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RICCI RECURRENT CR SUBMANIFOLDS
OF A COMPLEX SPACE FORM

By
Mayuko Kon

Abstract. We show that there is no CR submanifold with semi-flat
normal connection and with recurrent Ricci tensor in a complex
space form of nonzero constant holomorphic sectional curvature, if
the dimension of its holomorphic distribution is greater than 2.

1. Introduction

There are many results about real hypersurfaces immersed in a complex space
form with additional conditions for the curvature tensor and the Ricci tensor.
In [7] Kon proved that there are no Einstein real hypersurfaces of a complex
projective space CP™ and determined connected complete pseudo-Einstein real
hypersurfaces in CP” (see also Cecil and Ryan [1]). Moreover, Ki [4] proved the
nonexistence of real hypersurfaces with parallel Ricci tensor of a nonflat complex
space form.

If the Ricci tensor S of a Riemannian manifold M satisfies the condition
VS = S ® o for some 1-form o, then M is said to be Ricci recurrent. In the theory
of Ricci recurrent manifolds, Patterson proved some important formulas in [11]
and [12], which are developed by Roter [13] and Olszak [10] and are useful for
our theory.

Recently, Hamada [3] showed that there are no real hypersurfaces with
recurrent Ricci tensor of CP™ under the condition that the structure vector field &
of the real hypersurface is a principal curvature vector field. Moreover, Loo [§]
proved the theorem above without the assumption that the structure vector field &
of the real hypersurface is a principal curvature vector field.

A submanifold M of a Kihlerian manifold M is called a CR submanifold of
M if there exists a differentiable distribution H : x — H, < T.(M) on M sat-
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isfying the conditions that H is holomorphic, i.e., JHy = H, for each xe M,
and the complementary orthogonal distribution H* : x — Hf < T\(M) is anti-
invariant, i.e. JHL < T.(M)* for each xe M.

Any real hypersurface of a Kéhlerian manifold is a CR submanifold.

The main purpose of the present paper is to prove the following theorem.

THEOREM. Let M be an n-dimensional CR submanifold of a complex space
form M™(c), ¢ # 0, with semi-flat normal connection. If dim H, > 2, then M is
never Ricci recurrent.

In section 2, we prepare some definitions and basic formulas for CR sub-
manifolds of a complex space form M™(c). In section 3, we give an equation
about the Ricci tensor of a CR submanifold with semi-flat normal connection of
a complex space form. In section 4, we give a useful proof of a proposition about
a Ricci recurrent manifold in Olszak [10] for our calculation of a Ricci recurrent
CR submanifold with semi-flat normal connection. Combining this with the
equation given in section 3, we prove our main theorem. In the last section, we
give a characterization of pseudo-Einstein real hypersurfaces of complex space
forms using the results of section 3.

2. Preliminaries

Let M™(c) denote the complex space form of complex dimension m (real
dimension 2m) with constant holomorphic sectional curvature 4c. We denote by
J the almost complex structure of M™(c¢). The Hermitian metric of M™(c) is
denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed
in M"™(c). We denote by g the Riemannian metric induced on M from G, and by
p the codimension of M, that is, p =2m — n.

We denote by T,(M) and T,(M)" the tangent space and the normal space of
M respectively.

DEFINITION. A submanifold M of a Kihlerian manifold M is called a CR
submanifold of M if there exists a differentiable distribution H : x — H, < Ty(M )
on M satisfying the following conditions:

(i) H is holomorphic, i.e., JH, = H, for each xe M, and

(i) the complementary orthogonal distribution H' :x — H} = T\(M) is
anti-invariant, i.e. JH- < T, (M) for each x e M.
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If JT(M)" < T\(M) for any point x of M, then we call M a generic
submanifold of M. Any real hypersurface of M is obviously a generic sub-
manifold of M.

In the following, we put dim H, = h, dim Hy = ¢ and codimension M = p.
If ¢=0 (resp. h=0) for any x € M, then the CR submanifold M is a holo-
morphic submanifold (resp. anti-invariant submanifold or totally real submani-
fold) of M. If p=gq for any x € M, then the CR submanifold M is a generic
submanifold of M (see [15]).

We denote by V the covariant differentiation in M"(c), and by V the one in
M determined by the induced metric. Then the Gauss and Weingarten formulas
are given respectively by

VY =VyY+B(X,Y), VyV=-AyX +DyV,

for any vector fields X and Y tangent to M and any vector field V' normal to M,
where D denotes the covariant differentiation with respect to the linear connection
induced in the normal bundle 7(M)" of M. We call both 4 and B the second
Sfundamental form of M and are related by G(B(X,Y),V)=g(4ArX,Y). The
second fundamental form A4 and B are symmetric. A can be considered as a
(n, n)-matrix.

The covariant derivative (VyA4), Y of A4 is defined to be

(VxA), Y =Vy(AyY) — Ap, Y — AyVy Y.

If (VxA),Y =0 for any vector fields X and Y tangent to M, then the second
fundamental form of M is said to be parallel in the direction of the normal vector
V. If the second fundamental form is parallel in any direction, it is said to be
parallel. A vector field V' normal to M is said to be parallel if Dy V = 0 for any
vector field X tangent to M.

In the sequel, we assume that M is a CR submanifold of M"(c). The tangent
space T,(M) of M is decomposed as T(M) = H, + H_ at each point x of M,
where H; denotes the orthogonal complement of H, in T\(M). Similarly, we see
that T (M )L = JHXl + N,, where N, is the orthogonal complement of JHX% in
T (M)".

For any vector field X tangent to M, we put

JX = PX + FX,

where PX is the tangential part of JX and FX the normal part of JX. Then P is
an endomorphism on the tangent bundle 7(M) and F is a normal bundle valued
l-form on the tangent bundle 7'(M).
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For any vector field V' normal to M, we put
JV =tV +fV,

where ¢V is the tangential part of JV and fV the normal part of JV. Then we
see that FP =0, fF =0, tF =0 and Pt=0

We define the covariant derivatives of P, F, t and f by (VxP)Y = Vx(PY) —
PVyY, (VxF)Y = D)((FY) —FVyY, (Vxl‘)V = Vx(lV) — tDyV and (fo)V =
Dx(fV)— fDxV respectively. We then have

(VxP)Y = Apy X +tB(X, Y),
(VyF)Y = —B(X,PY) + fB(X, Y),
(Vxt)V =—-PAyX + Ay X,
(Vxf)V = —FAyX — B(X,tV).
For any vector fields X and Y in H = (T(M)" we obtain
ApxY = Ary X.

We notice that P?> + P =0, and hence P defines an f-structure on M (see

[14]).
We denote by R the Riemannian curvature tensor field of M. Then the
equation of Gauss is given by

RX,Y)Z=c{g(Y,Z)X —g(X,2)Y +g(PY,Z)PX
— g(PX,Z)PY — Zg(PX, Y)PZ} + AB(Y,Z)X - AB(X,Z) Y

for any X, Y and Z tangent to M.
We denote by S the Ricci tensor field of M. Then

g(SX,Y)=(n—1)cg(X,Y) + 3cg(PX,PY)

+Z Tr Aug(A,X,Y) Zg A2X)Y),
where A, is the second fundamental form in the direction of v,, {vi,...,v,} being

an orthonormal frame for T.(M)", and Tr denotes the trace of an operator.
From this the scalar curvature r of M is given by

r=(n—lnc+3(n—p)c+ Z(Tr A)* - Z Tr A2,

where p is the codimension of M, that is, p =2m — n.
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The equation of Codazzi of M is given by

9((VxA), Y, Z) —g((Vy4), X, Z)
=c{g(Y,PZ)g(X,JV)—g(X,PZ)g(Y,JV) —29(X,PY)g(Z,JV)}.

We define the curvature tensor R' of the normal bundle of M by

R*(X,Y)V =DxDyV — DyDxV — Dy y|V.
Then we have the equation of Ricci

G(R (X, Y)V,U)+yg([Au,Ay]X,Y)

=c{g(Y,JV)g9(X,JU) — g(X,JV)g(Y,JU) —29(X,PY)g(V,JU)}.

If R vanishes identically, the normal connection of M is said to be flatz. We can
see that the normal connection of M is flat if and only if there exist locally p
mutually orthogonal unit normal vector fields v, such that each v, is parallel.
If RY(X,Y)V =2cg(X,PY)fV, then the normal connection of M is said to be
semi-flat (see [15]). The justification of this definition, see [15]. We notice that, if
M is a generic submanifold of M"™(c), then f vanishes identically, and hence
Rt =0.

A nonzero tensor field K of type (r,s) on M is said to be recurrent if there
exists a 1-form o such that VK = K ® a. M 1is said to be Ricci recurrent if the
Ricci tensor S of M is recurrent, that is, S is nonzero and (VxS)Y = a(X)SY for
any vector fields X and Y.

Any real hypersurface M of M™(c¢) (m = 3, ¢ # 0) is not Einstein. Therefore,
the Ricci tensor S of a real hypersurface M of M™(c) (m > 3, ¢ # 0) is nonzero

(see [7], [9]).
3. Ricci Tensor of CR Submanifolds

In this section, we give some results about the Ricci tensor of a CR sub-
manifolds of a complex space form M™(c).

THEOREM 3.1. Let M be an n-dimensional CR submanifold of a complex
space form M™(c), ¢ # 0, dim H, > 2, with semi-flat normal connection. Suppose
that the curvature tensor R and the Ricci tensor S satisfy g(R(X,Y)S)Z, W) =0
for any tangent vectors X,Y,Z, W € H,. Then we have

g(SX,Y) :% (V - Xq:g(Stva, tvg)>g(X, Y)
a=1
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for any vectors X,Y € Hy, where r denotes the scalar curvature of M and
{v1,...,v,} is an orthonormal basis of JH.

Proor. Since g((R(X, Y)S)Z, W) =0 for any tangent vectors X, Y,Z, W e
H,, the first Bianchi identity gives

g(R(X,Y)SZ + R(Y,Z)SX + R(Z,X)SY, W) =0.

We take an orthonormal basis {ei,...,ep, t01 == epy1,...,10, :=e,} of T (M),
where {ej,...,e,} is an orthonormal basis of H, and {vy,...,v,} is an ortho-
normal basis of JH.. Then we have

h h h
g <Z R(er, Pe))SX + Y~ R(Pe;, X)Se;+ Y _ R(X, e:)SPe;, Y> =0.

i=1 i=1 i=1

Since Ptv, =0 for a=1,...,q, we have

g <Z R(er, Pe;)SX + > R(Pe;, X)Sei + > R(X, e)SPer, Y) =0.
i=1 i=1 i=1

Since we have

g(i R(Pe;, X)Se;, Y) =—g <i R(e;, X)SPe;, Y);

i=1 i=1

it follows that

> g(R(e;, Pe))SX,Y) =2 g(R(ei, X)SPe;, Y).
i=1

i=1

On the other hand, by the equation of Gauss, we have

Zg (€1, Pe;)SX, Y) = (—=2h — 4)cg(PSX, Y) + > _ g(Ap(pe, sx)¢i> ¥)
i

- ZQ(AB(e;,SX)Peiv Y),
ZZg (e;, X)SPe;, Y) = c{—2g(PSX, Y) +2g(PSPX, PY)

+49(PX,PSPY) =2 g(SPe;, Pe;)g(PX, Y)}

+2 ZQ(AB(X,SPe,-)eiv Y)-2 ZQ(AB(e,-,SPe,)Xa Y).
i i
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Thus we have
c{(—=2h—-2)g(PSX,Y) — 29(PSPX,PY) — 4g(PX,PSPY)}

= -2 Z g(SPe;, Pe;)g(PX,Y) +2 Z g(Age;, Y)g(AuX, SPe;)
-2 Z g(A,X, Y)g(Age;, SPe;) — 2 Z g(Age;, Y)g(A.Pe;, SX).
Since the Ricci tensor S of M is given by
SX =(n—1)cX —3cP’X + ) Trd, AX —» AX,
a a
we obtain, for X, Y € H,,
> 9(daei, Y)g(AuX,SPe;) = g(AuX, Y)g(Auei, SPe;)
i,a i,a
= 2_9(Aaei, Y)g(AuPe;, SX)

= Tr Apg(Aaei, Y)g(AuX, ApPer) = Y g(Asei, Y)g(AaX, A} Pe;)

i,a,b ia,b

= Tr Apg(Aues, Y)g(AaPei, A X) + > g(Aaei, Y)g(AuPei, 4} X)

i,a,b i,a,b
=3 (= D)eg(AuX, Y)g(Auer, Per) + 3 cg(AuX, Y)g(Aqer, Per)
i,a i,a

- Z Tr Abg(AaXv Y)g(Aueia AbPei) + Z g(AaX, Y)g(Aaei; A,fPe,)

i,a,b ia,b

=— Z Tr Apg(A, Y, PAyA,X) + Z g(A4,Y, PA2A,X)
a,b a,b

+ Zb Tr Apg(A, Y, PA,AX) — Zb g(A,Y,PA,A}X)

= Tr Apg(AuX, Y)g(Auei, ApPe;) + Y g(AaX, Y)g(Aqei, A; Per).

i,a,b iya,b

Since the normal connection of M is semi-flat, the equation of Ricci gives

AgApX = ApAsX
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for any X € H,. Therefore, the equation above vanishes identically. From these
equations and the assumption ¢ # 0, we have

(h+ 1)g(PSX,Y) 4+ g(PSPX,PY) + 2g(PX, PSPY) = Z g(SPe;, Pe))g(PX,Y),
for any X, Y € H,. This implies
(h—1)g(PSX,Y) + g(SPX,Y) = Zg(SPe,-, Pe;)g(PX, Y).
Since PX,PY € H,, we also have
(h—1)g(PSPX,PY) + g(SP’X,PY) = Z g(SPe;, Pe;)g(PX, Y),

and hence

(h—1)g(SPX,Y) + g(PSX,Y) = g(SPe;, Pe;)g(PX,Y).

From these equations, we obtain
(h—2)g(SPX,PY)=(h—2)9(SX,Y).

Since /i > 2, we have g(SPX,PY)=g(SX,Y). Thus, by the definition of the
scalar curvature r of M, we get

hg(SX,Y) = g(PSei, Pe))g(X,Y)

= <r — zq:g(SlUm ZUa)) g(X> Y)>
a=1

which proves our assertion. O

When M is a generic submanifold, the normal connection of M is flat if M is
semi-flat. Let p be the codimension of submanifold M in M"(c) and {vi,...,0,}
be an orthonormal basis of T(M)". Then we have the following theorem.

THEOREM 3.2. Let M be an n-dimensional generic submanifold of a complex
space form M™(c), ¢ #0, n — p > 2, with flat normal connection. Suppose that the
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curvature tensor R and the Ricci tensor S satisfy g(R(X,Y)S)Z, W) =0 for any
tangent vectors X,Y,Z W € Hy. Then we have

g(SX, Y) = ;p (V— ZQ(SJ007JU0)>Q(Xa Y)a

a=1

for any vectors X,Y € H,.

Let M be a real (2m — 1)-dimensional hypersurface immersed in M"(c). We
take the unit normal vector field N of M in M™(c) and define a tangent vector
field ¢ by & = —JN, which is called the structure vector field. As a corollary of
Theorem 3.1, we have

COROLLARY 3.3. Let M be a real hypersurface of a complex space form
M"(c), ¢ #0, m = 3. Suppose that the curvature tensor R and the Ricci tensor S
of M satisfy g((R(X,Y)S)Z, W) =0 for any tangent vectors X, Y, Z and W
orthogonal to & Then we have

g(SX, Y) = (r - g<Sé7 é))g(Xv Y),

2m — 2

for any tangent vectors X and Y orthogonal to &, where r denotes the scalar
curvature of M.

4. Ricci Recurrent CR Submanifolds

In this section, we prove our main theorem. First, we give a useful proof of
the proposition given by Olszak [10].

PROPOSITION 4.1. Let M be a Ricci recurrent manifold of dimension n with
o # 0, where o is the recurrent form of the Ricci tensor. Then we have

S?=28,
where r denotes the scalar curvature of M.

ProoF. By the definition of the Ricci recurrent manifold, the Ricci tensor S
of M satisfies VS = S ® a. Then we have
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(VxVyS)Z = (Vya)(Y)SZ + oY) (VxS)Z + a(Vy Y)SZ
= (Vya)(Y)SZ + a( ¥)a(X)SZ + a(Vy ¥)SZ,
(VyViS)Z = (Vya)(X)SZ + a(X)a(Y)SZ + 2(V y X)SZ
(Vir.nS)Z = a([X, Y])SX.
So we obtain
(4.1) (R(X, Y)S)Z = (Vya)(Y)SZ — (Vya)(X)SZ.

Since S is symmetric and nonzero, we can choose some nonzero function 4 and a
vector field Z such that SZ = AZ. Then

(R(X, Y)$)Z = H{(Vx2)(Y)Z — (Vya) (X)Z}.
On the other hand, we have
g(R(X,Y)S)Z,Z2)=g(R(X,Y)SZ,Z) — g(SR(X,Y)Z,Z)
— Mg(R(X,Y)Z,2) - g(R(X. Y)Z,2)}
=0.
Thus we obtain
(42) (Vxa) (Y) = (Vyo) (X) = 0.

y (4.1) and (4.2), we have R(X,Y)S=0. So we obtain, R(X,Y)SZ—
SR(X Y)Z =0, and hence

0= (VwR)(X,Y)SZ+R(X,Y)VwS)Z — (VwS)R(X,Y)Z — S(VwR)(X,Y)Z
= (VwR)(X,Y)SZ + a(W)R(X, Y)SZ — a(W)SR(X, Y)Z — S(VwR)(X, Y)Z
= (VwR)(X,Y)SZ — S(VwR)(X, Y)Z.

We take a basis {ey,..., en} of Ty(M). Generally we have

> 9((VeR) (e X)Y,Z) = Z 9(VeR)(Z, Y) X, i)

i

:—Zg VzR)(Y,e) X, e;) Zg VyR)(ei, Z2) X ei)

= g((VZS) Y, X) - g((VYS)27 X)
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Using this, we obtain

0= Z{g((VeiR)(ei, Y)SZ,X) = g(S(VoR)(e;, Y)Z, X)}

= g((VXS)SZ> Y) - g((VSZS)X7 Y) - g((VSXS)Z> Y) + g((VZS>SX7 Y)
= a(X)g(S*Z,Y) — a(SX)g(SZ,Y) + a(Z)g(S*X, Y) — a(SZ)g(SX, Y).
On the other hand, we have
u(SX) = ale)g(Sei, X Zg ((Ve,S)ei, X
= %Xr = %Z Xg(Se;,e;) = %Zg((VXS)ei, e;)

= %oc(X)r,

where the third equality is given by the second Bianchi identity. That is, we have
the following

a(X) {g(SZZ, Y) - %rg(SZ, Y)} +a(Z) {g(SzX, Y) - %rg(SX, Y)} =0.

If 2(X) # 0, setting X = Z, we have S? = (r/2)S. If «(X) = 0, taking Z such that
w(Z) #0, S? = (r/2)S. Consequently we have S* = (r/2)S. O

In the proof of Proposition 4.1, we have

Lemma 4.2. Let M be a Ricci recurrent manifold of dimension n. Then the
curvature tensor R and the Ricci tensor S satisfy R(X,Y)S =0 for any vector
fields X and Y.

Lemma 4.2 gives the relation between Ricci recurrent condition and Ricci
semi-symmetry.

REMARK 4.3. From Lemma 4.2 and a theorem of [5], we see that there are
no real hypersurfaces with recurrent Ricci tensor of M™(c), m >3, (Loo [8]).

THEOREM 4.4. Let M be an n-dimensional CR submanifold of a complex
space form M™(c), ¢ # 0, with semi-flat normal connection. If dim H, > 2, then M
is not Ricci recurrent.
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Proor. We suppose that M is a Ricci recurrent CR submanifold of M"(c),
h > 2, with semi-flat normal connection. Since S is symmetric, by Theorem 3.1,
we can choose an orthonormal basis {ey,...,e;, tvy, ..., tw,} of T (M) such that
the Ricci tensor S is represented by a matrix form

a 0
: *
s 0 a
o A 0|’
* :
0 Ap

where we have put

a= /lz (r - Z g(Stv,, tvu)> .

By Lemma 3.1, we see that eigenvalues of S are r/2 and 0, and that rank S = 2.
Since /& > 2, we can assume that S is represented by a matrix form

hit oy
0 hiy hoy
;- o 0
0 0
hi1 hp 0 0 42 0
I hap 0 0 0 u
Thus we have
h h

tr §7 =722+ 47+ > b+ > h3,
i=1 i=1

tr(%S) _l (A+u)’.

o

Since S? = (r/2)S, we have A=pu=r/2, h; =0 and hy =0 for i=1,... h.
Thus we see that {X € TM | SX = (r/2)X} = H}. Then there is a vector field
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ve JH} such that St = (r/2)rv. We notice that Jo=1mwe H, and fo=0. We
obtain

VyS)iw+ SVyiv = ~ (Xr)tv + = Vy v,
2

1
2
On the other hand, in the proof of Proposition 3.1, we have Xr = o(X)r. Then

(VxS)tw = a(X)Sto = %a(X) (Xr) 1.

l\)l'—‘

So we obtain
r
SVXIU :EVXZU.

Thus we see that Vyrwe H:. From the equations Vytv—tDyv = (Vyt)v=
—PA,X + A X and fo =0, we see that Vytv — tDyv = —PA,X. Since the left-
hand side is in H and the right-hand side is in H,, we have Vyiw = tDyv. So we
obtain

VyVytv = Vy([DXv) =tDyDyv,
VxVytv = V)(([Dyl)) =tDyDyv,

V[X1 y)iv = tD[X, Y]V
Since the normal connection of M is semi-flat, we have
R(X,Y)to=tR*(X, Y)v=2cg(X,PY)tfo = 0.

By the definition of the Ricci tensor S, we see
g(Stv, ) Zg (e, to)tv, e;) = 0.

So we have S = 0. This is a contradiction. |

From Theorem 4.4, we have the following theorem about generic sub-
manifold.

THEOREM 4.5. Let M be an n-dimensional generic submanifold of a complex
space form M™(c), ¢ # 0, with flat normal connection. If n — p > 2, then M is not
Ricci recurrent.
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5. A Characterization of Pseudo-Einstein Real Hypersurfaces

In this section, we give a characterization of pseudo-Einstein real hyper-
surfaces of a complex space form by using Corollary 3.3.

Let M be a real (2m — 1)-dimensional hypersurface immersed in a complex
space form M™(c). We take the unit normal vector field N of M in M™(c). For
any vector field X tangent to M, we define P, # and ¢ by

JX = PX +n(X)N, &=—JN,

where PX is the tangential part of JX, P is a tensor field of type (1,1), # is a
I-form, and ¢ is the unit vector field on M. Then they satisfy

P’X = —X +5(X)é, PE=0, n(PX)=0
for any vector field X tangent to M. Moreover, we have
g(PX,Y) +g(X,PY) =0, n(X)=g(X,d),
g(PX,PY) =g(X,Y) = n(X)n(Y).

Thus (P,&,n,g) defines an almost contact metric structure on M.
The Gauss and Weingarten formulas are given respectively by

VyY =VyxY 4 g(AX,Y)N, VyN = —AX,

for any vector fields X and Y tangent to M. We call 4 the shape operator (second
Sfundamental form) of M.
For the contact metric structure on M we have

Vié=PAX, (VxP)Y =7y(Y)AX — g(AX, Y)E.
The equation of Gauss is given by

R(X,Y)Z=c{g(Y,Z)X — g(X,2)Y + g(PY,Z)PX
— g(PX,Z)PY —2g(PX, Y)PZ} + g(AY,Z)AX — g(AX,Z)AY.

By the equation of Gauss, the Ricci tensor S of type (1,1) of M is given by
SX = 2n+ 1)eX = 3en(X)E+hAX — A’X,

where & denotes the mean curvature of M given by the trace of the shape
operator A. Moreover, the scalar curvature r of M is given by

r=4(n* —1)c+h* - Tr 4%
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If the Ricci tensor S of M is of the form g(SX,Y) =ag(X,Y) + by(X)n(Y)
for some functions a and b, then M is said to be pseudo-Einstein. Then a and b
are constant when m > 3.

THEOREM 5.1. Let M be a real hypersurface of a complex space form M™(c),
c#0, m>3. Then the curvature tensor R and the Ricci tensor S of M satisfy
g(R(X,Y)S)Z, W) =0 for any tangent vector fields X, Y, Z and W orthogonal
to ¢ if and only if M is pseudo-Einstein.

Proor. We suppose that M satisfies g((R(X, Y)S)Z, W) =0 for any tan-
gent vector fields X, Y, Z and W orthogonal to £. We can choose an ortho-
normal basis {Xj,..., X2,-2,&} of M such that the shape operator A is rep-
resented by a matrix form

Ao 0 Iy
A=

0 - Jomoo hywo

hy - oo o

Then, we have

SX; = (2n+ 1)cX; = 3en(Xi)E + hAX; — A X;
2m—2
= (2n+ Ve +hai = 21X + hith — Ji = )& = > hilu X,
k=1
SE = (2m + 1)c& — 3en(&)E + hAE — A%¢

2m=2 2m—2
= (2m —2)cé + h(Z hi X + océ) - A<Z hiXic + océ)
k=1

k=1

2m—2 2m—2
= Iuh— g — 0) Xic + ((2m—2)c+rxh - - oc2>f.
k=1

k=1

By Corollary 3.3, we have

(5.1) 9(SX;, X;) = —hiy =0 (i #J),

(52) 9(SX, X)) = =——(r—g(SE &) (i=1,....2m—2).

1
2n—2
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Equation (5.1) shows that at most one /s; does not vanish. Thus we can assume
that h; =0 for i =2,...,2m —2. We set a = g(SX;, X;). Then we have

SX| =aXi +h1(h—/11 —a),
(5.3) SXi=aX; (i=2,....2n—2),
SE =hy(h— 2 — o) X1 + ((2m —2)c + ah — hi — o?)¢&.

Since g((R(X,Y)S)Z, W) =0 for any tangent vector fields X, Y, Z and W
orthogonal to &, we have

g(R(X,Y)SZ — SR(X,Y)Z, W) = 0.
By the equation of Gauss, for any j > 2, we obtain

0 = g(R(X1, X;)SX1, Xj) — g(SR(X1, X)) X1, X;)
= ag(R(Xh)(j)Xla)(]) +hl(h - }'1 - a)g(R(Xla)(j)éa"Y]) - ag(R(Xla)(j)Xh)(j)

= hi(h— 4 — 1)g(R(X1, X))<, X)).
By the equation of Gauss, we have

g(R(X1, X;)¢, X)) = g(AX;, &)g(AXy, X)) — g(AX71,E)g(AX;, X))
=~

Thus we see that h?4;(h— 21 —a) =0 for j>2. If hj(h— 7 — o) # 0, then we
have 4; =0 for j>2. Since h =Tr A, we have h = 4; +«. This is a contra-
diction. So we have hj(h— A —a) =0. By (5.3), we see that M is pseudo-
Einstein and that #; = 0 (see [7]). Thus we see that, if g((R(X,Y)S)Z, W) =0
for any tangent vector fields X, Y, Z and W orthogonal to &, then M is pseudo-
Einstein.

Conversely, if M is pseudo-Einstein, we have SZ = aZ + by(Z)¢ = aZ and
SW = aW for any tangent vectors Z and W orthogonal to £ Then we have
g(R(X, Y)S)Z, W) = g(R(X,Y)SZ, W) — g(SR(X, Y)Z, W) = 0. O

We need the following two theorems of pseudo-Einstein real hypersurfaces in
a complex projective space CP" with constant holomorphic sectional curvature 4
(Cecil and Ryan [1], Kon [7]) and a complex hyperbolic space CH™ with constant
holomorphic sectional curvature —4 (Montiel [9]).
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THEOREM A. Let M be a complete and connected real hypersurface in CP™,
m > 3, which is pseudo-Einstein. Then M is congruent to one of the following
spaces:

(a) a geodesic hypersphere,

(b) a tube of radius r over a totally geodesic CP* 0 <k <m—1, where
0<r<mn/2 and cot> r=k/(m—k —1),

(¢) a tube of radius /4 — 0 over a complex quadric Q™' where 0 < 0 < n/4
and cot® 2r =m — 2.

THEOREM B. Let M be a complete and connected real hypersurface of CH™,
m > 3, which is pseudo-Einstein. Then M is congruent to one of the following
spaces:

(a) a geodesic hypersphere.

(b) a tube of radius r >0 over a complex hyperbolic hyperplane CH™ !

(c) a self-tube M.

Using Theorem A and Theorem B, Theorem 5.1 implies the following
theorems.

THEOREM 5.2. Let M be a complete and connected real hypersurface of
CP™ m > 3. Suppose that the curvature tensor R and the Ricci tensor S satisfy
g(R(X,Y)S)Z, W) =0 for any tangent vector fields X, Y, Z and W orthogonal
to & Then M is congruent to one of the following spaces:

(@) a geodesic hypersphere,

(b) a tube of radius O over a totally geodesic CP*, 0 <k <m —1, where
0<0<n/2 and cot? 0 =k/(m—k —1),

(¢) a tube of radius /4 — 0 over a complex quadric Q"' where 0 < 0 < n/4
and cot® 20 =m — 2.

THEOREM 5.3. Let M be a complete and connected real hypersurface of
CH™, m > 3. Suppose that the curvature tensor R and the Ricci tensor S satisfy
g(R(X,Y)S)Z, W) =0 for any tangent vector fields X, Y, Z and W orthogonal
to & Then M is congruent to one of the following spaces:

(@) a geodesic hypersphere Mé’“mfl(tanh2 0) of radius r > 0,

(b) a tube M,{’Flyo(tanh2 0) bf radius 0 >0 over a complex hyperbolic
hyperplane,

(c) a self-tube M

m*
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As an application of Theorem 5.1, we prove the following theorem (see [5],

[6])-

THEOREM 5.4. There are no real hypersurfaces with R(X,Y)S =0, semi-
symmetric Ricci tensor, of a complex space form M™(c), ¢ #0, m > 3.

Proor. We suppose that the Ricci tensor S of the real hypersurface M
is semi-symmetric, that is, the curvature tensor and the Ricci tensor satisfy
R(X,Y)S =0 for any tangent vector fields X and Y. Then by Theorem 5.1, the
real hypersurface M is pseudo-Einstein. Consequently, the Ricci tensor S satisfies
SX;=aX;fori=1,...,2m—2 and S¢ = (¢(2n — 2) + ah — a?)¢ := b&. Then, for
any i=1,...,2m— 2, we have

0= R(& X;)SE — SR(S, Xi)€
= bR(&, Xi)¢ — SR(, Xi)¢
= b{—cg(&, &) Xi — g(A4E, ) AN} — S{—cg(&, &) Xi — g(AL, () AN}
= —bcX; — baldiX; + acX; + aok; X;
= (a—b)(c+ al)X;.

Since b # a, we have ;= —c/a, i=1,...,2m —2. We put 1= —c/a. Suppose
that X is a unit vector field orthogonal to £. Then we have

VyV:eé = VyPAE =0,
VeVyé = VePAX = IV:PX
= J(V:P)X + APV:X
= An(X)AE — g(AE, X)&) + APVeX
= JPV:X,
Vixg& = PAX, ]
= PAVyé — PAV:X
— PAPAX — PAV:X
= A’P’X — PAV:X

= —J’X — PAV:X.
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Thus we obtain
R(X,8)E = VyVel = VeVyé = Viy g
= —APV:X 42X + PAV:X.
So we have
g(R(X,E)E X) = —Ag(PVeX, X) + 22g(X, X) + g(PAV:X, X)
= )g(VeX, PX) 4 2%g(X, X) — 2g(V:X, PX)
= 22g(X,X) =72

By the equation of Gauss, we have g(R(X, )¢ X) = ¢+ ad = 0. These equations
imply A=0 and ¢ =0. This is a contradiction. So we have our theorem. []

REMARK 5.5. We can see that the totally #-umbilical pseudo-Einstein real
hypersurfaces of CP™ and CH™ satisfies ¢+ oA # 0 by a straightforward com-
putation using principal curvatures of examples (see [6]). Here, we proved The-
orem 5.4 by a slight general method.

References

[1] T.E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans.
Amer. Math. Soc. 269 (1982), 481-499.

[2] B. Y. Chen, Geometry of submanifolds, Marcel Dekken Inc., New York, 1973.

[3] T. Hamada, On real hypersurfaces of a complex projective space with recurrent Ricci tensor,
Glasgow Math. J. 41 (1999), 297-302.

[4] U-Hang Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J.
Math. 13 (1989), 73-81.

[5] U-Hang Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a
complex space form, Hiroshima Math. J. 20 (1990), 93-102.

[6] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space III, Hokkaido
Math. J. 22 (1993), 63-78.

[7] M. Kon, Pseudo-Einstein real hypersurfaces in complex space forms, J. Differential Geom. 14
(1979), 339-354.

[8] T-H. Loo, Real hypersurfaces in a complex space form with recurrent Ricci tensor, Glasgow
Math. J. 44 (2002), 547-550.

[9] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985),
515-535.

[10] Z. Olszak, On Ricci recurrent manifolds, Coll. Math. 52 (1987), 205-211.

[11] E. M. Patterson, On symmetric recurrent tensors of the second order, Quart. J. Math., Oxford
Ser. 2 (1951), 151-158.

[12] E. M. Patterson, Some theorems on Ricci recurrent spaces, J. London. Math. Soc, 27 (1952),
287-295.

[13] W. Roter, Some remarks on infinitesimal projective transformations in recurrent and Ricci
recurrent spaces, Coll. Math. 15 (1966), 121-127.



252 Mayuko Kon

[14] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying f3 + f = 0, Tensor
N. S. 14 (1963), 99-109.
[15] K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing, Singapore, 1984.

Department of Mathematics

Hokkaido University

Kita 10 Nishi 8

Sapporo 060-0810, Japan

E-mail address: mayuko_k13@math.sci.hokudai.ac.jp



