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LJUNGGREN’S TRINOMIALS AND MATRIX EQUATION
$A^{x}+A^{y}=A^{z}$

By

Aleksander GRYTCZUK and Jaroslaw GRYTCZUK

Abstract. We give some necessary and sufficient conditions for
solvability of the matrix equation $(^{*})$ A $+A^{y}=A^{Z}$ , with certain
restrictions on integers $x,$ $y,$ $z$ and a matrix $A_{4}\in M_{k}(Z)$ , by applying
Ljunggen’s result on trinomials. Moreover, we obtain full solution
of $(^{*})$ for the case $k=2$ by another technique.

1. Introduction

We consider the general problem of finding necessary and sufficient con-
ditions for the matrix $A\in M_{k}(Z)$ to satisfy the equation

$(*)$ A $+A^{y}=A^{z}$

for some positive integers $x,$ $y$ and $z$ . Le and Li [7] proved that if $A\in M_{2}(Z)$ ,
then, for $x=mr,$ $y=ms,$ $z=mt$ , where $m>2$ and $r,$ $s,$

$t$ are positive integers,
$(^{*})$ has a solution if and only if the matrix $A$ is nilpotent or $\det A=TrA=1$ .
Another proof of this result has been given in [5]. The restriction to multiplies
of $m$ is motivated by another matrix equation of the famous form, namely by the
equation of Fermat

$(**)$ $X^{m}+Y^{m}=Z^{m}$ .

In fact $(^{*})$ is equivalent to Fermat’s equation $(^{**})$ for $X=A^{r},$ $Y=A^{s}$ and
$Z=A$ ‘. We note, that if $m=4$ the Domiaty [2] remarked that the equation $(^{**})$

has infinitely many solutions in $M_{2}(Z)$ generated by Pythagorean triples. This
fact is in opposition to the well-known case of ordinary integers, as proved by
Wiles [13].
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In this connection it is a very important problem to find a sufficient and
necessary condition for solvability of Fermat’s equation $(^{**})$ in the set of matrices
(cf. [10], [12]). Khazanov [6] found such conditions for the matrices $X,$ $Y,$ $Z\in$

$SL_{2}(Z)$ and $X,$ $Y,$ $Z\in GL_{3}(Z)$ . Further investigations connected with Khazanov’s
results have been given in the papers [1], [5], [7] and [9]. Some necessary condition
for solvability of $(^{**})$ in the set $M_{2}(Z)$ is contained in the paper [3]. In general
case, it was proved in [4] that if the matrix $A\in M_{k}(C),$ $k\geq 2$ has at least one
real eigenvalue $\alpha>\sqrt{2}$ and $(^{*})$ is satisfied in positive integers $x,$ $y$ and $z$ , then
$\max\{x-z, y-z\}=-1$ .

In the present paper we give an application of Ljunggren’s [8] result on
trinomials to find a sufficient and necessary condition for solvability of $(^{*})$ in
positive integers $x,$ $y$ and $z$ under some restrictions for $A\in M_{k}(Z),$ $k\geq 2$ con-
ceming the set of exponents $x,$ $y$ and $z$ . Moreover, we present full solution of $(^{*})$

for the case $k=2$ without using Ljunggren’s result on trinomials. In the first
part of this paper we prove the following theorem.

THEOREM 1. Let $A\in M_{k}(Z),$ $k\geq 2$ be a given non-zero and non-singular ma-
trix with the characteristic polynomial $f(t)=\det(tI-A)=t^{k}+a_{1}t^{k-1}+\cdots+a_{k}$ .
Then the matrix equation $(^{*})$ has a solution in positive integers $x,$ $y$ and $z$ such that
$x=y$ or $x=z$ or $y=z$ if and only if

(i)

A $=2I$ ,

where $ m=k/\alpha$ , $1\leq\alpha\leq k$ is a divisor of $k,$ $\det A=\pm 2^{\alpha}$ and $\alpha(z-x)=$

$k\geq 2$ . Moreover, if the positive integers $x,$ $y,$ $z$ satisfy the conditions:
$x>y>z$ and $x-z\geq 2(y-z)\geq k\geq 2$ , with $(x-z, y-z)=(n,m)=d$ and
3 $X(x-z)/d+(y-z)/d$ , then $(^{*})$ has a solution, $lf$ and only if

(ii) $a_{i}=0$ , for $i\neq m,k$ , and $a_{m}=\epsilon_{1}$ and $a_{k}=\det A=\epsilon_{2}$ , where $\epsilon_{1}=\pm 1$ and
$\epsilon_{2}=\pm 1$ or if $3|(x-z)/d+(y-z)/d$ then

(iii)

$A^{2d}+\epsilon_{1}^{y-z}\epsilon_{2}^{x-z}A^{d}+I=0$ or $h(\Lambda)=O$ ,

where $h(t)$ is irreducible factor of the polynomial $g(t)$ given by the equality

$g(t)=t^{x-z}+\epsilon_{1}t^{y-z}+\epsilon_{2}=(t^{2d}+\epsilon_{1}^{y-z}\epsilon_{2}^{x-z}t^{d}+1)h(t)$ ,

where $(x-z)/d,$ $(y-z)/d$ are both odd and $\epsilon_{1}=1$ or $(x-z)/d$ is even and $\epsilon_{2}=1$

or $(y-z)/d$ is even and $\epsilon_{1}=\epsilon_{2}$ .
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2. Basic Lemmas

In the proof of the Theorem 1 we use of the following Lemmas.

LEMMA 1 ([11], p. 210). Let $A$ be a $k\times k,$ $k\geq 2$ matrix with entries in the

field K. Then each polynomial $g\in K[x]$ with property $g(A)=O$ is divisible by the
minimal polynomial $m\in K[x]$ of the matrix A. In particular, the minimal poly-
nomial $m$ divides the characteristic polynomial $f\in K[x]$ of the matrix $A$ and the
polynomial $f$ has the same roots, but possibly with $d_{l}fferent$ multiplicities.

REMARK 1. The minimal polynomial of the matrix $A$ is the unique polynomial
$m\in K[x]$ of minimal degree with leading coefficient equal to one and such that
$m(A)=O$.

LEMMA 2 (Ljunggren [8], Thm. 3, p. 69). If $n=dn_{1},$ $m=dm_{1},$ $n\geq 2m$ where
$(n_{1},m_{1})=1$ , then the polynomial $g(x)=x^{n}+\epsilon_{1}x^{m}+\epsilon_{2}$ , where $\epsilon_{1},$

$\epsilon_{2}=\pm 1$ is irre-
ducible, apart from the $fo$llowing three cases, when $n_{1}+m_{1}\equiv 0(mod 3):1^{0}n_{1},$ $m_{1}$

both odd and $\epsilon_{1}=1,2^{0}n_{1}$ even and $\epsilon_{2}=1,3^{0}m_{1}$ even and $\epsilon_{1}=\epsilon_{2}$ and then
$g(x)=(x^{2d}+\epsilon_{1}^{m}\epsilon_{2}^{n}x^{d}+1)h(x)$ , where $h(x)$ is an irreducible polynomial.

3. Proof of the Theorem 1

Suppose that $(^{*})$ has a solution in positive integers $x,$ $y$ and $z$ and let the
matrix $A\in M_{k}(Z)$ be a non-zero and non-singular matrix. First, we note that if
$x=z$ or $y=z$ then $(^{*})$ is impossible, since $(^{*})$ reduces in these cases to the form
$A^{y}=O$ or $A^{x}=O$ . Both these equations imply $\det A=0$ , which contradicts the
assumptions. If $x=y$ then $(^{*})$ has the form

(3.1) $2A^{x}=A^{z}$ .

By (3.1) it follows that $x\neq z$ and $z>x$ and consequently we have

(3.2) $A^{z-x}=2I$ .

From (3.2) we obtain $\det A^{z-x}=(\det A)^{z-x}=2^{k}$ , so $\det A=\pm 2^{\alpha}$ , where
$1\leq\alpha\leq k$ . Hence, $(\pm 2)^{\alpha(z-x)}=2^{k}$ and $\alpha(z-x)=k\geq 2$ , where $\alpha$ or $z-x$ is even
if $\det A=-2^{\alpha}$ and $z-x=k/\alpha=m$ . Then by (3.2) it follows that $A^{m}=2I$ and
the proof of (i) is finished. Now, we can consider the case when $x\neq y\neq z$ . In this
case, by the equation $(^{*})$ and the assumptions about $x,$ $y$ and $z$ it follows to
consider the following equation:

(3.3) $A^{x-z}+A^{y-z}=I$ .
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Let $d=(x-z, y-z)=(n, m)$ be the greatest common divisor of $n$ and $m$

and let $x-z\geq 2(y-z)\geq k\geq 2$ and denote by $g(t)$ the polynomial of the form

(3.4) $g(t)=t^{x-z}+t^{y-z}-1$ .
Then by (3.3) it follows that $g(A)=O$ . If 3 $X(x-z)/d+(y-z)/d$ then

from Lemma 2 it follows that the polynomial $g(t)$ is irreducible and therefore the
characteristic polynomial $f(t)$ of the matrix $A$ is equal to $g(t)$ in (3.4). Com-
paring the coefficients and degrees of these polynomials we obtain the condition
(ii). Let 3 $|(x-z)/d+(y-z)/d$ , then by Ljunggren’s result given in Lemma 2
we obtain that

(3.5) $g(t)=(t^{2d}+\epsilon_{1}^{m}\epsilon_{2}^{n}t^{d}+1)h(t)$ .

From (3.5) in virtue of $g(A)=O$ we obtain that
$A^{2d}+\epsilon_{1}^{m}\epsilon_{2}^{n}A^{d}+I=O$ or $h(A)=O$

with some restrictions conceming $m,$ $n,$
$d$ and the polynomial $h(t)$ given by

the assumptions of the Ljunggren’s Lemma 2. The proof of the Theorem 1 is
complete.

4. $FuU$ Solution of the Equation $(^{*})$ for the Case $A\in M_{2}(Z)$

In this part of our paper we present full solution of the equation $(^{*})$ in
positive integers $x,$ $y$ and $z$ in the case when the matrix $A$ belongs to $M_{2}(Z)$ . In
this purpose we replace Ljunggren’s result on trinomials by the following Lemma.

LEMMA 3 ([4]). Let $A$ be in $M_{k}(C)$ , where $k\geq 2$ and $C$ denotes the field
of complex numbers. Suppose that $A$ has at least one real eigenvalue $\alpha>\sqrt{2}$ .
If the equation $(^{*})$ has a solution in positive integers $x,$ $y$ and $z$ then
$\max\{x-z, y-z\}=-1$ .

Now we prove the following theorem.

THEOREM 2. Let $A\in M_{2}(Z)$ be a given non-zero matrix with $\det A=s$ and
$TrA=r$ . Then the matrix equation $(^{*})$ has a solution in positive integers $x,$ $y$ and $z$

if and only if one of the following conditions holds:
(i)

$A=2I$ ,

(ii)

$(r,s)=\{(0,0), (0,2), (0, -2), (1,1), (1, -1), (-1, -1)\}$ .
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PROOF. Denote by $ f(t)=\det(tI-A)=t^{2}-(TrA)t+\det$ $A$ the character-
istic polynomial of the matrix $A\in M_{2}(Z)$ and let $r=Tr$ $A$ and $s=\det A$ .
Suppose that the matrix $A$ is non-singular, so $s=\det A\neq 0$ and let positive
integers $x,$ $y$ and $z$ satisfy the equation $(^{*})$ . If $x=z$ or $y=z$ then $(^{*})$ reduces to
$A^{y}=O$ or A $=O$ , which is impossible, because $s=\det A\neq 0$ . If $x=y$ then $(^{*})$

has the form: $2A^{x}=A^{Z}$ . We observe that if $x\geq z$ then we have $2A^{x-z}=I$ , which
implies 4 $\det A^{x-z}=4(\det A)^{x-z}=1$ and we get a contradiction. Hence, $x<z$

and we obtain the following equation:

(4.1) $A^{z-x}=2I$ .

From (4.1) it follows that $\det$ $A^{z-x}=(\det A)^{z-x}=4$ and consequently
$\det A=\pm 2$ and $z-x=2$ or $\det A=4$ and $z-x=1$ . The case of $z-x=1$

implies by (4.1) the condition (i) of the Theorem 2. In the case of $z-x=2$

and $s=\det A=\pm 2$ by (4.1) it follows that

(4.2) $A^{2}=2I$ .

Let $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ be a given matrix with entries $a,$ $b,$ $c,$ $d\in Z$ . Then by (4.1)

it follows that

(4.3) $A^{2}=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)=\left(\begin{array}{ll}a^{2}+bc & b(a+d)\\c(a+d) & d^{2}+bc\end{array}\right)=2I=\left(\begin{array}{ll}2 & 0\\0 & 2\end{array}\right)$ .

Analyzing the equation (4.3) we obtain that $b\neq 0$ and $c\neq 0$ , so implies
$a+d=r=0$ . From this fact in virtue of $s=\det A=\pm 2$ we obtain $(r,s)=(0,2)$ ;
$(0, -2)$ .

Now, we can consider the case when $x\neq y\neq z$ and $s=\det A\neq 0,$ $\pm 2$ and
$A\neq 2I$ . In these cases the equation $(^{*})$ implies:

(4.4) $A^{x-z}+A^{y-z}=I$ , if $\min\{x, y,z\}=z$

(4.5) $A^{x-y}+I=A^{z-y}$ , if $\min\{x, y,z\}=y$

(4.6) $I+A^{y-x}=A^{z-x}$ , if $\min\{x, y,z\}=x$ .

For the corresponding equations $(4.4)-(4.6)$ let $g(t)$ be associated polynomial
of the form:

(P1) $g(t)=\iota^{x-z}+t^{y-z}-1$ , if (4.4) holds

(P2) $g(t)=t^{x-y}-t^{z-y}+1$ , if (4.5) holds

(P3) $g(t)=t^{y-x}-t^{z-x}+1$ , if (4.6) holds.
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From $(P1)-(P3)$ and $(4.4)-(4.6)$ we obtain $g(A)=O$ . Hence, by Lemma 1 it
follows that if $m(t)$ is the minimal polynomial then we have $m(t)|g(t)$ . In this
connection we consider two cases: 1 $f(\iota)=t^{2}-tr+s$ is an irreducible char-
acteristic polynomial of the matrix $A,$ $2^{0}f(\iota)$ is reducible polynomial. In the
case 1 we have $f(t)=m(t)$ and therefore $f(t)|g(t)$ , which by $(P1)-(P3)$ implies

(4.7) $f(t)|\iota^{x-}’+t^{y-z}-1$ , or $f(t)|t^{x-y}-t^{z-y}+1$ , or $f(t)|t^{y-x}-t^{z-x}+1$ .

From (4.7) in the case of $\iota=0$ we get $f(O)|\pm 1$ . Since $f(O)=s$ , then $s=\pm 1$ .
On the other hand putting in (4.7) $t=1$ we obtain $f(1)|\pm 1$ . Since $f(1)=$

$1-r+s$ and $s=\pm 1$ we get the following possibilities to consider:

(4.8) $(r,s)=\{(1,1), (3,1), (-1, -1), (1, -1)\}$ .

Consider the case when $(r,s)=(3,1)$ . In this case the characteristic poly-
nomial has the form: $f(\iota)=t^{2}-3t+1$ and we have $\Delta=5$ and the characteristic
roots $\alpha,\beta$ of this polynomial are equal to $\alpha=(3+\sqrt{5})/2$ and $\beta=(3-\sqrt{5})/2$ .
Since $\alpha>\sqrt{2}$ then by Lemma 3 it follows that $\max\{x-z, y-z\}=-1$ . Sup-
pose that $\max\{x-z, y-z\}=x-z$ . Then we have $x-z=-1$ , so $z=x+1$ and
$(^{*})$ implies

(4.9) $A^{x}(A-I)=A^{y}$ .

Since $s=\det A=1$ from (4.9) we obtain $\det(A-I)=1$ . If $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$

then the condition $\det(A-I)=1$ implies $(a-1)(d-1)-bc=1$ and conse-
quently $ad-bc-(a+d)=0$ . Since ad–bc $=s=1$ and $a+d=TrA=r$ , thus
we obtain $r=1$ , which is contrary to the fact that $r=3$ . Therefore, in the case
of $(r,s)=(3,1)$ the equation $(^{*})$ has no solution. In a similar way we obtain a
contradiction for the case if $\max\{x-z, y-z\}=y-z$ .

It remains to consider the case $2^{0}$ when the characteristic polynomial $f(t)$ is
reducible. In this case we have $f(t)=(t-\alpha)(t-\beta)$ , where $\alpha,\beta\in Z$ . From $(^{*})$ and
the assumption that $A$ is non-singular matrix, it follows that $\det A=\pm 1$ and
in virtue of $\det A=\alpha\beta$ we get $\alpha\beta=\pm 1$ . Hence, $\alpha=\beta=1$ or $\alpha=1$ and $\beta=-1$

or $\alpha=-1$ and $\beta=1$ . For these cases we obtain that $A=I$ or $A=-I$ and
the equation $(^{*})$ has no solutions in positive integers $x\neq y\neq z$ . Now, we can
consider the final part of the proof. If the non-zero matrix $A\in M_{2}(Z)$ is singular,
then $\det A=0$ . In this case, by simple inductive way, we get $A^{m}=(TrA)^{m-1}A$

for all positive integers $m$ . Using this formula and the assumption that $A\neq O$

we obtain that $(^{*})$ reduces to the form:

(4.10) $r^{x-1}+r^{y-1}=r^{z-1}$ ,
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where $r=TrA\in Z$ . It is easy to see that the equation (4.10) has a solution with
positive integers $x\neq y\neq z$ and an integer $r$ if and only if $r=0$ or $r=2$ .
Summarizing, we get that the condition (ii) is satisfied and the proof of the
Theorem 2 is complete. $\blacksquare$
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