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Introduction

Waldspurger proved that the squares of Fourier coeflicients a(n) at a
square free integer n of a modular form f(z) = > ", a(n)e[nz] of half integral
weight are essentially proportional to the critical value of the zeta function at
a certain integer attached to the modular form F of even integral weight if f
corresponds to F by the Shimura correspondence ¥ and f is an eigen-function of
Hecke operators. Kohnen-Zagier [2], [4] determined explicitly the constant of the
proportionality in the case of modular forms of belonging to Kohnen’s spaces
Sk+1)/2(N, x) of weight (2k +1)/2 and of square free level N with character x
which is a subspace of Sii1),2(4N, x1), where S(k41y/2(4N, x;) means the space
of modular cusp forms of half integral weight given in [10]. Kohnen-Zagier
(resp. Kohnen [4]) treated the case where N =1 (resp. N is an odd square free
integer and y is the trivial character of level N) (cf. Kojima and [7]).

In [10], Shimura intended to generalize such formulas to the case of Hilbert
modular forms f of half integral weight and succeeded in obtaining many general
interesting formulas. Among these, some explicit and useful formulas about the
proportionality constant were formulated under assumptions that f satisfies the
multiplicity one theorem. K. K-Makdisi gave a generalization of these to the
case of Hilbert-Maass wave forms. For modular forms belonging to Kohnen’s
spaces, they did not obtain the same explicit formulas as those of Kohnen and
Zagier [2], [4].

In [8], we derived such explicit formulas concerning the proportionality
constant in some cases of modular forms f of half integral weight whose
multiplicity are two and generalized results of Kohnen and Zagier in [2], to
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the case of modular forms of half integral weight belonging to Kohnen’s spaces
of an arbitrary odd level N and of an arbitrary primitive character modulo N.

The purpose of this paper is to generalize the results in to the case of
Maass wave forms of half integral weight belonging to Kohnen’s spaces. We
derive an explicit relation between the square of a Fourier coefficient a(4n) at
a fundamental discriminant 4n of Maass wave forms f(z) =3, .z (o a(n)-
W, p(ny)elnx] belonging to the Kohnen’s space & 5¢11)/2,4/(N, x) of half integral
weight (2k + 1)/2 and of arbitrary odd level N of an arbitrary primitive character
%, and the critical value of the zeta function of the modular form F which is the
image of f under the Shimura correspondence ¥. The assumptions on y and the
fundamental discriminant 4n are technical conditions. Our methods of the proof
are the same as those of Kojima [8]. To obtain our results we need to modify
slightly the method.

Section 0 is a preliminary section. In Section 1, we shall summarize some
results concerning Maass wave forms of half integral weight, Kohnen’s spaces
and Hecke operators of Kohnen’s spaces of Maass wave forms of half integral
weight. In Section 2, using these, we shall determine explicitly the image of Maass
wave forms of half integral weight belonging to Kohnen’s spaces under the

4e .. .
Shimura correspondence ¥. We show that ‘P?Z]fo)/)z /1',1'( f)(w) coincides with

a(4t)g(2w) for every f(2) =3, ez nroa(n)Wy p(nylelnx] € L opi1)2,2' (N, X),
where 7 is a positive square free integer satisfying 7 = 2,3 (mod4) and g(w) is
an element of &5 4;/(N, 2%). Moreover, by a method similar to those of
Shimura and Kojima [8], we shall verify an integral formula which shows
that a modular form f of half integral weight is expressed as the inner product of
a theta function and the image W(f) of f by the Shimura correspondence V.
Under some assumption about multiplicities, adapting the operator U(4), we
shall verify that <O(z,w;(%),g(2w)> = & L.(f)(z) + &L (f)|U(4)(z) for a
modular form f € % (y1)22(N,x) with some constants ¢, and ¢;, where
O(z,w; %) is a theta function and L.(f)(z) = f(zz)r*. Furthermore, applying the

above formulas, we obtain ¢ = a(47)¢; and ¢, = a(41)c4 with explicit constants

¢3 and ¢4. These formulas are keys for our later treatments. In Section 3, using
the results of Section 1, Section 2, the computation of the image of a product of
theta serires and Eisenstein series by Shimura correspondence and the method of
the Rankin’s convolution, under some assumptions on the multiplicity property
of Hecke operators, we shall derive an explicit connection between the square
of Fourier coefficients of a Maass wave form f of half integral weight and the
critical value of zeta functions associated with the image W¥(f) of f by the
Shimura correspondence V.
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We mention that our results give a generalization of some results in Kojima
[8].
Finally, the author is indebted to the referee suggesting some revisions of this

paper.

§0. Notation and Preliminaries

We denote by Z,Q,R and C the ring of rational integers, the rational
number field, the real number field and the complex number field, respectively.
For ze C, we put e[z] = exp(2ziz) and we define \/z =z!/? so that —n/2 <
argz!/2 < /2. Further, we set zK/2 = (,/2)* for every k € Z. We denote by 3(z)
(resp. R(z)) the imaginary (resp. real) part of ze C. Let SL(2,R) denote the
group of all real matrices of degree 2 with determinant one and & the complex

upper half plane, i.e.,
a b
SL(2,R) =
ern={(¢ )

9={z=x+iy|x,yeR and y > 0}.

a,b,c and d € R and ad — bc = 1}

and

Define an action of SL(2,R) on $ by

z — y(z) :Zj:‘[; for all y = (i 2’) € SL(2,R) and for all ze 9.

For positive integers M and M’, put

a,b,c and de Z and c=0 (modM)},

To(M) = {(“ D e SL(2, R)

b

J b=0 (modM)}.

> e To(M')

SL(2,Z) =To(1) and T[M,M']= {(j

We introduce an automorphic factor j,(y,z) of T¢(4) determined
by Jjo(y,z) = Jo(y(2))/(z) for every y = <‘: Z) eIp(4) and for every ze
9 with 9(z) = 52 e[n’z] and 9(z) = o(z/2).

§1. Maass Wave Forms of Half Integral Weight

This section is devoted to summarizing several fundamental facts which we
need later (cf. [11]). For a /e R, we put
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1
1) @=L, dro=r""2 e, D=1+

for every C®-function f(z) on §. For a function fon $ and ne Z(>0), we put

(12) [l = (cz+d)™" f(i‘j: z) for every y = (‘; z) e SL(2, R).

Let w be a Dirichlet character modulo M. We denote by .#, ;(M,w) the set of
all C*-functions f :$ — C satisfying conditions

19 ) /(@) = o(@)f for every = (¢ 1) e TaCaa),

(i) D"f(z) =Af(z) and for every oe SL(2,Z), there exist positive
numbers a, b and ¢ depending on the choice of f such that
(i) 1(3(2))"f1l,0(2)| < ay* if 3(z) 2 b.

Now we take a (a,f) € C? such that af = A, a+f=1—n and define a
function W, g(y) on R* determined by
V(dny;a,B) if y>0,
(1-4) Wa,ﬂ(y) = at+p—1 .
(—4ny) V(-4ny;1 —a,1 - ) if y <O,

where
V(y;l,m) :e-y/Zy’r(l)-‘J e+ dr for (I,m)eC?* (R()>0)
0

and y >0 and V(y;/,m) is the function given by means of the analytic con-
tinuation with respect to / for (I,m) e C? (R(/) £0) and y > 0. We denote by
Fni1(M,) the set of all cusp forms f belonging to .#, ;(M,w). We have the

following lemma (cf. [1], [I1]).

LeEMMA 1.1. The function f(z) € ¥n 1(M,w) has a Fourier expansion of the
form

(1-5) f@)= Y b(@Wap(uy)elpx] (z=x+iy).
ueZ—{0}

For neZ (n=0) and ze C, put (z),=2(z+1)---(z+n—-1) (n>0) and
(z)o =1. We call f(z) € %, 1(M,w) even if n is even and

(1-6) f@) = 3 b(w)Wap(uyelpx] and
neZ—{0}

b(p) = (=1)"*(),2(B)nb(lul) (1 <0).
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We may define Hecke operators {7, (m)},_, acting on %, ;(M,w) satisfying

(1'7) f‘Tn,iw Z b' (,Ll o, B ﬂy) [ ]

uneZ—{0}

and

bw= Y wdd " bmu/d?),

d|(m, p),d>0

where

f2)= Y b(u)Wap(uy)elux] (cf. [I]).

ne Z—{0}

Let k be a positive integer. Let N denote a positive integer and ¥, a Dirichlet
character modulo 4N. We denote by # 1) 1/(4N,¥,) the set of all C*-
functions f : 9 — C such that

(1-8) | Xk
(1) fly(2)) = ‘//o(d)jo(y,z)zk+1f(2) for every y = <* d) €I9(4N) and z e 9,

b .
(i) D@+D/2f(z) = A’ f(z) and for every (a d) € SL(2,Z), there exist positive
c

numbers a’, b’ and ¢’ depending on the choice of f satisfying the condition

o k24174 ofaz b J)- (kD)2
i) (320 (E20) ez )

We denote by i1y, (4N,,) the set of all cusp forms f belonging to
M ics1) /2,2 (4N, o). The form f € Fppi1y2,1/(4N, ) has the following Fourier

expansion

<d'(3(2))° if 3(z) 2 .

(1-9) f@) = Y a(wW, p(uyelux] (z=x+iy),

uneZ—{0}

where 'a(0) =0 and o/, 8’ are complex numbers such that «/f = 1/, oz’—i—ﬁ’ =
1 —(2k+1)/2 (c¢f [1]). We may define Hecke operators {T
acting on ¥(y11)/2,4/(4N, ) satisfying conditions

(1-10) fITé]ZH )/2, /1',¢0(p2)(z) = Z a'(ww, o, f’ (uy)elpux],
neZ-{0}

k+1)/2,4’ ./zo(P )} e

k
&' (1) = a(p*u) + Vo) (‘71) (%)pk—lam T o(p)) P a1 p)
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and

f@) =Y aWW, g(uyelux],

ueZ—{0}

where a(u/p?) =0 if p2 yu (cf. [1], [6] and [10]).

Let b and b’ denote integral ideals of @ and ¢ a Hecke character of Q whose
conductor divides 4bb’. Let # 5 1)/2 1/(b,b';4) (resp. Fapy1)/2.4/(b,b';%)) be the
space of modular forms (resp. modular cusp forms) of half integral weight
(2k + 1)/2 given in [1] and [14]. Let y, be a Dirichlet character modulo 4N such
that yy(—1) = 1. We choose the Hecke character y of @ such that

k
(1-11) H Y,(a) = (—_:al) Vo(a)™! for every ae (Z/ANZ)™, V,(Z)) =1
plAN

for every p /4N and y,(x) = (sgn(x))k (x € R), where y, (resp. ,) means the
restriction of ¥ to the p-component (resp. the archimedean factor) of the idele

group Q7.
For f' € %oki1y2,2(Z,NZ; ), put L(f')(z) = f'(2z). Then the following
mapping is bijective.

(1-12) L: SLousny,2(Z,NZ; ) — Foprny)2,2 (AN, ¥y).

Let 7 be a positive integer. We consider a mapping L. of Fpy1y/2,2(Z, NZ; )
Into Hoky1y/2,2/(Z, NtZ;yp,) defined by

(1-13) L(f)(z) = f(z2)tF for every f(z) € Fusryyn1/(Z, NZ; ),

where p. is the Hecke character associated with the quadratic field Q(/7).
We put h(z) = L(f)(z). The following lemma can be proved by [14].

LEMMA 1.2. The notation being as above, the mapping L. gives a bijection of
SLok+1)2,2' (£, NZ; ) onto the set

(1-14) {h(Z) = Y dmW, p(ny/2)elnx/2]

neZ—{0}

€ Soks1yy2,2(Z,NTZ,Yp,) la'(n) =0 if T*”}-

Moreover,

o f> =72 h,my,
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where for given two cusp forms f,g of weight | with respect to T, their inner

product {f,g> means

(frg> = vol(T\§) ! L\g T@9(:)3() doz  with

5z =— (x = R(z), y = 3(2)).

Throughout the rest of the paper we assume that N is an odd integer. Let y
be a Dirichlet character modulo N such that x(—1) =& Put x; = (). We
introduce a subspace Syii1)2,2'(N,X) of Fouy1)/2,27 (4N, x1) defined by

(1-15)  FLoks1)2,20 (N, x) =

{f € Loakt1)/2,2 (4N, 1) 'f(z) = Z a(n) Wa',ﬁ'(nJ’)e[”x]}-

e(—1)*n=0,1(4),n £0

We call Spi1y/2,2/(N,x) the Kohnen’s space of Maass wave forms of weight
(2k +1)/2 and of level N with character y. For a positive integer m, we define a

function f|U(m) on $ by
flUm)(z)= Y almn)W, p(ny)elnx]
ne Z—{0}
for every function f(z) =3, .z (oya(n)W, g(nylelnx] on $. By the same

manner as that of [3, p. 42 and p. 46|, we define Hecke operators T é"k /20 x(p)
(PAN) on Fppiy/2,2(N,x). We can show the following lemma (cf. ).

LemMMmA 1.3. The notation being as above, for f(z)=zs(_l)kn50,l(4)’n#0
a(n) Wa’,ﬂ’(ny)e[nx] € Ly?Zk—i—l)/Z,)h’(]Va)(): fngkH)/z,,y,X(P)(Z) (p*N) and
flU(p?)(z) (p|N) belong to S ak+1)/2,2' (N, x). Moreover, Fourier expansions of
f|T(]2Vk+1)/27i,yx(p)(z) (p ¥ N) and flU(p*)(z) (p|N) are given as follows:

(1-16) fngkH)/z,,v,x(P)(z)

- ¥

neZ—{0},&(~1)*n=0,1(4)

k
x (a<p2n> T 2(p) (i(";#’—) p*a(n) +x2(p)1)2"'1a(n/p2))
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Wy p(ny)elnx](p ¥ N) and

f1U(P*)(2) = > a(p*n) W, g(ny)elnx] (p|N),
ne Z—{0},&(—-1)*n=0,1(4)

where a(n/p?) means 0 if p* yn.

Observe that T (’;_’k nys A,’X(p) (p4 N) coincides with the restriction of

aN 2
Tokyy2,2,5(P7) 10 Farnyn, (N X)-

§2. Shimura Correspondence and Some Formulas of Theta Integrals

This section is devoted to confirming an integral expression of Shimura
correspondence and key proposition concerning theta integrals which are essential
and useful for our results. Put

a b
o fe(* D) emio

F(V)={n:V — C|n is a locally constant function in the sence of [14]}.

tré = 0} and

Let n be an element of & (V). Define a theta function ®@(z,w;n) on $ x H by

(2-1) O(z, w;n) = y'23(w) ) " n(&)[E, W e[27 R[E, 2, W]]
eV

for every (z,w) e 9 x 9, where

(&, w] = [E,w,w)], [, w,w] = (cww' + dw —aw’ — b) and

R[& z,w) = (dctf)z—}—%yﬁ(w)_zl[é, w]|2 (é = (a b) eV,y= S(z))
c d

Let ¢ be the Hecke character given in (1-11). We denote by 7 a positive square
free integer such that

(2-2) 7=2,3 (mod4) and (7,N)=1.

Put ¢ = yp, with the Hecke character p, associated with the quadratic field

o(V7).
We put e =2N and

ofe ¢ = {x: (‘c‘x Zz) e M3(Q)

X

areZ,byee'Z ¢, eeZ and d, eZ}.
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Define an element n € (V) by
0 if x ¢ ole”!,¢],

(2-3) n(x) = { ¢*((2tt))e[—bxt] otherwise.

> te(1/20)z/2nz Pall)

We may deduce the following proposition by the same method as that of
(cf. Niwa [9], Makdisi [1] and Kojima [6]).

PROPOSITION 21 For f(Z) = Z;O:Aoo a(n) W“;7ﬁ/(ny/2)e[nx/2] S 'ZZ/C%—I)/ZJ.,
(Z,NZ;Vy), put h(z) = L.(f)(z). Suppose that \yy, T and \ satisfy the conditions (2-
2) and n is a function on V determined by (2-3). Then there exists the even form

(24) .
gew)= ( > w0<d>('71) (g)d"—‘amm/d)z)) W, o (o) el

me Z—{0} \ d|m,d>0

belonging to S 4,/ (2N, Wl) such that

C'g:(w) = h(z)@(z, w; )y ¥+ D2 dg 2

JF[Z,ZTN]\$

with w=u+ iv and C' = 2*tkikz4N.

Define a mapping (5, .. : Saicsryyn, i/ (Z, NZi ) = Fope 47 (2N,45) by

(2-5) ¥l r )W) = ge(w) for every f(2) € Feinya, (2, NZ; ).

We call it the Shimura correspondence. Since Fyc11)/2,,/(N,x) is contained in
Fokr1y/2,2' (4N, (%9)x), we have the following diagram.

L .
(2-6)  Foksrya, 22 (N X) © Fokrryyn, (AN o) = Fertyn,/(Z, NZ; ) with

-9

By this relation, we may identify elements f(z) of H(pty1)/2,2/(IV, x) with those of

'Sp(2k+1)/2,/1’(ZaNZ5 ).
Now we impose the following assumption.

(2-7) &= x(~1) satisfies (—1)¥e > 0, y is a primitive Dirichlet character
modulo N, f e .S’Qk +1)/2,2/(N,x) is an eigenfunction of all

Hecke operators T(2k+1)/2 2y (p) (p X N) and U(p?) (p|N), ie.,

ST 22,V = 0(P) () (p4N) and FIU(P?)(E) = w(p)f(2)
(pIN)
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and a(479) # 0 for some square free positive integer 7o such that 75 =2,3
(mod 4).
We may derive the following lemma in a manner similar to that of Kojima

LEMMA 2.2. Suppose that the notation is the same as that of proposition 2.1
and the assumptions in proposition 2.1 and (2-7) are satisfied. Then

28)  Fo L (W)

= Z ( Z (i;)x(d)dk la(‘[(m/d) )) Wza/,zﬂ/(mv)e[mu]
me Z—-{0} \ d|m,d>0

coincides with an element a(4t)g(2w) of sy 43/ (2N, x?), where w=u+ iv and

g(w) = Z b(n) Wy 25 (nv)e[nu]
ne Z—{0}

is an element of Sy, 43:(N,x*) such that by =1 and g|T}, a2 (P)(W) = (p)g(w)
for every prime p.

We can define a function f|U(4) on $ by

(2-9) flU@A)(z) = Z a(@n)W, g (ny)elnx] € Faps1)/2,2 (4N, ¥g)
neZ—{0}

for every f(2) = Tnez-0) (W) War g (ny)elnx] € Fiagiyn v (4N, o) (cf: Shimura
[10]). Here we impose the further assumption on f in (2-7).

(2-10) The Dirichlet character y is primitive and if
4¢ .
1€ Lasnynn (4N,X(:>> satifies  f'|T(y, 1)/ 4 (%) (p?) = o(p)f’
for every prime p(p ¥4tN), then

f'(z) =¢f(z) + &' flU(4)(z) for some constants ¢ and ¢&'.

Moreover, we impose the condition that

(2-11) if g’ € S 42 (N, x%) satifies g'|T; 430 (P)(W) = ©(p)g’' (W)
for almost all prime p,

then g’ is a constant multiple of g and f|U(4)(z) is not a constant times f(z),
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where f(z), g(w) and w(p) are the same elements given in [Lemma 2.2. We
consider the assumption that

(2-12) if 2|z, then the conductor of ¢ is 4Nt and ¢,(1 +4x) = ¢,(1 + 4x?)
for every x e Z;,

where ¢, is the restriction of ¢ to Q5 and Z; (resp. @,) means the ring of all
2-adic integers (numbers).
Let ¢ and {7 denote two elements in (V) determined by

(2-13) 7 (x) = {@(bx)«z*((bxe)) if xeole™ e,

otherwise

and

@,(bx)?*((bre)) if x e ole”!,e] and (bye,4N7) = 1,
(z(x) =

0 otherwise,
where e = 2N. By the same method as that of Shimura [13], we may derive the

following lemma.

LEMMA 2.3.  Suppose that N is odd, the conductor of Yp, is 4N with  in (2-6)
and the conditions (2-2), (2-7), (2-10), (2-11) and (2-12) are satisfied. Then there are
constants M and M’ such that

(O(z,w; (%), g(2w)y = Mh(z) + M'h|U(4)(z) with h(z) = L.(f)(2),

where g(w) is the same function given in Lemma 2.2.

By virtue of [Proposition 2.1, Lemma 2.2] and [Lemma 2.3 and the arguments
in Kojima [8], we may deduce the following proposition.

PROPOSITION 2.4. Suppose that the assumption in Lemma 2.3 is satisfied.
Then we have

Ah(z) + Bh|U(8)(2) = <O(z,w;n),g(2w)>
and
Ch(z) + Dh|U(4)(z) = <®(z,w;{z),g(2w)>

with
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1 <g(2W),g(2W)><h,,h’> - <g(W),g(2W)><h,h/>
<h7h><h,)hl> - <h,h’><h/vh> ’

1 <g(W), g(2W)><h, h> - <g(2W), g(2W)><hlah>
<h7h><h’ah,> - <h9h,><h’7h> ’

A=g¢,(-1)y(@)C, B=g,(—1)y(p)D,

A = a(47) C'vol(T[2,2N7\$)~

B = a(47) C'vol(T'[2, 2NT\$)~

where n (resp. C') is the same element given in (2-3) (resp. (2-4)), h'(z) = h|U(4)(2)
and y(p) means the Gauss sum of ¢.

§3. Rankin’s Convolution of Theta Series, Eisenstein Series and Final
Calculation

Put

a0

3z) = Z e[n’z/2] and Ly(s,0) = iw*(nl)n“
n=1

n=—oo

for each Hecke character w of Q and for each positive integer M, where n
runs over all positive integers such that (n, M) =1 and w* is the ideal character
associated with w (cf. [14, p. 505]). Let g(w) and h(z) be the same functions
in Lemma 23 For a subgroup I' of SL(2,Z), we put ', =TN

(D)

We consider an integral

(3-1) L\ﬁ”(zw(z)az,sw1/2:k,¢,r)y<2"+”/2dg,z (z = x+iy),

where T =T[2,2tN], C(z,s: k,p,") = Lan:(2s,0)E(z,5: k,9,T), C(z,5:k,9,T)
and E(z,s: k,p,I') means functions given in [14, (4-6) and (4-11)]. By the same
method as that of Shimura [14, p. 542], we may reduced (3-1) to the form

(3-2) Lin:(25+1,9) J h(z)3G)E(z,5+ 1/2 : k,p, 1) yH+D/2 e 2
g

— Love(25+ 1,0) L h(2)8(@) y*+ 2 dg 2

with ¥ = I'[2,27N]_\$, which implies that the integral (3-1) equals
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2 poo
33 L@t Lot | |3 atm W pmy/2elms/2
meZ—{0}

o0

: Z exp(2min2(x + iy)/2) y* T2 dgz.

n=-—00

Since

” . s-1 5 L((s/2) + )T ((s/2) + B)
L V(y;; B) exp(—y/2) D dy = NOPETEY

the integral (3-1) is equal to

4t D(s+ (k/2) + o )D(s + (k/2) + ')
(22) T2 C(s+ (k/2) + o + B')

(3-4)  a(4r) 2-HI (25 + k, g)

with

L(S,g)=zoo:b(n)n‘s and g(w) = Z b(n) Wy o (nv)elnu].
n=1 neZ-{0}

A calculation similar to the above one shows that

(3-5) J h(2)8(z)C(z,5+1/2 : k, , r)y(2k+1)/2 dgz
r[2,2tN)\$

4k T(s+ (k/2) +«)C(s+ (k/2) + )

(2mr2)* /2 T(s+ (k/2) + o' +B) L(2s +k,g).

= a(41)

Next we calculate an integral

(3-6) g2w)C(w, 5+ 1/2: ) E(w, 1+ 1/2: §)I(w)** dgw,

JF[21,4N]\35
where C(w,s: 3)=C(w,s : k, 3 [[2z,4N]) and E(w,t: 3)=E(w,¢ : k, 3 T[2t,4N])
are given in [14, (4-6) and (4-11)]. By a method similar to that of [14, p. 550], the
integral (3-6) may be reduced to the form:

(3-7) gw)Cw, 5+ 172 g)I(w) 130712 gow

JF[21,4N]w\5

21 poo
- Jo JO g(2w)Cw,5+ 172 g)3(w) TIH30/2 gy,
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We recall the following formula (cf. [14, p. 531]).
(3-8)  vHK2C(w,s: p)

= Len:(25,8) +7(@)(@N7)" > (4Nc')' e ((h"))
h'eZ,c'eZ(c'>0)

- @, (h' JANT)e[(c'h [2)u)é(v, b e [e5s + k2,5 — k/2),
where w = u + iv and

E(y, b1, m)

e 0]
=J e[—hx|(x+iy) (x—iy)™™dx (y>0,heR,ImeC,l—meZ).

— o0

The function &(y,h;/,m) has the following integral expression

E(y, by 1, m)

— im—1(2n)l+mr(l)—lr(m)—lh1+m—le—27rhyJ e—4nhyt(t + l)l—ltm—l dt
0

(y >0,h>0,(I,m) e C*,R(m) > 0) and
&y, b 1,m) = |B|"*"E(|h) y, sgn(h); 1, m).
Hence, the above integral can be rewritten as follows:

(3-9) 2ty(p)(4NT) ™! > (AN Fe,(W)er (W)b(c'H [27)
h'eZ,c'eZ(c'>0)

0
| Wawapem el senten Frpolne’ /o
0

x &(|h'e! [tlv, sgn(h’c’/7);5+ (1 + k) /2,5 + (1 — k) /2)
w pH(143K)/2 s+(1/2)~(k/2)=2 g,
with

g(w) = Z b(n) Wy 25 (nv)e[nu].
neZ-{0}

Since g(w) is even,

0a(h)b(c'h' [27) = (=1)*(=1)*(20"), (2B")b(|c'H /22]) (W' < 0).



On Fourier coefficients of Maass 347

Hence (3-9) is equal to

(3-10)  2o(p)(4N7)”! > @N)Fer () T
h'eZ,c'e Z(h'>0,c'>0)

x b(c'h [20)(W ' [0 Y M(s,t,0),

ce{tl}

where

°° k+1 _ 1-k
M(S, ta O') = a(O-) J Wza/72ﬁ’(va)6<v, G'; 5 + _; ,S‘ + 2 )vs+t+k—l dv
0

1 if o=1,
with a(o) = ) “We can check that

1) S S (@) E e b [20) (! f2)

h'=1 ¢'=1,27|c ’h’
0

— (T)—Zsz—s—z—kz Z (h ))b h/ //)( //)——s—t—-k(h/)—H—s—k-

h'=1 c"=1

Putting s = ¢, the sum equals

(3-12) (27) e kzz *((m))b(mn)m*n=25-*

m=1 n=1
= (20) 22 % Lan(25 4+ 1,9) ' L(2s + k, g) L(k, g, §),

where

L(s,g,¢ i ((n))c(n)n™ and g(w) = Z c(n) Wy o5 (nv)e[nu].
n=1

ne Z—{0}

The following formula was verified by K. K-Makdisi

(3-13) ) M(s,s,0)

ce{x1}

= I(s+ (k/2) + oaT'(s+ (k/2) + BT (¢’ + K)T(B' + k)
I's+(1—-k)/2)T'(s+(1+k)/2) )

Employing (3-9), (3-12) and (3-13), we find that

= i*(2n
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(3-14) g2w)C(w,5+ 1/2: Q) E(w, 5+ 1/2,5)I(w)* dgw

J I'21,4N\$

= A(s)Lan(25+ 1,0) ' L(2s + k, g)L(k, g, 7),

where

A(s) = 2t9()(4N7) "L (4N) = (27) 227 kik (2m) *

y C(s+ (k/2) + o \T(s + (k/2) + BT (o' + KT (B’ + k)
I's+ (1 —-k)/2)T(s+ (1 +k)/2) '

Exchanging the order of integration, we have

(3-15) J (O(z,w;(z),9(2w)> 3(z)C(2,5 + 1/2 : k,§, T [2,2tN]) y*+ D2 dg 2

r[2,2:N\$

vol(I'[27,4N|\$) ™" { J O(z,w;{z)g(2w)

J I[2,2tN\$ C[27,4N\9

X S(W)Zk dsw}&(z)C(z,j +1/2:k,p, F[Z,ZTN])y(ZkH)/z dsz

— vol(T[27, 4N]\$) ! J {J 8(2)0(z, w; {z)
rpzLav\s LIre,2ev\s

« CeiT 12 k.g)y @ dsz}g(zw)S(w)Zk dsw

= (M'(w,3),9(2w)),

where

M'(w,s) = j (2)®(z,w;{z)C(z,5 + 1/2 : k, ,T[2,2eN]) y* D2 dg 2.
r{2,2:N\$

b
For a function p(z) on  and a ¢ = (Ccl d) € SL(2,R), p|l;0(z) means p(o(z)) -
(cz +d)~". Observing that

(3-16)  C(z,s: k,3,T[2,2tN))

= Lacn(25,9) S 7.(d)3* ((d))3(2)" %2 |,a(2),
0el[2,2tN]  \I'[2,21N]

we obtain
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(3-17)  M'(w,s5) = Lan<(25+ 1,9 (2)O(z, w; C) y* 1+ /D g 7
9
0eIl’[2,2tN] \9

= B(S)L4NT(2S + 1a @)SI(W,S),

where
2s+(k+1)/2
S = 3 Goueew e
w,s) = z(@u(b)lo,w = )
(@.b)eX 3(w)

X ={(6,b) eV x Q|o #0,—deto = b*}, u(b) L HrbeZ,
= {(0,b) e V x Q|6 #0,—deto = b*}, =
# 0 fbeQ—-2
and ' =s+ (1 + k)/2.
Combining [Proposition 2.4] with (3-4), (3-5), (3-15) and (3-17), we may
deduce that

(3-18) Ch(z)3(z)C(z,5+ 1/2 : k,$,T[2,2tN]) y#+D/2 dg 2

J 2, 2tN\$

+ J DK (2)8(2)C(z,5 + 1/2 : k, §, T2, 2tN]) yP+D/2 dg 7
r2,2:N\$
4t T(s+ (k/2) +o")T(s + (k/2) + B)

= a(47) 22y R (s + (k/2) + o' + B')

(€230 L D)L(2s + k, g)

[ (@®(z, i Lz), g(2w)>
T[2,2:N)\$

x 3(2)C(z,5+ 1/2 : k, 3, T[2,2tN]) yH+D/2 ge 7
= WL4NT(2S + 17 ¢)<Sl(wa 5)7 g(2W)>
By [14, (7.9a) and (7.13)], we have

(3-19) S'w,s)=(-D* 3" T'(w,9)|xW(g) and
qe2NZ/4ANZ

T’(w,s—%) = 2N)¥C(w,s;p)E(w,s;p) with W(q) = (1 (1)>
q
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Employing (3-14) and (3-19), we derive
(3'20) <M,(Wa )ag(2W)>
K

K}
= B(3)Lan<(2s + 1,9)(=1)*(2N)**!
x < > Cw,s+1/2p)E(w, s+ 1/2;¢)||2kW(q),g(2w)>
ge2NZ/ANZ
= 2(~1)*B()Lan:(2s + 1,9)2N)**!
x {C(w,5+1/2;0)E(w,5 +1/2;9),9(2w)
= 2(-1)*B(5)(2N)**' A(s) vol('[27, 4N |\ $) '
x L(2s + k,g)L(k, g, ).
From this equality and (3-18), we conclude that

47k

(3-21) a(4‘r) W

(C2~** + D)

VeI —

— (8 (s ) 20 @)
x (4N7) " (4N) "= (20) " Z27%i% (2n) * T (o’ + k)
x T(B' + k) vol(T'[27,4N\$) ' L(k, g, ®).

Putting 25+ k = 0, we may deduce that
(3-22)
a(47)(C + D)

= (=1)y(@)2'2ikn %=/ (o + k)T(B’ + k) vol(T[27,4N\$H) ' L(k, g, ).

By [Proposition 2.4, we see that

(3-23) C+ D = a@n 22 2NIND) ™ s
(pa(=1)y(9))

XSS DO S

2k+1)/2+1 with

where f'(z) = f|U(4)(z).
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Consequently, by (3-22) and (3-23), we conclude the following theorem.

THEOREM. Let the notation be as above. Suppose the assumption in Lemma

Then we have

la(47)|2E = (__1)k'_y(@)z-(l/Z)ikn—k—(l/Z)C’—lr(zk—kl)/z*l

x T(a/ + k)L (B + k) (9.(—1)y(9))L(k, g, ).
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