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LJUNGGREN’S TRINOMIALS AND MATRIX EQUATION
A+ A = A

By

Aleksander GrRYTCZUK and Jarostaw GRYTCZUK

Abstract. We give some necessary and sufficient conditions for
solvability of the matrix equation (*) 4* 4+ 4Y = A%, with certain
restrictions on integers x, y,z and a matrix 4.€ My(Z), by applying
Ljunggen’s result on trinomials. Moreover, we obtain full solution
of (*) for the case k =2 by another technique.

1. Introduction

We consider the general problém of finding necessary and sufficient con-
ditions for the matrix 4 € My(Z) to satisfy the equation

(%) A+ 47 = A*

for some positive integers x, y and z. Le and Li proved that if 4 € M(Z),
then, for x =mr, y = ms, z = mt, where m > 2 and r,s,t are positive integers,
(*) has a solution if and only if the matrix 4 is nilpotent or det 4 = Tr4 = 1.
Another proof of this result has been given in [5]. The restriction to multiplies
of m is motivated by another matrix equation of the famous form, namely by the
equation of Fermat

(**) X"+ Y"=2"

In fact (*) is equivalent to Fermat’s equation (**) for X = 4", Y = 4° and
Z = A'. We note, that if m = 4 the Domiaty [2] remarked that the equation (**)
has infinitely many solutions in M,(Z) generated by Pythagorean triples. This
fact is in opposition to the well-known case of ordinary integers, as proved by

Wiles [13].
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In this connection it is a very important problem to find a sufficient and
necessary condition for solvability of Fermat’s equation (**) in the set of matrices
(cf. [10], [12]). Khazanov [6] found such conditions for the matrices X,Y,Z €
SLy(Z) and X, Y,Z € GL3;(Z). Further investigations connected with Khazanov’s
results have been given in the papers [1], [5], [7] and [9]. Some necessary condition
for solvability of (**) in the set M,(Z) is contained in the paper [3]. In general
case, it was proved in that if the matrix 4 € My (C), k > 2 has at least one
real eigenvalue o > v/2 and (*) is satisfied in positive integers x, y and z, then
max{x —z,y—z} = —1.

In the present paper we give an application of Ljunggren’s result on
trinomials to find a sufficient and necessary condition for solvability of (*) in
positive integers x, y and z under some restrictions for 4 € My(Z), k > 2 con-
cerning the set of exponents x, y and z. Moreover, we present full solution of (*)
for the case k =2 without using Ljunggren’s result on trinomials. In the first
part of this paper we prove the following theorem.

THEOREM 1. Let A€ My (Z), k = 2 be a given non-zero and non-singular ma-
trix with the characteristic polynomial f(t) = det(t] — A) = t* + a;t* ' + .- 4 ay.
Then the matrix equation (*) has a solution in positive integers x, y and z such that
x=yor x=zor y=z if and only if

(1)

A" =21,
where m=k/a, 1 <a<k is a divisor of k, det A= +2*% and a(z-—x)=
k >2. Moreover, if the positive integers Xx,y,z satisfy the -conditions:
x>y>z and x—z=22(y—2)=2k =2, with (x—z,y—z)=(nm)=d and
3¥(x—2z2)/d+ (y—z)/d, then (*) has a solution, if and only if

(i) a; =0, for i # m,k, and a,, = & and a, = det A = ¢, where ¢y = +1 and
e==x1orif3|(x—z)/d+ (y—z)/d then

(ii1)

A L !5 49+1=0 or h(A) =0,
where h(t) is irreducible factor of the polynomial g(t) given by the equality
g(t) = "7+ a7 + & = (4 + &) ey 1! + Dh(2),

where (x — z)/d,(y — z)/d are both odd and &y = 1 or (x — z)/d is even and & = 1
or (y—2z)/d is even and &) = ¢,.
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2. Basic Lemmas

In the proof of the Theorem 1 we use of the following Lemmas.

Lemma 1 ([11], p. 210). Let A be a k x k, k > 2 matrix with entries in the
field K. Then each polynomial g € K|x] with property g(A) = O is divisible by the
minimal polynomial m € K|x] of the matrix A. In particular, the minimal poly-
nomial m divides the characteristic polynomial f € K|x| of the matrix A and the
polynomial f has the same roots, but possibly with different multiplicities.

REMARK 1. The minimal polynomial of the matrix A is the unique polynomial
m € K[x| of minimal degree with leading coefficient equal to one and such that
m(A4) = O. .

LemMA 2 (Ljunggren 8], Thm. 3, p. 69). If n = dny, m = dm,, n > 2m where
(ny,my) = 1, then the polynomial g(x) = x" + &1x™ + &, where &;,&y = +1 is irre-
ducible, apart from the following three cases, when ny +m; =0 (mod 3): 1° ny,m,
both odd and & =1, 2° ny even and & =1, 3° m; even and ¢ =&, and then
g(x) = (x* + elefx? + 1)h(x), where h(x) is an irreducible polynomial.

3. Proof of the

Suppose that (*) has a solution in positive integers x, y and z and let the
matrix 4 € Mi(Z) be a non-zero and non-singular matrix. First, we note that if
x =z or y =z then (*) is impossible, since (*) reduces in these cases to the form
AY = O or A* = O. Both these equations imply det 4 = 0, which contradicts the
assumptions. If x =y then (*) has the form

(3.1) 24* = A°.
By it follows that x # z and z > x and consequently we have
(3.2) AT* =2

From we obtain det 477 = (det 4)°* =2k so det 4 = +2% where
1 < « < k. Hence, (+2)*¢™ = 2k and a(z — x) = k > 2, where a or z — x is even
if det 4 = —2% and z — x = k/a = m. Then by it follows that 4™ = 27 and
the proof of (i) is finished. Now, we can consider the case when x # y # z. In this
case, by the equation (*) and the assumptions about x, y and z it follows to
consider the following equation:

(3.3) A 7=,
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Let d = (x —z,y — z) = (n,m) be the greatest common divisor of n and m
and let x —z > 2(y — z) > k > 2 and denote by g(z) the polynomial of the form

(3.4) gty ="+ 7 - 1.

Then by it follows that g(4) =0. If 3)¥(x—2z)/d+ (y—1z)/d then
from [Lemma 2 it follows that the polynomial g(z) is irreducible and therefore the
characteristic polynomial f(r) of the matrix 4 is equal to g(¢) in [3.4). Com-
paring the coefficients and degrees of these polynomials we obtain the condition

(i). Let 3|(x —z)/d + (¥ — z)/d, then by Ljunggren’s result given in [Lemma 2
we obtain that
(3.5) g(t) = (1 + ereft? + )h(2).
From in virtue of g(4) = O we obtain that
A2 LM’ 4+ 1=0 or h(A)=0

with some restrictions concerning m,n,d and the polynomial A(z) given by
the assumptions of the Ljunggren’s [Lemma 2. The proof of the [Theorem 1 is
complete.

4. Full Solution of the Equation (*) for the Case 4 € M,(Z)

In this part of our paper we present full solution of the equation (*) in
positive integers x, y and z in the case when the matrix 4 belongs to M>(Z). In
this purpose we replace Ljunggren’s result on trinomials by the following Lemma.

LemMA 3 ([4]). Let A be in My(C), where k > 2 and C denotes the field
of complex numbers. Suppose that A has at least one real eigenvalue o > /2.
If the equation (*) has a solution in positive integers x,y and z then
max{x —z,y—z}=—1.

Now we prove the following theorem.

THEOREM 2. Let A € M3(Z) be a given non-zero matrix with det A = s and
Tr A = r. Then the matrix equation (*) has a solution in positive integers x, y and z
if and only if one of the following conditions holds:

(1)
A =21,
(i)
(r,s) = {(0’0)’ (O, 2)7(0, —2)’(1’ l)a(l’_l)’ (_17 _1)}
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Proor. Denote by f(t) = det(¢tI — A) = t> — (Tr A)t + det A the character-
istic polynomial of the matrix 4 € M>(Z) and let r=Tr A and s=det 4.
Suppose that the matrix 4 is non-singular, so s =det 4 # 0 and let positive
integers x, y and z satisfy the equation (*). If x =z or y = z then (*) reduces to
AY = O or A* = O, which is impossible, because s = det 4 # 0. If x = y then (*)
has the form: 24* = 4%. We observe that if x > z then we have 24*~% = I, which
implies 4 det 4*? =4(det 4)** =1 and we get a contradiction. Hence, x < z
and we obtain the following equation:

(4.1) AFX =21,

From it follows that det 4°~* = (det 4)°"* =4 and consequently
det A=+2 and z—x=2 or det 4 =4 and z—x=1. The case of z—x=1
implies by the condition (i) of the Mheorem 2. In the case of z — x =2
and s=det 4 = +2 by it follows that

(4.2) A2 =2I.

Let 4 = (j Z) be a given matrix with entries a,b,c,d € Z. Then by

it follows that
b\’ a®> +bc  bla+d) 20

4.3 A2=(" )_:( ):21:( )
(43) (c d cla+d) d*+bc 0 2

Analyzing the equation we obtain that b #0 and ¢ # 0, so implies
a+d =r=0. From this fact in virtue of s = det 4 = +2 we obtain (r,s) = (0, 2);
(0, _2)

Now, we can consider the case when x # y #z and s=det 4 # 0, +2 and
A # 2I. In these cases the equation (*) implies:

(4.4) AP+ 4777 =1, if min{x, y,z} =z
(4.5) AV + T =A477, if min{x, y,z} =y
(4.6) I+ 477" =A4"* if min{x, y,z} = x.

For the corresponding equations (4.4)—(4.6) let g(¢) be associated polynomial
of the form:

(P1) g(f) ="+ 7 —1, if (44) holds
(P2) g(t) =7 — ¥ 41, if (4.5) holds
(P3) g(t) =P~* — " 41, if (4.6) holds.
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From (P1)-(P3) and (4.4)-(4.6) we obtain g(4) = O. Hence, by [Lemma 1 it
follows that if m(¢) is the minimal polynomial then we have m(¢)|g(z). In this
connection we consider two cases: 1° f(f) = t*> —tr +s is an irreducible char-
acteristic polynomial of the matrix 4, 2° f(¢) is reducible polynomial. In the
case 1° we have f(t) = m(¢) and therefore f(t)|g(t), which by (P1)—(P3) implies

(@) ST +7 =1, or SO = £ 41, or f()] 0 =41

From (4.7) in the case of t = 0 we get f(0)| +1. Since f(0) =s, then s = 1.
On the other hand putting in (4.7) t=1 we obtain f(1)|+1. Since f(1)=
1-r+s and s = +1 we get the following possibilities to consider:

(48) (r,s)={(1,1),(3,1),(—1,—1),(1,—1)}.

Consider the case when (r,s) = (3,1). In this case the characteristic poly-
nomial has the form: f(f) = t> — 3¢+ 1 and we have A = 5 and the characteristic
roots a,f of this polynomial are equal to a« = (3 ++/5)/2 and = (3 — V5)/2.
Since a > v/2 then by it follows that max{x —z, y —z} = —1. Sup-
pose that max{x — z, y — z} = x — z. Then we have x —z=—1,s0 z=x+ 1 and
(*) implies

4.9) A*(A-1)=A4".
Since s=det 4 =1 from we obtain det(4 —I)=1. If 4= (j Z)

then the condition det(4 —I) =1 implies (a—1)(d —1) —bc =1 and conse-
quently ad — bc — (a+d) =0. Since ad —bc=s=1 and a+d = Tr A =r, thus
we obtain r = 1, which is contrary to the fact that r = 3. Therefore, in the case
of (r,s) = (3,1) the equation (*) has no solution. In a similar way we obtain a
contradiction for the case if max{x —z,y—z} =y —z.

It remains to consider the case 2° when the characteristic polynomial f(¢) is
reducible. In this case we have f(¢) = (¢ — a)(¢ — ), where «,f € Z. From (*) and
the assumption that 4 is non-singular matrix, it follows that det 4 = +1 and
in virtue of det4 = «ff we get af = +1. Hence, a =f=1ora=1 and f= -1
or a =—1 and B =1. For these cases we obtain that A =1 or 4 = —I and
the equation (*) has no solutions in positive integers x # y # z. Now, we can
consider the final part of the proof. If the non-zero matrix 4 € M>(Z) is singular,
then det 4 = 0. In this case, by simple inductive way, we get 4™ = (Tr A)”'_IA
for all positive integers m. Using this formula and the assumption that 4 # O
we obtain that (*) reduces to the form:

(4.10) Pl =
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where r = Tr A € Z. It is easy to see that the equation has a solution with
positive integers x # y #z and an integer r if and only if r=0 or r=2.

Summarizing, we get that the condition (it) is satisfied and the proof of the
is complete. [
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