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COUNTABLE PRODUCT OF
FUNCTION SPACES HAVING

$p$-FRECHET-URYSOHN LIKE PROPERTIES

By

Angel TAMARIZ-MASCARUA

Abstract. We exhibit in this article some classes of spaces for
which properties $\gamma$ and $\gamma_{p}$ are countable additive, and we prove that
for some type of spaces and ultrafilters $ p\in\omega^{*},\gamma$ is equivalent to $\gamma_{p}$ .
We obtain: (1) If $\{X_{n}\}_{n<\omega}$ is a sequence of metrizable locally
compact spaces with $\gamma_{p}(p\in\omega^{*})$ , then $\Pi_{n<\omega}C_{\pi}(X_{n})$ is a $FU(p)-$

space; (2) $C_{\pi}(X)$ is a Fr\’echet-Urysohn (resp., $FU(p)$ ) space iff
$C_{\pi}(F(X))$ has the same property, where $F(X)$ is the free topological
group generated by $X;(3)$ For a locally compact metrizable and non
countable space $X$ , $C_{\pi}(X)$ is a Fr\’echet-Urysohn (resp., $FU(p)$ )

space iff $C_{\pi}(L_{\pi}(X))$ is Fr\’echet-Urysohn (resp., $FU(p)$ ), where
$L_{\pi}(X)$ is the dual space of $C_{\pi}(X);(4)$ For every $\check{C}$ ech-complete
space $X$ and every $p\in\omega^{*}$ for which $R$ does not have $\gamma_{p},$ $C_{\pi}(X)$ is
Fr\’echet-Urysohn iff $C_{\pi}(X)$ is a $FU(p)$ -space. Also we give some
results conceming P-points in $\omega^{*}$ related with p-Fr\’echet-Urysohn
property and topological function spaces.

0. Introduction

In [GN], [G], [Mc], [Py], the authors studied the properties needed in a
space $X$ in order to have the Fr\’echet-Urysohn property in the space $C_{\pi}(X)$ of
continuous functions from $X$ to the real line $R$ considered with the pointwise
convergence topology. They gave conditions in $X$ in terms of cover properties. In
$[McN_{1}]$ the next general result was proved:
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THEOREM 0.1. Let $X$ be a space and let $s4$ be a hereditarily closed, compact
network. Then the following are equivalent

(a) $c_{d}(X)$ is a Fr\’echet-Urysohn space;
(b) $X$ satisfies property $ d\gamma$ .

In [GT, ] and $[GT_{2}]$ the authors considered the more general concepts of
$WFU(M)$ -spaces and $SFU(M)$ -spaces where $M\subset\omega^{*}$ . They proved:

THEOREM 0.2. $([GT_{2}])$ Let $X$ be a space and let $\emptyset\neq M\subset\omega^{*}$ . The following
statements are equivalent

(a) $C_{\pi}(X)$ is a $SFU(M)$ -space (resp., $WFU(M)$ -space);
(b) $X$ has property $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

It is also noted in these articles (see for example $[GT_{2},3.2.3]$ ) that Fr\’echet-
Urysohn, $WFU(M)$ and $SFU(M)$ properties with $\emptyset\neq M\subset\omega^{*}$ are not finite
multiplicative, even in $C_{\pi}$ -spaces.

On the other hand, in the generalization of the Fr\’echet-Urysohn property in
terms of ultrafilters, in particular the concepts of p-Fr\’echet-Urysohn property,
arises a rich variety of properties that could be very different from the original as
we can appreciate in the following two theorems.

THEOREM 0.3. ([GN]) $(a)$ If $C_{\pi}(X)$ is a Fr\’echet-Urysohn space, then $X$ is
zero-dimensional.

(b) ([GN]) If $C_{\pi}(A)$ is Fr\’echet-Urysohn where $A\subset R$ , then $A$ is of strong
measure zero.

These results are in contrast to the following theorem.

THEOREM 0.4. ([GT, ]) If $X^{n}$ is Lindeloffor every $ n<\omega$ and $w(X)\leq 2^{\omega}$ , then
there is $p\epsilon\omega^{*}$ such that $C_{\pi}(X)$ is an $FU(p)$ -space.

In particular, $C_{\pi}(R)$ is an $FU(p)$ -space for some $p\in\omega^{*}$ and is far from being
a Fr\’echet-Urysohn space.

In this article we will analyze when the Fr\’echet-Urysohn like properties are
countable productive in function spaces $C_{\nabla}t^{\sigma}\mathfrak{U}(X, Y)$ (Sections 4, 5 and 6). In
particular, as a main result, we prove that $C_{\pi}(X)$ is an $FU(p)$ -space iff
$\Pi_{n<\omega}C_{\pi}(X^{n})$ has the same property, obtaining some interesting Corollaries. On the
other hand, we will find some class $\mathfrak{C}$ of ultrafilters $p\in\omega^{*}$ for which the $FU(p)$

property is very similar to that of Fr\’echet-Urysohn. Besides, we will show that
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for a $\check{C}$ ech-complete space $X$ and $p\in \mathfrak{C}$ , “
$C_{\pi}(X)$ is Fr\’echet-Urysohn’’ is

equivalent to “
$C_{\pi}(X)$ is an $FU(p)$ -space” (Section 7). In Section 3 we will study

some generalizations of Telgarsky’s games defined in [Te]. Also we will obtain
some generalizations of Theorems proved in $[GT_{1}],[GT_{2}]$ and $[McN_{1}]$ (Section 2
and Theorems 5.10, 6.5 and 8.6). In the last section we determine some conditions
for which a space $X$ has a compactification $\kappa X$ with a Fr\’echet-Urysohn like
function space. We are going to consider all these problems in the general frame
of spaces $C_{i}A^{\sigma}|l(X,Y)$ where $A$ is a closed network of $X$ and $0|A$ is a compatible
uniformity of the space $Y$ .

1. Preliminaries

The letters $X,$ $Y,$ $Z,\cdots$ will denote Tychonoff spaces. The set of natural
numbers and its $Stone-\check{C}$ ech compactification will be denoted by $\omega$ and $\beta\omega$

respectively, and $\omega^{*}=\beta\omega\backslash \omega$ is the collection of the non-principal ultrafilters on
$\omega$ . If $ f:\omega\rightarrow\beta\omega$ , then $\overline{f}:\beta\omega\rightarrow\beta\omega$ will denote the Stone extension of $f$. If $X$ is
a space and $x\in X,$ $N(x)$ will be the set of neighborhoods of $x$ in X. $\mathfrak{N}(X)$ or
simply $\mathfrak{N}$ is the set of compact subsets of $X$ and $\varphi(X)$ or $a$ will denote the set
of finite subsets of $X$ , and, as usual, $\Phi(X)$ is the collection of subsets of $X$ . For a
collection $\mathfrak{B}=\{X_{\lambda} : \lambda\in\Lambda\}$ of spaces, $\coprod_{\lambda\in\Lambda}X_{\lambda}$ will be the free topological sum of
spaces in %.

The Rudin-Keisler (pre)-order in $\omega^{*}$ is defined as follows: for
$p,q\in\omega^{*},$ $p\leq_{RK}q$ if there is $f$ : $\omega\rightarrow\omega$ such that $\overline{f}:(q)\rightarrow p$ . If $p\leq_{RK}q$ and
$q\leq_{RK}p$ , then we say that $p$ and $q$ are RK-equivalent (in symbols, $p\simeq_{RK}q$ ). It is
not difficult to verify that $p\simeq_{RK}q$ iff there is a permutation $\sigma$ of $\omega$ such that
$\overline{\sigma}(q)=p$ . The type of $p\in\omega^{*}$ is the set $T(p)$ of all RK-equivalent ultrafilters of

$p$ . Observe that the Rudin-Keisler pre-order in $\omega^{*}$ is an order in $\{T(p);p\in\omega^{*}\}$ .
A collection $d$ of closed subsets of a space $X$ is a network if for every $x\in X$

and every $V\in N(x)$ there is $A\in A$ such that $x\in A\subset V$ .
If $X$ and $Y$ are two spaces, $C(X, Y)$ is the collection of continuous functions

from $X$ to $Y$ , and for $A\subset X$ and $B\subset Y$ we set $[A,B]=\{f\in C(X,Y):f(A)\subset B\}$ .
When $A$ is a network we can consider the topology $\tau_{i}4$ in $C(X,Y)$ generated by
$\varphi=$ { $[A,B]:A\in A$ and $B\subset Y$ is open} as a sub-base. The pair $(C(X,Y),\tau_{s4})$ is
denoted by $C_{i}4(X, Y),$ $\tau_{\ovalbox{\tt\small REJECT}}$ is the pointwise convergence topology and $C(X,Y)$ with
this topology is denoted by $C_{\pi}(X, Y)$ . When $A$ $\mathfrak{N}(X)$ , then we obtain the
compact-open topology in $C(X, Y)$ and we write $C_{K}(X, Y)$ . If $d$ is a compact
network (every $A\in A$ is compact) on $X$ , then $C_{i}4(X, Y)$ is a Tychonoff space.
Observe also that for every network $d$ on $X,$

$\tau_{\ovalbox{\tt\small REJECT}}=\tau_{\Re}$ where $\Re$ is the family of
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finite unions of elements of $d$ ; this is why we will identify each network and the
collection of finite unions of its elements with the same symbol without explicit
mention.

When we consider a compatible uniformity $0|l$ in $Y$ and $d$ is a network on
$X$ , we can define a uniformity $\hat{\sigma}\mathfrak{U}$ in $C(X, Y)$ as follows: for each $U\in 0\mathfrak{U}$ and each
$A\in d$ we put $\hat{U}(A)=$ { $(f,g)\in C(X,Y)\times C(X,$ $Y):(f(x),g(x))\in U$ for every $x\in A$ }.
We will denote by $C_{:A^{\sigma}u}(X, Y)$ the space of continuous functions from $X$ to $Y$

endowed with the topology $\tau_{d.q\downarrow}$ generated by the uniformity $\hat{\sigma|}l=$

$\{\hat{U}(A):U\in ou_{a}\in A\}$ . For $f\in C(X, Y),$ $U\in ql$ and $A\in A,\hat{U}(A)(f)=\{g\in C(X, Y)$ :
$(g(x),f(x)\in U$ for all $x\in A$ } is a canonical neighborhood of $f$ in $\tau_{d^{0}u}$ . If $X\in d$

we simply write $C.(X, Y)$ instead of $C_{d^{\sigma}1l}(X, Y)$ . By $(Y^{0}1l)$ we will mean that $Y$

is a space and $0|l$ is a compatible uniformity on Y.
For every network $d$ we have that $\tau_{\pi}\subset\tau_{u}$ , and if $d$ is a compact network

on $X$ and $\sigma 1l$ is a compatible uniformity of $Y$, then $\tau_{d}\subset\tau_{\downarrow 4,q1}$ . If, in addition, $d$ is
hereditarily closed (every closed subset of an element of $d$ belongs to $d$ ), then
$\tau_{d}\subset\tau_{st.ql}$ .

The notion of a p-limit of a sequence in a space $X$ for $p\in\omega^{*}$ was introduced
by Bemstein in [B]: For a sequence $(x_{n})_{n<\omega}$ in $X$ , the point $x\in X$ is a p-limit of
$(x_{ll})_{n<\omega}$ (in symbols, $x=p-\lim x_{l}$ ) if for each $V\in N(x),$ $\{n<\omega:x_{n}\in V\}\in p$ . This
definition suggests the following genealizations of the concepts of Fr\’echet-

Urysohn property.

DEFINITION 1.1. Let $\emptyset\neq M\subset\omega^{*}$ and let $X$ be a space.
(1) (Kocinac [Ko]) $X$ is a $WFU(M)$ -space if for every $A\subset X$ and $x\in c1A$ ,

there are $p\in M$ and a sequence $(x_{n})_{<\omega}$ in $A$ such that $x=p-\lim x_{l}$ .
(2) (Kocinac [Ko]) $X$ is a $SFU(M)$ -space if for $A\subset X$ and $x\in c1A$ , there is

a sequence $(x_{ll})_{ll<\omega}$ in $A$ such that $x=p-\lim x_{l}$ for every $p\in M$ .
Observe that, for $p\in\omega^{*},WFU(\{p\})$ -space $=SFU(\{p\})$ -space; in this case,

we simply say $FU(p)$ -space (this concept was discovered by Comfort and
Savchenko independently). We remark that for a space $X$ we have: (a) $X$ has
countable tightness if and only if $X$ is a $WFU(\omega^{*})$ -space; and (b) $X$ is a
$SFU(\omega^{*})$ -space if and only if $X$ is Fr\’echet-Urysohn.

DEFINITION 1.2. A space $Y$ is a strictly Fr\’echet-Urysohn space if for every
sequence $(F_{l})_{<\omega}$ of subsets of $Y$ and every $y\in\bigcap_{\iota<\omega}c1_{Y}F_{n}$ , there exists $y_{l}\in F_{ll}$ for
each $ n<\omega$ , such that $y=\lim y_{l}$ .
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2. p-Fr\’echet-Urysohn property in $C_{\eta^{0}1\mathcal{L}}$ -spaces

We say that a collection $\wp\subset \mathfrak{R}(X)$ is an $s4$ -cover of $X$ with $s4\subset \mathfrak{R}(X)$ if for
every $A\in d$ there is $ G\in\wp$ such that $A\subset G$ . If $d$ is the set of finite subsets of
$X,$ $\wp$ is called an $\omega$ -cover.

DEFINITION 2.1. Let $d$ and $\Re$ be two networks on $X$ and $\emptyset\neq M\subset\omega^{*}$

(1) A space $X$ satisfies property $(d,\Re)-W\gamma_{M}$ if for every open $d$ -cover $\wp$

of $X$ there is a sequence $(G_{n})_{n<\omega}$ in 9 and there is $p\in M$ such that

$X=\Re-\lim_{p}G_{n}$

where this last expression means that for each $B\in\Re,$ $\{n<\omega:B\subset G_{n}\}\in p$ .
(2) A space $X$ satisfies property $(A,\Re)-S\gamma_{M}$ if for every open $A$ -cover $\wp$

of $X$ there is a sequence $(G_{n})_{n<\omega}$ in $\wp$ such that

$x=\Re-\lim_{\rho}G_{n}$

for every $p\in M$ .
(3) A space $X$ satisfies property $(d,\Re)-\gamma$ if $X$ satisfies $(d,\Re)-S\gamma_{\omega^{*}}$ or

equivalently, if for every open $d$ -cover $\wp$ there is a sequence $(G_{n})_{n<\omega}$ in $\wp$ such
that $X=\Re-\lim G_{l}$ that is, every $ B\in\Re$ belongs to $G_{ll}$ for every $n$ bigger than a
natural number.

(4) A space $X$ satisfies property (.szi, $\Re$) $-\epsilon$ if for every open .siZ-cover $\wp$ of
$X$ we can find a countable $\Re$ -subcover of $\wp$ .

(5) For a space $X$ and a network $d$ on $X$ , the least cardinal $\alpha$ for which
every open $A$ -cover of $X$ has an sasZ-subcover of cardinality $\alpha$ is denoted by
$AL(X)$ . We say that a space $X$ is $d$ -Lindelof if $dL(X)=\aleph_{0}$ .

(6) For a cardinal number $\mathfrak{N}$ and a network $A$ on a space $X$ we will say that
$X$ is $\mathfrak{N}- A$ -bounded if $X$ is infinite and every subset of $X$ of cardinality $\leq \mathfrak{N}$ is
contained in some element of $A$ . A space $X$ is ’it-bounded if $X$ is Yt-.siZ-
bounded.

(7) Let $A$ be a network on $X$ . We say that $X$ is A-hemicompact if there is a
countable collection $A^{\prime}$ of $d$ which is an $d$ -cover. A space $X$ is hemicompact
if $X$ is ’it-hemicompact.

If $ A=\Re$ we only write $AS\gamma_{M}$ , $d\gamma,$ $ d\epsilon$ etc. and when $ A=\Re$ is $\sigma_{\overline{p}}$ or Yt
we simply write $S\gamma_{M}$ , $W\gamma_{M}$ , $\gamma,$

$\epsilon$ , and $kS\gamma_{M}$ , $kW\gamma_{M},$ $k\gamma,$ $ k\epsilon$ respectively. If
$M=\{p\}$ for some $p\in\omega^{*}$ then $(A,\Re)-\gamma_{p}$ will be the equivalent properties
$(A,\Re)-S\gamma_{\{p1}$ and $(d,\Re)-W\gamma_{\{\rho\}}$ . Observe that every $d$ -hemicompact space
satisfies $ d\gamma$ .
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The following summarizes some basic relations between the properties listed
in Definition 2.1. (The proof of (4) and (6) below are similar to those given for
Theorem 1.5 and Lemma 2.2 in [GT, ] respectively; see also 2.3.3. (5) is a
consequence of (4)).

THEOREM 2.2. Let $A,$ $\Re,$ $\varphi$ and $?l$ be networks on $X$ and let $\emptyset\neq M,N\subset\omega^{*}$

Then,

(1) For $p\epsilon M;(d,\Re)-\gamma\Rightarrow(d,\Re)-S\gamma_{M}\Rightarrow(d,\Re)-\gamma_{\rho}\Rightarrow(A,\Re)-W\gamma_{M}$

$\Rightarrow(A,\Re)-\epsilon$ .
(2) If $d$ is compact then, $(d,\Re)-\epsilon\Rightarrow X$ has $\mathcal{E}$ .
(3) If Si refines % and $\emptyset$ refines $\Re.\cdot$

$(A,\Re)-\gamma\Rightarrow(\varphi,\mathfrak{B})-\gamma;(d,\Re)-S\gamma_{M}\Rightarrow(\mathfrak{B},\mathfrak{B})-S\gamma_{M}$ ; $(A,\Re)-W\gamma_{M}\Rightarrow(\mathfrak{B},\mathfrak{B})-$

$W\gamma_{M}$ , and $(s4,\Re)-\epsilon\Rightarrow(\varphi,\emptyset)-\epsilon$ .
(4) Let $p,q\in\omega^{*}$ with $p\leq_{RK}q$ , let $ f:\omega\rightarrow\omega$ be such that $\overline{f}(q)=p$, and

suppose that $X=\Re-\lim_{\rho}G_{1}$ . Then, $X=\Re-\lim_{q}F_{n}$, where $F_{m}=G_{\int(n)}$ .
(5) Iffor every $p\in M$ there is $q\in N$ such that $p\leq_{RK}q$ , then

$(d,\Re)-W\gamma_{M}\Rightarrow(d,\Re)-W\gamma_{N}$ .

(6) Let $p\in\omega^{*}$ and let X be a space with $ A\epsilon$ . Then, X has $(A,\Re)-\gamma_{\rho}$ iff for
every countable open $d$ -cover $\{B_{1} : n<\omega\}$ of X there is $q\in\omega^{*}$ such that $q\leq_{RK}p$

and $X=\Re-\lim_{q}B_{n}$ .

REMARKS AND NOTATIONS 2.3. (1) Observe that if $\varphi$ and $\mathfrak{B}$ are networks on
$X$ and $Z$ respectively, $F\subset X$ and $f:X\rightarrow Y$ is a continuous function from $X$ onto
$Y$ , then $\varphi_{F}=\{C\cap F:C\in\varphi\},$ $f(\varphi)=\{c1f(C):C\in\varphi\},$ $\mathfrak{B}^{ll}=\{C_{1}\times\cdots\times C_{n}$ : $C_{j}\in \mathfrak{B}$ and
$n<\omega\}$ and $\varphi\times \mathfrak{B}=$ { $ C\times D:C\in\varphi$ and $ D\in\otimes$ } are networks on $F,$ $Y,$ $X^{n}$ and
$X\times Z$ respectively.

(2) If $A$ is a network and $X=A-\lim_{\rho}$ G. for some sequence $(G_{I})_{n<\omega}$ of
subsets of $X$ , then $X=\bigcup_{l\in B}G_{l}$ for each $B\in p$ . In fact, for every $x\in X$ there is an
$A\in A$ containing $x$ . Then, $x\in G_{j}$ for every $j\in B\cap\{n<\omega:A\subset G,,\}$ .

(3) If $X$ has $A$
$\gamma_{P}$ and $\wp=\{G_{l} : n<\omega\}$ is an open $d$ -cover of $X$ , then there is

$q\leq_{RK}p$ such that $X=A-\lim_{q}$ G. : In fact, there is a sequence $(G_{l})_{J<\omega}$ in $\wp$ such

that $X=A-\lim_{p}G_{l}$ . Define $ f:\omega\rightarrow\omega$ by $f(j)=n_{j}$ for each $ j<\omega$ , and take
$q=\overline{f}(p)$ .

(4) Every second countable space $X$ satisfies $ A\epsilon$ for every compact network
$A$ on $X$ .

(5) In that which follows $\theta$ will denote one of the elements in the set of
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properties $\{S\gamma_{M}:\emptyset\neq M\subset\omega^{*}\}\cup\{W\gamma_{M} : \emptyset\neq M\subset\omega^{*}\}\cup\{\epsilon\}$ . In particular $\theta$ may be
the property $\gamma$ .

THEOREM 2.4. Let $d$ and $\Re$ be two networks on $X$ and suppose that $X$

satisfies $(s4,\Re)-\theta$ . Then,

(1) $F\subset X$ has $(d_{F},\Re_{F})-\theta$ if $F$ is closed.
(2) If $F=\bigcup_{<\omega}$ $F$. $\subset X$ where $F$ is closed for every $ i<\omega$ , {F. : $ n<\omega$ } is a

$B_{F}$ -cover and $d$ refines $\Re$ , then $F$ has $(A_{F},\Re_{F})-\theta$ .
(3) $Y$ has $(f(A),f(\Re))-\theta$ if $f:X\rightarrow Y$ a continuous function from $X$ onto $Y$

and, either $\Re$ is compact or $Y$ is normal or $f$ is closed.
(4) $X^{j}$ has $(A^{j},\Re^{j})-\theta$ for every $ j<\omega$ if $s4$ is a compact network on $X$ .

PROOF. We will only prove the assertions in 2, 3 (assuming that $Y$ is normal)

and 4 when $\theta=S\gamma_{M}(\emptyset\neq M\subset\omega^{*})$ , the rest of the proofs are analogous.
(2) We may suppose that $ F_{1}\subset F_{2}\subset\cdots$ . If $\wp$ is an open $A_{F}$ -cover of $F$ , then

$\wp$ is an open $d_{F_{1}}$, -cover of $F_{n}$ for every $ n<\omega$ . Because of (1), for each $ n<\omega$

there is a countable $\Re_{F_{l}}$, -subcover $\wp_{l1}$ of ’Q. Since {F. : $ n<\omega$ } is a $\Re_{F}$ -cover,
$\bigcup_{n<\omega}\wp_{n}$ is a countable $\Re_{F}$ -subcover of $\wp$ . That means that $F$ has $(A_{F},\Re_{F})-\epsilon$ ,

and hence we can suppose, without loss of generality, that $\wp$ is countable:
$\wp=\{G_{l} : n<\omega\}$ . The collection $\sigma|l=\{U_{l}=G_{\iota}\cup(X\backslash F_{\iota}):n<\omega\}$ is an open A-
cover of $X$ , so there is a sequence $(U_{\iota_{j}})_{j<\omega}$ in $\sigma \mathfrak{U}$ such that $X=\Re-\lim_{p}U_{n}$ for all
$p\in M$ . Therefore, again using the fact that the set of $F_{n}^{\prime}s$ is a $\Re_{F}$ -cover, we
obtain that $F=\Re_{F}-\lim_{p}G_{\iota_{j}}$ for every $p\in M$ .

(3) Let $\wp$ be an open $f(A)$ -cover of $Y$ . For each $A\in d$ , there exists $G_{A}\in \mathfrak{B}$

such that cl $f(A)\subset G_{A}$ . Since $Y$ is normal. We can find for each $A\in A$ an open
subset $H_{A}$ of $Y$ satisfying cl $f(A)\subset H_{A}\subset c1H_{A}\subset G_{A}$ . The collection
$\mathfrak{W}=\{H_{A} ; A\in A\}$ is an open $f(A)$ -cover of Y. Thus, $\sigma\check{J}=\{f^{-1}(H):H\in \mathfrak{W}\}$ is an
open $d$ -cover of $X$ . So, there exists a sequence $(A_{j})_{i\in N}$ in $s4$ for which
$X=\Re-\lim_{p}f^{-I}(H_{A_{j}})$ for every $p\in M$ . Therefore, $Y=f(\Re)-\lim$ , $G_{A_{j}}$ for every
$p\in M$ .

(4) Let $\wp$ be an open $d^{j}$ -cover of $X^{j}$ . For each $A\in A$ there is a $ G\in\wp$ such
that $A^{j}\subset G$ . Since $A$ is compact, there is an open subset $U_{A}$ for which
$A^{j}\subset(U_{A})^{j}\subset G$ . The family $\wp^{\prime}=\{(U_{A})^{j}:_{4}4\in A\}$ is an open $A^{j}$ -cover of $X^{j}$ that

refines $\wp$ (we are assuming that $A$ is closed under finite unions). Since $X$ has
$(A,\Re)-S\gamma_{M}$ , there is a sequence $(A_{ll})_{ll<\omega}$ in $d$ such that $X=\Re-\lim_{\rho}U_{A_{\mathfrak{j}}}$, for

every $p\in M$ . Since $\Re$ is closed under finite unions we obtain that
$X^{j}=\Re^{j}-\lim_{p}(U_{A_{1}},)^{j}$ $\blacksquare$



298 Angel $TAMARIZ- MASCAR\acute{U}A$

For a network $s4$ on $X$ , a compatible uniformity $0|l$ in $Y$ , a sequence $(f_{n})_{n<\omega}$

in $C(X,\Gamma)$ , a function $f\in C(X, Y)$ and a $p\in\omega^{*}$ the symbols: $(d,ql)-\lim_{\rho}f_{n}=f$ ,

$(d,Ql)-\lim f_{l}=f$ , $d-\lim_{\rho}f_{n}=f$ and $d-\lim f_{n}=f$ mean that $(f_{n})_{n<\omega}$ p-
converge (resp., $converge$ ) $inC_{:A^{\sigma}1t}(X, Y)$ (resp., $C.(X,$ $Y)$ ).

The least cardinality of a base for a uniformity $\sigma 1l$ is called the weight of 6tl
and is denoted by $w(ql)$ .

In the next result we obtain some relations between the tightness of
$C_{q\int,u}(X, Y)$ and $C_{\mathfrak{k}}/\{(X, Y)$ and the $d$ -Lindelof degree of $X$ . Its proof can be
achieved by using similar ideas to those developed in the proof of Theorem 4.7.1
in $[McN_{1}]$ .

THEOREM 2.5. Let $A$ be a network in a space $X$ , and let $0|l$ be a compatible
uniformity in a space Y. Then,

(1) $dL(X)\leq\min\{t(C_{l}(X, Y)), t(C_{\nu l^{J}11}(X, Y))\}$ if $d$ is compact and $Ycon$tains
a non trivial path;

(2) $t(C_{d,\mathfrak{U}}(X,Y))\leq dL(X)\cdot w(^{0}\mathfrak{U})$ ;
(3) $t(C(X, Y))\leq AL(X)\cdot\min\{\mathfrak{X}(y, Y):y\in Y\}$ if $C_{d}(X, Y)$ is homogeneous

where $\mathfrak{X}(y, Y)$ is the character of $y$ in Y.

As a consequence of the previous result we have:

THEOREM 2.6. Let $d$ be a compact network in a space $X$ and let $Y$ be a
space with a non-trivial path having $0|l$ as a compatible uniformity. Then,

(1) If $Y$ is metrizable then, $X$ has $A\epsilon\Leftrightarrow C_{(4^{\zeta}u}(X, Y)$ has countable tightness;
(2) If $C_{s\$}(X, Y)$ is homogeneous and $Y$ is first countable, then $X$ has

$A\epsilon\Leftrightarrow C_{:4}(X, Y)$ has countable tightness.

For a $p\in\omega^{*},$ $|\{q\in\omega^{*} ; p\leq_{RK}q\}|=2^{2^{\omega}}\}$ ; hence using Theorem 2.2.6 we obtain
the following result that generalizes (and its proof is similar to) Theorem 2.3 in
[GT, ].

THEOREM 2.7. Let $d$ be a Lindelof network of X. If $X$ has sil $\epsilon$ and
$w(X)\leq 2^{\omega}$ , then there is $M\subset\omega^{*}$ of cardinality $=2^{2^{\omega}}$ such that $X$ has $d\gamma_{q}$ for
every $q\in M$ .

In order to prove the main Theorem of this section we need some lemmas.

LEMMA 2.8. Let $d$ be a network on $X$ and let $0|l$ be a compatible uniformity
of a space Y. Let $\emptyset\neq\Phi\subset C_{fl.\cdot u}(X, Y),$ $ f\in c1_{C_{(m}tX.Y)}\Phi$ and $U\in ql$ . Then
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$\wp(\Phi,f,U)=\{coz_{1U}(g):g\in\Phi\}$ is an open $d$ -cover of $X$ , where $coz_{/,U}(g)=$

$\{x\in X:(f(x),g(x))\in U\}$ .

PROOF. Let $A\in s4$ and consider the neighborhood $\hat{U}(A)(f)$ of $f$. By
assumption there is $ g\in\hat{U}(A)(f)\cap\Phi$ . Then, we have that $A\subset coz_{1U}(g)$ . $\blacksquare$

LEMMA 2.9. Let $s4$ be a compact network on $X$ and $(Y^{0}1l)$ be a space with a
non trivial path $\sigma:[0,1]\rightarrow Y$ . Let $\mathfrak{W}$ be an open $s4$ -cover of $X$ with $X\not\in \mathfrak{X}$ and
let $U\in 01l$ such that $(\sigma(0),\sigma(1))\not\in U$ . Then, $f_{0}\in(c1_{C,..,.\cdot 1\downarrow(X,Y)}\Phi)\backslash \Phi,$ , where
$\Phi=\Phi(\mathfrak{X},f_{0},U)=$ {$g\in C(X,$ $Y):coz_{f_{()},U}(g)\subset H$ for some $ H\in 3\ell$ } and $f_{0}$ is the
constant function $\sigma(0)$ from $X$ to $Y$ .

PROOF. Since X\not\in %, $ f_{0}\not\in\Phi$ . Now let $\hat{V}(A)(f_{0})\in N(f_{0})$ where $V\in 0\mathfrak{U}$ and
$A\in A$ . By assumption, there is $H\in \mathfrak{W}$ containing $A$ . We take a continuous
function $t;X\rightarrow[0,1]$ for which $t(A)=\{0\}$ and $t(X\backslash H)=\{1\}$ . If $g=\sigma\circ f$ then
$g\in\Phi\cap\hat{V}(A)(f_{0})$ . $\blacksquare$

LEMMA 2.10. Let $p\in\omega^{*}$ $qL$ be a compatible uniformity of a space $Y$ and
s1Z be a network on a space X. Let $(f_{n})_{n<\omega}$ be a sequence in $C_{\ovalbox{\tt\small REJECT}^{\sigma}1l}(X, Y)$ . Then,

$X=d-\lim_{p}$ coz $f,Uf_{n}$ for every $U\in 0\mathfrak{U}$ if and only if $f=(d^{0}\mathfrak{U})-\lim_{p}f_{n}$ .

PROOF. $(\Rightarrow)$ Consider a canonical neighborhood $\hat{U}(A)(f)$ of $f$. By asumption
we have that $\{n<\omega:A\subset coz_{f,U}f_{n}\}\in p$ . Then, $\{n<\omega:f_{n}\in\hat{U}(A)(f)\}\in p$ . That is
$f=(A,ql)-\lim_{p}f_{n}$ .
$(\Leftarrow)$ Let $A\in d$ and $U\in 0\mathfrak{U}$ . We know that $\{n<\omega:f_{n}\in\hat{U}(A)(f)\}\in p$ , so
$\{n<\omega:A\subset coz_{f,U}(f_{n})\}\in p$ . $\blacksquare$

LEMMA 2.11. Let $p\in\omega^{*}$ , si be a network on a space $X$ and $(Y,d)$ a metric
space with a compatible uniformity $0\mathfrak{U}$ . Let $(f_{n})_{n<\omega}$ be a sequence of elements
belonging to $C(X,Y)$ and $f\in C(X, Y)$ , and let $(\epsilon_{n})_{n<\omega}$ be a sequence of positive
real numbers. Iffor every $\epsilon>0$ we have that $\{n<\omega:\epsilon_{n}<\epsilon\}\in p$ and

$X=d-\lim_{p}$ coz $f,\epsilon_{n}f_{n}$ ,

then $f=(A^{0}\mathfrak{U})-\lim_{p}f_{n}$

PROOF. The set $W(A,f,\epsilon)=\{g\in C(X,Y);d(g(x),f(x))<\epsilon\forall x\in A\}$ is a can-
onical neighborhood of $f$ in $C_{s1\mathfrak{g},\sigma_{1l}}(X, Y)$ . By assumption, { $ n<\omega$ : $ f_{n}\in$

$W(A,f,\epsilon_{n})\}\cap\{n<\omega:\epsilon_{n}<\epsilon\}\in p$ , so $\{n<\omega:f_{n}\in W(A,f,\epsilon)\}\in p$ . Therefore,

$f=(A,Ql)-\lim_{\rho}f_{n}$ . $\blacksquare$
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The following theorem is a consequence of the previous lemmas and its proof
is similar to that of Theorem 2.13 in $[GT_{1}]$ .

THEOREM 2.12. Let $\emptyset\neq M\subset\omega^{*},$ Let $A$ be a compact network on a non
$\omega- A$ -bounded space $X$ and let $(Y^{0}\mathfrak{U})$ be a metrizable space with a non trivial
path. Then, $C_{:4^{\sigma}\mathfrak{U}}(X, Y)$ is a $WFU(M)$ -space (resp., $SFU(M)$ -space) if and only if
$X$ has $AW\gamma_{M}$ (resp., $dS\gamma_{M}$ ). In particular, $C_{u.\circ u}(X, Y)$ is a Fr\’echet-Urysohn
space if and only if $X$ has A $\gamma$ .

PROOF. $\Rightarrow$ ) Let $\wp$ be an open $d$ -cover of $X$ such that $X\not\in \mathfrak{B}$ . Let
$\sigma:[0,1]\rightarrow Y$ be a path satisfying $\sigma(0)\neq\sigma(1)$ and let $U\in 0\mathfrak{U}$ be such that
$(\sigma(0),\sigma(1))\not\in U$ . Define $f_{0}:X\rightarrow Y$ by $f_{0}(x)=\sigma(0)$ for every $x\in X$ . If
$\Phi=\Phi(\mathfrak{B},f_{0}^{0}1l)$ , then $ f_{0}\in(c1_{C_{n.w}(X,Y)}\Phi)\backslash \Phi$ (Lemma 2.9). Since $C_{i}4^{\sigma}|1(X,Y)$ is a
$WFU(M)$ -space (resp., $SFU(M)$ -space), there is a sequence $(f_{n})_{n<\omega}$ in $\Phi$ such
that $f_{0}=d-\lim_{p}f_{n}$ for a $p\in M$ (resp., for every $p\in M$ ). For each $ n<\omega$ , choose
$ G_{n}\in\wp$ for which coz $\int_{(\}}.U(f_{n})\subset G_{l}$ . We claim that $X=d-\lim_{p}G_{n}$ : in fact, fix
$A\in d$ . Since $f_{0}=A-\lim_{\rho}f_{n}$ , $\{n<\omega:f_{n}\in\hat{U}(A)(f_{0})\}\in p$ ; thus, { $ n<\omega$ :
$A\subseteq coz_{\int_{0},U}(f_{n})\}\in p$ . Therefore, $\{n<\omega:A\subset G_{1}\}\in p$ .
$\Leftarrow)$ Let $d$ be a compatible metric in $(Y,ql)$ . Let $\Phi\subset C_{si^{0}1l}(X, Y)$ and suppose that
$ f\in(c1_{c_{dt^{(\chi\gamma)}}}\Phi)\backslash \Phi$ . If $X$ is finite, then $A=_{\iota}^{\sigma}\check{f}$ and $C_{d^{\sigma}11}(X, Y)$ is the first
countable space $Y^{n}$ for some $ n<\omega$ . Now, suppose that $X$ is infinite. We take
$Z=\{x_{n} : n<\omega\}$ such that $x_{n}\neq x_{m}$ if $ n<m<\omega$ and $Z$ is not contained in any
$A\in d$ . Let $\epsilon_{1}>\epsilon_{2}>\epsilon_{3}>\ldots$ be a sequence of positive real numbers converging to
0. For each $n<\omega,$ $\wp_{n}=\mathfrak{B}(\Phi,f,\epsilon_{n})$ is an open $A$ -cover of $X$ (Lemma 2.8).
Define, for each $n<\omega,$ $\mathfrak{W}_{n}=\{G\backslash \{x_{n}\}:G\in\wp_{n}\}$ and $\mathfrak{W}=\bigcup_{n<\omega}\mathfrak{W}_{n}$ . It happens that

$\mathfrak{W}$ is an open $A$ -cover of $X$ . Since $X$ has $AW\gamma_{M}$ (resp., $AS\gamma_{M}$ ), there is a
sequence $(H_{j})_{j<\omega}$ in $\mathfrak{W}$ such that $X=d-\lim_{\rho}H_{j}$ for a $p\in M$ (resp., for every
$p\in M)$ . For each $ j<\omega$ there are $f_{j}\in\Phi,$ $ n_{j}<\omega$ and $G_{j}\in \mathfrak{B}_{n}$ such that
$H_{j}=G_{j}\backslash \{x_{l}\}$ and $G_{j}=coz_{\int_{()}.\mathcal{E}},,$ $f_{j}$ . Thus $X=A-\lim_{p}(coz_{\int_{()},\mathcal{E}_{n}}f_{j})$ . Suppose that

there is $\epsilon>0$ such that $\{j<\omega:\epsilon<\epsilon_{n}\}\in p$ . Then, there is $ m<\omega$ for which
$B=\{j<\omega:n_{j}=m\}\in p$, hence $X=\bigcup_{j\in B}H_{j}$ (see Remark 2.3.2) and $H_{j}\in \mathfrak{W}_{m}$ for
every $j\in B$ , which is a contradiction since $x_{m}\not\in H_{j}$ for every $j\in B$ . Therefore,

$2.10\{j<\omega:\epsilon_{n_{/}}<\epsilon\}\in p$

for all $\epsilon>0$ . Now the conclusion is obtained from Lemma

REMARK 2.13. Observe that the sufficiency in Theorem 2.12 was proved only
using the facts that $X$ is not an $\omega- A$ -bounded space and Yis a metrizable space,
and in the proof of the necessity we only used the hypothesis regarding $Y$ and $A$ .
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COROLLARY 2.14. Let $A$ be a network on a :A-hemicompact space X. If
$(Y^{0}1l)$ is metrizable, then $C_{\sigma\theta^{01\int}},(X, Y)$ is Fr\’echet-Urysohn. In particular, for every
hemicompact (resp., countable) space $X,$ $C_{k}(X, Y)$ (resp., $C_{\pi}(X,$ $Y)$ ) is a Fr\’echet-

Urysohn space.

PROOF. If $X\in A$ , then $\tau_{d,ql}$ is the uniform topology, so $C_{st^{\sigma}1l}(X, Y)$ is
metrizable. If $X\not\in d$ , then $X$ is not an $\omega- A$ -bounded space, and is easy to see
that $X$ has $ A\gamma$ . Then, $C_{d,\mathfrak{U}}(X, Y)$ is a Fr\’echet-Urysohn space. $\blacksquare$

PROBLEM 2.15. For every $\sigma$ -compact space $X$ and every metrizable space
$Y$ , is $C_{k}(X,Y)$ Fr\’echet-Urysohn?

THEOREM 2.16. Let $\emptyset\neq M\subset\omega^{*}$ , let $A$ be a compact network on a non $\omega-$

$d$ -bounded space $X$ and let $(Y,Qt)$ be a metrizable space with a non trivial path.
Then, $C_{i}4^{\sigma}|l(X, Y)$ is an $SFU(M)$ -space (resp., $WFU(M)$ -space) if and only if
$(C_{i}4,qt(X,Y))^{\omega}$ is an $SFU(M)$ -space (resp., $WFU(M)$ -space).

PROOF. Let $D$ be a countable discrete space and let $\varphi=^{o}\overline{d^{P}}(D)$ be the set of
finite subsets of D. % is a compact network on $D$ and $D$ is %-hemicompact.

Because of Theorem 2.12 we know that $X$ has $AS\gamma_{M}$ , and using the result in
Lemma 5.10 below, $X\times D$ has $(A\times \mathfrak{B})-S\gamma_{M}$ (see 2.3.1) Applying again 2.12, we
obtain that $C_{(g)^{0}\mathfrak{u}}i4x^{\langle},(X\times D, Y)\cong(C_{i}4,ql(X, Y))^{\omega}$ is an $SFU(M)$ -space. $\blacksquare$

For a network $d$ on a space $X$ we say that $X$ has strictly $ d\gamma$ if for each
sequence $(\wp_{n})_{n<\omega}$ of open $s4$ -covers of $X$ , there exists $G_{n}\in\wp_{n}$ for each $ n<\omega$ ,

such that $X=d-\lim G_{n}$ .
Following arguments similar to those used in [GN, pag 155] it is possible to

prove that for every network $A$ on a non $\omega- A$ -bounded space $X$ , $ A\gamma$ is
equivalent to strict $ A\gamma$ property. Moreover, using Lemmas 2.8 and 2.11 and
making some changes in the proof of $(\gamma^{\prime})\Rightarrow$ (iii) in [GN, pag 156] we also
obtain:

LEMMA 2.17. Let $X$ be a space and $d$ be a network on X. Let $(Y,QL)$ be a
metrizable space. If $X$ satisfies strictly $ d\gamma$ , then $C_{A^{\sigma}1l}(X, Y)$ is a strictly Fr\’echet-

Urysohn space.

Hence we obtain the following result (see Theorem 0.1).

THEOREM 2.18. Let $d$ be a compact network on a non $\omega- A$ -bounded space
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$X$ and let $(Y^{0}\mathfrak{U})$ be a metrizable space with a non trivial path. Then the following
conditions are equivalent.

(a) $C_{7}t^{\cup}u(X, Y)$ is a strictly Fr\’echet-Urysohn space;
(b) $C_{sl^{\sigma}1l}(X, Y)$ is a Fr\’echet-Urysohn space;
(c) $X$ has $ A\gamma$ .
(d) $X$ satisfies strictly $ d\gamma$ .

We cannot obtain a similar result when we consider the more general
properties that we are taking into account in this paper. In fact, $R$ satisfies $\gamma_{p}$ for
some $p\in\omega^{*}$ (Theorem 0.4) but $R$ does not satisfy strictly $\gamma_{p}$ for any $p\in\omega^{*}$

(see $[GT_{2}$ , Corollary 2.5]).

3. Topological Games

In this Section we are going to analyze some topological games which
generalize those defined by Telgarski in [Te] and we will relate this theory with
properties $AS\gamma_{M}$ and $AW\gamma_{M}$ .

For a space $(X,\tau)$ and two closed networks $A$ and $\Re$ on $X$ , and for
$\emptyset\neq M\subset\omega^{*}$ we define the following games $G(A,\Re,X)$ , $G^{1}(A,\Re,X)$ ,

$G_{WM}(d,\Re,X)$ and $G_{SM}(d,\Re,X)$ ; There are two players I and II. They altemately
choose elements belonging to a sequence in $\mathfrak{R}(X)$ so that each player knows
$d,\Re,(X,\tau)$ , and the $n$ first choices made by both players when the $n+1$ element
of $\mathfrak{R}(X)$ has to be chosen. Player I chooses first and each of his choices belongs
to $A$ . If $A_{n}$ is the $n$ choice of I, then the $n$ choice of II is an open set $G_{n}$ such
that $A_{n}\subset G_{n}$ . A play in $G$ , where $G=G(d,\Re,X)$ (resp., $G=G^{1}(d,\Re,X)$ ;
$G=G_{WM}(A,\Re,X)$ ; $G=G_{SM}(d,B,X))$ , is a sequence $ P=(A_{1},G_{1},A_{2},G_{2},\cdots$ ,
$A_{n},G_{n},\cdots)$ such that for each $n<\omega A_{n}\subset G_{n}$ . I wins $P$ if for each $ B\in\Re$ there is
$ n<\omega$ such that $B\subset G_{n}$ (resp., $X=\Re-\lim G_{n}$ ; there is $p\in M$ such that
$X=\Re-\lim_{p}G_{n}$ ; for every $p\in M$ , $ X=\Re-\lim$ , $G_{n}$ ). II wins $P$ if I does not win $P$ .
A finite sequence $(E_{m})_{m<k}$ in $\mathfrak{R}(X)$ is admissible for the game $G$ if there is a play
$P$ in $G$ such that $P=(E_{1},\cdots,E_{m},\cdots)$ . A function $s$ is a strategy for I (resp., II) in $G$

if the domain of $s$ consists of admissible sequences $(E_{1},\cdots,E_{n})$ with $n$ even (resp.,
odd) and with values in $\mathfrak{R}(X)$ such that for each $(E_{1},\cdots,E_{n})$ in the domain of $s$ ,

$(E_{1},\cdots,E_{n},s(E_{1},\cdots,E_{n}))$ is an admissible sequence. A strategy $s$ is said to be
winning for I (resp., II) in $G$ if I (resp., II) using $s$ wins each play of G. $I(G)$

(resp., $II(G)$ ) denotes the set of all winning strategies of I (resp., II) in $G$ .
When $\Re=d$ we denote $G(A,\Re,X)$ , $G^{1}(A,\Re,X)$ , $G_{WM}(A,\Re,X)$ and

$G_{SM}(A,\Re,X)$ by $G(d,X),$ $G^{1}(d,X),$ $G_{WM}(d,X)$ and $G_{SM}(d,X)$ respectively, and
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by $G(X),$ $G^{1}(X),$ $G_{WM}(X)$ and $G_{SM}(X)$ if $A=\Re=ffl=$ { $F\subset X:F$ is finite}. Also,
if $M=\{p\}$ for some $p\in\omega^{*}$ we write $G_{\rho}(d,\Re,X)$ instead of
$G_{W\{p|}(A,\Re,X)=G_{S\{p\}}(s4,\Re,X)$ .

THEOREM 3.1. Let $\psi\neq M\subset\omega^{*}$ and let si and $\Re$ be two closed networks in
X. Then, I $(G^{1}(A,\Re,X))\neq\emptyset\Leftrightarrow$ I( $G_{SM}$ (sf, $\Re,X)$) $\neq\emptyset\Leftrightarrow$ I $(G_{WM}(A,\Re,X))\neq\emptyset\Leftrightarrow$

$I(G(A,\{3\&, X))\neq\emptyset$ .

PROOF. It is not difficult to see that $I(G^{1}(A,\Re,X))\neq\emptyset\Rightarrow I(G_{SM}(A,\Re,X))$

$\Rightarrow I(G_{WM}(d,\Re,X))\neq\emptyset\Rightarrow I(G(d,\Re,X))\neq\emptyset$ . So, we have only to prove that
$I(G(A,\Re,X))\neq\emptyset\Rightarrow I(G^{1}(A,\Re,X))\neq\emptyset$ . We give a similar proof to that given for
Theorem 1 in [GN]: Assume that $s$ is a winning strategy for I in $G(A,\Re,X)$ . We
now give a winning strategy $t$ for I in $G^{1}(d,\Re,X)$ . Let $t(\emptyset)=A_{1}=s(\emptyset)\in A$ be
the first choice of I. If $(A_{1},G_{1},\cdots,A_{\iota},G_{l})$ have been choosen, let
$t(A_{1},G_{1},\cdots,A_{n},G_{n})=A_{n+1}$ be defined as follows: for each subsequence
$1\leq i_{1}<i_{2}<\cdots<i_{j}\leq n$ we put

$A(i_{1},\cdots,i_{j})=s(A_{l_{1}},G_{j_{1}},A_{i_{2}},G_{i_{2}},\cdots,A_{j},G_{j})$ .

Let $A_{+1}=\cup\{A(i_{1},\cdots i_{j}):1\leq i_{1}<\cdots i_{j}\leq n\}$ .
We claim that the play $P=(\mathcal{A}_{1},G_{1},\cdots,A_{n},G_{n},\cdots)$ is a win for I in $G^{1}(d,\Re,X)$ .

In fact, if it were not, there would be $ B\in\Re$ and a sequence $ 1\leq i_{I}<\cdots<i_{n}<\cdots$

such that $B$ would not be a subset of $G_{j_{n}}$ for every $ n<\omega$ . But
$(A_{i_{1}},G_{j_{1}},\cdots,A_{j_{n}},G_{i_{n}},\cdots)$ is a win for I in $G(A,\Re,X)$ because of the way $t$ was
defined. So, for some $j,$ $B\subset G_{i_{j}}$ , which is a contradiction. $\blacksquare$

THEOREM 3.2. Let $d$ and $\Re$ be two networks of a space X. Then,
$I(G(d,\Re,X))\neq\emptyset$ implies that $X$ satisfies $(A,\Re)-\gamma$ .

PROOF. If $X$ does not have $(A,\Re)-\gamma$ , then there is an open $d$ -cover $\wp$ of $X$

such that for every sequence $ G_{1},\cdots,G_{n},\cdots$ of $\wp$ there is $ B\in\Re$ which is not
contained in a subsequence $ G_{j_{1}},\cdots,G_{j_{j}},\cdots$ of $(G_{n})_{n<\omega}$ . Thus, II has a winning
strategy for $G^{1}(d,\Re,X)$ . In fact, for each choice $A_{n}\in d$ of I, II has to take
$ G_{n}\in\wp$ such that $A_{n}\subset G_{n}$ . So, $I(G(d,\Re,X))=I(G^{1}(A,\Re,X))=\emptyset$ . $\blacksquare$

The proof of the next Theorem is basically the same to that given for
Theorem 4.7 in [Te].

THEOREM 3.3. Let $(X_{n})_{n<\omega}$ be a sequence of disjoint spaces and for each
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$ n<\omega$ let $A_{l},\Re_{l}$ , be two networks on X. such that $I(G(d_{l},\Re_{\iota}, X_{n}))\neq\emptyset$ for all
$ n<\omega$ . Then, $ 1(G(A,\Re, X))\neq\emptyset$ where $X$ is the sum of spaces X. and $A=$

$\bigcup_{l<\omega}d_{n},$ $.\mathscr{H}=\bigcup_{n<\omega}\Re_{n}$ .

4. Countable Product of Fr\’echet-Urysohn $C_{\nabla}l^{\sigma}|l$ -spaces.

DEFINITION 4.1. (1) (Telgarsky) For a network $d$ in a space $X$ we say that
$X$ is $A$ -scattered if for every closed set $E$ in $X$ there is a point $x\in E$ and a
neighborhood $V$ of $x$ such that $C1_{\chi}V\cap E\in d$ .

(2) A network $d$ in a space $X$ is said to be $\gamma$ -real if $[0,1]$ has $ f(d)\gamma$ for
some $f\in C(X,[0,1])$ .

An example of a non $\gamma$ -real network on a sequential space $X$ is the set of
countable closed subsets of $X$ . In fact, as was remarked by Gerlitz and Nagy
([GN, pag 157]), if $(G_{n})_{n<\omega}$ is a sequence of subsets of $[0,1]$ having Lebesgue
measure $\leq 1/2$ , then $G_{n}$ has Lebesgue measure $\leq 1/2$ .

THEOREM 4.2. Let $X$ be a $\check{C}ech$ -complete space, and let $d$ be a non $\gamma$ -real
network on X. If $X$ has $ d\gamma$ then $X$ is sll-Lindelof and scattered.

PROOF. We know that $ d\gamma\Rightarrow d\epsilon$ , and if $X$ is not scattered then we can find a
compact subset $K$ of $X$ that may be continuously mapped onto $[0,1]$ . So, $[0,1]$ has
$ f(A)\gamma$ for some $f\in C(X,[0,1])$ (Theorem 2.4 and 3. $2.J$ in [En]), which is a
contradiction. $\blacksquare$

In the next result we put Theorem 9.3 in [Te] and Theorem 3.2 together.

THEOREM 4.3. Let $X$ be a space and $d$ be a network on X. Then, $X$ is

Lindelof and $d- scattered\Rightarrow I(G(d,X))\neq\emptyset\Rightarrow X$ has A $\gamma$ .

Therefore, using Theorems 2.12, 3.3 and 4.3 we conclude the following

COROLLARY 4.4. Let $\{X_{n} ; n<\omega\}$ be a countable set of Lindelof spaces, and
let, for each $n<\omega,$ $d_{n}$ be a compact network on $X_{n}$ . If for each $i<\omega,$ $X_{j}$ is
$A_{j}$ -scattered, then, for every sequence $((Y_{n}^{0}IA_{n}))_{n<\omega}$ of metrizable spaces, $we$

have that
$ C_{d_{1},\mathfrak{M}_{1}}(X_{1}, Y_{1})\times\cdots\times C_{:4_{n}.\%}(X_{n},Y_{n})\times\cdots$

is a Fr\’echet-Urysohn space.
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PROOF. In fact, the free topological sum $X=\coprod_{n<\omega}X_{ll}$ has $ s4\gamma$ where $A$ is
the collection of finite unions of elements of $\bigcup_{\iota<\omega}d_{n}$ . Since $A$ is compact, $X$ is
not an $\omega- d$ -bounded space. Hence, for every metrizable space $(Y^{0}\mathfrak{U})$ ,

$C_{:A^{\sigma}11}(X, Y)$ is a Fr\’echet-Urysohn space (Theorem 2.12). We conclude our proof
by observing that $\prod_{i<\omega}C_{s\ell_{j}^{\sigma_{1l}}},,$ $(X_{j}, Y_{i})$ is homeomorphic to a closed subspace of
$C_{4^{\sigma_{1l}}}i,(X,\prod_{i<\omega}Y_{i})$ where 6tt is the Cartesian product of the uniformities $\{qL_{j}\}_{i<\omega}$ .
$\blacksquare$

As a consequence of Theorem 4 in [GN] and in virtue of Theorems 4.2 and
4.3 we obtain: (recall that $\sigma_{P}d^{\vee}(X)=J^{\sigma}$ denotes the family of finite subsets of $X$)

THEOREM 4.5. Let $X$ be a $ Cech\vee$ -complete space and let si be a non $\gamma$ -real

Lindelof network containing $0\overline{J}$ . Then the following are equivalent
$(a)X$ has $\gamma$ :
$(b)X$ satisfies $ d\gamma$ :
$(c)X$ is a Lindelof scattered space.

PROOF. $(a)\Leftrightarrow(c)$ is Gerlitz-Nagy’s Theorem. Because of $\subset d, scattered
implies $A$ -scattered and so $(c)\Rightarrow(b)$ is a consequence of Theorem 4.3. Finally,
$(b)\Rightarrow(c)$ because of Theorem 4.2 and the fact that an sll-Lindelof space, where
every element of $A$ is Lindelof, is a Lindelof space. $\blacksquare$

Theorems 2.12 and 4.5 give us the following:

COROLLARY 4.6. Let $X$ be a $ Cech\vee$ -complete space, let $d$ containing $\wp$ be a
compact non $\gamma$ -real network on a non $\omega- d$ -bounded space $X$ , and let $(Y,qL)$ be
a metrizable space with a non trivial path. Then $C_{\pi}(X)$ is Fr\’echet-Uryson if and
only $lfC_{s4^{\sigma_{\mathfrak{U}}}},(X,Y)$ is Fr\’echet-Urysohn.

COROLLARY 4.7. Let $X_{n}$ be a $\check{C}ech$ -complete space satisfying $\gamma$ for every
$ n<\omega$ . Then $\coprod_{n<\omega}X_{n}$ has $\gamma$ .

PROOF. Every space $X_{n}$ is Lindelof and scattered, so $Z=\overline{1}I_{n<\omega}x_{n}$ is
$\check{C}$ ech-complete ([En, pag 198]) Lindelof and scattered. Therefore $Z$ has $\gamma$ . $\blacksquare$

On account of Corollary 4.7 it follows that if $X=\bigcup_{n<\omega}X_{n}$ where $X_{n}$ is a
$\check{C}$ ech-complete space with $\gamma$ for every $ n<\omega$ , then $X$ has $\gamma$ : in fact, $\bigcup_{n<\omega}X_{n}$ is
a continuous image of $\coprod_{n<\omega}X_{n}$ .

As a consequence of Theorem 4.5, the space of ordinals $[0,\alpha]$ has $\gamma$ , so for
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every ordinal number $\alpha$ with countable cofinality, $[0,\alpha$ ) also has $\gamma$ . It is possible
to prove even more: $I(G([0,\alpha]))\neq\emptyset$ and $[0,\alpha$ ) is an $\aleph_{0}$ -simple space, that is, for
every continuous function $f$ from $[0,\alpha$ ) into a space of weight $\leq\aleph_{0}$ the cardinality
of $f([0,\alpha))$ does not exceed $\aleph_{0}$ . Hence, if cof $\alpha\leq\aleph_{0}$ , then $C_{\pi}([0,\alpha))$ is a
Fr\’echet-Urysohn strongly $\aleph_{0}$ -monolithic space (see $[Ar_{2}]$ ). In general $[0,\alpha$ ) is
not a Lindelof space, but using some similar techniques to those developed in $[G$ ,

ps. 260-262] it is possible to prove that for every ordinal number $\alpha,$ $[0,\alpha$ ) has the
Gerlits property $\phi$ (it is important to recall here that $\phi+\epsilon=\gamma$ ).

Since $\gamma$ is preserved under finite powers and closed subsets, then a product
$X\times Y$ has $\gamma$ iff $X\coprod Y$ satisfies $\gamma.$ , So, we obtain:

COROLLARY 4.8. Let $X_{j}$ be a $\sigma-\check{C}ech$ -complete space satisfying $\gamma$ for
every $1\leq i\leq n$ . Then, $X_{1}\times\cdots\times X_{n}$ has $\gamma$ .

THEOREM 4.9. Let $X_{n}$ be a $\sigma-\check{C}ech$ -complete space such that $C_{\pi}(X_{n})$ is a
Fr\’echet-Urysohn space for every $ n<\omega$ . Then $\prod_{n<\omega}C_{\pi}(X_{l})$ is a Fr\’echet-Urysohn
space.

PROOF. The space $1I_{n<\omega}X_{ll}$ is the union of a countable collection of
$\check{C}$ ech-complete subspaces; hence it is the continuous image of a free topological

sum of a countable collection of $\check{C}$ ech-complete spaces. So, using 4.7 and
Theorem 2.4, we have that $\coprod_{l<\omega}X_{n}$ has $\gamma$ . Thus, $\prod,{}_{l<\omega}C_{\pi}(X_{ll})$ is a Fr\’echet-

Urysohn space. $\blacksquare$

Observe that this result can be generalized to $C_{n^{\sigma}u}(X, Y)$ -spaces by using
Corollary 4.6.

Nogura [N] proved that if $(X_{l})_{\iota<\omega}$ is a sequence of spaces such that
$X_{1}\times\cdots\times X_{l}$ is a strictly Fr\’echet-Urysohn space for every $ n<\omega$ , then $\prod_{i<\omega}X_{j}$ is
strictly Fr\’echet-Urysohn (we express this saying that strictly Fr\’echet-Urysohn
property is an almost countable productive property). So, Theorem 2.18 produce
the following:

THEOREM 4.10. For each $ i<\omega$ let $d_{j}$ be a compact network on a non
$\omega- d_{j}$ -bounded space $X_{j}$ , and let $(Y^{0}\mathfrak{U})$ be a metrizable space with a non trivial
path. Then, for every $ n<\omega$ $\prod_{1\leq;\leq},lC/l,$ $0|\downarrow(X_{j}, Y)$ is Fr\’echet-Urysohn iff
$\prod C\lrcorner(X_{j}, Y)$ is Fr\’echet-Urysohn.

C0ROLLARY 4.11. Let $(X_{n})_{n<\omega}$ be a sequence of spaces. Then, for every $ n<\omega$ ,

$\prod_{1\leq i\leq n}C_{\pi}(X_{j})$ is Fr\’echet-Urysohn iff $\prod_{i<\omega}C_{\pi}(X_{j})$ is a Fr\’echet-Urysohn space.
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5. The dual space $L_{\pi}(X)$ and the free topological groups A(X)

and $F(X)$ .
In the following theorems we are going to use the notations established in

2.3.5.

THEOREM 5.1. Let $s4$ be a compact network on a space X. Suppose that $X$ is
a non $\omega- A$ -bounded space. Then, $X$ has $A\theta lf$ and only if $Z=1I_{ll<\omega}X^{n}$ satisfies
$(\bigcup_{\iota<\omega}d^{Jl})\theta$ . Moreover, $ lf\theta=\epsilon$ , the assertion is true for every space $X$ .

PROOF. $\Leftarrow$ ) is a consequence of Theorem 2.4.
$\Rightarrow)$ Let $\Re=\bigcup_{n<\omega}A^{n}$ If $\theta=\epsilon$ , we can prove, following similar arguments to
those given in the proof of Theorem 2.4.4, that for every $n<\omega,$ $X$ Il $\cdots 1IX^{n}$ has

$\Re_{\iota}\epsilon$ where $\Re_{\iota}$ is the collection of finite unions of elements belonging to $\bigcup_{i=1}^{ll}d^{i}$ .
So, if $\wp$ is an open $\Re$ -cover, there is for each $ n<\omega$ a countable collection $\wp_{\iota}$

of $\wp$ which is a $\Re_{l}$ -cover. Then, $\bigcup_{\iota<\omega}\mathfrak{B}_{l}$ is a countable $\Re$ -subcover of $\wp$ .
Now, suppose that $\theta=S\gamma_{M}$ for some $\emptyset\neq M\subset\omega^{*}$ (for the other possible

values of $\theta$ the proof is analogous). If $X$ is finite, then $Z$ is countable and
discrete, hence $\Re=J$ and we obtain the desired conclusion since every countable
space has $\gamma$ . If $X$ is infinite, let $N=\{x_{1},\cdots,x,, \cdots\}\subset X$ such that $x_{i}\neq x_{j}$ if $i\neq j$ and
$N$ is not contained in any element of $A$ . Let $\wp$ be an open $\Re$ -cover of Z. For
each $ n<\omega$ we put $\mathfrak{W}_{n}=\{V\subset X:V$ is open and $V\coprod V^{2}1I\cdots\coprod V^{n}\subset G$ for some
$G\in \mathfrak{B}\}$ . We define $\hat{\mathfrak{W}}$ . $=\{V\backslash \{x_{\iota}\}:V\in \mathfrak{W}_{l}\}$ . We claim that the collection
$\hat{\mathfrak{W}}=\bigcup_{n<\omega}$ Ee

$n$
is an open $A$ -cover of $X$ . In fact, let $A\in A$ and let $ s=\min$

$\{n<\omega:x_{n}\not\in A\}$ ; there is $G\in \mathfrak{B}$ such that $F=A1IA^{2}II\cdots\coprod A’\subset G$ . Since $A$ is
compact there is an open subset $V$ of $X$ such that $F\subset\coprod_{1\leq i\leq 1}V^{j}\subset G$ . Hence
$A\subset V\backslash \{x, \}$ . So $\hat{2}C$ is an $A$ -cover of $X$ . By assumption, there is $(\hat{H}_{j})_{j<\omega}$ in $\hat{\mathfrak{W}}$

such that $X=A-\lim_{\rho}\hat{H}_{j}$ for every $p\in M$ where $\hat{H}_{j}=V_{j}\backslash \{x_{n_{f}}\}\in\hat{\mathfrak{W}}_{ll}$ . For each

$ j<\omega$ there is $ G_{j}\in\wp$ satisfying:

$V_{j}\coprod(V_{j})^{2}\coprod\cdots\coprod(V_{j})^{n_{\int}}\subset G_{j}$

Observe that $\{n_{j} : j<\omega\}$ must be a cofinal increasing sequence of $\omega$ because if

there is $ m<\omega$ such that $n_{j}\leq m$ for every $ j<\omega$ , and if $A\in A$ is such that

$\{x_{1},\cdots,x_{m}\}\subset A$ , no $\hat{H}_{j}$ contains $A$ , which is a contradiction.
Now we claim that $Z=\Re-\lim_{\rho}G_{l}$ for every $p\in M$ . In fact, let $ B\in\Re$ .

There is $K\in d$ and there is $ n<\omega$ such that $B\subset\coprod_{1\leq i<\prime\iota}K^{j}$ . Since $X=d-\lim_{p}\hat{H}_{j}$
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for every $p\in M$ , $\{k<\omega:K\subset V_{j}\backslash \{x_{l,}\}\}\in p$ for all $p\in M$ . Thus, { $ k<\omega$ :
$K\subset V_{j}\backslash \{x_{I}\}\}\cap\{k<\omega:n_{j}>n\}\subset\{j<\omega:B\subset G_{j}\}\in p$ for every $p\in M$ . $\blacksquare$

The following two Corollaries are consequences of Theorems 2.12 and 5.1.

COROLLARY 5.2. Let $\emptyset\neq M\subset\omega^{*}$ let $X$ be a space and $Y$ be metrizable with
a non trivial path. Then, $C_{\pi}(X, Y)$ is a $SFU(M)$ -space (resp., $WFU(M)$ -space) if
and only if $\prod,{}_{l<\omega}C_{\pi}(X^{ll}, Y)$ is a $SFU(M)$ -space (resp., $WFU(M)$ -space). $In$

particular, $C_{\pi}(X, Y)$ is Fr\’echet-Urysohn if and only if $\prod,{}_{l<\omega}C_{\pi}(X^{\prime l}, Y)$ is a
Fr\’echet-Urysohn space.

COROLLARY 5.3. Let $\emptyset\neq M\subset\omega^{*}$ , let $X$ be a non $\omega$ -bounded space and let $Y$

be a metrizable space with a non trivial path. Then, $C_{k}(X, Y)$ is a $SFU(M)$ -space
(resp., $WFU(M)$ -space) if and only if $\prod_{l1<\omega}C_{k}(X^{ll}, Y)$ is a $SFU(M)$ -space (resp.,

$WFU(M)$ -space). In particular, $C_{\Lambda}(X, Y)$ is Fr\’echet-Urysohn if and only if
$\prod,{}_{l<\omega}C_{\wedge}(X^{\prime\iota}, Y)$ is a Fr\’echet-Urysohn space.

There are spaces $Y$ having a compact network $A$ for which $Y$ has $ A\theta$ but
$Y^{\omega}$ does not have $(\bigcup_{\iota<\omega}d^{fl})\theta$ . A trivial example is $Y=\{0,1\},d=^{0}\overline{J}$ , and $\theta=\gamma_{\rho}$

with $p\in\omega^{*}$ such that $R$ does not satisfy $\gamma_{\rho}$ . For topological function spaces this
can also happen, even when the base space is compact, in fact, C. Laflamme
proved that it is consistent with ZFC that there is a P-point $p\in\omega^{*}$ for which
$R=C_{\pi}(\{x\})$ has $\gamma_{p}$ ; because of Theorem 6.5 below $C_{\pi}(\{x\})^{\omega}=R^{\omega}$ does not
satisfy $\gamma_{\rho}$ . The natural question now is: Does $C_{\pi}(X^{\omega})$ have $\gamma_{p}$ if $C_{\pi}(X)$ does?
When $X$ is a compact zero-dimensional space the answer to this question is
affirmative:

COROLLARY 5.4. Let $p\in\omega^{*}$ and let $X$ be a compact zero-dimensional space.
Then $C_{\pi}(X)$ has $\gamma_{p}$ if and only if $C_{\pi}(X^{\omega})$ has $\gamma_{p}$ .

PROOF. $\Rightarrow$ ) It is a consequence of Theorem 5.1 and Proposition IV.8.2 in
$[Ar_{1}]$ .

$\Leftarrow)C_{\pi}(X)$ is homeomorphic to a closed subset of $C_{\pi}(X)$ . In fact,
$pr^{\#}$ : $C_{\pi}(X)\rightarrow C_{\pi}(X^{\omega})$ is a closed embedding where $pr:X^{\omega}\rightarrow X$ is one of the
projections (see $[Ar_{1}]$ ). $\blacksquare$

For a space $X$ , we will denote by $F(X, e)$ (resp., $A(X,$ $e)$ ) the free topological
(resp., Abelian) group generated by $X$ with a distinguished point $e\in X$ (see
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[Gr]). We know that $F(X, e)$ and $A(X, e)$ are continuous images of the space
$\coprod_{ll<\omega}(X^{\prime\prime}\times\{-1,1\}^{\prime\iota})$ . Furthermore, $X$ is homeomorphic to a closed subset of both
$F(X, e)$ and $A(X, e)$ , so we obtain, from Theorem 5.1, the following:

THEOREM 5.5. Let sd be a compact network on a non $\omega- d$ -bounded space
$X$ and let $e\in X$ . Then, the following are equivalent

(a) $X$ has $ d\theta$ .
(b) $A(X, e)$ has $\Re\theta$ .
(c) $F(X, e)$ has $\Re\theta$ .

where $\Re=$ { $A_{1}^{\epsilon_{1}}\cdot\ldots\cdot A_{ll}^{\epsilon_{l1}}$ : $A_{j}\in si,$ $\epsilon_{j}\in\{-1,1\},1\leq i\leq n$ and $ n<\omega$ }.
PROOF. $\Rightarrow$ ) Let $\{-1,1\}$ be considered with the discrete topology and set

$z=1I_{\iota<\omega}(X^{n}\times\{-1,1\}^{n})$ . The map $f$ : $Z\rightarrow F(X,e)$ (resp., $f:Z\rightarrow A(X,e)$ ) defined
by $f(x_{1},\cdots,x_{l},\epsilon_{1},\cdots,\epsilon_{ll})=x_{1}^{\epsilon_{1}}\cdot\ldots\cdot x_{n}^{\epsilon_{1}}$’ is an onto continuous function. If $X$ has $ d\theta$

then $x\times\{-1,1\}$ satisfies $(A\times d_{P})-\theta$ (Theorem 2.4.4). Because of Theorem 5.1
we have that $Z$ has $[\bigcup_{\iota<\omega}(A\times\overline{J}^{o})^{l1}]-\theta$ . So by Theorem 2.4.3, $F(X, e)$ (resp.,
$A(X, e))$ has $\Re\theta$ .

$\Leftarrow)$ We may consider $X$ as a closed subset of $F(X, e)$ and $A(X, e)$ . On the

other hand, $d\subset\Re_{X}$ and for every $A_{1},\cdots,A_{n}\in A$ and every
$\epsilon_{1},\cdots,\epsilon_{n}\in\{-1,1\},$ $(A_{1}^{\epsilon_{1}}\cdot\ldots\cdot A_{n}^{\epsilon_{1}}’)\cap X\subset A_{1}\cup\cdots\bigcup_{A}4_{n}\cup A$ where $e\in A\in d$ . Now the

conclusion follows from Theorem 2.2.3. $\blacksquare$

COROLLARY 5.6. Let $\emptyset\neq M\subset\omega^{*}$ let $Y$ be a metrizable space and $X$ a

space with $e\in X$ . Then, the following are equivalent
(a) $C_{\pi}(X,Y)$ is a $SFU(M)$ -space (resp., $WFU(M)- space$ ).

(b) $C_{\pi}(A(X,e),Y)$ is a $SFU(M)$ -space (resp., $WFU(M)- space$ )

(c) $C_{\pi}(F(X,e),Y)$ is a $SFU(M)$ -space (resp., $WFU(M)- space$).

In particular, $C_{\pi}(X,Y)$ is Fr\’echet-Urysohn $\Leftrightarrow C_{\pi}(A(X,e),Y)$ is a Fr\’echet-

Urysohn $space\Leftrightarrow C_{\pi}(F(X,e),$ $Y$) is a Fr\’echet-Urysohn space.

In order to have a similar result for the compact-open topology it is enough
that every compact subset of $F(X)$ (resp., $A(X)$ ) is contained in an $A_{1}^{\epsilon_{1}}\cdot\ldots\cdot A_{n}^{\epsilon_{n}}$

with $A_{j}$ compact for every $i<n$ . If $X$ is a $k_{\omega}$ -space (A space is said to be $k_{\omega}$ if
it is the union of an increasing sequence of compact subspaces having their weak

topology), then $F(X)$ is also a $k_{\omega}$ -space ([Or]), so $C_{k}(F(X))$ is completely
metrizable (see [St] and $[McN_{2}]$ ).

We say that a subset A of a topological group $G$ generates $G$ if $A$ contains the
identity of $G$ , algebraically generates $G$ and has the finest topology compatible
with both the group structure and the original topology on $A$ . Ordmen and Smith-
Thomas ([OS-T]) proved that every topological group $G$ generated by a $k_{\omega}$ -space
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$A$ is a quotient image of $F(A)$ , so:

THEOREM 5.7. Let $\phi\neq M\subset\omega^{*}$ . Let $G$ be a topological group generafed by a
$k_{\omega}$ -space A. Then,

(a) If $A$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ), then $C_{\pi}(G)$ is a $SFU(M)$ -space (resp.,

$WFU(M)$ -space).

(b) $C_{k}(G)$ is completely metrizable.

PROOF. (a) If $A$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ), then $F(A)$ does too (Theorem 5.5).

Besides, $G$ is a continuous image of $F(A)$ , so $G$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

(b) As was noted above, $F(A)$ is a $k_{\omega}$ -space, hence, since $G$ is a quotient image
of $F(A),$ $G$ is a $k_{\omega}$ -space. Then $C_{K}(G)$ is a completely metrizable space. $\blacksquare$

The dual space $L_{\pi}(X)$ of $C_{\pi}(X)$ , with the pointwise convergence topology, is
a continuous image of the space $\coprod_{n<\omega}(X^{n}\times R^{n})$ , so we also obtain from Theorem
5.1 the following result.

THEOREM 5.8. Let $d$ be a compact network on a space $X$ and let $\varphi$ be a
compact network on R. Then,

$R\times X$ has $(\mathfrak{B}\times d)-\theta\Rightarrow L_{\pi}(X)$ has $\Re\theta\Rightarrow X$ has $ d\theta$

where

$\Re=$ { $C_{1}A_{1}+\cdots+C_{n}A_{n}$ : $A_{j}\in d,C_{j}\in \mathfrak{B}$ for every $1\leq i\leq n$ and $ n<\omega$}.

PROOF. $R\times X$ is a non $\omega-(\varphi\times d)$ -bounded space; so $II_{n<\omega}(R^{n}\times X^{n})$ satisfies
$\emptyset\theta$ where $\emptyset=\bigcup_{n<\omega}(\varphi^{n}\times d^{n})$ (Theorem 5.1.). The function $f:\coprod_{n<\omega}(R^{n}\times X^{n})$

$\rightarrow L_{\pi}(X)$ defined by $f(r_{1},\cdots,r_{n},x_{1},\cdots,x_{n})=r_{1}x_{1}+r_{2}x_{2}+\cdots+r_{n}x_{n}$ is continuous. Since
$\mathfrak{D}$ is compact we can use Theorem 2.4 and deduce that $L_{\pi}(X)$ has $ f(9)-\theta$ . It
remains to note that $ f(\mathscr{D})=\Re$ .

Besides, if $L_{\pi}(X)$ has $\Re\theta$ , then $X$ has $\Re_{X}\theta$ . Observe that $A\subset\Re_{X}$ and for
every $ n<\omega$ and every $(C_{1},\cdots,C_{n_{\vee}},A_{1},\cdots,A_{n})\in\varphi^{n}\times d^{n}$ , $(C_{1}A_{I}+\cdots+C_{n}A_{n})\cap$

$X\subset A_{1}\cup\cdots\cup A_{n}\in d$ . Using 2.2.3 we conclude that $X$ has $ d\theta$ . $\square $

The complete circle of implications in the last Theorem can be obtained when
$X$ is a non $\omega$ -bounded space and $d=\mathfrak{N}$ by applying the following two lemmas.
The first one is trivial and the second one is a generalization of Theorem 3.3 in
$[GT_{2}]$ .

LEMMA 5.9. Let $A$ be a compact network on $X$ and let $\varphi$ be a network on $Y$
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containing Y. If $X$ has $ iA\theta$ , then $X\times Y$ has $(s4\times\varphi)-\theta$ .

LEMMA 5.10. Let $A$ be a compact network on a non $\omega- s4$ -bounded space $X$ .
Let $\varphi$ be a compact network on a $\varphi$ -hemicompact space Y. If $X$ satisfies A $\theta$ ,

then $X\times Y$ has $(A\times\varphi)-\theta$ . Moreover, if $\theta=\epsilon$ , the assertion is true for every
space $X$ .

PROOF. We prove the lemma when $\theta=S\gamma_{M}$ where $\emptyset\neq M\subset\omega^{*}$ , the rest of
the assertions can be proved in a similar way. Because of the previous Lemma
we have only to prove the case when $Y\not\in \mathfrak{B}$ . Let $(Y_{ll})_{n<\omega}$ be a strictly increasing
sequence of elements in $\varphi$ witnessing the %-hemicompactness of $Y$ . If $X$ is
finite, then $d=o_{\overline{P}}d$ and $X\times Y$ is a countable union of elements belonging to $ A\times\varphi$ ,

hence $X\times Y$ has $(A\times\varphi)-S\gamma_{M}$ . Suppose now that $X$ is infinite and let
$F=\{x_{n} : n<\omega\}\subset X$ be such that $x_{j}\neq x_{j}$ if $i\neq j$ and $F$ is not contained in any
element of $A$ . Let $\wp$ be an open $(A\times\varphi)$ -cover of $X\times Y$ . For each $ n<\omega$ we put
$\mathfrak{X}_{n}=$ { $V\subset X:V$ is open and there is GE $\wp$ such that $V\times Y_{n}\subset G$ }. It happens that
$\mathfrak{W}^{\prime}=\bigcup_{n<\omega_{n}}\mathfrak{W}_{n}^{\prime}$ where $\mathfrak{W}_{n}^{\prime}=\{V\backslash \{x_{\iota}\}:V\in \mathfrak{W}_{n}\}$ is an open $d$ -cover of $X$ . So, there
is a sequence $(H_{j}^{\prime})_{j<\omega}$ in $\mathfrak{W}^{\prime}$ such that $X=d-\lim_{p}H_{j}^{\prime}$ for every $p\in M$ , where
$H_{j}^{\prime}=V_{j}\backslash \{x_{n_{j}}\}$ for some open set $V_{K}$ of $X$ and some natural number $n_{j}$ . As was
noted in the proof of Theorem 5.1, the set $\{n_{j} : j<\omega\}$ is a cofinal increasing
sequence in $\omega$ . For each $ j<\omega$ there is $ G_{j}\in\wp$ such that $V_{j}\times Y_{n_{j}}\subset G_{j}$ . It is
possible now to prove that $X\times Y=(A\times \mathfrak{B})-\lim_{p}G_{j}$ for every $p\in M$ . $\blacksquare$

For $y\in L_{\pi}(X)$ we define $l(y)$ as follows. If $y=\overline{0}$ is the zero element of
$L_{\pi}(X)$ , then $l(y)=0$ . If $y\neq\overline{0}$ , then $1(y)=\min\{n<\omega$ : there are $x_{1},\cdots x_{n}\in X$ and
$r_{1},\cdots,r_{n}\in R$ such that $y=r_{1}x_{1}+\cdots+r_{n}x_{n}$ }. Let $L_{\pi,n}(X)=\{y\in L_{\pi}(X):l(y)\leq n\}$ .

Observe that for $\theta\in\{S\gamma_{M},W\gamma_{M}:\emptyset\neq M\subset\omega^{*}\}\cup\{\epsilon\}$ , $X$ and $Y$ spaces, $F\subset X$

closed and $f:X\rightarrow Y$ a continuous onto function, we have (see Theorem 2.4) (i)
$X$ has $\mathfrak{N}(X)\theta$ implies $F$ has $\mathfrak{N}(F)\theta$ ; (ii) $X$ has $\mathfrak{N}(X)\theta$ implies $X^{n}$ has $\mathfrak{N}(X^{n})\theta$ ;

and (iii) $X$ has $\mathfrak{N}(X)\theta$ implies $Y$ satisfies $\mathfrak{N}(Y)\theta$ if $f$ is perfect. Besides, if $X$ is
locally compact, then $X$ has ’IC $\theta$ iff $X$ has $ A\theta$ where $d=\{C1U;U$ is open and
C1U is compact}. These remarks and the previous Lemmas imply

COROLLARY 5.11. Let $X$ be a locally compact non $\omega$ -bounded space and let $Y$

be a metric space with a non trivial path. Then, $C_{k}(X,Y)$ is a Fr\’echet-Urysohn
space iff $C_{k}(L_{\pi,n}(X), Y)$ is Fr\’echet-Urysohn for a $ 0<n<\omega$ (hence, for every
$0<n<\omega)$ .

PROOF. $\Rightarrow$ ) Let $ 0<n<\omega$ be fixed. $R$ is hemicompact and $X$ has $\mathfrak{N}\gamma$ and is
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not $\omega$ -bounded; so $R\times X$ has $\mathfrak{N}\gamma$ (Lemma 5.10). Because of Proposition 1 in
[P], Theorem 5.1 and the remarks made above we conclude that $L_{\pi.,\iota}(X)$ has $\mathfrak{N}\gamma$ .
Since $X$ is a closed non W-bounded subspace of $L_{\pi./\iota}(X)$ , this is not $\omega$ -bounded,

so $C_{A}(L_{\pi.,\}}(X), Y)$ is Fr\’echet-Urysohn (Theorem 2.12).
$\Leftarrow)$ Because of Theorem 2.12, $L_{\pi,/\iota}(X)$ has $\mathfrak{N}\gamma$ (see 2.13). Since $X$ is
homeomorphic to a closed subset of $L_{\pi.,\iota}(X)$ , then $X$ has $\mathfrak{N}\gamma$ (Theorem 2.4). On
the other hand, $X$ is not $\omega$ -bounded, so $C_{k}(X, Y)$ is a Fr\’echet-Urysohn space. $\blacksquare$

PROBLEM 5.12. Does $L_{\pi}(X)$ satisfy $\mathfrak{N}\gamma$ if $X$ does?

For metrizable spaces we have:

COROLLARY 5.13. Let $\emptyset\neq M\subset\omega^{*}$ and let $X$ be a non-countable metrizable
either locally compact or $\sigma$ -compact space. Then, $X$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ) if
and only if $L_{\pi}(X)$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

PROOF. If $X$ has a $S\gamma_{M}$ , then $X$ is $\sigma$ -compact. So, there is a compact
metrizable non countable space satisfying $S\gamma_{M}$ . This implies that $X\times R$ has $S\gamma_{M}$

(Theorem 6.1 below). Now we have to apply Theorems 5.8 and 2.4. $\blacksquare$

This result is not true if $X$ is countable because in that case $X$ has $\gamma$ but
$L_{\pi}(X)$ never satisfies this property. In fact, $R\backslash \{0\}$ is a continuous image of
$L_{\pi.1}(X)$ which is a closed subspace of $L_{\pi}(X)$ .

6. The countable product of p-Fr\’echet-Urysohn $C_{d^{0}t\downarrow}$ -spaces.

In this section we will give some results about the property $\gamma_{p}(p\in\omega^{*})$ in a
free topological sum; that is, we will find sufficient conditions in order to obtain
the p-Fr\’echet-Urysohn property in a countable product of function spaces where
each factor is an $FU(p)$ -space.

THEOREM 6.1. Let $\emptyset\neq M\subset\omega^{*}$ . The following statements are equivalent
(1) $R$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

(2) There is a compact metrizable and non countable space $X$ with $S\gamma_{M}$

(resp., $W\gamma_{M}$ ).

(3) Every $\sigma$ -compact metrizable space $X$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

(4) There is a $\check{C}ech$ -complete non scattered space satisfying $S\gamma_{M}$ (resp.,
$W\gamma_{M})$ .

PROOF. (1) $\Leftrightarrow(3)$ was basically proved in $[GT_{1}];(3)\Rightarrow(2)$ and (1) $\Rightarrow(4)$



Countable product of function spaces 313

are trivial.
(2) $\Rightarrow(1)$ Since $X$ is second countable and non countable, there is $\emptyset\neq F\subset X$

which is perfect. Furthermore, $F$ is completely metrizable because $X$ is. Then $F$

contains a copy of the Cantor set ([En, 4.5.5]). Using [GT, , Theorem 3.18] we
conclude that $R$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

(4) $\Rightarrow$ (1) Every $\check{C}$ ech-complete non scattered space contains a compact
subset which can be continuously mapped onto $[0,1]$ (see 2.4. and Theorem 3.18
in [GT,]). $\blacksquare$

As a consequence of the previous Theorem we have:

THEOREM 6.2. Let $\emptyset\neq M\subset\omega^{*}$ , let $X_{n}$ be a metrizable $\sigma$ -compact space
and $Y_{n}$ be a metrizable space for every $ n<\omega$ . If either: (i) every $X_{j}$ is
countable, or (ii) there is $ i<\omega$ for which $X_{j}$ is non countable, $Y_{i}$ has a non trivial
$pa$th and $C_{\pi}(X_{j},Y_{i})$ is a $SFU(M)$ -space (resp., $WFU(M)- space$ ), then

$\prod_{n<\omega}C_{\pi}(X_{ll}, Y_{n})$ is a $SFU(M)$ -space (resp., $WFU(M)$ -space).

PROOF. If every $X_{j}(i<\omega)$ is countable, then $X=\coprod_{n<\omega}X_{n}$ is countable and
so $X$ has $\gamma$ . If this is not the case, since there exists a compact metrizable and

non countable subspace of $X_{j}$ with $S\gamma_{M}$ (resp., $W\gamma_{M}$ ) (Theorem 2.12), the
metrizable $\sigma$ -compact space $\coprod_{\iota<\omega},X_{l1}$ also has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ) (Theorem 6.1).

Then, in both cases, because of Theorem 2.12, $\Pi_{\iota<\omega},C_{\pi}(X_{l},\Pi_{n<\omega}Y_{n})\cong$

$\prod_{n},{}_{m<\omega}C_{\pi}(X_{n}, Y_{m})$ is a $SFU(M)$ -space (resp., $WFU(M)$ -space). Therefore, its
closed subset $\Pi_{n<\omega}C_{\pi}(X_{n}, Y_{n})$ also has this property. $\blacksquare$

COROLLARY 6.3. Let $\emptyset\neq M\subset\omega^{*}$ and let $X_{j}$ be a metrizable either locally
compact or $\sigma$ -compact space having $S\gamma_{M}$ (resp., $W\gamma_{M}$ ) for $1\leq i\leq n$ . Then
$X_{1}\times\cdots\times X_{n}$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).

PROOF. The space $Z=X_{1}\coprod\cdots\coprod X_{n}$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ) and $\Pi_{i=1}^{n}X_{j}$ is a
closed subset of $Z^{n}$ $\blacksquare$

When we are considering compact metrizable spaces we can strengthen
Corollary 6.3 as follows.

THEOREM 6.4. Let $\emptyset\neq M\subset\omega^{*}$ and let $(X_{n})_{n<\omega}$ be a sequence of compact

metrizable spaces. If there is $ i<\omega$ for which $X_{j}$ is a non countable space
satisfying $S\gamma_{M}$ (resp., $W\gamma_{M}$ ), then $\prod_{n<\omega}X_{n}$ has $S\gamma_{M}$ (resp., $W\gamma_{M}$ ).
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PROOF. In fact, $\prod_{\iota<\omega}X_{l}$ is a compact metrizable sapce; we only have to
apply Theorem 6.1. $\blacksquare$

This last result cannot be generalized to metric locally compact spaces. In
fact, $R^{\omega}$ does not satisfy $\gamma_{\rho}$ if $p\in\omega^{*}$ is a P-point in $\omega^{*}([GT_{1}])$ , but as was
proved by $C$ . Laflamme, it is consistent with ZFC that there exists a P-point
$p\in\omega^{*}$ such that $R$ has $\gamma_{\rho}$ .

The result concerning $R^{\omega}$ and P-points can be generalized as follows.

THEOREM 6.5. Let $p\in\omega^{*}$ be a P-point in $\omega^{*}$ , and let $X_{l}$ be a non countably
compact space for every $ n<\omega$ . Then, $\prod_{n<\omega}X_{1}$ does not satisfy $\gamma_{p}$ .

PROOF. Suppose that $X=\prod_{1<\omega}X_{l}$ satisfies $\gamma_{\rho}$ . For each $ i<\omega$ let
$Z_{i}=\{z_{1}^{i},z_{2}^{j},\cdots,z_{n}^{j},\cdots\}$ be a countable closed and discrete subset of
$X_{j}$ ( $z_{\backslash }^{i}\neq z_{l}^{i}$ if $s\neq t$). If $x\in X_{j}$ , we take $G_{t}^{j}\in N(x)$ such that $|G_{X}^{i}\cap Z_{j}|\leq 1$ . For each
pair of natural numbers $i,$ $n$ let $\wp_{n^{j}}$ be the collection of the unions of $\leq n$ elements
belonging to $\wp^{j}=\{G_{1}^{i} : x\in X_{j}\}$ . Put $\sigma^{-}d^{\oint},,$ $=\{\pi^{-1}(G);G\in\wp^{n}l\}$ and $\sigma\check{J}=\bigcup_{n<\omega^{\backslash }}^{\sigma}\check{p}_{n}$ where
$\pi_{n}$ is the projection from $X=\prod_{l1<\omega}$ X. onto $X_{n}$ . $0_{\tilde{y}}$ is an open $\omega$ -cover of $X$ , so
there is a sequence $(F_{n})_{n<\omega}$ in $\wp$ for which $X=\lim_{p}F_{n}$ .

The collection $\{A_{j}=\{n<\omega:F, \in 0,d_{j}^{-}\}:j<\omega\}$ is a partition of $\omega$ . We claim that
$A_{j}\not\in p$ for every $ j<\omega$ . In fact, suppose that there is $ j<\omega$ such that $A_{j}\in p$ . For
each $ m<\omega$ we define $f_{m}\in X$ as follows: $\pi_{l1}(f_{m})=z_{n}^{\prime l}$, Let $S(m)=\{n<\omega:f_{m}\in F_{n}\}$ .
Since $X=\lim_{p}F_{n},$ $S(m)\in p$ . Hence, there exists $n_{0}\in A_{j}\cap(\bigcap_{1\leq i\leq}S(i))/\cdot+|\in p$ . Then
$f_{1},\cdots,f_{j+1}\in F_{ll_{()}}=\pi_{j^{- 1}}(G)$ where $G\in \mathfrak{B}_{j}^{\prime}$ . This means that $z_{1}^{j},\cdots,z_{j+1}^{j}\in G$ , but this is
a contradiction because, by construction, no element of $\wp_{j}^{j}$ can contain $j+$ ]

elements of $Z_{j}$ . Thus $A_{j}\not\in p$ for every $ j<\omega$ . Since $p$ is a P-point, there is $A\in p$

such that $|A\cap A_{j}|<\omega$ for every $ j<\omega$ . Besides, $X=\bigcup_{n\in A}F_{n}$ . If $ A_{j}\neq\emptyset$ , we set
$A\cap A_{j}=\{n(j,0),\cdots,n(j,r_{j})\}$ . Then, we have that $ X=\cup\{\bigcup_{i\leq r}F_{n(j.i)}:j<\omega$ and
$A_{j}\neq\emptyset\}$ . For each $ j<\omega$ with $ A_{j}\neq\emptyset$ and for each $i\leq r_{j}$ let $G_{n(j,i)}\in \mathfrak{B}_{j}^{j}$ which

satisfies $\pi_{\dot{j}}^{-1}(G_{n(j.i)})=F_{n(j,i)}$ . Take $x=(x_{j})_{j<\omega}\in X$ where $x_{j}\in X_{j}\backslash \bigcup_{i\leq r_{/}}$. $G_{n\langle j,i)}$ if
$ A_{j}\neq\emptyset$ , and $x_{j}\in X_{j}$ otherwise. It happens that $ x\not\in\cup\{\bigcup_{i\underline{<}r_{j}}F_{n(j.i)}:j<\omega$

and $ A_{j}\neq\emptyset$ } , which is a contradiction. $\blacksquare$

COROLLARY 6.6. Let $X$ be a normal and non countably compact space and let
$p\in\omega^{*}$ be a P-point. Then $C_{\pi}(C_{\pi}(X))$ is not an $FU(p)$ -space.

PROOF. By assumption we can take a countable discrete and closed subset $D$
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of $X$ . Since $X$ is normal and $D$ is closed, $C_{\pi}(D)$ is a continuous image of $C_{\pi}(X)$ .
If $C_{\pi}(X)$ has $\gamma_{p}$ , so does $C_{\pi}(D)\cong R^{D}$ which is in contradiction with Theorem 6.5.

$\blacksquare$

We have already seen that $R^{\omega}$ does not satisfy $\gamma_{\rho}$ if $p$ is a P-point in $\omega^{*}$ . In
[ $GT_{1}$ , Theorem 3.20] the authors gave a list of necessary and sufficient conditions
in order to guarantee that $R^{\omega}$ has $\gamma_{p}(p\in\omega^{*})$ . As a consequence of these
remarks we have (see 2.3.5):

THEOREM 6.7. The following statements are equivalent.
(a) $R^{\omega}$ satisfies $\theta$ (resp., $\mathfrak{N}\theta$ ).

(b) Every $\check{C}ech$ -complete space of countable weight has $\theta$ (resp., $\mathfrak{N}\theta$ ).

PROOF. We have only to prove (a) $\Rightarrow(b)$ . If $R^{\omega}$ has $\theta$ (resp., $\mathfrak{N}\theta$ ) then
$J(\omega)^{\omega}\times[0,1]^{\omega}$ satisfies $\theta$ where $J(\omega)$ is the hedgehog of spininess $\omega$ ([GT,])
(resp., St $\theta$ , Theorem 2.4.4 and remarks before Corollary 5.11). On the other
hand, every second countable and $\check{C}$ ech-complete space $X$ can be considered as a
closed subset of $J(\omega)^{\omega}\times[0,1]^{\omega}$ ([So]). So $X$ has $\theta$ (resp., $\mathfrak{N}\theta$ ). $\blacksquare$

PROBLEM 6.8. Is p-Fr\’echet-Urysohn an almost countable productive property
in the class of $C_{\pi}$ -spaces when $p\in\omega^{*}$ (resp., $p\in\omega^{*}$ is semiselective,
selective)? (see Theorem 4.11).

7. The property $\gamma_{p}$ and the real line.

In this section we will see that if $p\in\omega^{*}$ is such that $R$ does not have $\gamma_{\rho}$ ,

then property $\gamma_{p}$ is similar to property $\gamma$ , and they coincide in the class of
$C_{ech}$ -complete spaces. The proof of the next two theorems can be achieved
using Theorem 3.18 in [GT,] and following completely analogous proofs to those
given for Corollary to Lemma 1 and Theorem 5 in [GN], respectively.

THEOREM 7.1. Let $p\in\omega^{*}$ such that $R$ does not satisfy $\gamma_{p}$ . Then, every
space with $\gamma_{p}$ is zero-dimensional.

THEOREM 7.2. Let $p\in\omega^{*}$ such that $R$ does not satisfy $\gamma_{\rho}$ . Then, a space $X$

has $\gamma_{p}$ if and only if $X$ has $\mathcal{E}$ and every continuous image of $X$ in $R$ has $\gamma_{\rho}$ .

Every $\check{C}$ ech-complete non-scattered space $X$ contains a compact subspace
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which can be continuously mapped onto $[0,1]$ . So, in virtue of Theorems 4.5 and
4.7 we obtain the following interesting result.

THEOREM 7.3. Let $p\in\omega^{*}$ such that $R$ does not satisfy $\gamma_{\rho}$ , and let X be a
countable union of Lindelof $\check{C}$ ech-complete subspaces. Then, X has $\gamma$ if and
only if X has $\gamma_{\rho}$ .

PROBLEM 7.4. Let $p\in\omega^{*}$ such that $R$ does not satisfy $\gamma_{\rho}$ . Is Theorem 7.3
true for k-spaces or Baire spaces?

PROBLEM 7.5. Is it consistent with ZFC that $\gamma_{\rho}\Rightarrow\gamma$ for every $p\in\omega^{*}$ for
which $R$ does not satisfy $\gamma_{p}$ ?

PROBLEM 7.6. Let $X$ be a subset of $R$ satisfying $\gamma_{\rho}$ where $p\in\omega^{*}$ is such
that $R$ does not have $\gamma_{\rho}$ . Is $X$ of strong measure zero?

8. Compact spaces and properties $\gamma$ and $\gamma_{p}$ .
After all we have already analyzed it is natural to ask under what conditions,

$X$ has a compactification $\kappa X$ such that $c_{\pi}(\alpha)$ is Fr\’echet-Urysohn. Because of
Gerlitz-Nagy’s Theorem (see Theorem 4.5), this question may be posed as:
Under what conditions on $X$ , does $X$ have a scattered compactification? In this
Section we are going to give some results in this direction.

The first follows from Theorem 4.5 and the fact that every locally scattered
space is scattered.

THEOREM 8.1. Let $X$ be a locally compact (resp., locally compact and
Lindelof) space. Then, the following conditions are equivalent.

(a) $X$ has locally $\gamma$ (resp., satisfies $\gamma$ ).

(b) The one-point compactification $\alpha(X)$ of $X$ has $\gamma$ .
(c) There is a compactification $\kappa(X)$ of $X$ with $\gamma$ .

PROOF. We give here the proof of $(a)\Rightarrow(b)$ . For each $x\in X$ there exist $V_{X}$

and $W_{X}$ elements of $N(x)$ such that $V_{X}$ is compact and $W_{X}$ satisfies $\gamma$ . Consider a
neighbourhood U. of $x$ such that $ x\in U_{X}\subset$ cl $U$. $\subset W_{X}$ . Thus, cl U. has $\gamma$ and
$ V.\cap$ cl $U_{X}$ is a compact set with $\gamma$ , which implies that $ V.\cap$ cl $U_{X}\in N(x)$ is
scattered. So $X$ is scattered, since every locally scattered space is scattered.
Now, it is not difficult to prove that $\alpha(X)$ is also scattered. The conclusion in (b)

now follows from Theorem 4 in [GN] (see Theorem 4.5).
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We cannot dropped the Lindelof condition in the last Theorem; in fact, the
compact space of ordinals $[0,\omega_{1}]$ has $\gamma$ but $[0,\omega_{1}$ ) does not have this property.

When we consider $\gamma_{M}$ -like properties we also have a result conceming
compactifications. First, we need a Lemma (In the sequel the symbol $\theta$ will
denote one of the properties belonging to $\{S\gamma_{M}:\emptyset\neq M\subset\omega^{*}\}\cup\{W\gamma_{M}$ $:\otimes\neq$

$M\subset\omega^{*}\})$ .

LEMMA 8.2. Let $Y$ be a space with $ A\epsilon$ where $d$ is a network on $Y$ having
an element $A_{0}$ with the following property: For every countable collection
$ U_{1},U_{2},\cdots$ of neighborhoods of $A_{0}$ , the subspace $Z=Y\backslash \bigcap_{i<\omega}U_{j}$ has $ si_{Z}\theta$ . Then $Y$

satisfies $ d\theta$ .
PROOF. Suppose that $\theta=S\gamma_{M}$ where $\emptyset\neq M\subset\omega^{*}$ . Let $\wp$ be an open A-

cover of $Y$ . Since $Y$ has $ d\epsilon$ we can suppose, without loss of generality, that $\wp$

is countable. Let $\wp^{\prime}=\{G\in\wp_{;A_{0}}\subset G\}$ . $\wp^{\prime}=\{G_{1},\cdots,G_{n}\cdots\}$ is again an open d-
cover of $Y$ . By assumption $Z=Y\backslash \bigcap_{i<\omega}G_{l}$ has $ s4_{Z}\theta$ , so there is a sequence
$(j_{n})_{n<\omega}$ such that $Z\subset A_{Z}-\lim_{p}G_{j_{n}}$ for every $p\in M$ . It happens that
$Y=A-\lim_{\rho}G_{j_{n}}$ for every $p\in M$ . $\blacksquare$

THEOREM 8.3. Let $X$ be a metrizable locally compact (resp., metrizable
locally compact and Lindelof) space and let $\emptyset\neq M\subset\omega^{*}$ Then, the following
are equivalent.

(a) $X$ has locally $\theta$ (resp., satisfies $\theta$ ).

(b) The one-point compactification $\alpha(X)$ of $X$ has $\theta$ .
(c) There is a compactification $\kappa(X)$ of $X$ with $\theta$ .

PROOF. $(b)\Rightarrow(c)$ is trivial.
(c) $\Rightarrow(a)$ : If $\kappa(X)$ is scattered, then $X$ is scattered, so $X$ has locally $\gamma$

(Theorem 4.5). Besides, if $X$ is Lindelof, then $X$ is a $\sigma$ -compact space, so $X$

again has $\gamma$ (Corollary 4.7). If $\kappa(X)$ is a non scattered space, then we obtain the
desired conclusion using Theorem 6.1.

$(a)\Rightarrow(b)$ : First case: For some point $x\in X,$ $x$ has a compact non countable
neighborhood having $\theta$ . Then every $\sigma$ -compact metrizable space has $\theta$

(Theorem 6.1). Let $ V_{1},\cdots,V_{n},\cdots$ be open neighbourhoods of $x_{0}\in\alpha(X)\backslash X$ . So
$X\backslash \bigcap_{n<\omega}V_{n}$ is a $\sigma$ -compact metrizable space that must satisfy $\theta$ . It remains to
apply Lemma 8.2.

Second case: For each $x\in X$ the compact neighborhoods $V_{X}$ of $x$ having $\theta$

are countable. Since every countable compact space is scattered (in fact, in this
case $V_{X}$ is homeomorphic to a countable ordinal space $[dGB]$ ), $X$ is a scattered
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space. Therefore, $\alpha(X)$ is a scattered space; and we conclude that $\alpha(X)$ has $\gamma$

(Theorem 4.5). $\blacksquare$

PROBLEM 8.4. (1) Does every $\check{C}$ ech-complete Lindelof scattered space have
a scattered compactification?

(2) Under what conditions on $X$ , is $\beta X$ scattered?
Using the facts that every second countable space can be embedded into

$[0,1]^{\aleph_{0}}$ and every compact non-scattered space contains a closed subset that can be
continuously mapped onto $[0,1]$ , and using Theorem 3.18 in $[GT_{1}]$ we obtain:

THEOREM 8.5. Let $\emptyset\neq M\subset\omega^{*}$ . The following conditions are equivalent.
(a) $R$ has $\theta$ .
(b) Every second countable space has a compactification with $\theta$ .
(c) There is a second countable non-scattered space which has a

compactification satisfying $\theta$ .

The natural generalization of Theorem 3.18 in [GT, ] is also true. The symbol
$\pi\chi(x,X)$ denotes the $\pi$ -character of $x$ in the space $X$ ([J]).

THEOREM 8.6. Let $\emptyset\neq M\subset\omega^{*}$ and let $\mu$ be an uncountable cardinal. The
following are equivalent.

(a) Every compact space of weight $\mu$ has $\theta$ .
(b) Every zero-dimensional compact space of weight $\mu$ satisfies $\theta$ .
(c) $2^{\mu}$ has $\theta$ .
(d) $[0,1]^{\mu}$ has $\theta$ .
(e) There is a compact space $X$ having $\theta$ such that $\pi\chi(x,X)\geq\mu$ for every

$x\in X$ .

PROOF. $(a)\Rightarrow(b)\Rightarrow(c)$ are obvious. Since every compact space of weight
$\mu$ is a continuous image of a closed subset of $2^{\mu}$ ([En, Theorem 3.2.2]), (c) $\Rightarrow$

(a) and (c) $\Rightarrow(d)$ holds. Besides, $\pi\chi(x,[0,1]^{\mu})\geq\mu$ for every $x\in[0,1]^{\mu}$ , so we
obtain $(d)\Rightarrow(e)$ . Finally, $(e)\Rightarrow(c)$ is a consequence of [ $J$ , Theorem 3.18]. $\blacksquare$

Observe that Theorems 6.1, 8.3, 8.5 and 8.6 are trivial if we put $\mathfrak{N}\theta$ instead
of $\theta$ in each condition.
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