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Abstract. We treat Killing-transversally symmetric spaces
(briefly, KTS-spaces), that is, Riemannian manifolds equipped with
a complete unit Killing vector field such that the reflections with
respect to the flow lines of that field can be extended to global
isometries. Such manifolds are homogeneous spaces equipped with a
naturally reductive homogeneous structure and they provide a rich
set of examples of reflection spaces. We prove that each simply
connected reducible KTS-space $M$ is a Riemannian product of a
symmetric space $M^{\prime}$ and a special kind of KTS-space $M$“, called a
contact KTS-space. Such a particular manifold $M^{\prime\prime}$ is an
irreducible, odd-dimensional principal $G^{1}$ -bundle over a Hermitian
symmetric space. The main purpose of the paper is to give a
classification of this special class of manifolds $M$“.

1. Introduction

A Riemannian manifold $(M,g)$ is said to be a locally Killing-transversally
symmetric space (briefly, a locally KTS-space) if it is equipped with a
Riemannian foliation whose leaves are generated by a unit Killing vector field $\xi$

and such that the local reflections with respect to these leaves are isometries. It is
said to be a globally KTS-space if $\xi$ is complete and if the local isometric
reflections can be extended to global ones. Several aspects of the geometry of
these spaces have been treated in $[7]-[13]$ where a lot of examples are given.
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The motivation for the consideration of this class of Riemannian manifolds
stems from the study of two particular classes of manifolds. On the one hand,

these spaces form a subclass of the class of manifolds equipped with a
transversal/y symmetric Riemannian foliation [27], [28] and on the other hand,

they extend the class of (locally or globally) $\varphi-$-symmetric spaces. The latter ones
are considered in contact geometry [25], [30] where they play a similar role as
the Hermitian symmetric spaces in Kahler geometry. Their classification is
treated in [3], [4], [15], [20]. (See also [6] for a survey, more details and further
references.)

It is worthwhile to note that the globally KTS-spaces provide a large class of
examples of reflection spaces. The latter ones were introduced and studied in
[21].

The main purpose of this paper is to discuss the classification of the (globally)
KTS-spaces. Such a space is necessarily a homogeneous space endowed with a
naturally reductive homogeneous structure (see Section 2). In Section 5 we prove
that a reducible simply connected KTS-space $M$ is a Riemannian product of a
Riemannian symmetric space $M^{\prime}$ and a KTS-space $M$“ of a special type, namely
such that the dual one-form $\eta$ of $\xi$ is a contact form on $M$“. Such spaces $M$“

are called contact KTS-spaces. They are always irreducible and odd-
dimensional. In Section 2 we show that KTS-spaces are principal $G^{1}$ -bundles
over a symmetric space. In Section 3 we prove that for a simply connected
contact KTS-space the base space of the fibration is always a Hermitian
symmetric space. This fact is used in Section 4 where we treat the construction
and the classification of the contact KTS-spaces in detail. Section 2 also contains
some preliminary material.

2. Locally and globally Killing-transversally symmetric spaces

Let $(M, g)$ be an n-dimensional, smooth, connected Riemannian manifold with
$n\geq 2$ . $\nabla$ denotes the Levi Civita connection and $R$ the associated Riemannian
curvature tensor defined by

$R_{UV}=\nabla_{|U.V|}-[\nabla_{U}, \nabla_{V}]$

for all $U,$ $V\in.\mathfrak{X}(M)$ , the Lie algebra of $C^{\infty}$ vector fields on $M$ .
Further, let $\xi$ be a unit Killing vector field on $(M,g)$ and $\tilde{|y}_{\xi}$ the flow

generated by it. It is a Riemannian flow which is called an isometric flow [26].

The leaves of this Riemannian foliation are geodesics and moreover, a geodesic
which is orthogonal to the flow field $\xi$ at one of its points is orthogonal to it at all
of its points. Such geodesics are called transversal (or horizontal) geodesics.
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Further, the foliation is locally a Riemannian submersion. So, let $m\in(M,g)$ and
let $0\mathfrak{l}l$ be a small open neighborhood of $m$ such that $\xi$ is regular on $\sigma_{\mathfrak{U}}$ . Then the
map $\pi:q\chi\rightarrow c\mathfrak{U}^{\prime}=^{0}\mathfrak{U}/\xi$ is a submersion. Let $g^{\prime}$ denote the metric on $0\mathfrak{U}$ defined
by

$g^{\prime}(X^{\prime}, Y^{\prime})=g(X^{\prime}, Y^{\prime})$

for $X^{\prime},$ $Y^{\prime}\in \mathfrak{X}(\mathfrak{U}^{\prime})$ where $X^{\prime}Y^{\prime}*,*$ denote the horizontal lifts of $X^{\prime},$ $Y^{\prime}$ with
$re$spect to the $(n-1)$ -dimensional horizontal distribution of $0|A^{\prime}$ determined by the

one-form $\eta$ on $M$ given by

$\eta(U)=g(U,\xi)$ ,

$U\in \mathfrak{X}(M)$ . Then the Levi Civita connection $\nabla^{\prime}$ of $g^{\prime}$ is determined by

$\nabla_{\acute{X}^{\prime}}Y^{\prime}=\pi_{*}\nabla_{X^{\prime 1}}Y^{\prime}*$

$X^{\prime},$ $Y^{\prime}\in \mathfrak{X}(q\iota^{\prime})$ .
Next, we may use the O’Neill tensors $A$ and $T$ to study the flow $\mathfrak{F}_{\xi}$ . See [22]

for more detrails (and also [1], [24], [26]). In our case $T=0$ since the leaves are
geodesics. For the integrability tensor $A$ we have

$A_{U}\xi=\nabla_{U}\xi,$ $A_{\xi}U=0$ ,

$A_{X}Y=(\nabla_{\chi}Y)^{v}=-A_{Y}X,$ $g(A_{X}Y,\xi)=-g(A_{X}\xi, Y)$

where $U\in \mathfrak{X}(M)$ and $X$ , $Y$ are horizontal vectors fields. $v$ denotes the vertical
component. Further, put

$ HU=-A_{U}\xi$

and define the $(0,2)$ -tensor field $h$ by

$h(U, V)=g(HU, V)$ ,

$U,$ $V\in \mathfrak{X}(M)$ . Since $\xi$ is a Killing field, $h$ is clearly skew-symmetric. Then we
obtain

$ A4_{X}Y=h(X, Y)\xi=\frac{1}{2}\eta([X, Y])\xi$

for all horizontal fields $X$ , Y. This yields

(2.1) $ h=-d\eta$ .

Here we note that $A4=0$ , or equivalently $h=0$ , if and only if the horizontal
distribution is integrable and in that case, since $T=0,$ $(M,g)$ is locally a product
of an $(n-1)$ -dimensional manifold and a line. Further, $\nabla$ and V’ are related by
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(2.2) $\nabla_{X}^{\prime},$
$Y^{\prime}*=(\nabla_{\acute{X}},Y^{\prime})^{*}+h(X^{\prime}*, Y^{\prime}*)\xi$ .

Using the given formulas we obtain easily

LEMMA 2.1. We have

$(\nabla_{\xi}h)(X, Y)=g((\nabla_{\xi}A)_{\chi}Y,\xi)=0$ ,

$R(X, Y, Z,\xi)=(\nabla_{z}h)(X, Y)$ ,

$R(X,\xi, Y,\xi)=g(HX, HY)=-g(H^{2}X, Y)$

for all horizontal $X,$ $Y$, Z.

Since $H\xi=0$ , it follows that the sectional curvature $K(X,\xi)=0$ for all
horizontal $X$ if and only if $h=0$ . Moreover, $K(X,\xi)>0$ for all $X$ if and only if $H$

has maximal rank $n-1$ in which case $n$ is necessarily odd. This is equivalent to
the statement that $\eta$ is a contact form. A flow $\tilde{l\zeta}_{\xi}$ with this property is called a
contact flow and a flow $\mathfrak{F}_{\xi}$ such that $R(X, Y,Z,\xi)=0$ for all horizontal $X,$ $Y,$ $Z$ is
said to be a normal flow [8], [12].

From Lemma 2.1 we then obtain

PROPOSITION 2.1. Let $\tilde{\{y}_{\xi}$ be an isometric flow on $(M,g)$ . Then $\mathfrak{F}_{\xi}$ is normal
$\iota f$ and only if

$(\nabla_{U}H)V=g(HU, HV)\xi+\eta(V)H^{2}U$

for all $U,$ $V\in.f(M)$ .

Further, for $a$ normal flow the curvature tensor satisfies the identities

$R_{UV}\xi=\eta(V)H^{2}U-\eta(U)H^{2}V$ ,

$R_{U\xi}V=g(HU, HV)\xi+\eta(V)H^{2}U$ ,

$U,$ $V\in \mathfrak{X}(M)$ . This and (2.2) yield that the curvature tensors of $\nabla$ and V‘ are
$re$ lated by

(2.3) $(R_{\acute{X}\prime Y},Z^{\prime})^{*}=R_{X\prime.\theta Y},.Z^{\prime}*-g(HY^{\prime},Z^{\prime})HX^{\prime}$

$+g(HX^{\prime}*,Z^{\prime}*)HY^{\prime}*+2g(HX‘*, Y^{\prime}*)HZ$ ‘ *

for all $X^{\prime},$ $Y^{\prime},Z^{\prime}\in \mathfrak{X}(0\mathfrak{U}^{\prime})[8]$ .
Now, let $H^{\prime}$ be the tensor field of type $(1,1)$ on $\sigma \mathfrak{U}$ ‘ determined by

$H^{\prime}X^{\prime}=\pi_{*}(HX^{\prime*}),$ $X^{\prime}\in \mathfrak{X}(ql^{\prime})$ . Then $H^{\prime}$ is skew-symmetric with respect to $g^{\prime}$
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and we have

$(\nabla_{X^{1}},H)Y^{\prime*}=((\nabla_{\acute{X}},H^{\prime})Y^{\prime})^{*}+g(HX^{\prime*}, HY^{\prime*})\xi$ .

Using this and Proposition 2.1 we derive that $\mathfrak{F}_{\xi}$ is normal if and only if $\nabla^{\prime}H^{\prime}=0$

(see also [8]) and then we have

(2.4) $R_{H^{\prime}X^{\prime}Y^{\prime}}^{\prime}+R_{\acute{X}^{\prime}H^{\prime}Y^{\prime}}=0$

for $X^{\prime},$ $Y^{\prime}\in X(q\iota^{\prime})$ .
Next, let $(M,g)$ be equipped with an isometric flow $\mathfrak{F}_{\xi}$ and define the tensor

field $T$ of type $(1,2)$ by

(2.5) $T_{U}V=g(HU, V)\xi+\eta(U)HV-\eta(V)HU$

for all tangent $U$ , V. (Note that this $T$ is unrelated to the O’Neill tensor.) Then
we have $T_{U}U=0$ . Moreover, $\overline{\nabla}=\nabla-T$ defines a metric connection which is
called the canonical connection of the isometric flow $\mathfrak{F}_{\xi}$ [8]. Its torsion $\overline{K}$ is
given by $\overline{K}=-2T$ and its geodesics are the same as those of $\nabla$ . A direct
computation shows that $\xi$ and $\eta$ are V-parallel. Further, $\mathfrak{F}_{\xi}$ is normal if and only
if $\overline{\nabla}T=0[8],$ $[12]$ and in this case we have

(2.6) $\overline{R}_{UV}=R_{UV}+[T_{U}, T_{V}]-2T_{T_{U}V}$ .

In what follows we define now the locally and globally Killing-transversally
symmetric spaces. Therefore, let $m\in M$ and let $\sigma be$ the flow line of $\xi$ through it.
A local diffeomorphism $s_{m}$ of $M$ defined in a neighborhood $\sigma 1l$ of $m$ is said to be
the (local) reflection with respect to $\sigma$ if for every transversal geodesic $\gamma(s)$ ,

where $\gamma(0)$ lies in the intersection of $0|$[ and $\sigma$, we have

$(s_{m}\circ\gamma)(s)=\gamma(-s)$

for all $s$ with $\gamma(\pm s)\in qL,$ $s$ being the arc length of $\gamma$ . Then $S_{m}=s_{m_{:1:}}(m)$ is given
by

$S_{m}=(-I+2\eta\otimes\xi)(m)$

and it is a linear isometry. Moreover, $s_{m}$ satisfies

$s_{m}=exp_{m}\circ S_{m}\circ exp_{m}^{- 1}$ .

First, we state

DEFINITION 2.1. A locally Killing-transversally symmetric space (briefly a
locally KTS-space) is a Riemannian manifold $(M,g)$ equipped with an isometric
flow $\mathfrak{F}_{\xi}$ such that the local reflection $s_{m}$ with respect to the flow line through it is
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a (local) isometry for all $m\in M$ . In what follows we will denote $(M,g, \tilde{(Y}_{\xi})$ by
$(M,g,\xi)$ .

For the locally KTS-spaces we have the following characterizations by using
the curvature tensor $R$ and the canonical connection.

$PROPOSlT10N2.2$ [8]. The following statements are equivalent for an
$(M,g,\xi)$ :

(i) $(M,g,\xi)$ is a locally KTS-space;
(ii) $\mathfrak{F}_{\xi}$ is normal and $(\nabla_{X}R)(X, Y, X, Y)=0$ for all horizontal X, $Y$ ;
(iii) $\overline{\nabla}R=\overline{\nabla}H=0$ (or equivalently, $\overline{\nabla}\overline{R}=\overline{\nabla}H=0$ ).

$PROPOSlT10N2.3[10]$ . Let $\mathfrak{F}_{\xi}$ be a contact flow on $(M,g)$ . Then $(M,g,\xi)$ is

a locally KTS-space if and only if $\mathfrak{F}_{\xi}$ is normal and

$(\nabla_{X}R)(X, HX, X, HX)=0$

for all horizontal $X$ .

PROPOSITION 2.4 [8]. Let $\tilde{tV}_{\xi}$ be a normal flow on $(M,g)$ . Then $(M,g,\xi)$ is a
locally KTS-space if and only if each base space $\sigma \mathfrak{U}^{\prime}$ of a local Riemannian
submersion $\pi;Ql\rightarrow ql^{\prime}=0\mathfrak{U}/\xi$ is a locally symmetric space.

Locally KTS-spaces are locally homogeneous spaces. More precisely, using
the theory of homogeneous structures studied in [29], we have

PROPOSITION 2.5 [8]. $(M,g,\xi)$ is a locally KTS-space if and only if the
tensor field $T$ defines a homogeneous structure on it.

Note that, because $T_{U}U=0,$ $T$ determines then a naturally reductive structure
[29].

Secondly, we consider

DEFINITION 2.2. Let $(M,g)$ be a Riemannian manifold and $\xi$ a nowhere
vanishing complete Killing vector field on $M$ . Then $(M,g,\xi)$ is said to be a
(globally) Killing-transversally symmetric space (briefly, a KTS-space) if and
only if each local reflection $s_{n}$ can be extended to a global isometry.

Note that this implies that $\xi$ is a unit vector field.
Clearly, any KTS-space is a locally KTS-space. Further, we have
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THEOREM 2.1 [7]. A complete, connected, simply connected locally KTS-

space is a KTS-space.

From this we get at once

COROLLARY 2.1. Let $\tilde{M}$ be the universal covering of a complete locally
KTS-space $(M,g,\xi)$ and $\Psi$ the covering map. Then $(\tilde{M}, \tilde{g}=\Psi^{*}g,\tilde{\xi})$ , where $\tilde{\xi}$ is
the lift of $\xi$ , is a KTS-space.

It is worthwhile to note here that the consideration of KTS-spaces was
motivated by the study of $\varphi-$-symmetric spaces. These spaces were introduced by
Takahashi [25] in Sasakian geometry where they may be considered as the
analogs of Hermitian symmetric spaces in K\"ahler geometry. These manifolds are
Sasakian spaces with a characteristic vector field $\xi$ which generates a one-
parameter group of global isometries and such that the local reflections with
respect to the integral curves of this field $\xi$ can be extended to global
automorphisms of the contact metric structure. Sasakian space forms are the most
simple examples but there are a lot more. (We $re$ fer to [2], [32], [3], [6], [15]

for more information and further references.) Further, they provide examples of
KTS-spaces and moreover, if $(M,g,\xi)$ is a (rsymmetric space, then also
$(M,c^{-2}g,c\xi)$ is a KTS-space for any non-vanishing constant $c$ . Conversely, it is
proved in [8] that if $(M,g,\xi)$ is a KTS-space with $K(X,\xi)=c^{2}\neq 0$ for all
horizontal $X$ , then $(M,c^{2}g,c^{-1}\xi)$ is equipped with a $\mu symmetric$ structure having
$ c^{-1}\xi$ as characteristic vector field.

In the $re$ st of the paper a lot of other examples will be given but we will now
describe some easy ones. First, it is clear that any Euclidean space is a KTS-
space by considering an arbitrary unit parallel vector field as Killing vector field.
Further, all odd-dimensional spheres $S^{2k+1}(r)$ are also KTS-spaces. To see this,

consider $S^{2k+1}(r)$ as a hypersphere in $C^{k+1}$ and put $\xi=JN$ where $N$ is a unit
normal vector field of the hypersphere and $J$ the natural complex structure of
$C^{k+1}$ . (See for example [2].) In this context we have

$PROPOSlT10N2.6$ [7]. Let $(M,g)$ be an irreducible simply connected
symmetric space and $\mathfrak{F}_{\xi}$ an isometric flow on it. Then $(M,g,\xi)$ is a KTS-space if
and only if $(M,g)$ is isometric to an odd-dimensional sphere.

Next, using Definition 2.2 we obtain the following list of examples:
(i) $(M_{1}\times M_{2},\overline{g},(\xi,0))$ where $(M_{1},g_{1},\xi)$ is a KTS-space, $(M_{2},g_{2})$ a

symmetric space and $\overline{g}$ the product metric. For $(m_{1},m_{2})\in M_{1}\times M_{2}$ the reflection
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is given by

$(p_{1}, p_{2})\vdash\Rightarrow(s_{||}^{1}(p_{1})_{S^{\leftarrow(p_{2}))}}^{\tau,1:}$

where $s_{n_{1}}^{1}$ is the reflection with respect to the flow line of $\xi$ through $m_{1}$ on $M_{1}$

and $s_{1}^{2}-$, is the geodesic symmetry with center $m_{2}$ on $M_{2}$ ;

(ii) $(M\times R,\overline{g},(\xi,0))$ and $(M\times S^{1},\overline{g},(\xi,0))$ where $(M,g,\xi)$ is a KTS-space;

$(iii)(M\times R,\overline{g},(0,\frac{d}{dt}))$ and $(M\times S^{1},\overline{g},(0,\xi))$ where $(M,g)$ is a symmetric

and $\xi$ $a$ unit tangent vector field on $S^{1}$ .
Now we shall focus our attention on the homogeneity of the KTS-spaces. Let

$A(M)$ denote the group of all isometries of $(M,g,\xi)$ leaving $\xi$ invariant, that is,
the automorphisms of the KTS-space $(M,g,\xi)$ . It is a closed subgroup of the full
isometry group $5(M,g)$ and hence a Lie group. Since the reflections $s_{m}$ preserve
$\xi$ for all $m\in M,$ $s_{m}\in A(M)$ . Further, let $G^{1}$ be the one-parameter group of global
transformations $\psi_{t}$ generated by the vector field $\xi$ . Then $G^{1}$ is a Lie subgroup of
$A(M)$ which belongs to its center. We have

THEOREM 2.2. If $(M,g,\xi)$ is a KTS-space, then $A(M)$ acts transitively on
$M$ .

PROOF. Since the group of isometries generated by all global reflections
with respect to the flow lines and also $G^{1}$ belong to $A(M)$ , the proof is essentially
the same as that given in [8] for the local version. $\blacksquare$

Using Proposition 2.5 and the note following it, we have

THEOREM 2.3. A simply connected KTS-space is a naturally reductive
homogeneous space.

Since $M$ is connected, the identity component $G=A_{o}(M)$ of $A(M)$ acts

transitively on $M$ too and $M$ can be identified with the coset manifold $G/K$ , where
$K$ is the isotropy subgroup of $G$ at some point $0\in M$ , under the diffeomorphism
$gK\rightarrow g(0),$ $g\in G$ . Let $(\tilde{G},\tilde{\pi})$ be the universal covering of $G$ . Then $\tilde{G}$ is a Lie
group and $\tilde{\pi}$ : $\tilde{G}\rightarrow G$ is a Lie group homomorphism. Denote by $\tilde{K}$ the identity
component of $\tilde{\pi}^{-1}(K)$ . Then $\tilde{G}/\tilde{K}$ is simply connected. The map
$\Psi:\tilde{G}/\tilde{K}\rightarrow G/K$ given by $\Psi(\tilde{g}\tilde{K})=\tilde{\pi}(\tilde{g})K$ is differentiable and onto. If on $\tilde{G}/\tilde{K}$

we consider the metric tensor $\Psi^{*}g$ , then $\Psi$ is a local isometry and $(\tilde{G}/\tilde{K},\Psi)$ is
$a$ covering of $M$ (see, for example, [14, p. 74]). So, $\tilde{M}=\tilde{G}/\tilde{K}$ and from
Corollary 2.1 we get that $(\tilde{M}=\tilde{c}/\tilde{\kappa}_{\tilde{g}},\xi)$ is a KTS-space. Note that, since $\tilde{\pi}_{*}$ is
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an isomorphism, $\tilde{K}$ coincides with the connected subgroup of $\tilde{G}$ associated with
the Lie algebra $f$ of $K$ .

The orbit space $ M^{\prime}=M/\xi$ of a KTS-space $(M,g,\xi)$ admits a unique
structure of a differentiable manifold such that the natural projection $\pi:M\rightarrow M^{\prime}$

is a submersion. In fact, $M^{\prime}$ may be identified in $a$ natural way with the coset
space $G/K\cdot G^{1}$ and $G/K\rightarrow G/K\cdot G^{1}$ is $a$ submersion. Note that $\xi$ is a regular
vector field.

The Lie group $G^{1}$ is isomorphic to either the circle group $S^{1}$ or to $R$

depending on whether the leaves are compact or not. Here we identify $S^{1}$ with
the set $\{e^{2mt},t\in R\}$ . If $G^{1}$ is a circle and $l$ is the length of the integral curves of $\xi$,

then $S^{1}$ acts freely on $M$ on the right by

(2.7) $m\circ e^{2mt}=\psi_{/t}(m)$

for each $m\in M$ . If $G^{1}$ is isomorphic to $R$ , we identify the action of $t\in R$ on $M$

with that of $\psi_{t}\in G^{1}$ . In both cases $M$ is $a$ principal fibre bundle over $M^{\prime}$ with
structural group $G^{1}$ . The corresponding fundamental vector field $\sigma$ generated by
$d/dt$ for $G^{1}\simeq S^{1}$ is given by

(2.8) $\sigma(m)=\frac{d}{dt}|’=()(m\circ e^{2mt})=l\xi_{m}$

and in that case $ l^{-1}\eta$ defines a connection form on $M$ . For $G^{1}\approx R,$ $\sigma=\xi$ and then
$\eta$ is a connection form. Moreover, in the first case, using (2.1) and the fact that
$S^{1}$ is Abelian, the usual structure equation is reduced to

$\Omega=\frac{1}{l}d\eta=-\frac{1}{l}h$

where $\Omega$ is the curvature form. Now, let $h^{\prime}$ be the $(0,2)$ -tensor field on $M^{\prime}$ given
by

$h^{\prime}(X^{\prime}, Y^{\prime})=g^{\prime}(H^{\prime}X^{\prime}, Y^{\prime})$

for all $X^{\prime},$ $Y^{\prime}\in \mathfrak{X}(M^{\prime})$ . Then $h=\pi^{*}(h^{\prime})$ and the characteristic class $ e_{M},(M)\in$

$H^{2}(M^{\prime},Z)$ of $M$ over $M^{\prime}$ (see [17]) satisfies

(2.9) $e_{M^{\prime}}(M)=[-\frac{1}{l}h^{\prime}]$ .

In what follows we shall consider the KTS-space $(M,g,\xi)$ as a principal bundle
over $ M^{\prime}=M/\xi$ with the description given above.

We have

THEOREM 2.4. Let $(M,g,\xi)$ be a KTS-space. Then the base space $(M^{\prime},g^{\prime})$
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is a symmetric space. The geodesic symmetry $s_{l^{l}}^{\prime}$ at $m^{\prime}=\pi(m),$ $m\in M$ , satisfies
(2.10) $s_{l}^{\prime},$ $\circ\pi=\pi\circ s,,$,

PROOF. (2.10) is a consistent definition of $s_{1}^{\prime},,$
$m^{\prime}\in M^{\prime}$ and we derive

$(s_{m^{\prime}}^{\prime})_{*}(m^{\prime})=-I$

from it on $T_{n},M^{\prime}$ . Further, since

(2.11) $s_{*}X^{\prime}*=(s_{1^{l}*}^{\prime}X^{\prime})^{*}$

where $X^{\prime}\in \mathfrak{X}(M^{\prime})$ , we see that $s_{m^{\prime}}^{\prime}$ is an isometry with respect to $g^{\prime}$ . So the
required result follows. $\blacksquare$

We finish this section with a uniqueness result for KTS-spaces which will be
used later.

PROPOSITION 2.7. Let $(M_{1},g_{1},\xi_{1})$ and $(M_{2},g_{2},\xi_{2})$ be simply connected KTS-
spaces over a symmetric space $(M^{\prime},g^{\prime})$ which have the same field $H^{\prime}$ on $M$‘.

Then there exists an isometry $f:(M_{1},g_{1})\rightarrow(M_{2},g_{2})$ such that $f_{*}\xi_{1}\rightarrow\xi_{2}$ .

PROOF. Let $0_{1}\in M_{1}$ and $0_{2}\in M_{2}$ be such that $\pi_{1}(0_{1})=\pi_{2}(0_{2})$ . since $\pi_{1}$ and
$\pi_{2}$ are Riemannian submersions, the endomorphism $L:T_{o_{1}}M_{1}\rightarrow T_{o_{2}}M_{2}$ defined by

$LX_{o_{1}^{\prime*}}=x_{o_{2}^{\prime}}*$ $L\xi_{10_{1}}=\xi_{20_{2}}$

where $X^{\prime}\in T_{\pi_{1}(c_{1})}M$ ‘, is an isometry and moreover
(2.12) $L\circ H_{1}=H_{2}\circ L$ .

Using the homogeneous structures $T_{1}$ and $T_{2}$ defined as in (2.5), we obtain

$LT_{1U}V=T_{2LU}LV$

and hence,
$L\overline{K}_{1}(U, V)=\overline{K}_{2}(LU, LV)$

where $U,$ $V\in T_{o_{1}}M_{1}$ and $\overline{K}_{1}$ (respectively $\overline{K}_{2}$ ) is the torsion of the canonical
connection V, (respectively $\overline{\nabla}_{2}$ ).

Further, (2.12) and (2.3) yield

$LR_{1UV}W=R_{2LUL\mathcal{V}}LW$

and hence, with (2.6):

$L\overline{R}_{1UV}W=\overline{R}_{2LULV}LW$ .

Moreover, applying Proposition 2.2, we have $\overline{\nabla}_{1}\overline{K}_{1}=\overline{\nabla}_{2}\overline{K}_{2}=\overline{\nabla}_{1}\overline{R_{1}}=\overline{\nabla}_{2}\overline{R}_{2}=0$ . So
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there exists a unique affine isomorphism $f$ of $M_{1}$ onto $M_{2}$ such that $f_{*}o_{1}=L[18]$ .

In addition, since V, and $\overline{\nabla}_{2}$ are metric and $L$ is an isometry, $f$ is an isometry.
Finally, since $\xi_{1}$ and $\xi_{2}$ are Killing vector fields, we obtain $f_{*}\xi_{1}=\xi_{2}$ which

completes the proof. $\blacksquare$

3. Contact KTS-spaces

Let $(M, g)$ be a Riemannian manifold equipped with a contact flow $\mathfrak{F}_{\xi}$ . From
now on we will consider contact KTS-spaces.

First we have

PROPOSITION 3.1 [13]. Let $\mathfrak{F}_{\xi}$ be a normal contact flow on a simply
connected, complete Riemannian manifold $(M,g)$ . Then $(M,g,\xi)$ is a (contact)

KTS-space if and only if it is a naturally reductive homogeneous space with
invariant unit vector field $\xi$ .

Further, using [31, Proposition 6.10], we get

$PROPOSlT10N3.2$ . A contact KTS-space $M$ is an irreducible Riemannian

manifold and its homogeneous holonomy group coincides with the group $SO(n)$ of
all isometries $(n=\dim M)$ .

Next, we consider the symmetric base space $(M^{\prime}=M/\xi,g^{\prime})$ of a contact
KTS-space $(M,g,\xi)$ . Let $A(M^{\prime})$ denote the group of all its $H^{\prime}$ -preserving
isometries. Since it is a closed subgroup of $5(M^{\prime})$ , it is $a$ Lie transformation
group of $M^{\prime}$ . Since the reflections are H-preserving it follows, using (2.11), that

$H^{\prime}$ is invariant under the geodesic symmetries of $M^{\prime}$ . Hence $A(M^{\prime})$ contains all
the symmetries and $so$ , it acts transitively on $M^{\prime}$ . Moreover, $5_{o}(M^{\prime})$ is semi-
simple if and only if $A_{o}(M^{\prime})$ is semi-simple and in this case $A_{o}(M^{\prime})=5_{o}(M^{\prime})$

(see [14, proof of Lemma 4.3, Chapter VIII]). For a more detailed study we start
with the case of an irreducible $M^{\prime}$ . We have

THEOREM 3.1. Le $t(M,g,\xi)$ be a contact KTS-space such that the base
space $(M^{\prime},g^{\prime})$ is an irreducible symmetric space. Then the sectional curvature
$K(X,\xi)$ , $X$ horizontal, is a non-vanishing constant $k=c^{2}>0$ . Moreover,
$(M,c^{2}g,c^{-1}H,c^{-1}\xi,c\eta)$ is a $\varphi$-symmetric space over the Hermitian symmetric
space $(M^{\prime},c^{2}g^{\prime},c^{-1}H^{\prime})$ .
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PROOF. $M^{\prime}$ may be represented as $G/K$ where $G=3_{0}(M^{\prime})$ is semi-simple
and acts effectively on $M^{\prime}$ , and $K$ is compact [14, Theorem 4.1, Chapter V]. Let
$q=f\oplus\iota$ be the canonical decomposition of the Lie algebra $q$ of $G$ . Under the
identification of $\iota\iota\iota$ with $T_{o},M^{\prime}$

$0^{\prime}$ being the coset $K$ , $H_{0^{\prime}}$ , defines a linear
endomorphism of $m$ which we extend to $q$ by $H_{0^{\prime}},X=0$ for $X\in f$ . We shall prove
that $H_{o^{\prime}}$ , is $a$ derivation of $q$ , that is,

$H_{o^{\prime}},[X, Y]=[H_{0^{\prime}},X, Y]+[X, H_{o^{\prime}},Y]$ ,

$X,$ $Y\in q$ . First, this identity is trivial for $X,$ $Y\in f$ . For $X\in f$ and $Y\in \mathfrak{m}$ it is
satisfied since $H^{\prime}$ is $Ad(K)$ -invariant. Finally, let $X,$ $Y\in \mathfrak{n}\iota$ . Since $R_{XY}^{\prime}=$

$-ad_{11t}([X, Y]),$ $(2.4)$ yields
$ad_{111}[H_{o^{\prime}},X, Y]+ad_{11I}[X, H_{o^{\prime}},Y]=0$ .

Now, using the fact that the representation $f\rightarrow ad_{1It}(f)$ is faithful, we get from
this:

$[H_{o^{\prime}},X, Y]+[X, H_{0^{\prime}},Y]=0$

and so, $H_{o^{\prime}}$ , is a derivation.
Now, since $G$ is semi-simple, every derivation of $q$ is inner [5, Corollaire 3,

p. 73]. So there is an element $Z_{o}\in \mathfrak{g}$ such that $H_{o^{\prime}},$ $=ad(Z_{o})$ . As $H_{o^{\prime}}$ , is of
maximal rank $n-1=\dim M$ ‘, $Z_{o}\in f$ and consequently, $Z,$, is in the center of $f$ .
Now, using [18, Proposition 7.5, Chapter XI] we get that $\mathfrak{g}$ is simple and applying
[18, Theorem 9.6, Chapter XI] $M^{\prime}$ admits an invariant Hermitian structure. From
[14, Proposition 6.2, Chapter VIII] the center $Z(K)$ of $K$ is one-dimensional and
analytically isomorphic to the circle group. The complex structure J., on $\mathfrak{m}$ can
be expressed as $J_{o},$ $=ad_{1t1}(Z_{1})$ where $Z_{1}$ belongs to the center of $f$ . Then, there
exists a non-vanishing constant $c$ such that $Z_{o}=cZ_{1}$ and so $H_{o^{\prime}},$ $=cJ_{o},$ . Thus,
$(M^{\prime},g^{\prime},c^{-1}H^{\prime})$ is $a$ Hermitian symmetric space. Then, using Lemma 2.1, we get
$K(X,\xi)=c^{2}$ for all horizontal $X$ . The rest follows now by dire $ct$ computation or
as in [8, Theorem 3.2] and so $(M^{\prime},c^{2}g,c^{-1}H,c^{-1}\xi,c\eta)$ is a $c\mu$-symmetric space. $\blacksquare$

REMARK 3.1. Note that if in the situation of Theorem 3.1, $M$ fibers over $M$ ‘

such that we have a principal $S^{1}$ -bundle and if $\Phi$ denotes the Kahler form of
$(M^{\prime},g^{\prime}, J)$ (that is, $\Phi(X^{\prime},$ $Y^{\prime})=g^{\prime}(JX^{\prime},$ $Y^{\prime}),$ $X^{\prime},$ $Y^{\prime}\in \mathfrak{X}(M^{\prime})$ ), then the characteristic

class $e_{M^{\prime}}(M)$ coincides with the cohomology class $[-\frac{c}{l}\Phi]$ where $l$ is the length of

the fibers.

Further we prove
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THEOREM 3.2. The base space $(M^{\prime},g^{\prime})$ of a simply connected contact KTS-
space $(M,g,\xi)$ is a (simply connected) Hermitian symmetric space. Moreover, if
$M^{\prime}=M_{()}^{\prime}\times M(\times\cdots\times M_{r^{\prime}}$ is its de Rham decomposition and $\mathfrak{W}_{j},$ $i=0,\cdots,$ $r$ , are the
smooth $dis$tributions on $M$ obtained by the horizontal lifts of the tangent vectors to

$M_{i^{\prime}}$ , then, for each $m\in M,$ $ae(m)=\mathfrak{W}_{0}(m)\oplus \mathfrak{W}_{1}(m)\oplus\cdots\oplus y\beta_{r}(m)$ is an H-
invariant orthogonal decomposition of the horizontal subspace $y\ell(m)$ and each
sectional curvature $K(\mathfrak{W}_{j},\xi),$ $j=1,\cdots,$ $r$ , is a positive constant.

PROOF. Let $(M,g,\xi)$ be a simply connected contact KTS-space over a
symmetric space $M^{\prime}$ . From the existence of local sections of the submersion
$\pi:M\rightarrow M^{\prime}$ and from the fact that the fibers are connected one gets that $M^{\prime}$ is
also simply connected. Let $G=A_{o}(M^{\prime})$ and let $K$ denote the isotropy subgroup of
$G$ at some point $0^{\prime}$ of $M^{\prime}$ . If $(\tilde{G},\Psi)$ is the universal covering group of $G$ and $\tilde{K}$

the identity component of $\Psi^{-1}(K)$ , then $M^{\prime}=\tilde{G}/\tilde{K}$ .
Next, let $M^{\prime}=M_{\acute{0}}\times M_{1^{\prime}}\times\cdots\times M_{r^{\prime}}$ be the de Rham decomposition of $M^{\prime}$ where

$M_{\acute{0}}$ is $a$ Euclidean space and $M_{1^{\prime}},\cdots,M_{r^{\prime}}$ are irreducible symmetric spaces.
Further, $\tilde{G}$ and $\tilde{K}$ admit decompositions $\tilde{G}=G_{0}\times G_{1}\times\cdots\times G_{r}$ and $\tilde{K}=K_{0}\times$

$K_{1}\times\cdots\times K_{r}$ such that $M;=G_{j}/K_{j},$ $i=0,1,\cdots,$ $r$ . Consider also the compact and
non-compact factors $M_{+}^{\prime}$ and $M_{-}^{\prime}$ of $M^{\prime}$ . Then $M^{\prime}=M_{0^{\prime}}\times M_{+}^{\prime}\times M_{-}^{\prime}$ , $\tilde{G}=G_{0}\times$

$G_{+}\times G_{-},\tilde{K}=K_{0}\times K_{+}\times K_{-}$ and $M_{\acute{0}}=G_{0}/K_{0},$ $M_{+^{\prime}}=G_{+}/K_{+},$ $M_{-}^{\prime}=G_{-}/K_{-}$ . Let
$\mathfrak{m},$ $\mathfrak{m}_{0},$ $\mathfrak{m}_{+}$ , m-denote the eigenspaces for the eigenvalue-l of $\sigma_{*}$ where $\sigma$ is
the automorphism of $G$ given by $\sigma:g\vdash s_{o}^{\prime},gs_{0}^{\prime},$ . As usual these eigenspaces may
be identified with tangent spaces to $M^{\prime},$ $M_{\acute{0}},$ $M_{+^{\prime}},$ $M_{-}^{\prime}$ and $\mathfrak{m}=\mathfrak{m}_{0}\oplus \mathfrak{m}_{+}\oplus \mathfrak{m}_{-}$ .

Since $H_{0^{\prime}}$ , : $\mathfrak{m}\rightarrow \mathfrak{m}$ is $Ad(K)$ -invariant, it follows that $\mathfrak{m}_{0},$ $\mathfrak{m}_{+},$ $\mathfrak{m}_{-}$ are
invariant under $H_{o^{\prime}}$ , (see proof of Proposition 4.4 in Chapter VIII of [14]). As
$G_{+}$ and $G_{-}$ are semi-simple Lie groups and $H_{o^{\prime}}$ , is of maximal rank, it follows as
in the proof of Theorem 3.1, that there is a $Z_{+}\in Z(f_{+})$ and a $Z_{-}\in Z(f_{-})$ such that
$H_{o\prime|\iota\prime\iota_{+}}^{\prime}=ad_{11t_{+}}(Z_{+})$ and $H_{o\prime|11t_{-}}^{\prime}=ad_{1t1_{-}}(Z_{-})$ . But, $Z_{+}+Z_{-}=Z_{1}+\cdots+Z_{r}$ where
$Z_{j}\in Z(f_{1}),$ $j=1,\cdots,$ $r$ , and this yields

$H_{o^{\prime}}^{\prime}=H_{o^{\prime}|11t_{0}}^{\prime}\times ad_{11t_{1}}(Z_{1})\}\iota\iota_{r}$

So, each $M_{j^{\prime}}=G_{j}/K_{j}$ admits an invariant Hermitian structure $J_{j}$ and there
exist non-vanishing constants $c_{1},\cdots,c_{r}$ such that

(3.1) $ad_{11I}(Z_{j})=c_{j}J_{j}$ .

Then the linear operator on $\mathfrak{m}_{+}\oplus \mathfrak{m}_{-}$ given by

$\frac{1}{c_{1}}ad_{11t_{1}}(Z_{1})\times\cdots\times\frac{1}{c_{r}}ad_{tlt,}(Z_{r})$
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defines an almost complex structure on $M_{+}^{\prime}\times M_{-}^{\prime}$ . Hence, taking also into account

that the dimension of $M_{()}^{\prime}$ is even, we have a Hermitian structure on $M^{\prime}$ . Lemma

2.1 yields that the sectional curvatures $K(\mathfrak{W}_{j},\xi)=c_{j^{2}},$ $j=1,\cdots,$ $r$ . $\blacksquare$

4. Construction of contact KTS-spaces

In this section we will construct several classes of contact KTS-spaces which
will play $a$ fundamental role in the classification.

4.1. Contact KTS-spaces over irreducible Hermitian
symmetric spaces

Let $M^{\prime}=G/K$ be an $n^{\prime}$ -dimensional irreducible Hermitian symmetric space
where $G$ is a connected simple Lie group with trivial center and acting
effectively on $M^{\prime}$ , and $K$ connected and compact. Let $q=f\oplus\iota^{-}$ be the
canonical decomposition of the Lie algebra $q$ . Since all G-invariant Riemannian

metrics on $M^{\prime}$ coincide up to $a$ constant factor, we assume that, under the
identification of $1t^{-}$ with $T_{0},M^{\prime},$

$0^{\prime}$ being the coset $K$ , the Riemannian metric on
$M^{\prime}$ is given by $\beta B_{1\mathfrak{l}t}$ where $B$ is the Killing form of $q$ . $\beta<0$ if $G$ is compact and

$\beta>0$ if $G$ is non-compact. The center of $f$ is one-dimensional and there exists a
$Z_{0}\in Z(f)$ such that $J_{o}=ad_{1\mathfrak{l}1}(Z_{o})$ defines the corresponding complex structure $J$

on $M$ ‘. Since $f$ is compact, we have $f=\mathfrak{h}\oplus RZ_{o}$ where $\mathfrak{h}$ is the compact semi-
simple subalgebra $[f, f]$ . Let $H\subset K$ be the connected subgroup associated to $\mathfrak{h}$ .
Then $H$ is also compact and $M=G/H$ is a manifold with $t\mathfrak{l}t=\mathfrak{n}1^{-}\oplus RZ_{o}$ as
tangent space at the origin. Moreover, the canonical $p$rojection $\pi:M\rightarrow M^{\prime}$

defines a principal $S^{1}$ -bundle.
Using [15] (see also [16], [25]), $M=G/H$ is a globally $\varphi-$-symmetric space

and an invariant Sasakian structure on $M$ is determined by the $Ad(H)$ -invariant
tensors $(g_{0},\varphi_{0},\xi_{0},\eta,))$ on $1t$ where $g_{0}$ is the inner product $\beta B$ on $\mathfrak{n}\iota^{-}$

$g_{0}(\xi_{0},\xi_{0})=1$ and by supposing that the decomposition $rn^{-}\oplus RZ_{o}$ is orthogonal,
$\varphi_{0}=ad_{ttt}(Z_{o}),$ $\xi_{0}=-(1/2n^{\prime}\beta)Z_{o}$ and where $\eta_{0}$ is the one-form on $\mathfrak{m}$ such that
$\eta_{0}(\xi_{0})=1,$ $\eta_{0}(\mathfrak{m}^{-})=0$ . Similarly, one can define, for each $c\in R-\{0\}$ , an
invariant Sasakian structure determined by the $Ad(H)$ -invariant tensors $\varphi_{0},$

$c^{-2}\xi_{0}$

and the inner product $\langle, \rangle$ defined by $c^{2}\beta B$ on $t^{-}$ $\langle c^{-2}\xi_{0},c^{- 2}\xi_{0}\rangle=1$ and by
supposing that $m^{-}\oplus R$ , Z. is on orthogomal, decomposition. With this structure
$M$ fibers again over $M^{\prime}$ with Riemannian metric given by $c^{f}\beta B_{\iota\iota\iota^{-}}$ Now, from
Theorem 3.1, we can construct KTS-structures on $M$ which makes from $\pi$ a
Riemannian submersion. More specifically, these structures are given by

(4.1) $(\xi=-\frac{1}{2n^{\prime}c\beta}Z_{0},$ $g)$
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where the inner product $g_{(}$ is defined as $g_{()}$ with $g_{C}(\xi_{c},\xi)=1$ . Here, $Hf=cJ_{0}$

and the sectional curvature $K(X,\xi)=c^{2}$ for all horizontal $X$ .
Let $\tilde{H}$ and $\tilde{K}$ be the connected subgroups of $\tilde{G}$ , the universal covering of $G$ ,

associated to the Lie algebras $\mathfrak{h}$ and $f$ , respectively. Then the universal covering
$\tilde{M}$ of $M$ may be written as $\tilde{G}/\tilde{H}$ and $M^{\prime}$ as $\tilde{G}/\tilde{K}$ . In this case $\tilde{M}$ is a principal
fiber bundle over $M^{\prime}$ via the above construction with group $\tilde{K}/\tilde{H}$ . Note that $\tilde{H}$ is
also compact since $\mathfrak{h}$ is compact and semi-simple. On $\tilde{M}$ we get the
corresponding KTS-structure $s(\tilde{g}_{c},\tilde{\xi}_{L})$ (see Corollary 2.1).

So, using Proposition 2.7 and Theorem 3.1 we obtain

THEOREM 4.1. Let $(M^{\prime}=G/K, g^{\prime}=\beta B, J)$ be an $n^{\prime}$ -dimensional irreducible
Hermitian symmetric space. Then each simply connected KTS-space over
$(M^{\prime},g^{\prime})$ is isomorphic to $(\tilde{M}=\tilde{G}/\tilde{H},\tilde{g}(\tilde{\xi}_{(})$ for some $c\in R-\{0\}$ .

When $G$ is compact, then $\tilde{G}$ is also compact [14, Theorem 6.9, p. 133]) and
so, $\tilde{\pi}$ : $\tilde{M}\rightarrow M^{\prime}$ is $a$ principal $S^{1}$ -bundle. The length of the fibers on $(\tilde{M},\tilde{g}_{c},\tilde{\xi}_{c})$

depends on $c$ . In fact, if $l_{\mathfrak{c}}$ and $l_{c}$ , are the lengths of the integral curves of $\tilde{\xi}_{c}$ and
$\tilde{\xi}_{C}$ , in $(\tilde{M},\tilde{g}_{\mathfrak{c}})$ and $(\tilde{M},\tilde{g}_{\zeta},)$ , respectively, then we have

(4.2) $\frac{l_{\iota}}{l_{c^{\prime}}}=|\frac{c}{C}$ .

(2.8) yields that the fundamental vector fields generated by $d/dt$ and its
connection forms coincide up to sign for all non-zero $c$ . Note that $(\tilde{M},\tilde{g}_{-c},\tilde{\xi}_{-c})$

corresponds, in the additive group of all principal $S^{1}$ -bundles over $M^{\prime}$ , with the
inverse element of $(\tilde{M},\tilde{g}_{\iota},\tilde{\xi}_{c})$ .

REMARK 4.1. To work with the characteristic class $e_{M},(\tilde{M})$ we shall fix
the scalar $\beta^{o}<0$ such that the corresponding Kahler form $\Phi^{o}$ satisfies
$e_{M},(\tilde{M})=[-(1/2\pi)\Phi^{0}]$ . From Remark 3.1 it then follows that the length of the
fibers of the simply connected $\varphi\cdot symmetric$ space $(\tilde{M},\tilde{g}^{o},\tilde{\varphi}^{o},\tilde{\xi}^{o},\tilde{\eta}^{o})$ over
$(M^{\prime},g^{\prime}=\beta^{o}B)$ is precisely $ 2\pi$ . Moreover, using (4.2), the length $l_{c}$ of the fibers
of the KTS-space $(\tilde{M}, \tilde{g}_{L},\tilde{\xi}_{c})$ satisfies

$l_{c}=\frac{2m:\beta}{\beta^{o}}$ .

Now, let $G_{n}$ be the cyclic subgroup of $S^{1}$ of order $n$ . Then the quotient space
$\tilde{M}/G_{n}$ is a principal $S^{1}$ -bundle over $M^{\prime}$ (see [17, p. 37]) and it is a KTS-space
with the natural structure that $(\tilde{g}_{\mathfrak{c}},\tilde{\xi}_{\iota})$ induces on $\tilde{M}/G_{n}$ . We will use the same
notation for this induced structure. It follows from [17, Theorem 11] that all
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principal fiber bundles over $M^{\prime}$ with structural group $S^{1}$ are of the form MIG. ,
$n\in Z$ . Using the isomorphism between the additive group of all principal $S^{1}-$

bundles over $M^{\prime}$ and the second cohomology group $H^{\underline{\gamma}}(M^{\prime},Z)$ of $M^{\prime}$ with
integer coefficients, it follows that $e_{M},(\tilde{M}/G_{l})=ne_{M},(\tilde{M})$ . From Remark 3.1 it
follows that the length of the integral curves of $\tilde{\xi}$ on $(\tilde{M}/G,,,\tilde{g})$ is $l_{c}./n$ where
$l$ denote $s$ the corresponding length on $(\tilde{M}, \tilde{g}. )$ . The fundamental vector field
$\sigma\prime l$ on $\tilde{M}/G_{1}$ satisfies $\sigma_{n}=$ ( $1$ I $n$ ) $\sigma$ where $\sigma$ is that on $\tilde{M}$ .

Finally, we consider the case of a Hermitian symmetric space $M^{\prime}$ of non-
compact type. Then $\tilde{M}$ fibers over $M^{\prime}$ defining a principal $R^{1}$ -bundle (see [15,

Section II.5.2]). Now, let $Z[l]$ denote the subgroup of $R$ generated by an element
$l\in R,$ $l\geq 0$ . If 1 $>0$ , then $\tilde{M}/Z[l]$ is $a$ principal $S^{1}$ -bundle over $M^{\prime}$ and
$(\tilde{g}_{c},\tilde{\xi}_{C}),$ $c\in R-\{0\}$ , again defines on $\tilde{M}/Z[l]$ a class of KTS-structure $s$ . In this
case, the length of the fibers on $(\tilde{M}/Z[l],\tilde{g},\tilde{\xi})$ is independent of $c$ , more
precisely it is equal to 1. However, from (2.8), (2.9) and Remark 3.1 we find that
the fundamental vector field $\sigma$ and the characteristic class $e_{M},(\tilde{M}/Z[l])$ are given
by $\sigma=l\tilde{\xi}_{t}$ and $e_{M},(\tilde{M}/Z[l])=[-(c/l)\Phi]$ .

4.2. Contact KTS-spaces over Hermitian symmetric spaces
of compact type

Let $M_{+}^{\prime}=G/K$ be a Hermitian symmetric space of compact type and
$M_{+}^{\prime}=M_{1^{\prime}}\times\cdots\times M_{r^{\prime}}$ its de Rham decomposition into irreducible factors. Then
$M_{i^{\prime}}=G_{j}/K_{j}$ , $i=1,\cdots,$ $r$ , where each $G_{j}$ is $a$ connected, compact, simple Lie group
with trivial center. The Riemannian metric on $M_{+}^{\prime}$ is of the form
$<,>=\beta_{1}B_{1}\perp\cdots\perp\beta_{r}B_{r}$ where $B_{j}$ is the Killing form of $G_{j}$ and $\beta_{j}<0$ . From
Theorem 4.1 we get that the simply connected contact KTS-spaces over each $M$;
are given by $\tilde{M},$ $=\tilde{G}_{j}/\tilde{H}_{j},\tilde{g}_{l},\tilde{\xi},$ ), $c_{j}\in R-\{0\}$ , where $\tilde{g}_{e}$

, denotes the unique

invariant metric determined by $(\beta_{j}B_{j}and\xi_{c_{j}})$ following the construction given in

Section 4.1. We identify these principal $S^{1}$ -bundles with the product manifolds
$M_{1^{\prime}}\times\cdots\times\tilde{M}_{j}\times\cdots\times M_{r^{\prime}}$ as principal $S^{1}$ -bundles over $M_{+}^{\prime}$ . From [17, Theorem 11],

since $M_{+}^{\prime}=\tilde{G}/\tilde{K}$ and $\tilde{K}$ is compact, $\{\tilde{M}_{j}, i=1,\cdots, r\}$ generate the group of all
principal $S^{1}$ -bundles over $M_{+}^{\prime}$ or equivalently, the set of their characteristic

classes $\{e_{M_{j}}, (\tilde{M}_{j}), i=1,\cdots, r\}$ generates $H^{2}(M_{+}^{\prime},Z)$ .

Let $(M_{+},g,\xi)$ be a KTS-space which fibers over $M_{+}^{\prime}$ . If $M_{+}$ is $a$ principal
$R^{1}$ -bundle, then, for each $l>0,$ $M_{+}/Z[l]$ is $a$ principal $S^{1}$ -bundle and so, we may
suppose that (up to a covering) $M_{+}$ is a principal circle bundle over $M_{+}^{\prime}$ . Let $l$

denote the length of its fibers. Then there exist integers $n_{1},\cdots,n_{r}$ such that



Classification of Killing 337

(4.3) $e_{M_{+}^{\prime}}(M_{+})=\sum_{j=1}^{r}n_{i}e_{M;}(\tilde{M}_{j})$ .

Now, from Remark 4.1 we have

$e_{M_{j^{\prime}}}(\tilde{M}_{j})=[-\frac{1}{l_{c_{i}}}p_{i^{*}}h_{c_{j}^{\prime}}]=[-\frac{1}{2\pi}p_{i^{*}}\Phi_{i}^{o}]$ ,

$i=1,\cdots,$ $r$ , where $p_{i}$ denotes the projection of $M_{+}^{\prime}$ onto $M_{i^{\prime}}$ . So, using Theorem
3.2, we get

$e_{M_{+}^{\prime}}(M_{+})=[-\frac{1}{l}h^{\prime}]=[-\frac{1}{l}\sum_{1i=}^{r}c_{j}p_{i^{*}}\Phi_{j}]=\frac{1}{l}\sum_{i=1}^{r}\frac{2_{l}\kappa_{i}\beta_{i}}{\beta_{i^{0}}}e_{M_{i^{\prime}}}(\tilde{M}_{i})$

and hence, by comparing this with (4.3), we obtain

(4.4) $c_{j}=\frac{ln_{i}\beta_{i^{o}}}{2\pi\beta_{i}}$ .

Taking into account Remark 4.1 this may also be written $as$

(4.5) $c_{j}=\frac{ln_{j}}{l_{i}}$ ,

where $l_{i}$ denotes the length of the fibers of the $\varphi-$-symmetric space
$(\tilde{M}_{j},\tilde{g}_{j},\tilde{\varphi}_{j},\tilde{\xi}_{i},\tilde{\eta}_{j})$ over $(M_{i^{\prime}},\beta_{j}B_{j})$ . From Lemma 2.1 and Theorem 3.2 we get that
$K(\mathfrak{W}_{j},\xi)=c_{i}^{2}$ for each $i\in\{1,\cdots, r\}$ and so

$K(\%_{j},\xi)=(\frac{ln_{j}}{l_{i}})^{2}$ .

Moreover, the $(1, 1)$ -tensor $H^{\prime}$ on $M_{+}^{\prime}$ satisfies

(4.6) $H^{\prime}=\frac{ln_{1}}{l_{1}}J_{1}\times\cdots\times\frac{ln_{r}}{l_{r}}J_{r}$ .

Now, suppose that $M_{+}$ is a principal circle bundle over $M_{+}^{\prime}$ with

characteristic class $e_{M_{+}^{\prime}}(M_{+})=\Sigma_{i=1}^{r}n_{j}e_{M_{i}},$
$(\tilde{M}_{j})$ . Then, for each $l>0,$ $M_{+}$ carries a

KTS-structure $(g_{l},\xi_{l})$ over $M_{+}^{\prime}$ where the length of its integral curves is
precisely $l$ . In fact, from [17, Theorem 5 and Theorem 11] $M_{+}$ may be written as

$M_{+}=(\tilde{M}_{1}/G_{n_{1}}\times\cdots\times\tilde{M}_{r}/G_{\iota_{r}})/T^{r-1}$

where $T^{r-1}$ denotes the $(r-1)$ -dimensional toms and the action of $T^{r-1}$ on
$\tilde{M}_{1}/G_{n_{1}}\times\cdots\times\tilde{M}_{r}/G_{n_{r}}$ is defined by

(4.7) $(m_{1},\cdots,m_{r})(s_{2},\cdots,s_{r})=(m_{1}\prod_{i=2}^{r}s_{j},m_{2}s_{2}^{-1},\cdots,m_{r}s_{r}^{-1})$ .
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Let $p:\tilde{M}_{1}/G_{1}\times\cdots\times\tilde{M}_{r}/G_{l_{r}}\rightarrow M_{+}$ be the canonical projection and put
$[(m_{1}, \cdots, m_{r})]=\rho(m_{1}, \cdots,m_{r})$ . Then the action of $S^{1}$ on $M_{+}$ is given by

$[(m_{1},\cdots,m_{r})]s=[(m_{1}s,\cdots,m_{r})]=\cdots=[(m_{1},\cdots,m_{r}s)]$

and the projection $\pi:M_{+}\rightarrow M_{+^{\prime}}$ is defined by $\pi\circ p=\pi_{1}\times\cdots\times\pi_{r}$ where $\pi_{j}$

$i=1,\cdots,$ $r$ is the projection of $\tilde{M}_{j}/G_{n_{j}}$ onto $M_{j^{\prime}}$ . So, the fundamental vector field $\sigma$

generated by $d/dt$ on $M_{+}$ is determined by $\sigma=\rho_{*\sigma_{i}}$ for any $j\in\{1,\cdots,r\}$ , where $\sigma_{i}$

denotes the fundamental vector field on $\tilde{M}_{j}/G_{\iota},$
$\cdot$ From (2.8) we have

$\sigma_{i}=(l_{j}/n_{j})\tilde{\xi}_{i}$ and so,

$\sigma=\frac{l_{j}}{n_{j}}\rho_{*}\tilde{\xi}_{j}$ .

Now, put $\xi_{/}=(1/l)\sigma,$ $1$ being an arbitrary positive real number. Then, by choosing
$c_{j}$ as in (4.5) for $1\leq i\leq r$ , we get

(4.8) $\xi_{/}=\frac{i}{c_{i}}p_{*}\tilde{\xi}_{i}$ .

Each one-form $(n_{j} I l_{i})\tilde{\eta}_{j}$ is a connection form on $M_{j}/G_{1}$ , and hence, $(1/l)\eta_{/}$ ,

where $\eta_{/}$ is the unique differential form on $M_{+}$ such that

$\rho^{*}\eta_{/}=c_{1}\tilde{\eta}_{1}\times\cdots\times c_{r}\tilde{\eta}_{r}$ ,

defines a connection form on $M_{+}$ (see [17]). (4.8) yields $\eta_{/}(\xi_{/})=1$ . Moreover,
for $X^{\prime}\in \mathfrak{X}(M_{+}^{\prime})$ we have

$X^{\prime}*=p_{*}((p_{1*}X^{\prime})^{*},\cdots,(p_{\Gamma^{*}}X^{\prime})^{*})$ .

Now, we denote by $g_{l}$ the unique Riemannian metric on $M_{+}$ such that
$g_{l}(\xi_{l},\xi_{l})=1,$ $\xi_{/}$ is orthogonal to $ker\eta_{/}$ and $\pi:M_{+}\rightarrow M_{+}^{\prime}$ becomes $a$ Riemannian
submersion. Then $\xi_{l}$ is $a$ unit Killing vector field on $(M_{+},g_{l})$ and the length of its
integral curves is precisely $l$ .

For each $m=[(m_{1},\cdots,m_{r})]\in M_{+}$ there is a unique function $s_{m}$ : $M_{+}\rightarrow M_{+}$

satisfying

$s_{m}\circ\rho=p\circ(s_{m_{1}}^{1}\times\cdots\times s_{m_{r}}^{r})$

where $s_{m_{l}}^{t}$ denotes the $re$flection of $\overline{M}_{j}/G_{n_{i}}$ at $m_{j}$ . It then follows easily that $s_{m}$

is the reflection at $m$ and hence $(M_{+},g_{l},\xi_{l})$ is $a$ contact KTS-space.
Thus, using Proposition 2.7 and (4.4), (4.6) we may conclude

THEOREM 4.2. Let $M_{+}^{\prime}$ be a Hermitian symmetric space of compact type

and $M_{+}^{\prime}=M_{1^{\prime}}\times\cdots\times M_{r}^{\prime}$ its de Rham decomposition. Then each simply connected
contact KTS-space over $M_{+}^{\prime}$ is isomorphic, for some $l>0$ and non-vanishing
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integers $n_{1},\cdots,$ $n_{r}$ , to $(\tilde{M}_{+},\tilde{g}_{/},\tilde{\xi}_{/})$ where

$M_{+}=(\tilde{M}_{j}/G_{ll_{l}}\times\cdots\times\tilde{M}_{r}/G_{ll_{7}})/T^{\mapsto 1}$

The sectional curvature $K(\mathfrak{W}_{j},\tilde{\xi}_{/})$ on $\tilde{M}_{+},$ $i=1,$ $\cdots,$ $r$ (where $3\ell_{i}$ is defined as in
Theorem 3.2) is constant and satisfies

$K(\%_{j},\tilde{\xi}_{/})=(\frac{ln_{i}\beta_{i^{t}}\prime}{2\pi\beta_{i}}1^{2}$ ,

where $\beta_{i^{CJ}}$ is the negative scalar such that the corresponding Kahler form $\Phi_{i}^{0}$ on

$M_{i^{\prime}}$ verifies $e_{M_{j}},$
$(\tilde{M}_{i})=[-\frac{1}{2\pi}\Phi_{i^{)}}]$ .

REMARK 4.2. Theorem 4.2 gives the existence of contact KTS-spaces over
an arbitrary Hermitian symmetric space of compact type. However, for $\varphi-$

symmetric spaces such existence is subjected to certain $re$strictions on the metrics
of the base spaces (see [15, Theorem $A]$ ).

Let $M_{+}^{\prime}=G/K$ be an irreducible Hermitian symmetric space of compact
type. On $M_{+}^{\prime}$ we consider the Riemannian metrics $g_{1}$ and $g_{2}$ determined by
$\beta_{1}B$ and $\beta_{2}B$ , respectively, where $B$ is the Killing form of the Lie algebra $q$ of
$G$ . If $\beta_{1}/\beta_{2}$ is an irrational number, then it follows from [15, Proposition III.2]

or directly from (4.4) that there do not exist any $\varphi-$-symmetric space which fibers
over the product symmetric space $(M_{+}^{\prime},g_{1})\times(M_{+}^{\prime},g_{2})$ .

We also have that for $\beta_{1}\neq\beta_{2}$ the quotient space

$(\tilde{M}_{+}\times\tilde{M}_{+})/S^{1}$

is a contact KTS-space but it does not admit a structure of a $\varphi-$-symmetric space
over $M_{+^{\prime}}\times M_{+}^{\prime}$ (see [15]).

4.3. Contact KTS-spaces over Hermitian symmetric spaces
of non-compact and of Euclidean type

Let $M_{-}^{\prime}$ be $a$ Hermitian symmetric space of non-compact type and
$M_{-}^{\prime}=M_{1^{\prime}}\times\cdots\times M_{r}^{\prime}$ its de Rham decomposition. In a similar way as in Section 4.2
we get the coset space

$M_{-}^{\prime}=(M_{1^{\prime}}\times\cdots\times M_{r^{\prime}})/R^{r- 1}$

as a simply connected principal $R^{1}$ -bundle over $M_{-}^{\prime}$ where the action of $R^{r-1}$ on
$\tilde{M}_{1}\times\cdots\times\tilde{M}_{r}$ is defined by
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$(m_{1},\cdots,m_{r})(t_{2},\cdots,t_{r})=(m_{1}\sum_{i--2}^{r}t_{i},m_{2}(-t_{2}),\cdots,m_{r}(-t_{r}))$ .

Note that this action, just as that given by (4.7), depends on the KTS-structure
$(\tilde{g}_{\iota_{j}},\tilde{\xi}, )$ on $\tilde{M}_{j}$ . The fundamental vector field $\sigma$ generated by $d/dt$ on $M_{-}$ is
determined by

$\sigma=p_{*}\tilde{\xi}_{j}$

for any $i\in\{1,\cdots,r\}$ where $p$ denotes the canonical projection $ p:\tilde{M}_{1}\times$

$\times\tilde{M}_{r}\rightarrow M_{-}$ . We put $\xi=\sigma$ . Again, we define the connection form $\eta$ on $M_{-}$ as
the unique differential form on $M_{-}$ such that

$\rho^{*}\eta=\tilde{\eta}_{c_{1}}\times\cdots\times\tilde{\eta}_{c_{r}}$ .

If $g$ denote $s$ the Riemannian metric on $M_{-}$ constructed as in Section 4.2, we get
that $(M_{-},g,\xi)$ is $a$ KTS-space. From (2.1) it follows that the corresponding $(0,2)-$

tensor $h$ is determined by

$\rho^{*}h=\tilde{h}_{\iota_{1}}\times\cdots\times\tilde{h}_{\iota_{r}}$

and consequently, for the $(1,1)$-tensor $H^{\prime}$ on $M_{-}^{\prime}$ we get

(4.9) $H^{\prime}=c_{1}J_{1}\times\cdots\times c_{r}J_{r}$ .

Thus, from Proposition 2.7 and Theorem 3.2 we have

THEOREM 4.3. Let $M_{-}^{\prime}$ be a Hermitian symmetric space of non-compact type
with the de Rham decomposition $M_{-}^{\prime}=\tilde{M}_{1}\times\cdots\times\tilde{M}_{r}$ . Then each simply connected
contact KTS-space over $M_{-}^{\prime}$ is isomorphic to

$(M_{-}=(\tilde{M}_{1}\times\cdots\times\tilde{M}_{r})/R^{r-1},g,\xi)$

where the KTS-structures $(g,\xi)$ defined as above depend on the $r$ real parameters
$c_{1},\cdots,c_{r}$ .

From (4.9) it follows that for each $l>0$ the characteristic class of the principal
$S^{1}$ -bundle $M_{-}/Z[l]$ over $M_{-}^{\prime}$ satisfies

$e_{M_{-}^{\prime}}(M_{-}/Z[l])=\sum_{i=2}^{r}e_{M_{-}^{\prime}}(\tilde{M}_{j}/Z[l])$ .

Next, let $H(p,1),$ $p\geq 1$ , be the connected, simply connected nilpotent Lie
group of (real) matrices of the form
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$A=[_{0}^{1}00$ $a_{]}0^{2}0^{1}$

.
$a_{0}^{p+1}1..0_{1}$ $a_{p+1}^{1_{p+2}}a_{2_{\rho+2}}^{p.\cdot.+2}a1$

that is, the $(2p+1)$ -dimensional Heisenberg group. Denote by $y_{k},y_{p+k},z,$ $1\leq k\leq p$ ,

the coordinate functions on $H(p, 1)$ defined by

$y_{k}(A)=a_{1}^{k+1}$ $y_{p+k}(A)=a_{k+1}^{p+2}$ $z(A)=a_{1}^{p+2}$

for any $A\in H(p,1)$ . Then we have

THEOREM 4.4. The simply connected contact KTS-spaces over the
Euclidean space $E^{2p}$ are isomorphic to $(H(p, 1),g_{\lambda_{1}\cdots\lambda_{J}}$ , \mbox{\boldmath $\xi$}=\partial /&) where

(4.10) $g_{\lambda_{1}\cdots\lambda_{p}}=\sum_{k=1}^{p}\{\frac{1}{\lambda_{k}}((dy_{k})^{2}+(dy_{p+k})^{2})\}+(dz-\sum_{I\leq l\leq p}y_{l}dy_{p+l})^{2}$

and $\lambda_{1},\cdots,$ $\lambda_{p}$ are positive real parameters.

PROOF. It follows from Proposition 2.7 that the different simply connected
KTS-spaces over a given symmetric space $M^{\prime}$ are related to the possible parallel
skew-symmetric tensor fields $H^{\prime}$ on $M^{\prime}$ where as mentioned before $H^{\prime}X^{\prime}=$

$\pi_{*}(HX^{\prime})*$ . On $E^{2\rho}$ we can choose a coordinate system $(x_{1},\cdots,x_{2p})$ such that $H^{\prime}$

is defined by

(4.11) $H^{\prime}\frac{\partial}{a_{k}}=\mu_{k}\frac{\partial}{a_{p+k}}$ , $H^{\prime}\frac{\partial}{\partial \mathfrak{r}_{p+k}}=-\mu_{k}\frac{\partial}{\partial \mathfrak{r}_{k}}$

where $\mu_{1},\cdots,\mu_{p}$ are positive re $a1$ numbers.
Then, using [8], it follows that $(H(p,1),g_{\lambda_{1}\cdots\lambda},$

$’\xi=\partial$ /&) is a KTS-space.

With the projection $\pi:H(p,1)\rightarrow E^{2p}$ given by

$(y_{1},\cdots,y_{2p},z)\vdash\Rightarrow(\frac{1}{\sqrt{\lambda_{1}}}y_{1},\cdots,\frac{1}{\sqrt{\lambda_{p}}}y_{p},\frac{1}{\sqrt{\lambda_{1}}}y_{p+1},\cdots,\frac{1}{\sqrt{\lambda_{p}}}y_{2\rho})$

$H(p,1)$ is a principal $R^{1}$ -bundle which is a Riemannian submersion and the

corresponding tensor field $H^{\prime}$ on $E^{2\rho}$ coincides with that given in (4.11) putting
$\mu_{k}=\lambda_{k}/2,$ $k=1,\cdots,p$ . $\blacksquare$
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The characteristic class of the principal $S^{1}$ -bundle $H(p, 1)/Z[l]$ over $E^{2\rho}$ is
given, in terms of the coordinate system $(x_{1},\cdots, x_{2/}, )$ on $E^{2_{t)}}$ by

$e_{F^{2\rho}}(H(p,1)/Z[l])=[-\frac{1}{l}\sum_{k=1}^{\rho}\lambda_{k}dx_{k}\wedge dx_{\rho+k}]$ .

Finally, consider the Hermitian symmetric space $M^{\prime}=E^{2p}\times M_{-}^{\prime}$ . Since
$H(p, 1)$ and $M_{-}$ are principal $R^{1}$ -bundles over $E^{2p}$ and $ML$ , respectively, the
manifold

$N=(H(p, 1)\times M_{-})/R$

is $a$ simply connected principal $R^{1}$ -bundle over $M^{\prime}$ as in the non-compact case.
Following the notations as above, the $(0,2)$-tensor field $h^{\prime}$ on $M^{\prime}$ is given by

$h^{\prime}=(\sum_{k=1}^{p}\lambda_{k}dx_{k}\wedge dx_{p+k})\times c_{1}\Phi_{1}\times\cdots\times c_{r}\Phi_{r}$ .

Hence, using again Proposition 2.7 we obtain that each simply connected contact
KTS-space over $M^{\prime}$ is isomorphic to $(N,g,\xi)$ where the family of KTS-structures
$(g,\xi)$ now depends on the $p+r$ parameters $\lambda_{1},\cdots,$ $\lambda_{\rho},c_{1},\cdots,c_{r}$ .

4.4 Contact KTS-spaces over a Hermitian symmetric space
Let $M^{\prime}=E^{2\rho}\times M_{-}^{\prime}\times M_{+}^{\prime}$ be $a$ simply connected Hermitian symmetric space

where $E^{2p},$ $M_{-}^{\prime}$ and $M_{+}^{\prime}$ are, respectively, of Euclidean, non-compact and
compact type. Let $M_{-}^{\prime}=M_{1^{\prime}}\times\cdots\times M_{q^{\prime}}$ and $M_{+}^{\prime}=M_{q^{\prime}+1}\times\cdots\times M_{r^{\prime}}$ be the decompo-
sitions into irreducible Hermitian symmetric spaces of $M_{-}^{\prime}$ and $M_{+}^{\prime}$ . Consider
also the contact KTS-space $(M_{+},g_{l},\xi_{1})$ over $M_{+}^{\prime}$ where $M_{+}$ is the following
quotient manifold (see Theorem 4.2):

$M_{+}=$ $(\tilde{M}_{q+1}/G_{\iota_{q+1}}\times\cdots\times\tilde{M}, /G_{n_{r}})/T^{r- q- 1}$

and where $l>0$ is the length of the fibers. The coset space $N/Z[l]$ where
$N=(H(p, 1)\times M_{-})/R$ is also a principal $S^{1}$ -bundle with the same length $l$ for its
fibers. Then for each $l>0$ we construct non-isomorphic contact KTS-structures
on the manifold

$M=(N/Z[l]\times M_{+})/S^{1}$

considered as principal $S^{1}$ -bundles over $M^{\prime}=E^{2p}\times M_{-}^{\prime}\times M_{+}^{\prime}$ .
Using the method given in Section 4.2, we may obtain KTS-structure $(g,\xi)$

such that the corresponding tensor field $h$ ‘ of type $(0,2)$ is given by

$h^{\prime}=(\sum_{k=1}^{p}\lambda_{k}d\kappa_{k}\wedge d\mathfrak{r}_{p+k})\times\prod_{-,i-1}^{q}c_{j}\Phi_{j}\times\prod_{j=1}^{r- q}c_{q+j}\Phi_{q+j}$
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with

$C_{a}=\frac{ln_{a}\beta_{a}^{o}}{2\pi\beta_{a}}$ , $a=q+1,\cdots,$ $r$ .

So we obtain, by Proposition 2.7,

THEOREM 4.5. Let $M^{\prime}=E^{2p}\times M_{-}^{\prime}\times M_{+}^{\prime}$ be a simply connected Hermitian

symmetric space and $M_{-}^{\prime}=M_{1}^{\prime}\times\cdots\times M_{q}^{\prime}$ and $M_{+}^{\prime}=M_{q+1}^{\prime}\times\cdots\times M_{r}^{\prime}$ the de Rham

decompositions of $M_{-}^{\prime}$ and $M_{+}^{\prime}$ respectively. Then each simply connected contact

KTS-space over $M$ ‘ is isomorphic, for some $l>0$ and some non-vanishing
integers $n_{q+1},\cdots,n_{r}$ , to $(\tilde{M},\tilde{g},\xi)$ where

$M=(N/Z[l]\times M_{+})/S^{1}$ ,

$N=(H(p,1)\times M_{-})/R$ and $M_{+}=(\tilde{M}_{q+1}/G_{n_{q+1}}\times\cdots\times\tilde{M}_{r}/G_{n_{r}})/T^{r-q-1}$ . The family of
KTS-structures $(g,\xi)$ depends on the $p+q$ parameters $\lambda_{1},\cdots,\lambda_{p},c_{1},\cdots,c_{q}$ .

5. The de Rham decomposition for KTS-spaces

The main purpose of this final section is to prove

THEOREM 5.1. Let $(M,g,\xi)$ be a simply connected KTS-space. Then $(M,g)$

is irreducible if and only $\iota f\eta$ is a contact form. In this case $dimM=n$ is neces-
sarily odd. Further, if rankH $=2k<n-1$ , then $M$ is a direct product

$(M,g)=(M^{\prime},g^{\prime})\times(M^{\prime\prime},g^{\prime\prime})$

where $(M‘, g^{\prime},\xi)$ is an irreducible KTS-space of dimension $2k+1$ and $(M^{\nu},g^{\nu})$

is a symmetric space.

To prove this result we shall need the following two lemmas. The first one is
the KTS-version of Proposition 3.1 of [20] for q-symmetric spaces and its proof
is similar. So we omit it. (See also [13]).

LEMMA 5.1. Let $(M,g,\xi)$ be a simply connected KTS-space and let V $be$

the canonical connection of the isometric flow $\mathfrak{F}_{\xi}$ . Then there is a coset

representation of $M$ in the form $M=G/G_{o}$ such that
(i) $G$ is a connected Lie group with $G\subseteq A(M)$ ;

(ii) there is an $Ad(G_{0})$ -invariant decomposition $\mathfrak{g}=\mathfrak{g}_{o}\oplus \mathfrak{m}$ of the Lie algebra
$g$ of $G$ adapted to the naturally reductive homogeneous space $(G/G_{o},g)$ for
which V is the canonical connection of the second kind.
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Next, we state

LEMMA 5.2 [19]. Let $(M,g)=G/G_{o}$ be a simply connected naturally
reductive space with an adapted canonical connection V. Suppose that the
tangent space $V=T_{0}M$ at the origin admits an orthogonal decomposition
$V=V_{1}\oplus V_{2}$ such that its torsion and curvature tensors satisfy

$\pi_{j}(\overline{K}(X, Y))=\overline{K}(\pi_{j}X,\pi_{j}Y)$ ,

$\pi_{j}(\overline{R}_{\chi\gamma}Z)=\overline{R}_{\pi_{j}X\pi_{j}Y}\pi_{j}Z$ ,

for $i=1,2$ and all $X,$ $Y,Z\in V$ where $\pi_{1}$ and $\pi_{2}$ denote the canonical projections.
Then $M$ is a direct product $(M,g)=(M_{1},g_{1})\times(M_{2},g_{2})$ with $\dim M_{j}=\dim V_{i}$ ,

$i=1,2$ . Here, the factors $(M_{j},g_{j})$ are again naturally reductive.

Now, we are ready for the

PROOF OF THEOREM 5.1. From Lemma 5.1 it follows that $(M,g)=G/G_{o}$ is
a naturally reductive homogeneous space with G-invariant vector field $\xi$ and the
canonical connection V of the flow $\mathfrak{F}_{\xi}$ as canonical connection.

First, we suppose that the one-form $\eta$ is not a contact form and hence, that
rank $H=2k<n-1$ . We shall $p$rove that $(M,g)$ satisfies the conditions of Lemma
5.2. Since $H$ is skew-symmetric $V=T_{0}M$ admits an orthonormal basis
$\{X_{1},\cdots, X_{2k}, X_{2k+1},\cdots, X_{n-1},\xi_{0}\}$ and there exist real numbers $\lambda_{1},\cdots,\lambda_{k}$ such that

$\left\{\begin{array}{l}H_{o}X_{|} = \lambda_{|}X_{2} H_{0}X_{2} = -\lambda_{|}X_{|},\\\ldots\\ H_{o}X_{2k-|} = \lambda_{k}X_{2k} H_{o}X_{2k} = -\lambda_{k}X_{2k-|},\\H_{o}X_{2k+l} = = H_{0}X_{n-|} = H_{o}\xi_{o}=0.\end{array}\right.$

Now, put $V_{1}=span\{X_{1},\cdots, X_{2k},\xi_{0}\},$ $V_{2}=span\{X_{2k+1},\cdots, X_{n-1}\}$ . Since $\overline{K}=-2T$ and
with the expression for $T$ given in Section 2, we get that $\overline{K}_{o}(X_{a}, X_{b})$ and
$\overline{K}_{o}(X_{a},\xi_{0}),$ $1\leq a,$ $b\leq 2k$ , belong to $V_{1}$ . For $2k+$ ] $\leq h,$ $l\leq n-1$ we get

$\overline{K}_{o}(X_{h}, X_{l})=\overline{K}_{o}(X_{h} , X_{a})=\overline{K}_{o}(X_{h},\xi_{0})=0$ .

Hence,

$\pi_{j}(\overline{K}_{o}(X, Y))=\overline{K}_{o}(\pi_{j}X,\pi_{j}Y)$

for all $X,$ $Y\in V$ . Further, for $1\leq a,b,c\leq 2k$ we get that $\overline{R}_{oX_{a}X_{b}}X_{c}\in V_{1}$ . Indeed, let
$U\in V_{1}$ such that $X_{c}=H_{o}U$ . Since $\overline{R}_{X_{a}X_{b}}\cdot\overline{K}=0$ we obtain
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$\overline{R}_{oX,X_{b}}X_{\epsilon}=\frac{1}{2}\overline{R}_{oX_{a}X_{b}}\overline{K}_{0}(U,\xi_{0})=\frac{1}{2}\overline{K}_{o}(\overline{R}_{oX_{l}X_{b}}U,\xi_{0})=H_{o}\overline{R}_{oX_{a}X_{b}}U$

Moreover,

$\overline{R}_{oX_{i}X_{j}}\xi_{0}=\overline{R}_{\circ\xi_{l}X_{j}}X_{j}=0$

for $1\leq i,$ $j\leq n-1$ . Next, we show that $\overline{R}_{oX_{a}X_{h}}=0$ for $1\leq a\leq 2k,$ $2k+1\leq h\leq n-1$ .
To see this, put $X_{a}=HU,$ $U\in V_{1}$ . Then, using the second Bianchi identity for V ,

we get

$\overline{R}_{oX_{a}X_{h}}=\frac{1}{2}\overline{R}_{o\overline{K},,(U,\xi()X_{h}}=\frac{1}{2}\{\overline{R}_{o\overline{K}_{\prime},(X_{h},\xi_{0})U}+\overline{R}_{o\overline{K}_{o}(U,X_{h})\xi_{l}}\}=0$ .

$So$ , if $2k+1\leq l,$ $m\leq n-1$ , we have $\overline{R}_{oX_{h}X}X_{m}\in V_{2}$ . All this then yields

$\pi_{j}(\overline{R}_{XY}Z)=\overline{R}_{\pi_{j}X\pi,Y}\pi_{j}$ Z.

Thus, from Lemma 5.2, we conclude that $(M,g)$ is a direct product
$(M^{\prime},g^{\prime})\times(M^{\prime\prime},g^{\nu})$ . Moreover, if $R$‘ denotes the curvature tensor of $(M^{\prime},g^{\prime})$ , we
get

$R^{\prime}(X, Y, X,\xi)=R(X, Y,X,\xi)=0$

for all horizontal vector $X,$ $Y$ on $M$ ‘. Moreover, $\eta$ is $a$ contact form on $M^{\prime}$

because rank $H=rankH_{|M},$ $=2k=\dim M^{\prime}-1$ . So, using Proposition 3.1, we obtain
that $(M‘, g^{\prime},\xi)$ is $a$ contact KTS-space. On the other hand, since

K. $(X_{h}, X,)=0$ , $2k+1\leq h,$ $l\leq n-1$ ,

we get that $(M^{\prime\prime},g^{\prime\prime})$ is $a$ symmetric space [19, (12)].

The converse follows at once from Proposition 3.2. $\blacksquare$

COROLLARY 5.1. Let $(M,g,\xi)$ be a simply connected KTS-space. Then we
have the following de Rham decomposition:

$M=M_{0}\times M_{1}\times\cdots\times M_{k}\times M_{k+1}$

where $M_{0}$ is $a$ Euclidean space, $M_{1},\cdots,M_{k}$ are irreducible symmetric spaces and
$M_{k+1}$ is a contact KTS-space. Moreover, $M$fibers over the symmetric space

$M^{\prime}=M_{0}\times M_{1}\times\cdots\times M_{k}\times M_{k^{\prime}+1}$

where $M_{k^{\prime}+1}$ is the simply connected Hermitian symmetric space $ M_{k+1}/\xi$ .
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