðanÞ1=k > 2n,

(2) bn�1 þ ðbn�1Þ1=k < an,

(3) ½bn�1; an� \U 0q,

(4) bn ¼ an þ ðanÞ2=k,
(5) ½an; bn� � V \ X ,

(6) an � bn�1 > 2n�1ðanÞ1=k,
(7) bn � an > 2nðbnÞ1=k.

Then we define y : X ! X by

yðtÞ ¼

0; if b2n�2 a t < a2n�1;

ð2n� 1Þðt� a2n�1Þ
b2n�1 � a2n�1

; if a2n�1 a t < b2n�1;

2n� 1; if b2n�1 a t < a2n;

ð2n� 1Þðb2n � tÞ
b2n � a2n

; if a2n a t < b2n:

8>>>>>>>><>>>>>>>>:
Let c : X ! ½0; 1� be the map constructed in Proposition 3.2, regarded as a map

of X into X , i.e., c : X ! X . Then it follows from our construction that yðtÞ ¼
ð2n� 1ÞcðtÞ whenever b2n�2 a t < b2n.

Let l : Rþ ! Rþ be a function defined by lðtÞ ¼ t=2 t. On should note that l

is monotonically decreasing on ð1=log 2;yÞ. In particular, limt!y lðtÞ ¼ 0. Then

we have the following.
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Claim 3.6.1. If nb 3 and t A ½a2n�1; a2nþ1Þ then jyðtÞ � yðuÞj < lð2n� 1Þ for

every u A Bdðt; t1=kÞ.

Proof of Claim 3.6.1. Let u A Bdðt; t1=kÞ. If t A ½a2n�1; a2nÞ then u A

ðb2n�2; b2nÞ by Claim 3.2.1. Then yðtÞ ¼ ð2n� 1ÞcðtÞ and yðuÞ ¼ ð2n� 1ÞcðuÞ.
By Claim 3.2.2, we have jyðtÞ � yðuÞj ¼ ð2n� 1ÞjcðtÞ � cðuÞj < ð2n� 1Þ=22n�1 ¼
lð2n� 1Þ.

Suppose that t A ½a2n; b2nÞ. Then yðtÞ ¼ ð2n� 1ÞcðtÞ. By Claim 3.2.1, u A

ðb2n�1; a2nþ1Þ. If u A ðb2n�1; b2nÞ then yðuÞ ¼ ð2n� 1ÞcðuÞ. If u A ½b2n; a2nþ1Þ then

yðuÞ ¼ ð2n� 1ÞcðuÞ since yðuÞ ¼ cðuÞ ¼ 0. Hence, we obtain jyðtÞ � yðuÞj <
lð2n� 1Þ as above.

Now suppose that t A ½b2n; a2nþ1Þ. In this case, yðtÞ ¼ cðtÞ ¼ 0. So we have

yðtÞ ¼ ð2n� 1ÞcðtÞ. By Claim 3.2.1, u A ða2n; b2nþ1Þ. If u A ða2n; b2nÞ then yðuÞ ¼
ð2n� 1ÞcðuÞ. If u A ½b2n; a2nþ1Þ then yðuÞ ¼ ð2n� 1ÞcðuÞ since yðuÞ ¼ cðuÞ ¼ 0.

Hence, we have jyðtÞ � yðuÞj < lð2n� 1Þ as above. Finally, if u A ½a2nþ1; b2nþ1Þ
then, by the conditions ð4Þ and ð1Þ, we have

jyðtÞ � yðuÞj ¼ yðuÞ ¼ ð2nþ 1Þðu� a2nþ1Þ
b2nþ1 � a2nþ1

¼ ð2nþ 1Þðu� a2nþ1Þ
ða2nþ1Þ2=k

<
ð2nþ 1Þt1=k

ða2nþ1Þ2=k
<

ð2nþ 1Þða2nþ1Þ1=k

ða2nþ1Þ2=k
¼ 2nþ 1

ða2nþ1Þ1=k

<
2nþ 1

22nþ1
¼ lð2nþ 1Þ:

We note that lð2nþ 1Þ < lð2n� 1Þ since l is decreasing on ð1=log 2;yÞ and

2n� 1b 5 > 1=log 2J 3:3. Thus we have jyðtÞ � yðuÞj < lð2n� 1Þ. t

Claim 3.6.2. If nb 3 and tb a2n�1 then jyðtÞ � yðuÞj < lð2n� 1Þ for every

u A Bdðt; t1=kÞ.

Proof of Claim 3.6.2. Since l is monotonically decreasing on ð1=log 2;yÞ
and 2n� 1b 5 > 1=log 2J 3:3, this is an easy consequence of Claim 3.6.1.

t

Claim 3.6.3. For every f A CHðXÞ, the composition f 	 y : X ! R is Higson

subpower.

Proof of Claim 3.6.3. Let f : X ! R be a continuous Higson map and

let e > 0 be given. If tb a5 then jyðtÞ � yðuÞj < lð5Þ for every u A Bdðt; t1=kÞ by
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Claim 3.6.2. Since f is Higson, there exists K > 0 such that

diam f ðBdðt; lð5ÞÞÞ < e for every t > K :ðaÞ

By the compactness of the interval ½0;K � and the continuity of f , we can take

d > 0 so that

j f ðtÞ � f ðuÞj < e=3 whenever t A ½0;K � and jt� uj < 3d:ðbÞ

Without loss of generality, we may assume that d < lð5Þ. Since limt!y lðtÞ ¼ 0,

we can take an integer n0 b 3 so that lð2n0 � 1Þ < d=2.

Let s : X ! Rþ be an asymptotically subpower function. We take t1 > 0 so

that sðtÞ < t1=k for every t > t1. Then we put t0 ¼ maxft1; a2n0�1g.
Let t > t0. It follows from t > t1 that yðBdðt; sðtÞÞÞ � yðBdðt; t1=kÞÞ: Since

t > a2n0�1, it follows from Claim 3.6.2 that jyðtÞ � yðuÞj < lð2n0 � 1Þ for every

u A Bdðt; t1=kÞ, i.e., yðBdðt; t1=kÞÞ � BdðyðtÞ; 2lð2n0 � 1ÞÞ: Since lð2n0 � 1Þ < d=2,

we have BdðyðtÞ; 2lð2n0 � 1ÞÞ � BdðyðtÞ; dÞ. As a summary, we have

yðBdðt; sðtÞÞÞ � BdðyðtÞ; dÞ:

Suppose that yðtÞaK . It follows from the condition (b) that

diam f 	 yðBdðt; sðtÞÞÞa diam f ðBdðyðtÞ; dÞÞ < e:

Now suppose that yðtÞ > K. Since d < lð5Þ, we have BdðyðtÞ; dÞ � BdðyðtÞ; lð5ÞÞ.
By the condition (a), we have

diam f 	 yðBdðt; sðtÞÞÞa diam f ðBdðyðtÞ; lð5ÞÞÞ < e:

Hence diam f 	 yðBdðt; sðtÞÞÞ < e for every t > t0. t

Claim 3.6.4. The map y : X ! X has an extension Y : hPðXÞ ! hHðXÞ.

Proof of Claim 3.6.4. Let e : X !
Q

f ACH ðXÞ If be the evaluation map.

Since hHðX Þ is equivalent to eðX Þ, it su‰ces to see that e 	 y : X !
Q

f ACH ðX Þ If
can be extended to hPðXÞ ! eðXÞ. For every f A CHðXÞ, the composition f 	 y :

X ! If is Higson subpower by Claim 3.6.3, so it can be extended to the mapdf 	 yf 	 y : hPðXÞ ! If by Proposition 2.1. Hence e 	 y can be extended to the mapde 	 ye 	 y : hPðXÞ !
Q

f ACPðX Þ If so that de 	 ye 	 yðhPðX ÞÞ � eðX Þ. t

Let ðcnÞyn¼1 and ðdnÞyn¼1 be sequences such that cn A ½b2n�2; a2n�1� and dn A

½b2n�1; a2n� and let p and q be cluster points of ðcnÞyn¼1 and ðdnÞyn¼1 respectively.

Put C ¼ fcn j n A Ng and D ¼ fdn j n A Ng. Then the system C, D diverges as a
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power function by (1) and (7). Hence p A C \ nPX and q A D \ nPX are distinct

two points in nPX . By Claim 3.6.4, there exists an extension Y : hPðXÞ ! hHðXÞ
of y. Then YðpÞ ¼ 0 and YðqÞ A nHX . Thus YðnPX Þ is a continuum containing 0

and YðqÞ A nHX . So, YðnPX Þ must coincide with hHðX Þ by Lemma 3.5. Hence

the map xH ¼ YjnPX : nPX ! hHðXÞ is a required surjection. r

Corollary 3.7. Let X ¼ ½0;yÞ be the half open interval with the usual

metric d. For each A A fH;P;Lg, there exists a continuous surjection hA : nHX !
hAðX Þ from the Higson corona nHX onto the Higson type compactification hAðXÞ.

Proof. Let A A fH;P;Lg and let xA : nPX ! hAðXÞ be a continuous sur-

jection given by Theorem 3.6. By the relation hHðX Þ � hPðXÞ, there is the ca-

nonical surjection a : hHðX Þ ! hPðXÞ, such that ajX ¼ idX . Since X is dense in

hHðXÞ and ajX ¼ idX , it follows that aðnHX Þ ¼ nPX . Thus the composition hA ¼
xA 	 ajnHX : nHX ! hAðXÞ is a required surjection. r

Question 1. Does Proposition 3.2 hold for sublinear Higson corona? In

particular, is the sublinear Higson corona of the half open interval with the usual

metric an indecomposable continuum?

Let W be a non-degenerate subcontinuum of b½0;yÞn½0;yÞ and let M be a

metric continuum. It is known [2] that there exist continuous surjections f : W !
b½0;yÞ and g : W ! M.

Question 2. Let X ¼ ½0;yÞ be the half open interval with the usual metric d.

Let W be a non-degenerate subcontinuum of nPðXÞ and let M be a metric con-

tinuum. Do there exist continuous surjections f : W ! hPðXÞ and g : W ! M ?
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