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ON CERTAIN CONFORMALLY INVARIANT SYSTEMS

OF DIFFERENTIAL EQUATIONS II: FURTHER STUDY

OF TYPE A SYSTEMS

By

Anthony C. Kable

Abstract. Previously, several families of systems of di¤erential

equations that generalize the Heisenberg Laplacian equations were

introduced. The study of one of these families is continued here. It

is shown that the systems in this family are free of integrability

conditions provided that a parameter appearing in the system avoids

a certain set of bad values, which is explicitly determined. Properties

of polynomial solutions to the systems are investigated and special

polynomial solutions involving terminating Lauricella hypergeometric

series are given in some cases.

1. Introduction

The Heisenberg Laplacians, introduced by Folland and Stein [2] in their

study of the Kohn Laplacian and the qb complex on the Heisenberg group, have

subsequently attracted a great deal of attention. In addition to work from the

perspective of analysis of partial di¤erential equations, these operators have also

been considered from the special-functions point of view [3], and from the point

of view of Lie theory [8]. The analogy between analysis on the Heisenberg group

and analysis on Euclidean spaces suggests that other interesting operators might

be obtained by varying the signature and, indeed, the resulting operators, which

one might reasonably call Heisenberg wave operators, have also received some

attention. From the Lie-theory perspective, this list of Heisenberg operators is still

incomplete. In that optic, varying the signature amounts to varying the real form

of the conformal group of the operator. In addition to the special unitary groups
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SUðp; qÞ, the special linear group SLðn;RÞ also belongs on this list of real forms,

and there are operators corresponding to this real form also. The author named

these Heisenberg ultrahyperbolic operators, by analogy with the famous Eucli-

dean ultrahyperbolic operator studied by John [4], and investigated certain

aspects of these operators [5, 6].

Still taking the point of view of Lie theory, one might ask for an intrinsic

construction of the Heisenberg Laplacians and their relatives from the associated

conformal groups SUðp; qÞ and SLðn;RÞ. Given this, one might then ask whether

this construction can be generalized to yield other families of operators with

analogous properties. The author took up this question in [7]. The conclusion

of this work was that there is such an intrinsic construction, that it depends on

some facts about the root system of the Lie algebra slðn;CÞ, and that it can

be substantially generalized provided that one is prepared to accept a system of

several operators in place of a single operator. The resulting construction yields

numerous systems of operators with conformal groups that are special linear or

special unitary groups (these are referred to as type A), several systems with

conformal groups that are special orthogonal groups (type D), and a system

with conformal group the exceptional simple Lie group E6 (type E6). Like the

Heisenberg Laplacians, each of these systems depends upon a single parameter,

which we denote by z rather than the conventional a. Each system has its home

on a nilpotent Lie group of class 2, which plays the role of the Heisenberg group

in the original example.

The purpose of the current work is to continue the study of the systems of

type A that was begun in [7]. The properties that we consider are algebraic in

nature and so insensitive to the real form. For this reason, we work exclusively

with the split real form, whose conformal group is a special linear group. The

systems of type A are described by a triple ða; b; cÞ of positive natural numbers

(in addition to the parameter z). There are ac operators in the system and they

live on the nilpotent Lie group

N ¼ Matða; bÞlMatðb; cÞlMatða; cÞ
with the operation

ðX ;Y ;TÞðX 0;Y 0;T 0Þ ¼ ðX þ X 0;Y þ Y 0;T þ T 0 þ XY 0Þ:

Here Matðm; nÞ denotes the space of m-by-n matrices. The center of N is ZðNÞ ¼
f0gl f0glMatða; cÞ and the center is complemented by the subspace V ¼
Matða; bÞlMatðb; cÞl f0g, which is, of course, not a subgroup. The Heisenberg

case arises when a ¼ c ¼ 1, and it is only in this case that there is a single

operator in the system.

40 Anthony C. Kable



To explain the context for the first main result, recall that in the theory of the

Heisenberg Laplacian one obtains good properties (for example, local solvability)

provided that the parameter z does not lie in a discrete set of bad values. The

precise set of bad values varies from property to property, but is generally the

union of one or more arithmetic progressions. The property we focus on in

the first result is that a solution to the system is determined by its restriction to

the space V defined above. For reasons that may not presently be obvious, we

think of the coordinates on ZðNÞ as times, so this property may be rephrased to

say that a solution to the system is determined by its initial values. We showed

in [7, Theorem 4.3] and the subsequent discussion that this property holds for

formal power series solutions if and only if z B ðb=2Þ þ sðFÞ, where sðF Þ is the

spectrum of a certain operator. This spectrum was determined for each of the

systems constructed in [7], except for the system of type A when b < a. This case

presents a degeneracy that blocks the method used in [7] to determine sðFÞ when

bb a. Our first main result, Theorem 2.1, is the determination of sðF Þ in the

remaining case, so that this particular set of bad values becomes completely

known. We note that sðF Þ turns out always to be an arithmetic progression in

type A; this is not so in types D and E6.

The transition from a single di¤erential equation to a system of several

equations introduces a new issue, that of integrability conditions. The second

main result of this work, contained in Theorems 6.4 and 6.5, is that the systems

of type A are free of integrability conditions provided that the parameter z does

not lie in the bad set ðb=2Þ þ sðFÞ.
From the perspective of Lie theory, there are two classes of solutions to

the systems we consider that are of immediate interest, namely the polynomial

solutions and the K-finite solutions. The former are insensitive to the real form

that is chosen and a¤ord interesting modules for the complexified Lie algebra of

the conformal group. The latter depend essentially on the real form and lead to

the construction of admissible representations for the conformal group itself. We

focus here on polynomial solutions when z does not belong to the bad set. The

results described in the last two paragraphs imply that given a polynomial c on V

there is a unique polynomial solution F to the system on N such that F restricts

to c on V . In the Heisenberg case, it is possible to describe these polynomial

solutions explicitly in terms of Jacobi polynomials [3], and hence ultimately in

terms of the Gaussian hypergeometric series. A more structural but less explicit

description of the polynomial solutions in the Heisenberg case was given by

Korányi [8]. His result is analogous to Maxwell’s well-known description of

the harmonic polynomials on Euclidean space and states that a certain vector in
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the module of polynomial solutions is a cyclic vector for the module, so that

all polynomial solutions may be obtained by applying the Lie algebra of the

conformal group repeatedly to this solution. The author later refined this result

somewhat [6] by showing that the module of polynomial solutions is irreducible

for most good values of z, so that every non-zero vector is a cyclic vector, and

also determining the structure of the module for the remaining values of z that

were disallowed in Korányi’s result. For the general system of type A the

structure of the polynomial solutions is much more complicated. It is presently

unclear whether an explicit description of these solutions is going to be possible,

although it does seem likely that the structure of the module of polynomial

solutions can be understood su‰ciently well to yield a Korányi-style result as a

by-product. For the moment, we are able to exhibit some explicit polynomial

solutions to systems of type A in certain cases that directly generalize the known

solutions in the Heisenberg case. These are given in Theorems 8.1 and 8.3. They

involve terminating Lauricella FD hypergeometric series, which reduce to ter-

minating Gaussian hypergeometric series in the Heisenberg case.

In Section 4 we explain the relation between the form of the systems of type

A that we use here and the more usual form in which the equation is written

in the Heisenberg case. The di¤erence between the two amounts to a change of

coordinates. Although this may seem relatively trivial, choosing the coordinates

we employ here has the result that the order of the equations drops from two

to one along the center of N. This is very convenient because it allows the

system to be rewritten in evolutionary form, albeit at the cost of introducing

operators more general than di¤erential operators into the picture. In Section 5

we present another useful coordinate change. This one relates the system of type

A with parameters ða; b; cÞ and z to the system of type A with parameters ðc; b; aÞ
and �z. It is later used in the discussion of explicit polynomial solutions in

Section 8.

2. Review and Completion of Earlier Results

We begin by establishing the setting necessary to describe the systems of

di¤erential equations that we shall study. Let lb 2 and G ¼ SLðl þ 1Þ. Choose
a; bb 1 such that aþ ba l and set c ¼ l � a� bþ 1. Let N be the subgroup of

G consisting of all upper-triangular matrices of the form

x ¼
Ia X T

0 Ib Y

0 0 Ic

0B@
1CA;
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where X A Matða; bÞ, Y A Matðb; cÞ, and T A Matða; cÞ are matrices of the indi-

cated sizes. We use the entries in x that lie in the matrices X , Y , and T as

coordinates on N. In order to make it easy to distinguish these coordinates, we

introduce the abbreviations

mði; jÞ ¼ ði; aþ jÞ for 1a ia a; 1a ja b;

nð j; kÞ ¼ ðaþ j; aþ bþ kÞ for 1a ja b; 1a ka c;

zði; kÞ ¼ ði; aþ bþ kÞ for 1a ia a; 1a ka c:

With these abbreviations, X ¼ ½xmði; jÞ�, Y ¼ ½xnð j;kÞ�, and T ¼ ½xzði;kÞ�. For com-

parison with [7], note that we may identify mði; jÞ with the root ei � eaþ j in the

standard model for the root system of G, and similarly with nð j; kÞ and zði; kÞ.
The group N is the unipotent radical of the standard parabolic subgroup Q of G

corresponding to the deleted Dynkin diagram

b bD bD b
a1 aa aaþb al

with the usual positive system and numbering of the simple roots. In keeping with

the notation introduced in [7], let z0 ¼ b=2 be half the distance between the two

deleted simple roots. In addition, let

R12 ¼ fmði; jÞ j 1a ia a; 1a ja bg;

R23 ¼ fnð j; kÞ j 1a ja b; 1a ka cg;

R13 ¼ fzði; kÞ j 1a ia a; 1a ka cg

be the sets of roots associated with the submatrices X , Y , and T of x. For each

coordinate xg on N, let qg be the corresponding partial derivative.

We are now ready to describe the system of partial di¤erential operators that

we wish to study. For 1a ia a and 1a ka c, let

Dzði;kÞ ¼
Xb
j¼1

qmði; jÞqnð j;kÞ:

For 1a i; pa a and 1a k; ra c, let

Fzði;kÞ; zðp; rÞ ¼ dkr
Xb
j¼1

xmðp; jÞqmði; jÞ;
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where d is the Kronecker delta. For z A R13, let

Wz ¼ Dz � ðz� z0Þqz þ
X
x AR13

Fz;xqx;

where z is a parameter. The system in question is comprised of all the operators

Wz with z A R13. This is a system of ac di¤erential equations on N.

The system Wz, z A R13, was first constructed in [7] in a more general context.

The general form of the systems constructed in that work may be found in [7,

Proposition 4.2] and the explicit forms of the operators D and F in the present

case are given in [7, Section 5.1]. However, the reader who consults [7] will

notice some sign di¤erences between the expressions given there and those given

above. In [7], the proofs were written, as far as possible, in a uniform way.

This necessitated a uniform choice of model for the Lie algebras underlying

the construction, and this model does not necessarily specialize to the most

convenient model in any particular instance. In particular, the root vectors in

slðl þ 1Þ used in [7] were the negatives of those that are usually chosen. Now

that the focus is on a single family of algebras, it was thought best to change

coordinates to restore the conventional choices. This amounts to the transfor-

mation xg 7! �xg and explains the sign changes noted above.

We may express the condition Wz �F ¼ 0, z A R13, in vector form as

½Dz �F� ¼ ððz� z0ÞI � FÞ½qz �F�;

where F ¼ ½Fz;x� is an R13-by-R13 matrix of di¤erential operators. It is desirable

to rewrite this in evolutionary form as

½qz �F� ¼ ððz� z0ÞI � F Þ�1½Dz �F�

and this will be possible provided that z� z0 B sðF Þ, where sðFÞ denotes the

spectrum of F . Of course, the appropriate definition of the spectrum will de-

pend on the context. For our present purposes, we consider the action of F

on the space C½xm�nCR13 of R13-tuples of polynomials in the variables xm,

m A R12. Although this space has infinite dimension, the action is locally finite

and the spectrum sðFÞ is simply the set of eigenvalues of F . In [7, Section 5],

this set was determined in all cases except for the systems in type A with

1 < b < a. We now wish to complete this result by determining sðF Þ in the

remaining cases. For clarity, note that we take the natural numbers N to in-

clude 0.
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Theorem 2.1. We have

sðF Þ ¼ �ða� 1Þ þN if bb a;

�bþN if b < a:

�

Proof. The evaluation of sðFÞ when bb a is given in [7, Theorem 5.4].

We henceforth assume that b < a. Since the entries in F are di¤erential operators

in the variables xm with m A R12, we shall use the abbreviations xmði; jÞ ¼ xi; j and

qmði; jÞ ¼ qi; j for the remainder of the proof. With this abbreviation, we have

Fzði;kÞ; zðp; rÞ ¼ dkr
Xb
j¼1

xp; jqi; j:

It follows that if we order the zði; kÞ suitably then the matrix F becomes a block

sum

F ¼ PoPo � � �oP;

where P is the a-by-a matrix of di¤erential operators with entries

Pi;p ¼
Xb
j¼1

xp; jqi; j

and there are c blocks in the block sum. Thus it su‰ces to determine the

spectrum of P acting on the space C½xi; j�nCa of a-tuples of polynomials in the

variables xi; j with 1a ia a and 1a ja b. Next we wish to introduce a group

action on C½xi; j�nCa with respect to which P acts equivariantly.

The group H ¼ GLðaÞ �GLðbÞ acts by automorphisms on the polynomial

algebra C½xi; j�. For g A GLðaÞ we have

gxi; j ¼
Xa
p¼1

gp; ixp; j

and for h A GLðbÞ we have

hxi; j ¼
Xb
q¼1

xi;qhq; j:

The induced actions on the partial derivatives are

gqi; j ¼
Xa
p¼1

gi;pqp; j
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and

hqi; j ¼
Xb
q¼1

qi;qhj;q;

where the bar denotes the entries in the inverse matrix. These extend to an

action of H on the algebra C½qi; j� by automorphisms. This action is such that the

evaluation map ðD;cÞ 7! D � c from C½qi; j� � C½xi; j� to C½xi; j� is H-equivariant.

The same is true of the multiplication operators associated to elements of C½xi; j �,
and hence the above actions of H extend to an action on the Weyl algebra

C½xi; j ; qi; j� such that the evaluation map C½xi; j; qi; j� � C½xi; j� ! C½xi; j� is H-

equivariant.

For g A GLðaÞ, we have

g�1Pi;p ¼
Xa
s; t¼1

gs;pgi; tPt; s:

Let GLðaÞ act on Ca by the standard action, so that

gem ¼
Xa
v¼1

gv;mev;

and give C½xi; j�nCa the resulting tensor product action. For

j ¼
Xa
m¼1

jm n em A C½xi; j�nCa

we have

P � j ¼
Xa
m;n¼1

ðPm;n � jnÞn em:

This gives us all the ingredients necessary to establish the GLðaÞ-equivariance of

P. With j as above, we have

P � ðgjÞ ¼ P �
Xa
m¼1

gjm n gem

¼ P �
Xa
m; v¼1

gv;mðgjmÞn ev
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¼
Xa

m; v;n¼1

Pv;n � ðgn;mðgjmÞÞn ev

¼
Xa

m; v;n¼1

gn;mPv;n � ðgjmÞn ev

¼ g
Xa

m; v;n¼1

gn;mðg�1Pv;nÞ � jm n g�1ev

¼ g
Xa

m; v;n; s; t;u¼1

gu; vgn;mgs;ngv; tðPt; s � jmÞn eu

¼ g
Xa

m; s; t;u¼1

dsmdutðPt; s � jmÞn eu

¼ g
Xa
m;u¼1

ðPu;m � jmÞn eu

¼ gðP � jÞ:

That is, P acts GLðaÞ-equivariantly on C½xi; j�nCa.

For h A GLðbÞ we have

hPi;p ¼ Pi;p:

We make GLðbÞ act on C½xi; j�nCa by giving the second factor the trivial action.

It follows that we have

P � ðhjÞ ¼ hðP � jÞ

for all h A GLðbÞ and j A C½xi; j�nCa. That is, P also acts GLðbÞ-equivariantly
on C½xi; j�nCa.

The next step is to recall the decomposition of C½xi; j �nCa as an H-module

and describe the highest weight vectors associated to this decomposition. If D is

a Young diagram of depth at most b then we write raðDÞ and rbðDÞ for the

polynomial representations of GLðaÞ and GLðbÞ, respectively, corresponding to

D. It follows from the First Fundamental Theorem of Invariant Theory and

Pieri’s Rule that

C½xi; j�nCa G 0
ðD1;D2Þ

raðD1Þn rbðD2Þ
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as H-modules, where the sum is over pairs of Young diagrams ðD1;D2Þ such that

the depth of D2 is at most b and D1 may be obtained from D2 by adding a single

box. If ðD1;D2Þ is such a pair then it is unambiguous which box has been added

to D2 to obtain D1. The pair ðD1;D2Þ can be conveniently displayed by drawing

the Young diagram for D1 with the added box shaded. We define ðD1;D2Þ0 to be

the Young diagram obtained from D1 by deleting the added box and all boxes

above it in the diagram, and then pushing detached boxes to the left if necessary.

For example, if

ðD1;D2Þ ¼

then

ðD1;D2Þ0 ¼

:

In order to describe the highest weight vectors in C½xi; j�nCa, we begin by

defining

Yq ¼ det

x1;1 x1;2 � � � x1;q

x2;1 x2;2 � � � x2;q

..

. ..
. ..

.

xq;1 xq;2 � � � xq;q

266664
377775A C½xi; j�

for 1a qa b and

Xq ¼ det

x1;1 x1;2 � � � x1;q�1 n e1

x2;1 x2;2 � � � x2;q�1 n e2

..

. ..
. ..

. ..
.

xq;1 xq;2 � � � xq;q�1 n eq

266664
377775A C½xi; j�nCa

for 1a qa bþ 1. The determinant defining Xq is to be expanded by minors

along the last column and, taking the empty determinant to equal 1, X1 ¼ 1n e1.
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Let us fix the standard maximal tori and positive systems in GLðaÞ and GLðbÞ.
Then Yq and Xq are evidently highest weight vectors for the action of H on

C½xi; j� and C½xi; j�nCa, respectively. The weight of Yq is

$ðYqÞ ¼ ðð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
q

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
a�q

Þ; ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
q

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
b�q

ÞÞ

and the weight of Xq is

$ðXqÞ ¼ ðð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
q

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
a�q

Þ; ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
q�1

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
b�qþ1

ÞÞ:

If D is a Young diagram of depth at most b and the corresponding partition is

pðDÞ ¼ ðm1;m2; . . . ;mbÞ then we define

YðDÞ ¼ Ym1�m2

1 Ym2�m3

2 � � �Ymb�1�mb

b�1 Ymb

b :

This is a highest weight vector in C½xi; j� of weight

$ðYðDÞÞ ¼ ððpðDÞ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
a�b

Þ; pðDÞÞ:

Finally, if ðD1;D2Þ is a pair of Young diagrams of the type occurring in the

decomposition of C½xi; j�nCa and the extra box in D1 occurs in the q th row then

we define

vðD1;D2Þ ¼ YððD1;D2Þ0ÞXq:

This is a highest weight vector in C½xi; j�nCa with the weight corresponding to

the component raðD1Þn rbðD2Þ in the decomposition of C½xi; j�nCa. Thus we

have described a complete set of highest weight vector in C½xi; j�nCa.

Since the map P is H-equivariant and C½xi; j�nCa is multiplicity free as an

H-module, P acts on each component raðD1Þn rbðD2Þ by a scalar lðD1;D2Þ.
The spectrum sðPÞ of P on C½xi; j�nCa is precisely the set of the lðD1;D2Þ, and
so it remains to determine them. We have

P � vðD1;D2Þ ¼ lðD1;D2ÞvðD1;D2Þ

and this will serve to identify lðD1;D2Þ if we can compute P � vðD1;D2Þ.
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We have

Pi;p ¼
Xb
j¼1

xp; jqi; j

¼
Xb
j¼1

ð�dip þ qi; jxp; jÞ

¼ �bdip þ
Xb
j¼1

qi; jxp; j

from which it follows that

P ¼ �bIa þMN;

where

M ¼

q1;1 q1;2 � � � q1;b

q2;1 q2;2 � � � q2;b

..

. ..
. ..

.

qa;1 qa;2 � � � qa;b

2666664
3777775

and

N ¼

x1;1 x2;1 � � � xa;1

x1;2 x2;2 � � � xa;2

..

. ..
. ..

.

x1;b x2;b � � � xa;b

266664
377775:

Let ðD1;D2Þ be a pair of Young diagrams, as above, and set D ¼ ðD1;D2Þ0.
Suppose that the extra box in D1 occurs in the q th row. Let Ci be the signed

cofactor of ei in Xq so

Xq ¼
Xq
i¼1

Ci n ei:

For later reference, note that Cq ¼ Yq�1 provided that we define Y0 ¼ 1. We

have

Nei ¼
Xb
j¼1

xi; j n ej
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and so

NXq ¼
Xq
i¼1

Xb
j¼1

xi; jCi n ej:

We have

Mej ¼
Xa
k¼1

qk; jek

and so

MNðYðDÞXqÞ ¼
Xa
k¼1

Xq
i¼1

Xb
j¼1

qk; j � ðxi; jYðDÞCiÞn ek

¼
Xq
i¼1

Xb
j¼1

YðDÞCi n ei þ
Xa
k¼1

Xq
i¼1

Xb
j¼1

xi; jðqk; j �YðDÞÞCi n ek

þ
Xa
k¼1

Xq
i¼1

Xb
j¼1

xi; jYðDÞðqk; j � CiÞn ek:

Since we already know that MNðYðDÞXqÞ is a multiple of YðDÞXq, we need only

evaluate a single non-zero component in MNðYðDÞXqÞ in order to determine

lðD1;D2Þ. We choose the q th component, which is a sum of three terms. The

first is

Xb
j¼1

YðDÞCq ¼ bYðDÞCq ¼ bYðDÞYq�1:

The second is

Xq
i¼1

Xb
j¼1

xi; jðqq; j �YðDÞÞCi ¼
Xq
i¼1

Ci

Xb
j¼1

xi; jqq; j �YðDÞ:

The di¤erential operator applied to YðDÞ in this sum obeys the Leibniz Rule and

so we can deduce the value of the sum by first evaluating

Xb
j¼1

xi; jqq; j �Yn:

51Type A systems



If n < q then this expression is 0, because qq; j �Yn ¼ 0 for all 1a ja b. Suppose

that nb q. Then

qq; j �Yn ¼ ð�1Þqþ jYn½q; j�;

where Yn½q; j� denotes the cofactor corresponding to the ðq; jÞ-entry in the matrix

defining Yn, if 1a ja n, and qq; j �Yn ¼ 0 otherwise. Thus

Xb
j¼1

xi; jqq; j �Yn ¼
0 if n < q or i0 q;

Yn if nb q and i ¼ q;

�
since when nb q the expression is the determinant of the matrix obtained by

replacing the q th row in the determinant defining Yn by the i th row. Let pðDÞ ¼
ðm1; . . . ;mbÞ be the partition associated to D, padded with zeros if necessary.

The evaluation we have just completed, together with the Leibniz Rule, implies

that

Xb
j¼1

xi; jqq; j �YðDÞ ¼ 0

if i0 q. If i ¼ q then we instead obtain

Xb
j¼1

xq; jqq; j �YðDÞ ¼ ½ðmq �mqþ1Þ þ ðmqþ1 �mqþ2Þ þ � � � þmb�YðDÞ

¼ mqYðDÞ:

Thus the second term in the original sum is

Xq
i¼1

Xb
j¼1

xi; jðqq; j �YðDÞÞCi ¼ CqmqYðDÞ ¼ mqYðDÞYq�1:

It remains to evaluate the third term, which is

Xq
i¼1

Xb
j¼1

xi; jYðDÞðqq; j � CiÞ:

If i ¼ q then qq; j � Ci ¼ 0 for all j and so this sum is equal to

YðDÞ
Xq�1

i¼1

Xb
j¼1

xi; jqq; j � Ci:
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Let R denote the matrix whose determinant defines Xq. Then the inner sum is

Xb
j¼1

xi; jqq; j � Ci ¼
Xq�1

j¼1

xi; jð�1Þ iþqqq; j � det R½i; q�

¼
Xq�1

j¼1

xi; jð�1Þ iþqð�1Þqþ j�1 det R½i; q�½q� 1; j�

¼ �
Xq�1

j¼1

ð�1Þ iþ j
xi; jYq�1½i; j�

¼ �Yq�1;

where R½i; q� denotes the ði; qÞ-minor matrix in R, R½i; q�½q� 1; j� the ðq� 1; jÞ-
minor matrix in R½i; q�, and Yq�1½i; j� denotes the ði; jÞ-cofactor in the deter-

minant of the matrix defining Yq�1. Thus the third term is

�YðDÞ
Xq�1

i¼1

Yq�1 ¼ ð1� qÞYðDÞYq�1:

By combining these evaluations, we obtain

MNðYðDÞXqÞ ¼ ðbþmq þ 1� qÞYðDÞXq

and so

P � ðYðDÞXqÞ ¼ ð1� qþmqÞYðDÞXq:

Note that mq, the number of boxes in the q th row of D ¼ ðD1;D2Þ0, is the same

as the number of boxes in the q th row of D2. Thus we have

lðD1;D2Þ ¼ 1� qþmqðD2Þ:

To complete the proof, we must show that the possible values of lðD1;D2Þ,
as ðD1;D2Þ varies over all valid pairs of Young diagrams, coincides with the

arithmetic progression �bþN. Since 1a qa bþ 1 and mqðD2Þ A N, the possible

values of lðD1;D2Þ are all contained in this arithmetic progression. To achieve

the value �r with 1a ra b, we may take D2 to be the Young diagram with a

single box in each of the first r rows, and then obtain D1 by adding a single

box in the ðrþ 1Þst row. To achieve the value r with r A N, we may take D2 to
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be the Young diagram with r boxes in the first row, and then obtain D1 from

it by adding an additional box in the first row. This verifies that every element

of �bþN is of the form lðD1;D2Þ for some valid pair ðD1;D2Þ, as required.

r

3. Some Useful Notation and Facts

For ease of reference, it will be convenient to collect together the definitions

of various objects that will occur frequently. We shall also take the opportunity

to record various relationships enjoyed by these objects. We define

Pi;p ¼
Xb
j¼1

xmðp; jÞqmði; jÞ

for 1a i; pa a,

Qr;k ¼
Xb
j¼1

xnð j; rÞqnð j;kÞ

for 1a r; ka c, and

Dzði;kÞ ¼
Xb
j¼1

qmði; jÞqnð j;kÞ

for 1a ia a, 1a ka c. We shall call a function c harmonic when Dz � c ¼ 0

for all z A R13.

Lemma 3.1. We have

½Pi;p;Ps; t� ¼ ditPs;p � dpsPi; t

and

½Qr;k;Qs; t� ¼ dksQr; t � dtrQs;k:

Proof. Routine computation. r

Lemma 3.2. We have

½Dzði;kÞ;Ps;p� ¼ dipDzðs;kÞ
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and

½Dzði;kÞ;Qr; s� ¼ dkrDzði; sÞ:

Proof. Routine computation. r

For 1a ia a and 1a ka c, we define

W
ðzÞ
zði;kÞ ¼ Dzði;kÞ � ðz� z0Þqzði;kÞ þ

Xa
p¼1

Pi;pqzðp;kÞ;

where z0 ¼ b=2. The ðzÞ is omitted from the notation when the value of the

parameter z need not be emphasized. The W-system is the system of di¤erential

operators W
ðzÞ
z , z A R13. We define

jzði;kÞ ¼
Xb
j¼1

xmði; jÞxnð j;kÞ

for 1a ia a and 1a ka c. For parameters bðzÞ, z A R13, we define

jb ¼
Y

x AR13

j
bðxÞ
x :

Here, as usual in algebraic treatments of di¤erential equations, ca is to be inter-

preted as a symbol that satisfies the relation

qg � ca ¼ acac�1qg � c

for all g A R12 UR23 UR13. We may write ca�1 for cac�1 when this will not cause

confusion.

Lemma 3.3. We have

qmði; jÞ � jb ¼ jb
Xc
r¼1

bðzði; rÞÞj�1
zði; rÞxnð j; rÞ

and

qnð j;kÞ � jb ¼ jb
Xa
p¼1

bðzðp; kÞÞj�1
zðp;kÞxmðp; jÞ:

Proof. Routine computation. r
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Lemma 3.4. We have

Pi;p � jb ¼ jb
Xc
r¼1

bðzði; rÞÞj�1
zði; rÞjzð p; rÞ

and

Qr;k � jb ¼ jb
Xa
p¼1

bðzðp; kÞÞj�1
zðp;kÞjzðp; rÞ:

Proof. Routine computation using Lemma 3.3. r

Proposition 3.5. We have

Dzði;kÞ � ðjbcÞ ¼ jbc
Xa
p¼1

Xc
r¼1

bðzði; rÞÞbðzðp; kÞÞj�1
zði; rÞj

�1
zðp;kÞjzð p; rÞ

þ jb
Xa
p¼1

bðzðp; kÞÞj�1
zðp;kÞðPi;p � cÞ

þ jb
Xc
r¼1

bðzði; rÞÞj�1
zði; rÞðQr;k � cÞ

þ ðb� 1Þbðzði; kÞÞjbj�1
zði;kÞcþ jbDzði;kÞ � c:

Proof. The formula results from a slightly involved computation. We begin

by using Lemma 3.3 to write

qnð j;kÞ � ðjbcÞ ¼ jbqnð j;kÞ � cþ jbc
Xa
p¼1

bðzðp; kÞÞj�1
zðp;kÞxmðp; jÞ:

We then act on this identity by qmði; jÞ and use Lemma 3.3 once again to write

qmði; jÞqnð j;kÞ � ðjbcÞ ¼ 1 þ � � � þ 6 ;

a sum of six terms. Each of these terms must then be summed over 1a ja b.

The first term is 1 ¼ jbqmði; jÞqnð j;kÞ � c and these sum to jbDzði;kÞ � c. The

second is

2 ¼ jb
Xc
r¼1

bðzði; rÞÞj�1
zði; rÞxnð j; rÞqnð j;kÞ � c
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and these sum to the term involving Qr;k. Similarly, the third is

3 ¼ jb
Xa
p¼1

bðzðp; kÞÞj�1
zðp;kÞxmðp; jÞqmði; jÞ � c

and these sum to the term involving Pi;p. The fourth is

4 ¼ jbc
Xa
p¼1

bðzðp; kÞÞj�1
zðp;kÞxmðp; jÞ

 ! Xc
r¼1

bðzði; rÞÞj�1
zði; rÞxnð j; rÞ

 !

and these sum to the first term in the statement. The fifth is

5 ¼ �bðzði; kÞÞjbj�2
zði;kÞxmði; jÞxnð j;kÞc

and these sum to �bðzði; kÞÞjbj�1
zði;kÞc. The sixth is 6 ¼ bðzði; kÞÞjbj�1

zði;kÞc and

these sum to bbðzði; kÞÞjbj�1
zði;kÞc. By combining the last two sums we complete

the evaluation. r

4. Comparison with the Usual Expression for the Heisenberg

Ultrahyperbolic Operator

We have remarked above that the W-system is a generalization of the

Heisenberg Ultrahyperbolic operator, which belongs to a family of operators

that includes the Heisenberg Laplacian operator. The reader familiar with the

standard form of the Heisenberg Laplacian operator may be puzzled by this

statement, because the Heisenberg Laplacian operator, as it is usually written,

has a term involving q2=qt2. In our notation, this is q2zð1;1Þ and no such term

appears in the W-system. If it did then it would not be possible to express the

W-system in evolutionary form, as we have done. The solution to this puzzle is

that the two forms are related by a change of coordinates. In the standard

coordinates, which we refer to as Lie algebra coordinates, the W-system has a

more symmetrical appearance but second derivatives along the center appear. In

the coordinates we are using here, which we refer to as Lie group coordinates, the

symmetrical appearance is lost, but so are the second derivatives along the center.

This makes the Lie group coordinates preferable for many purposes.

To make the remarks of the previous paragraph precise, let us introduce

new coordinates ~xxmði; jÞ, ~xxnð j;kÞ, and ~xxzði;kÞ that are related to the old coordinates

by
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~xxmði; jÞ ¼ xmði; jÞ;

~xxnð j;kÞ ¼ xnð j;kÞ;

~xxzði;kÞ ¼ xzði;kÞ �
1

2
jzði;kÞ:

We use a tilde to denote other objects associated with this coordinate system

so that, for example, ~qqmði; jÞ denotes the partial derivative with respect to ~xxmði; jÞ.

With this convention, we may express the operator W
ðzÞ
zði;kÞ in terms of the new

coordinate system as follows.

Proposition 4.1. We have

W
ðzÞ
zði;kÞ ¼ ~DDzði;kÞ � z~qqzði;kÞ þ

1

2

Xa
p¼1

~PPi;p
~qqzðp;kÞ �

1

2

Xc
r¼1

~QQr;k
~qqzði; rÞ

� 1

4

Xa
p¼1

Xc
r¼1

~jjzðp; rÞ
~qqzði; rÞ~qqzðp;kÞ:

Proof. It follows from the chain rule that we have

qmði; jÞ ¼ ~qqmði; jÞ �
1

2

Xc
r¼1

~xxnð j; rÞ~qqzði; rÞ;

qnð j;kÞ ¼ ~qqnð j;kÞ �
1

2

Xa
p¼1

~xxmðp; jÞ~qqzðp;kÞ;

qzði;kÞ ¼ qzði;kÞ:

Thus

qmði; jÞqnð j;kÞ ¼ ~qqmði; jÞ~qqnð j;kÞ �
1

2

Xa
p¼1

~qqmði; jÞ~xxmðp; jÞ~qqzðp;kÞ �
1

2

Xc
r¼1

~xxnð j; rÞ~qqnð j;kÞ~qqzði; rÞ

þ 1

4

Xa
p¼1

Xc
r¼1

~xxmðp; jÞ~xxnð j; rÞ~qqzði; rÞ~qqzðp;kÞ

¼ ~qqmði; jÞ~qqnð j;kÞ �
1

2
~qqzði;kÞ �

1

2

Xa
p¼1

~xxmðp; jÞ~qqmði; jÞ~qqzðp;kÞ

� 1

2

Xc
r¼1

~xxnð j; rÞ~qqnð j;kÞ~qqzði; rÞ þ
1

4

Xa
p¼1

Xc
r¼1

~xxmðp; jÞ~xxnð j; rÞ~qqzði; rÞ~qqzðp;kÞ
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and so, recalling that z0 ¼ b=2,

Dzði;kÞ ¼ ~DDzði;kÞ � z0~qqzði;kÞ �
1

2

Xa
p¼1

~PPi;p
~qqzðp;kÞ �

1

2

Xc
r¼1

~QQr;k
~qqzði; rÞ

þ 1

4

Xa
p¼1

Xc
r¼1

~jjzðp; rÞ
~qqzði; rÞ~qqzðp;kÞ:

Similarly,

Pi;p ¼ ~PPi;p �
1

2

Xc
r¼1

~jjzðp; rÞ
~qqzði; rÞ

and so

Xa
p¼1

Pi;pqzðp;kÞ ¼
Xa
p¼1

~PPi;p
~qqzðp;kÞ �

1

2

Xa
p¼1

Xc
r¼1

~jjzðp; rÞ
~qqzði; rÞ~qqzðp;kÞ:

The stated evaluation follows on combining these. r

In order to compare the expression obtained in Proposition 4.1 with the

standard expression for the Heisenberg Ultrahyperbolic operator, we take a ¼
c ¼ 1, write t for xzð1;1Þ, xj for xmð1; jÞ, and yj for xnð j;1Þ. We obtain

WðzÞ ¼ Dþ 1

2
ðEx � EyÞ

q

qt
� 1

4
j
q2

qt2
� z

q

qt
;

where Ex and Ey are the Euler operators for the indicated sets of variables. The

standard expression for the Heisenberg Laplacian results from this by a change

of real form, taking xj and yj to be complex conjugates of one another and

replacing t by
ffiffiffiffiffiffiffi
�1

p
t.

5. Conjugate Systems

To a number lb 2 and a triple ða; b; cÞ such that a; b; cb 1 and aþ bþ c ¼
l þ 1 we have associated an W-system consisting of ac di¤erential operators

depending on a parameter z. The di¤erential operators in this system live on the

group N consisting of matrices of the form

x ¼
Ia X T

0 Ib Y

0 0 Ic

0B@
1CA:
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The group N is a subgroup of SLðl þ 1Þ and this latter group has an

automorphism g 7! ~gg given by ~gg ¼ Jðg�1Þ>J�1, where > denotes the transpose

and

J ¼
0 0 Ic

0 �Ib 0

Ia 0 0

0B@
1CA:

One computes that

~xx ¼
Ic Y > ðXY � TÞ>

0 Ib X >

0 0 Ia

0B@
1CA

and so the image of N under this automorphism is the subgroup ~NN associated to

the triple ðc; b; aÞ. It is natural to expect that there is a relationship between the

W-systems associated to N and to ~NN, and this is indeed true. That it must be

so may be derived from the general theory of conformally invariant systems, but

in this section we instead establish it directly. With the convention that a tilde

denotes objects associated with ~NN, the relation between the coordinates on the

two groups is

~xxmðk; jÞ ¼ xnð j;kÞ;

~xxnð j; iÞ ¼ xmði; jÞ;

~xxzðk; iÞ ¼ jzði;kÞ � xzði;kÞ:

Proposition 5.1. We have ~WW
ðzÞ
zðk; iÞ ¼ W

ð�zÞ
zði;kÞ.

Proof. The relation between the coordinates x and ~xx given above imply

that

qmði; jÞ ¼ ~qqnð j; iÞ þ
Xc
r¼1

~xxmðr; jÞ~qqzðr; iÞ;

qnð j;kÞ ¼ ~qqmðk; jÞ þ
Xa
p¼1

~xxnð j;pÞ~qqzðk;pÞ;

qzði;kÞ ¼ �~qqzðk; iÞ:
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Thus

Dzði;kÞ ¼ ~DDzðk; iÞ þ
Xa
p¼1

Xb
j¼1

~qqnð j; iÞ~xxnð j;pÞ~qqzðk;pÞ þ
Xb
j¼1

Xc
r¼1

~xxmðr; jÞ~qqmðk; jÞ~qqzðr; iÞ

þ
Xa
p¼1

Xc
r¼1

~jjzðr;pÞ
~qqzðr; iÞ~qqzðk;pÞ

¼ ~DDzðk; iÞ þ
Xa
p¼1

Xb
j¼1

ðdip þ ~xxnð j;pÞ~qqnð j; iÞÞ~qqzðk;pÞ þ
Xc
r¼1

~PPk; r
~qqzðr; iÞ

þ
Xa
p¼1

Xc
r¼1

~jjzðr;pÞ
~qqzðr; iÞ~qqzðk;pÞ

¼ ~DDzðk; iÞ þ b~qqzðk; iÞ þ
Xa
p¼1

Xb
j¼1

~xxnð j;pÞ~qqnð j; iÞ~qqzðk;pÞ þ
Xc
r¼1

~PPk; r
~qqzðr; iÞ

þ
Xa
p¼1

Xc
r¼1

~jjzðr;pÞ
~qqzðr; iÞ~qqzðk;pÞ:

Now

Pi;p ¼
Xb
j¼1

xmðp; jÞqmði; jÞ

¼
Xb
j¼1

~xxnð j;pÞ ~qqnð j; iÞ þ
Xc
r¼1

~xxmðr; jÞ~qqzðr; iÞ

 !

¼
Xb
j¼1

~xxnð j;pÞ~qqnð j; iÞ þ
Xc
r¼1

~jjzðr;pÞ
~qqzðr; iÞ

and so

Xa
p¼1

Pi;pqzðp;kÞ ¼ �
Xa
p¼1

Xb
j¼1

~xxnð j;pÞ~qqnð j; iÞ~qqzðk;pÞ �
Xa
p¼1

Xc
r¼1

~jjzðr;pÞ
~qqzðr; iÞ~qqzðk;pÞ:

By adding the above evaluations, we obtain

Dzði;kÞ þ
Xa
p¼1

Pi;pqzðp;kÞ ¼ ~DDzðk; iÞ þ b~qqzðk; iÞ þ
Xc
r¼1

~PPk; r
~qqzðr; iÞ:
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Finally, recalling that z0 ¼ b=2, we have

W
ðzÞ
zði;kÞ ¼ ~DDzðk; iÞ þ b~qqzðk; iÞ þ ðz� z0Þ~qqzðk; iÞ þ

Xc
r¼1

~PPk; r
~qqzðr; iÞ

¼ ~DDzðk; iÞ þ ðzþ z0Þ~qqzðk; iÞ þ
Xc
r¼1

~PPk; r
~qqzðr; iÞ

¼ ~DDzðk; iÞ � ð�z� z0Þ~qqzðk; iÞ þ
Xc
r¼1

~PPk; r
~qqzðr; iÞ

¼ ~WW
ð�zÞ
zðk; iÞ;

as required. r

We refer to the W-systems associated with the groups N and ~NN with the

parameters z and �z, respectively, as conjugate W-systems. Proposition 5.1

implies that these systems are identical, up to a change of coordinates, and thus

that a solution to one easily yields a solution to the other.

6. Integrability of the W-System

The major goal in this section is to show that the W-system in evolutionary

form is free of integrability conditions. As with any system having this property,

we then obtain a general form for the solution with given initial conditions.

We assume in this section that z� z0 B sðF Þ so that the operator ðz� z0ÞI �F

on C½xm�nCR13 is invertible. For brevity, let w ¼ z� z0. Recall that wI � F is

a block sum of operators of the form wI � P acting on C½xm�nCa. Each of

these operators is also invertible and so we have an operator

ðwI � PÞ�1 : C½xm�nCa ! C½xm�nCa:

Note that the action of ðwI � PÞ on C½xm�nCa is locally finite and it follows

that the same is true for ðwI � PÞ�1. Since C½xm�nCa may be thought of as

the space of a-tuples of elements of C½xm�, ðwI � PÞ�1 may be identified with an

a-by-a matrix of operators on C½xm� in the usual way. We write the ði; pÞ-entry
of this matrix as ðwI � PÞyi;p. Thus ðwI � PÞyi;p is an operator from C½xm� to itself

for each i and p, and we have

Xa
s¼1

ðwI � PÞi; sðwI � PÞys;p ¼ dipI
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and

Xa
s¼1

ðwI � PÞyi; sðwI � PÞs;p ¼ dipI :

For 1a ia a and 1a ka c, we define

Vzði;kÞ ¼
Xa
s¼1

ðwI � PÞyi; sDzðs;kÞ:

Each Vzði;kÞ is an operator from C½xm; xn� to itself. In this expression, we have

extended ðwI � PÞyi;p to the operator ðwI � PÞyi;p n I on C½xm; xn�GC½xm�nC½xn�.
We shall continue to make such extensions silently in what follows.

Lemma 6.1. The evolutionary form of the W-system is

qF

qxz
¼ Vz �F

for all z A R13.

Proof. In Section 2, we wrote the W-system in vector form as

½Dz �F� ¼ ðwI � F Þ½qz �F�

and observed that

Fzði;kÞ; zðp; rÞ ¼ dkrPi;p:

This is equivalent to

Dzði;kÞ �F ¼
Xa
p¼1

Xc
r¼1

ðwI � F Þzði;kÞ; zðp; rÞqzðp; rÞ �F

¼
Xa
p¼1

Xc
r¼1

dkrðwI � PÞi;pqzðp; rÞ �F

¼
Xa
p¼1

ðwI � PÞi;pqzðp;kÞ �F:

We multiply by ðwI � PÞym; i on the left and sum over i to obtain

Vzðm;kÞ �F ¼ qzðm;kÞ �F;

as required. r
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It follows from this observation that integrability conditions for the W-system

would arise from non-zero commutators ½Vz;Vx� if there were any. Thus we next

investigate these commutators.

Lemma 6.2. We have

½Vzði;kÞ;Pm;p� ¼ dipVzðm;kÞ

for all 1a i;m; pa a and 1a ka c.

Proof. We haveXa
i2¼1

ðwI � PÞi1; i2 ½Vzði2;kÞ;Pi3; i4 �

¼
Xa
i2¼1

ðwI � PÞi1; i2Vzði2;kÞPi3; i4 �
Xa
i2¼1

ðwI � PÞi1; i2Pi3; i4Vzði2;kÞ

¼ Dzði1;kÞPi3; i4 �
Xa
i2¼1

Pi3; i4ðwI � PÞi1; i2Vzði2;kÞ �
Xa
i2¼1

½ðwI � PÞi1; i2 ;Pi3; i4 �Vzði2;kÞ

¼ Dzði1;kÞPi3; i4 � Pi3; i4Dzði1;kÞ þ
Xa
i2¼1

½Pi1; i2 ;Pi3; i4 �Vzði2;kÞ

¼ ½Dzði1;kÞ;Pi3; i4 � þ
Xa
i2¼1

ðdi1i4Pi3; i2 � di2i3Pi1; i4ÞVzði2;kÞ

¼ di1i4Dzði3;kÞ � Pi1; i4Vzði3;kÞ þ di1i4

Xa
i2¼1

Pi3; i2Vzði2;kÞ

¼ di1i4Dzði3;kÞ � Pi1; i4Vzði3;kÞ þ di1i4

Xa
i2¼1

ðP� wIÞi3; i2Vzði2;kÞ þ wdi1i4

Xa
i2¼1

di3i2Vzði2;kÞ

¼ di1i4Dzði3;kÞ � Pi1; i4Vzði3;kÞ � di1i4Dzði3;kÞ þ wdi1i4Vzði3;kÞ

¼ ðwI � PÞi1; i4Vzði3;kÞ:

Note that we have used Lemma 3.1 to evaluate ½Pi1; i2 ;Pi3; i4 � and Lemma 3.2 to

evaluate ½Dzði1;kÞ;Pi3; i4 � during this computation. We now multiply on the left by

ðwI � PÞyi5; i1 and sum over i1 to obtain

½Vzði5;kÞ;Pi3; i4 � ¼ di5i4Vzði3;kÞ:

This is the stated identity but for replacement of the subscripts. r
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Lemma 6.3. We have

½Dzði;kÞ;Vzðp; rÞ� ¼ Vzðp;kÞVzði; rÞ

for all 1a i; pa a and 1a k; ra c.

Proof. We have

Xa
i2¼1

ðwI � PÞi1; i2 ½Vzði2;k1Þ;Dzði3;k2Þ�

¼
Xa
i2¼1

ðwI � PÞi1; i2Vzði2;k1ÞDzði3;k2Þ �
Xa
i2¼1

ðwI � PÞi1; i2Dzði3;k2ÞVzði2;k1Þ

¼ Dzði1;k1ÞDzði3;k2Þ �
Xa
i2¼1

Dzði3;k2ÞðwI � PÞi1; i2Vzði2;k1Þ

�
Xa
i2¼1

½ðwI � PÞi1; i2 ;Dzði3;k2Þ�Vzði2;k1Þ

¼ Dzði1;k1ÞDzði3;k2Þ � Dzði3;k2ÞDzði1;k1Þ þ
Xa
i2¼1

½Pi1; i2 ;Dzði3;k2Þ�Vzði2;k1Þ

¼ �
Xa
i2¼1

di2i3Dzði1;k2ÞVzði2;k1Þ

¼ �Dzði1;k2ÞVzði3;k1Þ:

We have used Lemma 3.2 to evaluate ½Pi1; i2 ;Dzði3;k2Þ� during this computation.

We now multiply on the left by ðwI � PÞyi4; i1 and sum over i1 to obtain

½Vzði4;k1Þ;Dzði3;k2Þ� ¼ �Vzði4;k2ÞVzði3;k1Þ

or equivalently

½Dzði3;k2Þ;Vzði4;k1Þ� ¼ Vzði4;k2ÞVzði3;k1Þ:

This is the stated identity but for replacement of the subscripts. r

Theorem 6.4. We have

½Vzði;kÞ;Vzðp; rÞ� ¼ 0

for all 1a i; pa a and 1a k; ra c.
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Proof. We have

Xa
i2; i4¼1

ðwI � PÞi1; i2ðwI � PÞi3; i4 ½Vzði4;k1Þ;Vzði2;k2Þ�

¼
Xa

i2; i4¼1

ðwI � PÞi1; i2ðwI � PÞi3; i4Vzði4;k1ÞVzði2;k2Þ

�
Xa

i2; i4¼1

ðwI � PÞi1; i2ðwI � PÞi3; i4Vzði2;k2ÞVzði4;k1Þ

¼
Xa
i2¼1

ðwI � PÞi1; i2Dzði3;k1ÞVzði2;k2Þ

�
Xa

i2; i4¼1

ðwI � PÞi3; i4ðwI � PÞi1; i2Vzði2;k2ÞVzði4;k1Þ

�
Xa

i2; i4¼1

½ðwI � PÞi1; i2 ; ðwI � PÞi3; i4 �Vzði2;k2ÞVzði4;k1Þ

¼
Xa
i2¼1

ðwI � PÞi1; i2Dzði3;k1ÞVzði2;k2Þ �
Xa
i4¼1

ðwI � PÞi3; i4Dzði1;k2ÞVzði4;k1Þ

�
Xa

i2; i4¼1

½Pi1; i2 ;Pi3; i4 �Vzði2;k2ÞVzði4;k1Þ

¼
Xa
i2¼1

ðwI � PÞi1; i2Dzði3;k1ÞVzði2;k2Þ �
Xa
i4¼1

ðwI � PÞi3; i4Dzði1;k2ÞVzði4;k1Þ

�
Xa

i2; i4¼1

ðdi1i4Pi3; i2 � di2i3Pi1; i4ÞVzði2;k2ÞVzði4;k1Þ

¼
Xa
i2¼1

ðwI � PÞi1; i2Dzði3;k1ÞVzði2;k2Þ �
Xa
i4¼1

ðwI � PÞi3; i4Dzði1;k2ÞVzði4;k1Þ

�
Xa
i2¼1

Pi3; i2Vzði2;k2ÞVzði1;k1Þ þ
Xa
i4¼1

Pi1; i4Vzði3;k2ÞVzði4;k1Þ

¼ 1 � 2 � 3 þ 4 :
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In this computation we have used Lemma 3.1 to evaluate ½Pi1; i2 ;Pi3; i4 �. The four

boxed terms on the last line stand for the four terms in the previous line in the

obvious way.

The next step is to further simplify each of the four terms in the expression

that we have just found. We have

1 ¼
Xa
i2¼1

ðwI � PÞi1; i2Dzði3;k1ÞVzði2;k2Þ

¼
Xa
i2¼1

Dzði3;k1ÞðwI � PÞi1; i2Vzði2;k2Þ þ
Xa
i2¼1

½ðwI � PÞi1; i2 ;Dzði3;k1Þ�Vzði2;k2Þ

¼ Dzði3;k1ÞDzði1;k2Þ �
Xa
i2¼1

½Pi1; i2 ;Dzði3;k1Þ�Vzði2;k2Þ

¼ Dzði3;k1ÞDzði1;k2Þ þ
Xa
i2¼1

di2i3Dzði1;k1ÞVzði2;k2Þ

¼ Dzði3;k1ÞDzði1;k2Þ þ Dzði1;k1ÞVzði3;k2Þ:

We have used Lemma 3.2 to evaluate ½Pi1; i2 ;Dzði3;k1Þ� in this computation. Next

we have

2 ¼
Xa
i4¼1

ðwI � PÞi3; i4Dzði1;k2ÞVzði4;k1Þ

¼
Xa
i4¼1

Dzði1;k2ÞðwI � PÞi3; i4Vzði4;k1Þ þ
Xa
i4¼1

½ðwI � PÞi3; i4 ;Dzði1;k2Þ�Vzði4;k1Þ

¼ Dzði1;k2ÞDzði3;k1Þ �
Xa
i4¼1

½Pi3; i4 ;Dzði1;k2Þ�Vzði4;k1Þ

¼ Dzði1;k2ÞDzði3;k1Þ þ
Xa
i4¼1

di1i4Dzði3;k2ÞVzði4;k1Þ

¼ Dzði1;k2ÞDzði3;k1Þ þ Dzði3;k2ÞVzði1;k1Þ:

We have used Lemma 3.2 to evaluate ½Pi3; i4 ;Dzði1;k2Þ� in this computation. The

third term is
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3 ¼
Xa
i2¼1

Pi3; i2Vzði2;k2ÞVzði1;k1Þ

¼
Xa
i2¼1

ðP� wIÞi3; i2Vzði2;k2ÞVzði1;k1Þ þ w
Xa
i2¼1

di3i2Vzði2;k2ÞVzði1;k1Þ

¼ �Dzði3;k2ÞVzði1;k1Þ þ wVzði3;k2ÞVzði1;k1Þ:

Finally, the fourth term is

4 ¼
Xa
i4¼1

Pi1; i4Vzði3;k2ÞVzði4;k1Þ

¼
Xa
i4¼1

Vzði3;k2ÞPi1; i4Vzði4;k1Þ þ
Xa
i4¼1

½Pi1; i4 ;Vzði3;k2Þ�Vzði4;k1Þ

¼
Xa
i4¼1

Vzði3;k2ÞðP� wIÞi1; i4Vzði4;k1Þ

þ w
Xa
i4¼1

di1i4Vzði3;k2ÞVzði4;k1Þ �
Xa
i4¼1

di3i4Vzði1;k2ÞVzði4;k1Þ

¼ �Vzði3;k2ÞDzði1;k1Þ þ wVzði3;k2ÞVzði1;k1Þ � Vzði1;k2ÞVzði3;k1Þ:

In this computation, we have used Lemma 6.2 to evaluate ½Pi1; i4 ;Vzði3;k2Þ�.
The next step is to recombine the four term that have just been simplified.

The result is that

Xa
i2; i4¼1

ðwI � PÞi1; i2ðwI � PÞi3; i4 ½Vzði4;k1Þ;Vzði2;k2Þ�

¼ ðDzði3;k1ÞDzði1;k2Þ þ Dzði1;k1ÞVzði3;k2ÞÞ � ðDzði1;k2ÞDzði3;k1Þ þ Dzði3;k2ÞVzði1;k1ÞÞ

� ð�Dzði3;k2ÞVzði1;k1Þ þ wVzði3;k2ÞVzði1;k1ÞÞ

þ ð�Vzði3;k2ÞDzði1;k1Þ þ wVzði3;k2ÞVzði1;k1Þ � Vzði1;k2ÞVzði3;k1ÞÞ

¼ ½Dzði1;k1Þ;Vzði3;k2Þ� � Vzði1;k2ÞVzði3;k1Þ

¼ Vzði3;k1ÞVzði1;k2Þ � Vzði1;k2ÞVzði3;k1Þ

¼ ½Vzði3;k1Þ;Vzði1;k2Þ�:
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In this computation we have used Lemma 6.3 to evaluate ½Dzði1;k1Þ;Vzði3;k2Þ�. For
emphasis, we have just deduced that

Xa
i2; i4¼1

ðwI � PÞi1; i2ðwI � PÞi3; i4 ½Vzði4;k1Þ;Vzði2;k2Þ� ¼ ½Vzði3;k1Þ;Vzði1;k2Þ�:

It remains to see that this identity implies that ½Vzði3;k1Þ;Vzði1;k2Þ� ¼ 0 for all

1a i1; i3 a a and 1a k1; k2 a c.

Suppose that there are some indices i1, i3, k1, k2 such that ½Vzði3;k1Þ;Vzði1;k2Þ�
0 0. Then we may find a polynomial c A C½xm; xn� such that ½Vzði3;k1Þ;Vzði1;k2Þ� � c
0 0 for some choice of indices. Let us fix such k1 and k2 and consider the

collection of all ½Vzði3;k1Þ;Vzði1;k2Þ� � c as i1 and i3 vary between 1 and a. At least

one of these objects is non-zero. Now note that it follows from the definition

of the Vz and the usual formula for the inverse of a matrix in terms of its

classical adjoint that each ½Vzði3;k1Þ;Vzði1;k2Þ� � c lies in CðwÞ½xm; xn�, the space of

polynomials in xm and xn with coe‰cients that are rational functions of w. If

f A CðwÞ½xm; xn� is non-zero then we may write

f ¼ weyð f Þ
Xy
k¼0

ckw
�k;

where eyð f Þ A Z, ck A C½xm; xn� for all kb 0, and c0 0 0. The exponent eyð f Þ is

uniquely determined and is chosen so that

lim
w!y

w�eyð f Þ f ¼ c0

exists and is non-zero. Alternatively, eyð f Þ is the order of growth of f at y in

the w-plane. Let us consider the finite list of integers

eyð½Vzði3;k1Þ;Vzði1;k2Þ� � cÞ;

where we restrict i1 and i3 to those values for which ½Vzði3;k1Þ;Vzði1;k2Þ� � c0 0.

Note that we have

lim
w!y

w2½Vzði3;k1Þ;Vzði1;k2Þ� � c ¼ ½Dzði3;k1Þ;Dzði1;k2Þ� � c ¼ 0

and so we have

eyð½Vzði3;k1Þ;Vzði1;k2Þ� � cÞa�3
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for all allowable i1 and i3. Among all

eyð½Vzði3;k1Þ;Vzði1;k2Þ� � cÞ

on the list, let e be the largest that occurs and fix a choice of i and p so that

eyð½Vzðp;k1Þ;Vzði;k2Þ� � cÞ ¼ e:

Consider the identity

Xa
i2; i4¼1

ðwI � PÞi; i2ðwI � PÞp; i4 ½Vzði4;k1Þ;Vzði2;k2Þ� � c ¼ ½Vzðp;k1Þ;Vzði;k2Þ� � c

that follows from what was previously established. On the right-hand side, the

order of growth at y is exactly e. On the left-hand side, we have a sum of

terms each of which is of the form ðwI � PÞi; i2ðwI � PÞp; i4 ½Vzði4;k1Þ;Vzði2;k2Þ� � c.
The order of growth of each ½Vzði4;k1Þ;Vzði2;k2Þ� � c at y is no more than e. The

order of growth of ðwI � PÞi; i2ðwI � PÞp; i4 ½Vzði4;k1Þ;Vzði2;k2Þ� � c at y is no more

than the order of growth of ½Vzði4;k1Þ;Vzði2;k2Þ� � c at y if i2 0 i and i4 0 p, no

more than 1 greater if either i2 ¼ i or i4 ¼ p but not both, and exactly 2 greater

if i2 ¼ i and i4 ¼ p. In interpreting this statement, zero terms must be discarded,

but they make no contribution to the sum in any case. It follows that the order

of growth of the left-hand side at y is exactly eþ 2. This is a contradiction and

it follows that we must have ½Vz;Vx� ¼ 0 for all z; x A R13, as required. r

Recall that z B z0 þ sðFÞ is a blanket assumption in this section. We em-

phasize it in the next result for clarity of reference.

Theorem 6.5. Let c A C½½xm; xn�� be a formal power series and suppose that

z B z0 þ sðF Þ. Then the WðzÞ-system has one and only one solution F A C½½xm; xn; xz��
such that Fðxm; xn; 0Þ ¼ cðxm; xnÞ. In fact,

F ¼
Y
z AR13

expðxzVzÞ � c:

If c is a polynomial then so is F and, moreover, we have degR13
ðFÞa 1

2 degðcÞ,
where degR13

denotes the degree that arises from assigning each xz degree 1 and the

remaining variables degree 0, and deg denotes the usual degree.

Proof. Since the operator F is degree preserving, its spectrum on formal

power series coincides with its spectrum on polynomials. For the same reason,
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the fact that the operators Vz commute with one another in their action on

polynomials implies that they commute in their action on formal power series.

The facts that the IVP for the WðzÞ-system has one and only one solution and that

the solution is given by the indicated formula now follow immediately, as they

would for any system in evolutionary form with no non-trivial integrability

conditions. For the remaining statement, it su‰ces to observe that we have

degðVz � qÞa degðqÞ � 2 for any polynomial q. Thus F cannot contain any term

whose total degree in the xz-variables exceeds 1
2 degðcÞ. r

Corollary 6.6. Let c A C½½xm; xn�� be a formal power series and suppose

that z B z0 þ sðFÞ. Let Fðxm; xn; xzÞ be the solution to the WðzÞ-system with

Fðxm; xn; 0Þ ¼ cðxm; xnÞ. Then

F0ðxm; xn; xzÞ ¼ lim
w!y

Fðxm; xn;wxzÞ

exists and is the unique solution to the system

qF0

qxz
¼ Dz �F0 ðz A R13Þ;

such that F0ðxm; xn; 0Þ ¼ cðxm; xnÞ.

Proof. Given the local finiteness of the operators involved, so that no

convergence issues arise, this is a consequence of the expression for F given

in Theorem 6.5 and the observation that

lim
w!y

wVz ¼ Dz

for all z A R13. r

7. Umeda’s Adjoint Identity and the V -Operators

The V -operators that were introduced in Section 6 are, unfortunately,

awkward to compute with in most situations. In this section, we explain how a

non-commutative adjoint identity due to Umeda [9] or, more exactly, the proof

of this identity, yields a method for computing the action of the V operators

on polynomials. We continue with the notation and assumptions introduced in

Section 6. In particular, we assume that w B sðFÞ.
We begin by introducing some objects and facts associated with Umeda’s

identity. Note that we require normalizations di¤erent from those that Umeda
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used. The normalizations used here are the same as those that were used in

[7, Subsection 5.1], but the notation has been harmonized. It follows from

Lemma 3.1 that the operators Pi;p span a Lie algebra isomorphic to glðaÞ.
Note, however, that the isomorphism Pi;p 7! Ep; i A glðaÞ involves an interchange

of indices. This circumstance accounts for the need to change the normalizations.

Let

~PPðwÞ ¼ ½Pm;n � dmnðwþ a�mÞ�:

Let e1; . . . ; ea be the standard basis for Ca and define

tqðwÞ ¼
Xa
p¼1

ðPp;q � dpqwÞep:

The first observation on the path to Umeda’s formula is that we have

t1ðwþ a� 1Þ5t2ðwþ a� 2Þ5� � �5taðwÞ ¼ cdetð ~PPðwÞÞe15� � �5ea;

where

cdetðAÞ ¼
X
p

sgnðpÞApð1Þ1 � � �ApðaÞa

is the column determinant of the matrix A.

In glðaÞ, we use the Cartan subalgebra spanned by P1;1; . . . ;Pa;a and the

positive system such that Pi;p is a positive root vector if i < p. Note that, in light

of the interchange of indices noted above, this choice corresponds to the opposite

of the usual positive system in glðaÞ. In particular, the highest weight of a finite-

dimensional irreducible glðaÞ-module will have the form $ ¼ ð$1; . . . ; $aÞ with

$1 a$2 a � � �a$a. It emerges that cdetð ~PPðwÞÞ acts on the irreducible module

with highest weight $ via the scalar

cðw; $Þ ¼ ð$1 � ðwþ a� 1ÞÞð$2 � ðwþ a� 2ÞÞ � � � ð$a � wÞ:

Next we define

h1ðwÞ ¼ ð�1Þa�1
t2ðwþ a� 1Þ5� � �5taðwþ 1Þ;

hmðwÞ ¼ ð�1Þa�m
t1ðwþ a� 1Þ5� � �5tm�1ðwþ a�mþ 1Þ

5tmþ1ðwþ a�mÞ5� � �5taðwþ 1Þ;

haðwÞ ¼ t1ðwþ a� 1Þ5� � �5ta�1ðwþ 1Þ;
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where 2ama a� 1. These forms may be expressed as

hmðwÞ ¼
Xa
i¼1

ð�1Þa�i
Tm; iðwÞe15� � �5beiei5� � �5ea

for 1ama a, where the hat denotes omission. From this we obtain an a-by-a

matrix TðwÞ. Umeda’s identity [9, Proposition 2] states that

TðwÞðP� wIÞ ¼ cdetð ~PPðwÞÞIa:

A proof of this identity with our normalizations is sketched in [7, Lemma 5.3].

If c is a vector in a finite-dimensional glðaÞ-representation then there is a

canonical decomposition

c ¼
X
$

c$;

where c$ denotes the component of c in the isotypic submodule for the ir-

reducible representation with highest weight $. If 1a ka a and c A C½xm; xn�
then we define

vkðcÞ ¼
Xa
i¼1

ðDzði;kÞ � cÞei A C½xm; xn�nCa:

Suppose that h is an m-form on Ca with operator coe‰cients and v is an n-form

on Ca with polynomial coe‰cients. Then we write h5
�
v for the ðmþ nÞ-form on

Ca with polynomial coe‰cients that is obtained by taking the exterior product

of the two forms while applying the operator coe‰cients to the polynomial

coe‰cients. The bullet above the wedge is intended to emphasize the latter

operation. With this notation in place, we define Szðm;kÞðw;cÞ A C½w; xm; xn� by

hmðwÞ5
�
vkðcÞ ¼ Szðm;kÞðw;cÞe15� � �5ea

for 1ama a, 1a ka c, and c A C½xm; xn�.

Proposition 7.1. For c A C½xm; xn� we have

Vz � c ¼ �
X
$

1

cðw; $Þ ðSzðw;cÞÞ$

for all z A R13.

73Type A systems



Proof. We have

Szðm;kÞðw;cÞe15� � �5ea ¼ hmðwÞ5
�
vkðcÞ

¼
Xa
i¼1

ð�1Þa�i
Tm; iðwÞe15� � �5beiei5� � �5ea5

�
vkðcÞ

¼
Xa
i¼1

ð�1Þa�i
Tm; iðwÞe15� � �5beiei5� � �5ea5

� ðDzði;kÞ � cÞei

¼
Xa
i¼1

Tm; iðwÞDzði;kÞ � c
 !

e15� � �5ea

and so

Szðm;kÞðw;cÞ ¼
Xa
i¼1

Tm; iðwÞDzði;kÞ � c:

It follows that

Szðm;kÞðw;cÞ ¼
Xa
i1¼1

Tm; i1ðwÞDzði1;kÞ � c

¼
Xa

i1; i2¼1

Tm; i1ðwÞðwI � PÞi1; i2Vzði2;kÞ � c

¼ �
Xa
i2¼1

cdetð ~PPðwÞÞdmi2Vzði2;kÞ � c

¼ �cdetð ~PPðwÞÞVzðm;kÞ � c;

by Umeda’s adjoint identity. In turn, this gives

Szðm;kÞðw;cÞ ¼ �
X
$

cdetð ~PPðwÞÞðVzðm;kÞ � cÞ$

¼ �
X
$

cðw; $ÞðVzðm;kÞ � cÞ$

and so

ðSzðm;kÞðw;cÞÞ$ ¼ �cðw;$ÞðVzðm;kÞ � cÞ$:

This is equivalent to the stated identity. r
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We can refine the estimate on the R13-degree of F given in Theorem 6.5 by

recalling some further results about the structure of the space C½xm; xn�. Indeed,
there is an isomorphism

C½xm; xn�GC½jz�nH;

where C½jz� denotes the algebra generated by the jz and H denotes the space of

harmonic polynomials. The inverse isomorphism satisfies jb n h 7! jbh. Thus any

non-zero polynomial c A C½xm; xn� may be expressed uniquely in the form

c ¼
X
b

hbj
b;

where b runs over NR13 , hb A H, and hb ¼ 0 for all but finitely-many values of

b. Let jbj ¼
P

z AR13
bðzÞ and define degjðcÞ to be the maximum value of jbj

over all b such that hb 0 0. It is convenient to extend degj by defining

degjð0Þ ¼ �y. Since degðjzÞ ¼ 2 for all z A R13, we have degjðcÞa 1
2 degðcÞ.

For this reason, the statement of Proposition 7.3 strengthens the last statement of

Theorem 6.5.

Lemma 7.2. Let c A C½xm; xn�. Then

degjðcÞ ¼ max
$

fdegjðc$Þg:

Proof. Since c ¼
P

$ c$, it is clear that we have

degjðcÞa max
$

fdegjðc$Þg:

For the reverse inequality note that, by the Jacobson Density Theorem, for each

$ there is an element u$ A UðglðaÞÞ such that c$ ¼ u$ � c. The element u$ will

be a linear combination of monomials in the operators Pi;p. If h is a harmonic

polynomial then

Pi;p � ðjbhÞ ¼ ðPi;p � jbÞhþ jbðPi;p � hÞ:

By Lemma 3.2, Pi;p � h is harmonic. Inspection of Lemma 3.4 shows that

Pi;p � jb is a linear combination of various jg with jgj ¼ jbj. These observations

imply that

degjðPi;p � ðjbhÞÞa degjðjbhÞ:

75Type A systems



It follows that degjðPi;p � cÞa degjðcÞ and hence, inductively, that

degjðc$Þ ¼ degjðu$ � cÞa degjðcÞ:

The required conclusion follows from this. r

Proposition 7.3. Let c A C½xm; xn� and F A C½xm; xn; xz� be the unique solution

to the W-system with Fðxm; xn; 0Þ ¼ cðxm; xnÞ. Then degR13
ðFÞa degjðcÞ.

Proof. In light of Theorem 6.5, the conclusion will follow if we can show

that degjðVz � cÞa degjðcÞ � 1 for all z A R13. First consider Dz � ðjbhÞ with h

a harmonic polynomial. Inspection of Proposition 3.5 reveals that

degjðDz � ðjbhÞÞa degjðjbhÞ � 1

and it follows that degjðDz � cÞa degjðcÞ � 1 for all c. Now

Szðm;kÞðw;cÞ ¼
Xa
i¼1

Tm; iðwÞDzði;kÞ � c

with Tm; iðwÞ A C½w�nUðglðaÞÞ. It follows from this and the observation made in

the proof of Lemma 7.2 that degjðSzðw;cÞÞa degjðcÞ � 1 for all z A R13. Lemma

7.2 itself then gives degjðSzðw;cÞ$Þa degjðcÞ � 1 for all z A R13 and all weights

$. Now we apply Proposition 7.1 to conclude that degjðVz � cÞa degjðcÞ � 1

for all z A R13, as required. r

8. Examples of Radial Solutions

We call a solution Fðxm; xn; xzÞ A C½xm; xn; xz� to the W-system radial if

Fðxm; xn; 0Þ A C½j�. The purpose of this section is to illustrate some of the results

found above by giving the radial solutions to the W-system explicitly in two of

the three cases in which this is presently possible. The cases we deal with here

are those where a ¼ 1 or c ¼ 1. The third case, where b ¼ 1, will be dealt with

elsewhere, since it requires additional methods and has a number of other in-

teresting features.

We continue with the notation that was introduced in previous sections; in

particular, w ¼ z� z0. We also continue to assume that w B sðF Þ. We recall the

Lauricella hypergeometric series of type D, which is defined by

FDða; b1; . . . ; bn; g; u1; . . . ; unÞ ¼
X
m

ðaÞmþ
ðb1Þm1

� � � ðbnÞmn

ðgÞmþ
m1! � � �mn!

um:
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In this expression, the sum is over Nn, ð � Þm is the rising factorial (which is

defined inductively by ðeÞ0 ¼ 1 and ðeÞm ¼ ðeÞm�1ðeþm� 1Þ for mb 1), um is

shorthand for um1

1 � � � umn
n , and mþ is shorthand for m1 þ � � � þmn. It is well

known that this series converges at least when juij < 1 for 1a ia n. Note that

if bi A �N for 1a ia n then the series has only finitely-many non-zero terms.

First, we consider the case where a ¼ 1. Under this assumption, the first

index in mði; jÞ and in zði; kÞ becomes redundant and so we drop it. Thus we write

jb ¼ j
b1
zð1Þ � � � j

bc
zðcÞ;

where

jzðkÞ ¼
Xb
j¼1

xmð jÞxnð j;kÞ:

Theorem 8.1. Suppose that a ¼ 1 and that b A Nc. Then the unique solution

F to the WðzÞ-system with Fðxm; xn; 0Þ ¼ jb is given by

jbFD 1� b� bþ;�b1; . . . ;�bc;w� bþ þ 1;
xzð1Þ
jzð1Þ

; . . . ;
xzðcÞ
jzðcÞ

 !
where bþ ¼ b1 þ � � � þ bc.

Proof. There are c of the D-operators in this case, given by

DzðkÞ ¼
Xb
j¼1

q2

qxmð jÞqxnð j;kÞ

for 1a ka c. It follows from Proposition 3.5 that

DzðkÞ � jb ¼ bkðbþ þ b� 1Þjb�ek ;

where ek is 1 in the k th position and 0 elsewhere. There is a single P-operator in

this case and it is Em, the Euler operator in the variables xmð1Þ; . . . ; xmðcÞ. Thus

VzðkÞ ¼ ðw� EmÞ�1DzðkÞ and this leads to

VzðkÞ � jb ¼ bkðbþ þ b� 1Þ
w� bþ þ 1

jb�ek ;

which we prefer to write as

VzðkÞ � jb ¼ ð�bkÞð1� b� bþÞ
w� bþ þ 1

jb�ek
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so that we may use rising, rather than falling, factorials at the next step. Indeed,

the previous identity gives

Vm
zðkÞ � jb ¼ ð�bkÞmð1� b� bþÞm

ðw� bþ þ 1Þm
jb�mek

for mb 0 and so

expðxzðkÞVzðkÞÞ � jb ¼
Xy
m¼0

ð�bkÞmð1� b� bþÞm
ðw� bþ þ 1Þmm!

jb�mekxm
zðkÞ:

Now suppose that 1a r; ka c with r0 k. Then

expðxzðrÞVzðrÞÞ expðxzðkÞVzðkÞÞ � jb

¼
Xy
mk¼0

ð�bkÞmk
ð1� b� bþÞmk

ðw� bþ þ 1Þmk
mk!

xmk

zðkÞ expðxzðrÞVzðrÞÞ � jb�mkek

¼
Xy
mk¼0

Xy
mr¼0

ð�bkÞmk
ð1� b� bþÞmk

ðw� bþ þ 1Þmk
mk!

xmk

zðkÞ

�
ð�brÞmr

ð1� b� bþ þmkÞmr

ðw� bþ þ 1þmkÞmr
mr!

xmr

zðrÞj
b�mkek�mrer

¼
Xy
mk¼0

Xy
mr¼0

ð�bkÞmk
ð�brÞmr

ð1� b� bþÞmkþmr

ðw� bþ þ 1Þmkþmr
mk!mr!

xmk

zðkÞx
mr

zðrÞj
b�mkek�mrer :

In this computation, we have used the elementary identity ðeÞmðeþmÞn ¼ ðeÞmþn.

By proceeding in this way, we obtain

Yc
k¼1

expðxzðkÞVzðkÞÞ � jb ¼
X
m

ð�b1Þm1
� � � ð�bcÞmc

ð1� b� bþÞmþ

ðw� bþ þ 1Þmþ
m1! � � �mc!

xm
z j

b�m;

where xm
z is shorthand for xm1

zð1Þ � � � x
mc

zðcÞ. This is equivalent to the stated formula.

r

Note that the R13-degree of the solution given in Theorem 8.1 is exactly

bþ ¼ degjðjbÞ and so the inequality of Proposition 7.3 is an equality in this

case.
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Lemma 8.2. Suppose that b A Nn and g B 1� bþ þN. Then we have

FDða;�b1; . . . ;�bn; g; 1; . . . ; 1Þ ¼
ðg� aÞbþ
ðgÞbþ

:

Proof. This is an analogue of the terminating form of Gauss’ evaluation

of the Gaussian hypergeometric function at 1 (which is equivalent to the Chu-

Vandermonde identity) and may be proved in the same ways. One is to begin

with the Eulerian integral

FDða;�b1; . . . ;�bn; g; u1; . . . ; unÞ

¼ GðgÞ
GðaÞGðg� aÞ

ð1
0

ta�1ð1� tÞg�a�1ð1� u1tÞb1 � � � ð1� untÞbn dt

valid for all u1; . . . ; un under the assumption on b1; . . . ; bn made in the statement

and provided that reðgÞ > reðaÞ > 0. We substitute u1 ¼ � � � ¼ un ¼ 1, evaluate the

resulting beta integral, and then observe that both sides are rational functions

of a and g so that the identity extends to all a and g for which the denominator

does not vanish. r

We next consider the case where c ¼ 1. In this case, the second index in

nð j; kÞ and in zði; kÞ becomes redundant and so we drop it. Thus we write

jb ¼ j
b1
zð1Þ � � � j

ba
zðaÞ;

where

jzðiÞ ¼
Xb
j¼1

xmði; jÞxnð jÞ:

Theorem 8.3. Suppose that c ¼ 1, that b A Na, and that w B Z. Then the

unique solution to the WðzÞ-system that satisfies Fðxm; xn; 0Þ ¼ jb is given by

ð1� b� bþ � wÞbþ
ð�wÞbþ

jbFD

�
1� b� bþ;�b1; . . . ;�ba; 1� b� bþ � w;

1�
xzð1Þ
jzð1Þ

; . . . ; 1�
xzðaÞ
jzðaÞ

�
:
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Proof. We use the notion of conjugate W-systems that was introduced in

Section 5. An W-system with c ¼ 1 is conjugate to an W-system with a ¼ 1. The

transformation from the original system to the conjugate system is given by the

substitutions

xnð jÞ c xmð jÞ;

xmði; jÞ c xnð j; iÞ;

xzðiÞ c jzðiÞ � xzðiÞ;

z c �z

and these substitutions entail

jzðiÞ c jzðiÞ;

w c �b� w:

Note that the assumption that w B Z implies that �b� w B sðF Þ since sðFÞHZ.

It follows from Proposition 5.1 and Theorem 8.1 that

jbFD 1� b� bþ;�b1; . . . ;�ba; 1� b� bþ � w; 1�
xzð1Þ
jzð1Þ

; . . . ; 1�
xzðaÞ
jzðaÞ

 !
is a solution to W-system that we are considering. On the set where xzðiÞ ¼ 0 for

1a ia a this function takes the value

jbFDð1� b� bþ;�b1; . . . ;�ba; 1� b� bþ � w; 1; . . . ; 1Þ

and, by Lemma 8.2, this is equal to

ð�wÞbþ
ð1� b� bþ � wÞbþ

jb:

Note that the hypothesis that w B Z is used again here, and also implies that

ð�wÞbþ 0 0. It follows that we may normalize the above solution by multiply-

ing it by ð1� b� bþ � wÞbþ=ð�wÞbþ to obtain the required restriction to the set

where xzðiÞ ¼ 0 for 1a ia a. r

In the case of the Heisenberg ultrahyperbolic equation both a and c are 1.

Here, Lauricella’s function FD reduces to the Gaussian hypergeometric function

and the solutions given by Theorems 8.1 and 8.3 are related by a transformation

due to Pfa¤. The reader may consult the second formula given in [1, Corollary

2.3.3] for this transformation.
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