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ON CERTAIN CONFORMALLY INVARIANT SYSTEMS
OF DIFFERENTIAL EQUATIONS II: FURTHER STUDY
OF TYPE A SYSTEMS

By
Anthony C. KABLE

Abstract. Previously, several families of systems of differential
equations that generalize the Heisenberg Laplacian equations were
introduced. The study of one of these families is continued here. It
is shown that the systems in this family are free of integrability
conditions provided that a parameter appearing in the system avoids
a certain set of bad values, which is explicitly determined. Properties
of polynomial solutions to the systems are investigated and special
polynomial solutions involving terminating Lauricella hypergeometric
series are given in some cases.

1. Introduction

The Heisenberg Laplacians, introduced by Folland and Stein [2] in their
study of the Kohn Laplacian and the d, complex on the Heisenberg group, have
subsequently attracted a great deal of attention. In addition to work from the
perspective of analysis of partial differential equations, these operators have also
been considered from the special-functions point of view [3], and from the point
of view of Lie theory [8]. The analogy between analysis on the Heisenberg group
and analysis on Euclidean spaces suggests that other interesting operators might
be obtained by varying the signature and, indeed, the resulting operators, which
one might reasonably call Heisenberg wave operators, have also received some
attention. From the Lie-theory perspective, this list of Heisenberg operators is still
incomplete. In that optic, varying the signature amounts to varying the real form
of the conformal group of the operator. In addition to the special unitary groups
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SU(p, q), the special linear group SL(n,R) also belongs on this list of real forms,
and there are operators corresponding to this real form also. The author named
these Heisenberg ultrahyperbolic operators, by analogy with the famous Eucli-
dean ultrahyperbolic operator studied by John [4], and investigated certain
aspects of these operators [5, 6].

Still taking the point of view of Lie theory, one might ask for an intrinsic
construction of the Heisenberg Laplacians and their relatives from the associated
conformal groups SU(p, ¢) and SL(n,R). Given this, one might then ask whether
this construction can be generalized to yield other families of operators with
analogous properties. The author took up this question in [7]. The conclusion
of this work was that there is such an intrinsic construction, that it depends on
some facts about the root system of the Lie algebra sl(n,C), and that it can
be substantially generalized provided that one is prepared to accept a system of
several operators in place of a single operator. The resulting construction yields
numerous systems of operators with conformal groups that are special linear or
special unitary groups (these are referred to as type A), several systems with
conformal groups that are special orthogonal groups (type D), and a system
with conformal group the exceptional simple Lie group E¢ (type Eg). Like the
Heisenberg Laplacians, each of these systems depends upon a single parameter,
which we denote by z rather than the conventional «. Each system has its home
on a nilpotent Lie group of class 2, which plays the role of the Heisenberg group
in the original example.

The purpose of the current work is to continue the study of the systems of
type A that was begun in [7]. The properties that we consider are algebraic in
nature and so insensitive to the real form. For this reason, we work exclusively
with the split real form, whose conformal group is a special linear group. The
systems of type A are described by a triple (a,b,c) of positive natural numbers
(in addition to the parameter z). There are ac operators in the system and they
live on the nilpotent Lie group

N = Mat(a, b) ® Mat(b, c) ® Mat(a,c)
with the operation
(X, Y, )(X", Y. Th=(X+X,Y+Y T+ T +XY').

Here Mat(m,n) denotes the space of m-by-n matrices. The center of N is Z(N) =
{0} ® {0} ® Mat(a,c) and the center is complemented by the subspace V =
Mat(a, b) @ Mat(b, c) @ {0}, which is, of course, not a subgroup. The Heisenberg
case arises when a =c¢ =1, and it is only in this case that there is a single
operator in the system.
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To explain the context for the first main result, recall that in the theory of the
Heisenberg Laplacian one obtains good properties (for example, local solvability)
provided that the parameter z does not lie in a discrete set of bad values. The
precise set of bad values varies from property to property, but is generally the
union of one or more arithmetic progressions. The property we focus on in
the first result is that a solution to the system is determined by its restriction to
the space V' defined above. For reasons that may not presently be obvious, we
think of the coordinates on Z(N) as times, so this property may be rephrased to
say that a solution to the system is determined by its initial values. We showed
in [7, Theorem 4.3] and the subsequent discussion that this property holds for
formal power series solutions if and only if z ¢ (b/2) 4+ o(F), where o(F) is the
spectrum of a certain operator. This spectrum was determined for each of the
systems constructed in [7], except for the system of type A when b < a. This case
presents a degeneracy that blocks the method used in [7] to determine o(F) when
b > a. Our first main result, Theorem 2.1, is the determination of o(F) in the
remaining case, so that this particular set of bad values becomes completely
known. We note that ¢(F) turns out always to be an arithmetic progression in
type A; this is not so in types D and Eg.

The transition from a single differential equation to a system of several
equations introduces a new issue, that of integrability conditions. The second
main result of this work, contained in Theorems 6.4 and 6.5, is that the systems
of type A are free of integrability conditions provided that the parameter z does
not lie in the bad set (b/2) + o(F).

From the perspective of Lie theory, there are two classes of solutions to
the systems we consider that are of immediate interest, namely the polynomial
solutions and the K-finite solutions. The former are insensitive to the real form
that is chosen and afford interesting modules for the complexified Lie algebra of
the conformal group. The latter depend essentially on the real form and lead to
the construction of admissible representations for the conformal group itself. We
focus here on polynomial solutions when z does not belong to the bad set. The
results described in the last two paragraphs imply that given a polynomial y on V'
there is a unique polynomial solution @ to the system on N such that @ restricts
to ¥ on V. In the Heisenberg case, it is possible to describe these polynomial
solutions explicitly in terms of Jacobi polynomials [3], and hence ultimately in
terms of the Gaussian hypergeometric series. A more structural but less explicit
description of the polynomial solutions in the Heisenberg case was given by
Koranyi [8]. His result is analogous to Maxwell’s well-known description of
the harmonic polynomials on Euclidean space and states that a certain vector in
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the module of polynomial solutions is a cyclic vector for the module, so that
all polynomial solutions may be obtained by applying the Lie algebra of the
conformal group repeatedly to this solution. The author later refined this result
somewhat [6] by showing that the module of polynomial solutions is irreducible
for most good values of z, so that every non-zero vector is a cyclic vector, and
also determining the structure of the module for the remaining values of z that
were disallowed in Koranyi’s result. For the general system of type A the
structure of the polynomial solutions is much more complicated. It is presently
unclear whether an explicit description of these solutions is going to be possible,
although it does seem likely that the structure of the module of polynomial
solutions can be understood sufficiently well to yield a Koranyi-style result as a
by-product. For the moment, we are able to exhibit some explicit polynomial
solutions to systems of type A in certain cases that directly generalize the known
solutions in the Heisenberg case. These are given in Theorems 8.1 and 8.3. They
involve terminating Lauricella Fp hypergeometric series, which reduce to ter-
minating Gaussian hypergeometric series in the Heisenberg case.

In Section 4 we explain the relation between the form of the systems of type
A that we use here and the more usual form in which the equation is written
in the Heisenberg case. The difference between the two amounts to a change of
coordinates. Although this may seem relatively trivial, choosing the coordinates
we employ here has the result that the order of the equations drops from two
to one along the center of N. This is very convenient because it allows the
system to be rewritten in evolutionary form, albeit at the cost of introducing
operators more general than differential operators into the picture. In Section 5
we present another useful coordinate change. This one relates the system of type
A with parameters (a, b, c) and z to the system of type A with parameters (c, b, a)
and —z. It is later used in the discussion of explicit polynomial solutions in
Section 8.

2. Review and Completion of Earlier Results

We begin by establishing the setting necessary to describe the systems of
differential equations that we shall study. Let / >2 and G = SL(/+ 1). Choose
a,b>1 such that a+b </ and set c=7/—a—b+ 1. Let N be the subgroup of
G consisting of all upper-triangular matrices of the form

I, X T

)CZOI[,Y,
0 0 I
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where X € Mat(a,b), Y € Mat(b,c), and T € Mat(a,c) are matrices of the indi-
cated sizes. We use the entries in x that lie in the matrices X, Y, and T as
coordinates on N. In order to make it easy to distinguish these coordinates, we
introduce the abbreviations

u(i, j) = (i,a+j) for 1 <i<a, 1<j<b,

v(j,k)=(a+ ja+b+k) for 1<j<b 1<k<c,

((i,k)=(i,a+b+k) for1<i<a, 1<k<ec

With these abbreviations, X = [x,; 5], ¥ = [x,(;»], and T = [xz; x)]. For com-
parison with [7], note that we may identify u(i, j) with the root ¢; — ¢, ; in the
standard model for the root system of G, and similarly with v(j, k) and {(i, k).
The group N is the unipotent radical of the standard parabolic subgroup Q of G
corresponding to the deleted Dynkin diagram

(@] -—-- 3%t ---- 3% --=- O
241 Oa %a+b o

with the usual positive system and numbering of the simple roots. In keeping with
the notation introduced in [7], let zo = /2 be half the distance between the two
deleted simple roots. In addition, let

Ry =A{u(i, )1 <i<a,1<j<b},
Ry ={v(,k) |1 =j<b 1 <k<c}

Rz ={{i,k)[1<si<a l<k=<c}

be the sets of roots associated with the submatrices X, Y, and T of x. For each
coordinate x, on N, let 0, be the corresponding partial derivative.

We are now ready to describe the system of partial differential operators that
we wish to study. For 1 <i<g and 1 <k <g¢, let

b
Aciy = D Outijy (-
=1

For 1 <i,p<aand 1 <k,r<c, let

b
Friao.c(p.r) = Okr D Xu(p.)Outi s
j=1
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where J is the Kronecker delta. For { € Ry3, let

Q =Ar—(z—z0)0;+ Y Frele,

CeRps

where z is a parameter. The system in question is comprised of all the operators
Q; with (€ Ry3. This is a system of ac differential equations on N.

The system Q;, { € Ry3, was first constructed in [7] in a more general context.
The general form of the systems constructed in that work may be found in [7,
Proposition 4.2] and the explicit forms of the operators A and F in the present
case are given in [7, Section 5.1]. However, the reader who consults [7] will
notice some sign differences between the expressions given there and those given
above. In [7], the proofs were written, as far as possible, in a uniform way.
This necessitated a uniform choice of model for the Lie algebras underlying
the construction, and this model does not necessarily specialize to the most
convenient model in any particular instance. In particular, the root vectors in
sl(/+1) used in [7] were the negatives of those that are usually chosen. Now
that the focus is on a single family of algebras, it was thought best to change
coordinates to restore the conventional choices. This amounts to the transfor-
mation x, — —x, and explains the sign changes noted above.

We may express the condition Qe ® =0, { € Rj3, in vector form as

[A; 0 @] = ((z — 20)] — F)[0 » @],

where F = [F;¢] is an Rj3-by-R;3 matrix of differential operators. It is desirable
to rewrite this in evolutionary form as

[0, @ @] = ((z— z0)] — F) '[A; o @]

and this will be possible provided that z — z ¢ o(F), where o(F) denotes the
spectrum of F. Of course, the appropriate definition of the spectrum will de-
pend on the context. For our present purposes, we consider the action of F
on the space Clx,] ® C*® of Rj3-tuples of polynomials in the variables x,,
1€ Rpp. Although this space has infinite dimension, the action is locally finite
and the spectrum o(F) is simply the set of eigenvalues of F. In [7, Section 5],
this set was determined in all cases except for the systems in type A with
1 <b<a. We now wish to complete this result by determining o(F) in the
remaining cases. For clarity, note that we take the natural numbers N to in-
clude 0.
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THEOREM 2.1. We have

[ —(@a-1)+N if b>a,
G@)_{—b+N if b<a.

ProorF. The evaluation of o(F) when b >« is given in [7, Theorem 5.4].
We henceforth assume that b < a. Since the entries in F are differential operators
in the variables x, with u € Ry, we shall use the abbreviations x,; ;) = x;; and

Ou(i,j) = 0i,; for the remainder of the proof. With this abbreviation, we have

Iz

b
Feik).cpr) = Ok Y Xp,j0i -
=

It follows that if we order the {(i, k) suitably then the matrix F becomes a block
sum

F=PEPH - -EP,

where P is the a-by-a matrix of differential operators with entries

b
Pip =Y %0,
=1
and there are ¢ blocks in the block sum. Thus it suffices to determine the
spectrum of P acting on the space C[x; ;] ® C“ of a-tuples of polynomials in the
variables x; ; with 1 <i<a and 1 < j <b. Next we wish to introduce a group
action on C[x; ;] ® C* with respect to which P acts equivariantly.

The group H = GL(a) x GL(b) acts by automorphisms on the polynomial
algebra Clx; ;|. For g € GL(a) we have

a
9Xij = E 9p,iXp,j
p=1

and for h e GL(b) we have

b
hx; ;= E :xi,qhq,j-
q=1

The induced actions on the partial derivatives are

a
907 =Y 3 p0p.j
p=1
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and

b
ho; j = Z di g g,
q=1

where the bar denotes the entries in the inverse matrix. These extend to an
action of H on the algebra C[0; ;] by automorphisms. This action is such that the
evaluation map (D,y) — D ey from C[0; ;] x C[x; ;] to C[x; ;] is H-equivariant.
The same is true of the multiplication operators associated to elements of Clx; ],
and hence the above actions of H extend to an action on the Weyl algebra
Clx;;,0;;] such that the evaluation map C[x;;,d;;] x Clx;;] — Clx;;] is H-
equivariant.
For g € GL(a), we have

a
gilPlA,p = Z gsﬁpg[,ZPI,S'
s, t=1

Let GL(a) act on C? by the standard action, so that

a
gem = § Jv,mC,
v=1

and give Clx; ;] ® C“ the resulting tensor product action. For

0= Pn®eneClx,]®C

m=1
we have

a

P.(ﬂ: Z (Pn7.n.¢n)®em'

m,n=1

This gives us all the ingredients necessary to establish the GL(a)-equivariance of
P. With ¢ as above, we have

Pe(gp) =Pe> 49, ® gen

m=1

=Poe Z gu,m(g(pm) ® ey

m,v=1
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Z va” * (gn,m(g(ﬂm)) ® €y

m,v,n=1

a
= Z gn,mPv,n ° (g(pm) ey

m,v,n=1

a
=4 Z gmm(gilpv,n).(ﬂm@)gilev

m,v,n=1

a

= g Z guﬁugn,mgs,ngv,t(PI,S ° (Pm) ® eu

m,o,n, s, t,u=1

=4d Z 5sméut(Pl,x L4 ¢m) ® €y

mys, t,u=1

=9 Z(Pu,m.(pm)@)eu

m,u=1
=g(Peg).

That is, P acts GL(a)-equivariantly on Clx; ;] ® C*.
For he GL(b) we have
hP;, = P; .
We make GL(b) act on Clx; ;] ® C“ by giving the second factor the trivial action.
It follows that we have

P e (hp) = h(P e ¢)

for all e GL(b) and ¢ € C[x; ;] ® C“. That is, P also acts GL(b)-equivariantly
on Clx; ;] ® C“.

The next step is to recall the decomposition of Clx; ;] ® C* as an H-module
and describe the highest weight vectors associated to this decomposition. If D is
a Young diagram of depth at most b then we write p,(D) and p,(D) for the
polynomial representations of GL(a) and GL(b), respectively, corresponding to
D. Tt follows from the First Fundamental Theorem of Invariant Theory and
Pieri’s Rule that

Clxi;]@C"= @D p(D1) ® py(D2)
(D1, Dy)
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as H-modules, where the sum is over pairs of Young diagrams (D;, D;) such that
the depth of D; is at most b and D; may be obtained from D, by adding a single
box. If (D1, D,) is such a pair then it is unambiguous which box has been added
to D, to obtain D;. The pair (D;, D;) can be conveniently displayed by drawing
the Young diagram for D; with the added box shaded. We define (D, D;)’ to be
the Young diagram obtained from D; by deleting the added box and all boxes
above it in the diagram, and then pushing detached boxes to the left if necessary.
For example, if

(D1, Dy) =

then

(Dy,Dy) =

In order to describe the highest weight vectors in C[x; ;] ® C“, we begin by

defining
X111 X120 Xlg
X321 X202 ctt Xag
®q = det . . . € C[X,"j]
Xg,1 Xg2 0 Xggq
for 1 <¢g<b and
X1,1 X120 X1 ®ep
X21 X202 o Xa41 ®e
— . a
=, — det Clecmec
Xg1 Xg2 o Xgg-1 ®@eg

for 1 < g <b+1. The determinant defining Z, is to be expanded by minors
along the last column and, taking the empty determinant to equal 1, E; = 1 ® e;.



Type A systems 49

Let us fix the standard maximal tori and positive systems in GL(a) and GL(b).
Then ®, and Z, are evidently highest weight vectors for the action of H on
Clx; ;] and Clx; ;] ® C“, respectively. The weight of @, is

w(®q):((l,...,1,0,...,0),(1,...,1,0,...,0))
—— e — —— ——
q a—q q b—q
and the weight of &, is
Z)=((1,...,1,0,...,0),(1,...,1,0,...,0)).
w(Ey) = (( ) ( )
q a—q q—1 b—g+1

If D is a Young diagram of depth at most b and the corresponding partition is
(D) = (my,my,...,my) then we define

_ my—ni nmp—msj mp_1—nmyp mp
®(D)_®l ®2 “'®b—l ®b .

This is a highest weight vector in Clx; ;| of weight

Finally, if (D;,D;) is a pair of Young diagrams of the type occurring in the
decomposition of Clx; ;] ® C* and the extra box in D; occurs in the ¢ row then
we define

oDy, D2) = O((Dy, D2 )5,

This is a highest weight vector in C[x; ;] ® C* with the weight corresponding to
the component p,(D1) ® p,(D>) in the decomposition of Clx; ;] ® C“. Thus we
have described a complete set of highest weight vector in C[x; ;] ® C*.

Since the map P is H-equivariant and Clx; ;] ® C“ is multiplicity free as an
H-module, P acts on each component p,(D;) ® p,(D,) by a scalar A(D;, D).
The spectrum o(P) of P on Clx; ;] ® C* is precisely the set of the A(D;, D,), and
so it remains to determine them. We have

Pe U(Dl,Dz) = ﬂ(Dl, Dz)U(Dth)

and this will serve to identify A(D;,D;) if we can compute P e v(D;,D>).
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We have

b
Pip=xp;0i;
=1

b
= Z(—5m + 0i,j%p. )

J=1

b
= —bop + Y _ 3%,

J=1

from which it follows that

P=—-bl,+ MN,
where
01,1 01,2 -+ Oip
021 022 -+ 0O2p
M = )
aa 1 aa.,2 aa b
and
X|,1 X2,1 ccc Xgl
X1,2 X220 Xg2
N =
X1,p X2,b cc Xab

Let (D1, D;) be a pair of Young diagrams, as above, and set D = (D, D,)’.
Suppose that the extra box in D; occurs in the g™ row. Let C; be the signed

—

cofactor of ¢; in &, so

q
Eq: E Cl'®€,'.
i=1

For later reference, note that C, = ®,_; provided that we define ®, = 1. We

have

b
NEI‘ = E X,‘J ® Ej
Jj=1
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and so
q b
NEq = E E x,;,jC,-®ej.
i—1 j=1
We have
a
Me; =" ok jex
k=1
and so

Since we already know that MN(®(D)E,) is a multiple of ®(D)ZE,, we need only
evaluate a single non-zero component in MN(®(D)ZE,) in order to determine
(D1, D;). We choose the ¢ component, which is a sum of three terms. The
first is

b
> 0(D)C, = bO(D)C, = bO(D)O,_;.
j=1
The second is
q b q
ZZX,/OqJOG ))Ci = ZC, x,jq,o(a
i=1 j=1 i=1 j=1

The differential operator applied to ®(D) in this sum obeys the Leibniz Rule and
so we can deduce the value of the sum by first evaluating

b
) " xij0q, 0O
=
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If n < g then this expression is 0, because 0, ; ® @, =0 for all 1 < j < b. Suppose
that n > g. Then

Oq.j ® O = (=1)""704[g, ]I,

where 0,[q, j] denotes the cofactor corresponding to the (g, j)-entry in the matrix
defining ©,, if 1 < j<n, and J, ;e ®, =0 otherwise. Thus

b ; o 0 ifn<gqoris#yg,
Xi i e, = . .

21 J04.J ®, ifn>gq and i=gq,

J=

since when n > ¢ the expression is the determinant of the matrix obtained by
replacing the ¢™ row in the determinant defining ®, by the i row. Let n(D) =
(my,...,mp) be the partition associated to D, padded with zeros if necessary.
The evaluation we have just completed, together with the Leibniz Rule, implies
that

b
in_jﬁqﬁj [ ] @(D) =0
j=1

if i #¢q. If i=¢ then we instead obtain
b
> X045 0 O(D) = [(my — myi1) + (my1 — myi2) + - - + mp)O(D)

=m,0O(D).
Thus the second term in the original sum is
q
D> xij(64.0O(D)Ci = Cmy®(D) = my®(D)O,_;.
i=1 j=1
It remains to evaluate the third term, which is
q
D> % ,0(D)(2,, 0 Co).
=1 j=1
If i=gq then 0, ;e C; =0 for all j and so this sum is equal to

b
> xijdgeC

i=1 j=1

q—1
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Let R denote the matrix whose determinant defines =,. Then the inner sum is
b q—1 )
Z x,-_jaq,j [ ) Cl' = Z x,-,j(—l)”’q@q,j ° det R[l7 q]
j=1 j=1

= xi(=1)T(=1)""" det R[i,q]lg — 1, /]

where R[i,¢q| denotes the (i,q)-minor matrix in R, R[i,q][¢ — 1, /] the (¢ — 1, ))-
minor matrix in R[i,q], and ®,_;[i, j] denotes the (i, j)-cofactor in the deter-
minant of the matrix defining @,_;. Thus the third term is

q—1
—-6(D) ZG)qfl = (1= q)0(D)0,.

i1
By combining these evaluations, we obtain
MN(®(D)E,) = (b+my;+1—q)O(D)Z,
and so
Pe(O(D)E,) =(1—-g+my)0(D)E,.

Note that m,, the number of boxes in the ¢ row of D = (Dy, D,)’, is the same
as the number of boxes in the ¢ row of D,. Thus we have

/I(Dl,Dz) =1- q+m,,(D2).

To complete the proof, we must show that the possible values of A(D, D,),
as (Dj,D,) varies over all valid pairs of Young diagrams, coincides with the
arithmetic progression —b + N. Since 1 < ¢ < b+ 1 and m,(D,) € N, the possible
values of A(Dj, D;) are all contained in this arithmetic progression. To achieve
the value —r with 1 <r < b, we may take D, to be the Young diagram with a
single box in each of the first r rows, and then obtain D; by adding a single
box in the (r+1)* row. To achieve the value r with r € N, we may take D; to
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be the Young diagram with r boxes in the first row, and then obtain D; from
it by adding an additional box in the first row. This verifies that every element
of —b+ N is of the form A(D;,D,) for some valid pair (D, D), as required.

[

3. Some Useful Notation and Facts

For ease of reference, it will be convenient to collect together the definitions
of various objects that will occur frequently. We shall also take the opportunity
to record various relationships enjoyed by these objects. We define

b
Pip= Zxﬂ(p,j)a/l(i«ﬂ
=1

for 1 <i, p<a,

b
Qr,k = va(j,r)aVka)
Jj=1

for 1 <r,k <c, and

b
Ainy = D uti. (k)

J=1

for 1 <i<a, 1 <k <c. We shall call a function y harmonic when A; ey =0
for all { € Rys.

LemMA 3.1. We have

[Pi7pa Ps,t] = 5irps,p _6pspi.t
and

[Qr,ka QS. t] = 5kar,t - 5trQs,k~
PrOOF. Routine computation. O

LemMA 3.2. We have

(Atti, i), Ps,p] = OipAg(s, i)
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and

[Aciik)> Or.s] = Orre(is)-
ProOF. Routine computation. |

For 1 <i<a and 1 <k <c¢, we define
01 =ik — (2= 20004 + D Pipdip i,
p=1

where zgp = b/2. The (z) is omitted from the notation when the value of the
parameter z need not be emphasized. The Q-system is the system of differential
operators Qﬁ, { € Ry3. We define

Xu(i, /) Xv(j, k)

upqw

for 1 <i<a and 1 <k < c. For parameters f({), { € Ry3, we define

— I

CeRy3

Here, as usual in algebraic treatments of differential equations, * is to be inter-
preted as a symbol that satisfies the relation

0,0t = Y0, 0y

for all y € Rj U Ry3 U Ry3. We may write ! for Y%y~ when this will not cause
confusion.

LemMma 3.3. We have

c
a,u(i,j) d gﬂﬁ = (pﬂ Zﬂ(g(“ ”))%7(11, r)xV(./u r)
r=1

and
vk -wﬁ—¢[’2ﬁ (P2 KO 10 X))

Proor. Routine computation. |
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LEmMMA 3.4. We have

¢
Pi.,p b (pﬂ = (DﬁZﬁ(C(la r))(”(_(il.r)(o((p,r)

r=1

and
Ork o0’ =" > PP k)0 1) Pe(pr)-
p=1

ProoF. Routine computation using Lemma 3.3. O

ProrosiTION 3.5. We have

Ak ® ((ﬂﬁl//) = (/)ﬁl//z Zﬁ(f(ia ”))ﬁ(f(l%k))¢&},;')¢&};,k)¢c(p,,')

p=1 r=1

+ 0P BP0 pa) (Prp o W)
p=1

+ 0P B0y (ko ¥)
r=1
+ (b — 1B, k))?%{(i{k)'/’ + 0P Ay o 0.

Proor. The formula results from a slightly involved computation. We begin
by using Lemma 3.3 to write

Oy @ (0P) = 0P, 1) o W + 0Py Zﬁ(c(% k))(”&}a,k)xﬂ(p,j)'
p=1

We then act on this identity by J,; ; and use Lemma 3.3 once again to write

i Oty ® (@) =[]+ - +[6],

a sum of six terms. Each of these terms must then be summed over 1 < j < b.
The first term is :goﬂﬁﬂ(iﬁ,-)év(j’k) ey and these sum to goﬂAc(,)k)olﬁ. The
second is

¢
= Wﬁ Z.B(C(lv r))(”g(il, r)xv(j., f‘)aV(Lk) b l//
r=1
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and these sum to the term involving Q, ;. Similarly, the third is

. Qﬂﬂz:ﬁ (p,k ¢4p1«)xﬂ(pj>aﬂ(u> W

and these sum to the term involving P;,. The fourth is

BT D ST W [ ST ey
and these sum to the first term in the statement. The fifth is

= B RN 02 1 5uta 0¥

and these sum to —AB({(i, k))goﬁgoélk . The sixth is [6]= B(¢(i k))go/f(pé ) and
these sum to bB(¢(i, k))pP %(z, ¥ By combining the last two sums we complete
the evaluation. |

4. Comparison with the Usual Expression for the Heisenberg
Ultrahyperbolic Operator

We have remarked above that the Q-system is a generalization of the
Heisenberg Ultrahyperbolic operator, which belongs to a family of operators
that includes the Heisenberg Laplacian operator. The reader familiar with the
standard form of the Heisenberg Laplacian operator may be puzzled by this
statement, because the Heisenberg Laplacian operator, as it is usually written,
has a term involving 0?/d7%. In our notation, this is 63(1,1) and no such term
appears in the Q-system. If it did then it would not be possible to express the
Q-system in evolutionary form, as we have done. The solution to this puzzle is
that the two forms are related by a change of coordinates. In the standard
coordinates, which we refer to as Lie algebra coordinates, the Q-system has a
more symmetrical appearance but second derivatives along the center appear. In
the coordinates we are using here, which we refer to as Lie group coordinates, the
symmetrical appearance is lost, but so are the second derivatives along the center.
This makes the Lie group coordinates preferable for many purposes.

To make the remarks of the previous paragraph precise, let us introduce
new coordinates X, ), Xy(j ), and Xy k) that are related to the old coordinates
by
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Xu(i,j) = Xu(i,j)>

Xo(j,k) = Xu(j, k)

. 1
Xeli) = Xt k) — 5 Pulinky-

We use a tilde to denote other objects associated with this coordinate system
so that, for example, éﬂ@ j) denotes the partial derivative with respect to X, ).
With this convention, we may express the operator Qg(zl) X in terms of the new
coordinate system as follows.

ProrosiTiION 4.1. We have

1 -~
Q) ) = Acuiy — 20k QZP 20c(p ) = ZQ,kaz,,

Zchp,aauaapk

plr

Proor. It follows from the chain rule that we have

.
Outi.p) = Outiy) =5 D %ot Octiny
r=1
av(] k) Z Xu(p, ]

L 1. 1< .
= 0ui.)0u(0) — 5000 = 5 D Tt Ot ) O k)
p=1

1 5 ~ ~
_Ez_:xmﬁ (.0 0ci,r) 4Zmexw 61 0ctr.b)

p=1 r=
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and so, recalling that zy = b/2,

Actiy = Ag(i k) — 200¢(i,k)

l\>|>—‘

I 1<n - -
ZP Ocip k) — ZQ,,,,(ag(,-,,)
p=1 r:l
+- ZZ(ﬂzpr@g”a((pk)

p 1 r=
Similarly,
- 1 -
Pi‘p = Pi‘p - Ez(pl(p.r)ag(’ r)
r=1

and so

a a -

> Piplipi) =D Piplipn Zﬂﬂcpr 5)-

p=1 p=1 p 1 r=1
The stated evaluation follows on combining these. O

In order to compare the expression obtained in Proposition 4.1 with the
standard expression for the Heisenberg Ultrahyperbolic operator, we take a =
¢ =1, write ¢ for xz 1), x; for x, ;, and y; for x,; ). We obtain

1 G 1 * 0
=A+-(Ex—E,)——-p——z—,
)G T w
where E, and E, are the Euler operators for the indicated sets of variables. The
standard expression for the Heisenberg Laplacian results from this by a change
of real form, taking x; and y; to be complex conjugates of one another and
replacing ¢ by v—1¢.

5. Conjugate Systems

To a number / > 2 and a triple (a,b,c) such that a,b,c > 1 and a+b+c=
/+1 we have associated an Q-system consisting of ac differential operators
depending on a parameter z. The differential operators in this system live on the
group N consisting of matrices of the form

I, X T
x=|0 L Y
0 0 I
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The group N is a subgroup of SL(/+ 1) and this latter group has an
automorphism g — g given by §=J (g*I)TJ -1 where T denotes the transpose

and
0 0 I
J=10 -1, 0
1, 0 0

One computes that

I, YT (xy-1)"
X = 0 Ib XT
0 0 1,

and so the image of N under this automorphism is the subgroup N associated to
the triple (c,b,a). It is natural to expect that there is a relationship between the
Q-systems associated to N and to N, and this is indeed true. That it must be
so may be derived from the general theory of conformally invariant systems, but
in this section we instead establish it directly. With the convention that a tilde
denotes objects associated with N, the relation between the coordinates on the
two groups is

Xuk,j) = Xo(j,k)»

Xo(j,i) = Xu(i,j)

Xe(k,i) = Peiik) — Xe(ik)-
PROPOSITION 5.1.  We have Qéf}( y = Qg(f/z)-

ProoOF. The relation between the coordinates x and X given above imply
that

Outi.g) = 0wty + D, Xutr.) Oty
r=1

a
0wk = Outiey + O Folj.p)Oclhop):
p=1

(i) = —Oc(k, i)
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Thus
B a b B b c B B
AC(!‘,/():A n+t Zawy xv/p kP+ZZ)~CﬂVIa 1»/ L(r,0)
p=1 j=1 =1 r=1
+ szl’cw »
p=1 r=1
C
= Ak, + Z Z (Oip + Xoj.p) j,i))aﬁkw) + Zpk,raé(r,i)
p=l1 j= r=1
+ ZZ% (920 Octt )
p=1 r=
~ a b ~ ~
Ak1+bafk1+ Z ]pajl L(k,p +Zpkraér1
p=1 j=1
+ ZZ(& 920 Octe )
p=1 r=
Now
b
Pip = Zxﬂ(p /) Oui,j)
J=1
b 5 c B
=> % (‘%u, D+ D KOk z))
j=1 r=1
b B c B
=D %m0+ D et et
j=1 r=1
and so
a a b B 5 a c
Zpl}paé(p,k):_ Z Xo(j,p)Ov(j,1) Otk p) — ZZ% (r.0)0cr,1)
p=1 p=1 j=1 r=lr=1

By adding the above evaluations, we obtain

Acit) + D Piplcpi) = Dy + b0y + Y, Prrfciriy
p=1 r=1

61
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Finally, recalling that zp = b/2, we have

Qé? = Aé(k,i) + bég(k, yt(z— ZO)éC(k. i+ Zpk,rég(r,i>
r=1

c

= Acgriy + (24200000 + Y PrrOiri)
1

r=

as required. O

We refer to the Q-systems associated with the groups N and N with the
parameters z and —z, respectively, as conjugate Q-systems. Proposition 5.1
implies that these systems are identical, up to a change of coordinates, and thus
that a solution to one easily yields a solution to the other.

6. Integrability of the Q-System

The major goal in this section is to show that the Q-system in evolutionary
form is free of integrability conditions. As with any system having this property,
we then obtain a general form for the solution with given initial conditions.

We assume in this section that z — zy ¢ o(F) so that the operator (z —zo) — F
on C[x,] ® C® is invertible. For brevity, let w =z — z. Recall that wl — F is
a block sum of operators of the form wl — P acting on Clx,] ® C“. Each of
these operators is also invertible and so we have an operator

(wl —P)~": Cx,] ® C* — Clx,] ® C“.

Note that the action of (wl — P) on Clx,] ® C* is locally finite and it follows
that the same is true for (wl — P)"'. Since C[x,] ® C* may be thought of as
the space of a-tuples of elements of C[x,], (w/ — P)"' may be identified with an
a-by-a matrix of operators on C[x,] in the usual way. We write the (i, p)-entry
of this matrix as (wl — P)! - Thus (wl — p) , is an operator from C[x,] to itself
for each i and p, and we have

a

> (wl = P); ((wI — P);p = opl

s=1
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and

a

Z(wl - P)ix(wl —P),, =0dpl.

s=1
For 1 <i<a and 1 <k < ¢, we define

a

Veiky = Z(WI - P ),T;SAC(S,/()'

s=1
Each Vi) is an operator from C[x,, x,] to itself. In this expression, we have

extended (wl — P):r , to the operator (wl — P); , ® I on C[x,,x,] = Clx,] ® Clx,].

i,p
We shall continue to make such extensions silently in what follows.

LemMMmA 6.1. The evolutionary form of the Q-system is

522 VC.(D
6x5

for all { € Rys.

ProoF. In Section 2, we wrote the Q-system in vector form as
[A; @ ®] = (wI — F)[0; ® D]
and observed that

Fyii i), 0(p,r) = OkrPip-
This is equivalent to

a C

Ay @ ® =D (Wl = F)i i c0pOclpr) @ P
p=1 r=1
a c
- Z Zék,(wl — P),; ,0c(pr) @ @
p=1 r=1

Q

= (WI — P)[’pag(%k) [XOR
p=1
We multiply by (wl — P)In, ; on the left and sum over i to obtain

Veimi) ® @ = Ocim,k) @ D,

as required. |
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It follows from this observation that integrability conditions for the Q-system
would arise from non-zero commutators [V, V] if there were any. Thus we next
investigate these commutators.

LEMMA 6.2. We have
[Vg (i,k)> ] 51]7V (m, k)
for all 1 <iimp<aand 1 <k <c.

Proor. We have

a

Z(WI — P),-h,-z[Vg(iz,k),Pi;‘iJ

=1
a
Z WI P 11 iy VC(lz k) i3,iq Z(WI - P)il,izpiz,l!t VC(iz,k)
=1 =1
a a
= Ay Pisis = D Piis W = Py Vet = DLW = Py s P il Vein i)
=1 =1
= Ac(i],k)Plj,l}; - lx 14 + Z i1,0p l3 iy Vé’(lz k)

= [AC(il,k)vpiz,M] + Z(éili4pi37i2 - 5izi3Pi1,i4)VC(i2,k)

a
= 0y Ae(in, k) — Piv,is Veiin k) + Oiniy Z Piy iy Veiy. k)

=1

a a
= iisActisk) = P i Vet +0iis (P = WD)y o Vet ) + Woiiy > Ssis Velin )

h=1 h=1
= 0irisAc(in, k) — Pivi Vetin, k) — Oiyis A(in, k) + Wi iy Vein, k)
= (WI — P)il,z’4 VC(i3$k)~

Note that we have used Lemma 3.1 to evaluate [P; ;, P;, ;] and Lemma 3.2 to

evaluate [Ag(il, %) Piy,i;] during this computation. We now multiply on the left by

(wl — P)l . and sum over i, to obtain

[VC(is,k) i3, 14] Oisiy V (i3,k)-

This is the stated identity but for replacement of the subscripts. O

lll
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LEMMA 6.3. We have

(At i), Vepn) = Vepo Vetin

for all 1 <i,p<aand 1 <k,;r<c

Proor. We have

a

> W = Py o [Veink)s Actin k)]

=1

a a

=Y 0T = P); Vet Detisier) = WL = P)y o Acis iy Vi)

=1 =1

a
= Actin k) Dclini) = D At k) WT = Py 1 Vi)

=1

a
= MW = P)y oy Ao i) Vi)
=1

= At k) A ko) — Dk At k) T D[P is Al k)] Vi)

=1
= ZgizisAC(il,kz) VC(iz,/fl)
=1
= =i, k) Vilis k)

We have used Lemma 3.2 to evaluate [P ;,, Ay k)] during this computation.
We now multiply on the left by (wl — P)T and sum over i; to obtain

l4,i]
Vet k) Detis k)] = = Vet ko) Vetin )
or equivalently
[Aé(is.,kz)’ Vé(imkl)] = VC(%kz)VC(kal)'

This is the stated identity but for replacement of the subscripts. O

THEOREM 6.4. We have

Vetikys Vel =0

forall 1<ijp<aand 1 <kyr<c



66 Anthony C. KABLE

Proor. We have

a

Z (WI - P)il,iz (M}I - P)i3,i4 [V£<i47kl)’ VZ(iZ-,]Q)]

iz, ia=1

a

= Z (WI - P)il‘iz(WI - P)i3,i4 VC(M,kl) V((l'zykz)

i, is=1

a
- Z (WI - P)il,iz(WI - P)i3,i4 Vé(izykz) VC<i47kl)
iy, ia=1
= (WI - P)il,izAC(i.%kl) VC(iz,kz)

12:1

a
- Z (wl — P)i;,m(WI - P)il,iz Vit ko) Vitia k)

i, is=1

a
- Z [(WI - P)ﬁ,i;’ (WI - P)i37i4]VC(i2-k2)Vf(imkl)

iy, ia=1
a a
= Z(WI - P)il,izAC(isykl) V((izykz) - Z(WI - P)i37i4AC(i1,k2) V((izt,kl)
=1 is=1
a
= > [Pis Pis il Vet k) Vitio k)
iy, ia=1
= Z(WI - P)il,izAC(isykl) V((izykz) - Z(WI - P)i37i4AC(i1~,kz) VC(iA,kl)
h=1 =1

- Z (51'11'41)1'3,1'2 - 51’21'31)1'1,1'4)[/((1'2,/&'2) VC(llt,kl)

i, ia=1
=Y W = Py, o Actis k) Velinko) = W = )i i Acti ko) Viti k)
h=I is=1

- ZP"NZ Vetiadeo) Vetir k) + ZP"IJA Vtisdeo) Vetia k)
=1 }

14:l

=[1]-[2]-[3]+[4]
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In this computation we have used Lemma 3.1 to evaluate [P; ;, P;, ;). The four
boxed terms on the last line stand for the four terms in the previous line in the
obvious way.

The next step is to further simplify each of the four terms in the expression
that we have just found. We have

=Y "W = P); o Aty i) Vi)
=1

= A k)W = Py Veinko) + W1 = Py s Actiy i) Vel ko)
ih=1 ih=1
= Aciy k) Dctin k) = D Pivsios iy k)] Ve ke
=1

= A((isﬁkl)AC(il,kz) + ZéizizAi(il,kl) VC(iz,kz)

12:1

= Ag(iy k) Ae(ir y) + Dy k) Vetis k) -

We have used Lemma 3.2 to evaluate [P; ;,, Ay i) in this computation. Next
we have

a
= Z(WI - P)i;,i4AC(i17k2) VC(iA,kl)
iy=1

a a
= Ak VT = Py Vi) + D001 = Py oy Acti i) Vi k)

is=1 is=1

a

= Acliv k) Aclin k) = D _Pissivr Acti k)] Vetis k)

iy=1

a
= Acliv k) Aclin k) + D Ot Ac(in k) Vetis k)

l4:1

= Ag(iy, ko) At ) T De(is,den) Vetin k1)

We have used Lemma 3.2 to evaluate [P ;,, A k)] in this computation. The
third term is
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- Z Pis iy Vetis, i) Vet ki)
[2:1

a

Z(P — Wl)ig,iz Vet ko) Vet by + W Zéiziz Vi) Vet k)

h=1 =1

= —Ae(iy, 1) Vetin, k) + WVelis, ko) Vet 1)

Finally, the fourth term is

a
= Pi i Vetiskn Vetiako)

is=1

= Z VC(BJQ Pi i, VC i k) T Z inigs Vi {(i3,k2) V((M ki)
= Z Vit (P = WD)y 3 Viiy. k)

+ Wzéllu V {(i3,k2) V( (ia, k1) 261314 VC (i1, k2) VC (4, k1)

l41 141

= —Ve(is, k) Dtir, ko) + WVl ko) Vetin k) = Vetin k) Vetis, k) -

In this computation, we have used Lemma 6.2 to evaluate [P; i, V(i 1,)]-
The next step is to recombine the four term that have just been simplified.
The result is that

a

S Wl =P, W= P); Witk Vetiniko)]

ir,is=1

= (At k) Actir k) + Actin ) Vetinka)) = (Biti ko) Actis, k) + Aclis, k) Vi )
= (Ao ) Vetin ) + WV i k) Vet k)
F (Vs k) Bitin k) +WVelis, k) Vet k) = Vetinko) Veik))

= Bt k)s Vetisio)) = Vet k) Vetis. k)

= Vb)) Vet ko) = Vit ko) Vetiso)

= [Vetis k) Vi o)
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In this computation we have used Lemma 6.3 to evaluate [Ay;, k), V(i k))- For
emphasis, we have just deduced that

a

Wl =P, 0 = P); o Vet Vetinko)) = Vetirkn)s Vet ko))

i, ig=1

It remains to see that this identity implies that [V, k), Ve k)] =0 for all
l<i,3<aand 1 <k ,k <c

Suppose that there are some indices i1, i3, k1, k> such that [V, ), Ve k)l
# 0. Then we may find a polynomial s € C[x,,x,] such that [V, x,), Ve k)] @ ¥
# 0 for some choice of indices. Let us fix such k; and k, and consider the
collection of all [V, k), Vei k)] ® ¥ as i1 and i3 vary between 1 and a. At least
one of these objects is non-zero. Now note that it follows from the definition
of the V; and the usual formula for the inverse of a matrix in terms of its
classical adjoint that each [V, x,), Ve ko)) ® ¥ lies in C(w)[xy, x,], the space of
polynomials in x, and x, with coefficients that are rational functions of w. If
f € C(w)[xy,x,] is non-zero then we may write

o0
[ =we) Z cw ™k,
k=0

where e, (f) € Z, ci € C[x,,x,] for all k >0, and ¢y # 0. The exponent e, (f) is
uniquely determined and is chosen so that

lim w1 = ¢
W— 00

exists and is non-zero. Alternatively, e, (f) is the order of growth of f at oo in
the w-plane. Let us consider the finite list of integers

oo ([Ve(is, k)s Vet ko)) @ W),

where we restrict iy and i3 to those values for which [V 1)), Ve k)] @ ¥ # 0.
Note that we have

Hm w2 (Ve ks Vet ko)) @ ¥ = [Actin k) Aci k)] @ =0

W— 00
and so we have

oo (Ve k) Vet k)] o 9) < =3



70 Anthony C. KABLE

for all allowable i; and i3. Among all

e ([Vetin kn)s Vet ko) @ W)

on the list, let ¢ be the largest that occurs and fix a choice of i and p so that

o (Ve ) Vi) 0 ¥) = e
Consider the identity

a

Z (wl — P),»’iz(wl — P)p,i4[VC(i4-,kl)’ Vit ko)) @V = Ve(p ko) Vetikn) | @ W

iy, ig=1

that follows from what was previously established. On the right-hand side, the
order of growth at oo is exactly e. On the left-hand side, we have a sum of
i L= Py o Veisikn)s Vitinik) ) @ W
The order of growth of each [V, k), V(i ky)] ® ¥ at oo is no more than e. The
order of growth of (wl —P), . (Wl — P),, [Vi(is k1) Vi) ® ¥ at oo is no more
than the order of growth of [V, x,), V(i ko)) @ at oo if i # i and iy # p, no

terms each of which is of the form (wl — P),

more than 1 greater if either i, =i or iy = p but not both, and exactly 2 greater
if i, =i and iy = p. In interpreting this statement, zero terms must be discarded,
but they make no contribution to the sum in any case. It follows that the order
of growth of the left-hand side at oo is exactly e + 2. This is a contradiction and
it follows that we must have [V, V] =0 for all {,& € Ry3, as required. O

Recall that z ¢ zy+ o(F) is a blanket assumption in this section. We em-
phasize it in the next result for clarity of reference.

THEOREM 6.5. Let € C[xy,x,] be a formal power series and suppose that
2 ¢ 20+ o(F). Then the Q)-system has one and only one solution ® € C[x,, x,, x;]
such that ®(xy, x,,0) = ¥(x,,x,). In fact,

o= H exp(x; V) o .
{eRi3
If \ is a polynomial then so is ® and, moreover, we have degp (®) < 1 deg(y),
where degp . denotes the degree that arises from assigning each x; degree 1 and the
remaining variables degree 0, and deg denotes the usual degree.

Proor. Since the operator F is degree preserving, its spectrum on formal
power series coincides with its spectrum on polynomials. For the same reason,
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the fact that the operators }; commute with one another in their action on
polynomials implies that they commute in their action on formal power series.
The facts that the IVP for the Q(z>-system has one and only one solution and that
the solution is given by the indicated formula now follow immediately, as they
would for any system in evolutionary form with no non-trivial integrability
conditions. For the remaining statement, it suffices to observe that we have
deg(V; e g) < deg(gq) — 2 for any polynomial ¢. Thus @ cannot contain any term
whose total degree in the x;-variables exceeds % deg(y). O

COROLLARY 6.6. Let Y € C[x,,x,] be a formal power series and suppose
that z ¢ zo+o(F). Let ®(xy,x,,x¢) be the solution to the Q) -system with
D(x,, xy,0) = Y(xy,x,). Then

Do (x4, Xy, X¢) = MII_IEO D(xy, Xy, Wxy)

exists and is the unique solution to the system

0D
T)%:Aqu)o (CERB),

such that ®g(x,, x,,0) = (x,, x,).

PrOOF. Given the local finiteness of the operators involved, so that no
convergence issues arise, this is a consequence of the expression for @ given
in Theorem 6.5 and the observation that

Iim w V( = AC

W— o0

for all { e Rys. O

7. Umeda’s Adjoint Identity and the J-Operators

The V-operators that were introduced in Section 6 are, unfortunately,
awkward to compute with in most situations. In this section, we explain how a
non-commutative adjoint identity due to Umeda [9] or, more exactly, the proof
of this identity, yields a method for computing the action of the V operators
on polynomials. We continue with the notation and assumptions introduced in
Section 6. In particular, we assume that w ¢ o(F).

We begin by introducing some objects and facts associated with Umeda’s
identity. Note that we require normalizations different from those that Umeda
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used. The normalizations used here are the same as those that were used in
[7, Subsection 5.1], but the notation has been harmonized. It follows from
Lemma 3.1 that the operators P;, span a Lie algebra isomorphic to gl(a).
Note, however, that the isomorphism P;, — E,; € gl(a) involves an interchange
of indices. This circumstance accounts for the need to change the normalizations.
Let

P(w) = [Py — Opn(Ww + a —m)].

Let ey,...,e, be the standard basis for C* and define

a

q(w) = Z(Pp,q = OpgW)ep-

p=1

The first observation on the path to Umeda’s formula is that we have

nwr+a—)An(w+a—2)A--- At (w) = cdet(P(w))er A--- Aeg,
where

cdet(4) = sen(n) A1) - - Ar(a)a

T

is the column determinant of the matrix 4.

In gl(a), we use the Cartan subalgebra spanned by P i,...,P,, and the
positive system such that P; , is a positive root vector if i < p. Note that, in light
of the interchange of indices noted above, this choice corresponds to the opposite
of the usual positive system in gl(a). In particular, the highest weight of a finite-
dimensional irreducible gl(a)-module will have the form @ = (wy,...,w,) with
w) < wy <--- < w,. It emerges that cdet(P(w)) acts on the irreducible module
with highest weight w via the scalar

cwyw)=(w —(wH+a—1)(w—(w+a—2))-(w, — w).
Next we define
mw) = (=D "nw+a—1)a-Ata(w+1),
W) =(=D"q(w+a—1)A At (w+a—m+1)

Atmrit(wt+a—m)An--At,(w+ 1),

nw)y=t(w+a—-1)A--- At (w+1),
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where 2 <m < a — 1. These forms may be expressed as

a

(W) = Z(—l)“iiTm,i(w)el A ANEGAAE

i1
for 1 <m < a, where the hat denotes omission. From this we obtain an a-by-a
matrix 7'(w). Umeda’s identity |9, Proposition 2] states that

T(w)(P — wl) = cdet(P(w))L,.

A proof of this identity with our normalizations is sketched in [7, Lemma 5.3].
If  is a vector in a finite-dimensional gl(a)-representation then there is a
canonical decomposition

v=> v,

where _ denotes the component of ¥ in the isotypic submodule for the ir-
reducible representation with highest weight w. If 1 <k <a and ¥ € Clx,, x,]
then we define

v (W) = Z(Ac(i,k) e )e; € Clx,, x,] ® C*.

i=1

Suppose that # is an m-form on C* with operator coefficients and v is an n-form
on C“ with polynomial coefficients. Then we write 7 A v for the (m + n)-form on
C“ with polynomial coefficients that is obtained by taking the exterior product
of the two forms while applying the operator coefficients to the polynomial
coeflicients. The bullet above the wedge is intended to emphasize the latter
operation. With this notation in place, we define S, i) (w,¥) € Clw, x4, x,] by

77m(W) /.\ Uk(l//) = S{(m’k)(w, lp)el NN

for l<m<a, 1 <k<c, and y € Clxy, x,].

ProposiTION 7.1.  For € C[x,,x,] we have

1
Veeyy = — gm(&”(wa V)

for all { € Rys.
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Proor. We have

Seom i (W )er A=+ Ay = 1, (w) A vi(h)

_Z ”’ mi(w)ep A - /\eAi/\---/\ea/.\vk(lp)

—Z 6’1/\ /\é}/\-~~/\ea/.\(A§(,»’k)otp)ei

= (Z Tmz AC(I k).!//)@]/\ Y4

and so

S{(m,k)(wv lﬁ) = Z m, l( )AC (i,k) lp
i=1

It follows that

a

Stom iy, 0) = Tonis (W) A i @ 0

i=1

> T W)WI = P)y Ve o ¥

it, =1

- Z cdet(P(w))Omi, Vi, k) ® ¥

—cdet(P(w)) Veimk) oW,

by Umeda’s adjoint identity. In turn, this gives

Seim iy (W, ) = = cdet(P(w)(Vm i) ® ),

= — Z C(W7 w)(V{(m,k) d W)w

and so
(S((m.k)(wﬁ l//))w = _C(W’ w)(V{(m.k) ° lﬁ)w

This is equivalent to the stated identity.
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We can refine the estimate on the Rj3;-degree of ®@ given in Theorem 6.5 by
recalling some further results about the structure of the space C[x,,x,|. Indeed,
there is an isomorphism

Clx ] = Clp ® 7.

where C[p,| denotes the algebra generated by the ¢, and #" denotes the space of
harmonic polynomials. The inverse isomorphism satisfies ¢ ® & +— @fh. Thus any
non-zero polynomial ¥ € C[x,,x,] may be expressed uniquely in the form

y=> hyt,
G

where f runs over N&3, hge A, and hg = 0 for all but finitely-many values of
B. Let |Bl = rcr, () and define deg,(¥) to be the maximum value of |f]
over all f such that /g ##0. It is convenient to extend deg, by defining
deg,(0) = —oo. Since deg(p;) =2 for all { € Ry3, we have deg,(y) < } deg(y).
For this reason, the statement of Proposition 7.3 strengthens the last statement of
Theorem 6.5.

Lemma 7.2. Let y € Clxy, x,]. Then
deg, () = max{deg, ()}
ProOOF. Since =" __, it is clear that we have

deg, () < max{deg, (y.)}.

For the reverse inequality note that, by the Jacobson Density Theorem, for each
w there is an element u,, € % (gl(a)) such that y_ = u e . The element u, will
be a linear combination of monomials in the operators P;,. If i is a harmonic
polynomial then

Pipe(pPh) = (Pi,eoP\h+ gl (P, eh).
By Lemma 3.2, P;, e/ is harmonic. Inspection of Lemma 3.4 shows that

P;,e P is a linear combination of various ¢’ with |y| = |#]. These observations
imply that

deg, (P, ® (p'h)) < deg,(¢"h).
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It follows that deg,(P;, e ) < deg,(/) and hence, inductively, that

deg, () = deg,(ux o ) < deg,(¥).

The required conclusion follows from this. O

ProposITION 7.3, Let € C[xy, x,| and ® € C[x,, x,,x¢] be the unique solution
to the Q-system with ®(xy,x,,0) = (x,,x,). Then degg (P) < deg, ().

ProoF. In light of Theorem 6.5, the conclusion will follow if we can show
that deg,(V; e ¥) < deg,(¥) — 1 for all { € Ry3. First consider A; e (pfh) with h
a harmonic polynomial. Inspection of Proposition 3.5 reveals that

deg, (A o (¢ph)) < deg, (¢"h) — 1

and it follows that deg,(A; e y/) < deg,(i)) — 1 for all y. Now

{(m, k) WW ZTmlWACzA lﬁ

with T, ;(w) € Clw] ® % (gl(a)). It follows from this and the observation made in
the proof of Lemma 7.2 that deg,(S;(w, ) < deg, () — 1 for all { € R3. Lemma
7.2 itself then gives deg,(S;(w,V),,) < deg,(¥) — 1 for all { € Rj; and all weights
@. Now we apply Proposition 7.1 to conclude that deg,(V; e y) < deg,(/) — 1
for all { € R3, as required. O

8. Examples of Radial Solutions

We call a solution ®(x,,x,,x¢) € Clx,,x,,x;] to the Q-system radial if
®(x,,x,,0) € Clp]. The purpose of this section is to illustrate some of the results
found above by giving the radial solutions to the Q-system explicitly in two of
the three cases in which this is presently possible. The cases we deal with here
are those where ¢ =1 or ¢ = 1. The third case, where b = 1, will be dealt with
elsewhere, since it requires additional methods and has a number of other in-
teresting features.

We continue with the notation that was introduced in previous sections; in
particular, w = z — z;. We also continue to assume that w ¢ o(F). We recall the
Lauricella hypergeometric series of type D, which is defined by

FD(O(7ﬂ]7- .. ,ﬂna YUy, ... 714/1) = Z (a)’77+(ﬂl>ml — (ﬂﬂ)mn um.

— (y)m+m1!~--m,,!
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In this expression, the sum is over N”, (-), is the rising factorial (which is
defined inductively by (¢)g =1 and (¢),, = (¢),,_1(e+m—1) for m>1), u™ is
shorthand for w{" ---u)™, and m, is shorthand for my +---+m,. It is well
known that this series converges at least when |u;] < 1 for 1 <i < n. Note that
if f;€ =N for 1 <i <n then the series has only finitely-many non-zero terms.

First, we consider the case where a = 1. Under this assumption, the first
index in u(i, j) and in {(i, k) becomes redundant and so we drop it. Thus we write

_ 7
o' =0 0l

where

(HXv(j, k)

HM@

THEOREM 8.1. Suppose that a =1 and that € N¢. Then the unique solution
@ to the QB)-system with D(x,, x,,0) = ¢# is given by

X c
¢ﬂFD<1_b_ﬁ+7_ﬂ1)"'a ﬂ ﬁ++lﬁ7£>
Q) Pe(e)
where . =, +---+f..

ProOF. There are ¢ of the A-operators in this case, given by

b 62
A -
W G vt

for 1 <k <c. It follows from Proposition 3.5 that

Ay o 9" = Bi(B +b—1)p/ 4,

where e is 1 in the k" position and 0 elsewhere. There is a single P-operator in
this case and it is E,, the Euler operator in the variables x,),...,X,). Thus
Vewy = (w—E,) "' Agy and this leads to

o = BB +b—1) ohe

V;
(ORe w—p,+1

)

which we prefer to write as

( ﬂk)(l —b- ﬂ+) [i’ ek

Van e o’ = g
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so that we may use rising, rather than falling, factorials at the next step. Indeed,
the previous identity gives

m B _ (_ﬁk)m(l —b— ﬂ+)m S—mey
V{(k) 7 (w—=p,+1), v

for m >0 and so

.
B __ ( ﬂk) ( —b— ﬁ )m f—
exp(xew) V) @ 0 = 2;0 (v =T ) Ll

Now suppose that 1 <r k < ¢ with r # k. Then
exp(xz(n Vi) exp(zu Vegey) @ 97

ﬂk k -b- ﬁ—O-) K m
m, m, p—mye
(w— /ﬁ D) ! Xy(hy XP(xc) Vi) @ 97

i ( ﬂk)m/( -b _ﬁJr)mk my,

(w =By + 1), m! Ck)

(7ﬁ7)mr(l -b- ﬁ+ + mk)mr m, f—myer—mye,
(w =By + 14+ my),, m! )

= f: ZOO: ﬂk iy ﬁr) ( —b- ﬂ+)mk+mz XM\ (p/)’ myex—mye;

W - ﬁ+ )n1k+m I’}’Ik'm ! C(k) {0

In this computation, we have used the elementary identity (¢),,(e +m), = (¢),,,,-
By proceeding in this way, we obtain

( ﬁ )ml .”(_ﬁc)m((l _b_ﬂ )m+ m._fB—m
Hexp () Vewy) o 07 = ; I(W />’++1)m+mu-~mc!+ !

where x;" is shorthand for xm) -'xg'(’;). This is equivalent to the stated formula.
]

Note that the Rj3-degree of the solution given in Theorem 8.1 is exactly
B = deg(ﬂ((pﬁ) and so the inequality of Proposition 7.3 is an equality in this
case.
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Lemma 8.2. Suppose that feN" and y¢1—p, +N. Then we have

(y— “)m

FD(O‘7_ﬂl>~”a_ﬁmy;17~”71): (y)
B

+

Proor. This is an analogue of the terminating form of Gauss’ evaluation
of the Gaussian hypergeometric function at 1 (which is equivalent to the Chu-
Vandermonde identity) and may be proved in the same ways. One is to begin
with the Eulerian integral

FD(OC’ _ﬁla"'v_ﬂn7y;u17"'7un)
I'(y) Jl a—1 y—a—1 B B
=————| " (1 -2’ L—ut)” - (1 —uut)™ dt
valid for all uy,...,u, under the assumption on f,...,[, made in the statement
and provided that re(y) > re(a) > 0. We substitute u; = --- = u,, = 1, evaluate the

resulting beta integral, and then observe that both sides are rational functions
of o and y so that the identity extends to all « and y for which the denominator
does not vanish. O

We next consider the case where ¢ = 1. In this case, the second index in
v(j,k) and in {(i,k) becomes redundant and so we drop it. Thus we write

B _ P

97 =0y Py

where
b
ey = qu(i.ﬁxv(j)-
Jj=1

THEOREM 8.3. Suppose that ¢ =1, that e N and that w¢ Z. Then the
unique solution to the Q<Z)-system that satisfies ®(x,,x,,0) = o? is given by

(1—b—pB, —w)
(=w)g,

/fwoﬂFD(l—b—m,—ﬁl,...,—ﬂml—b—m—w;

1—4&1”.1—ﬁ@).
P:1) Pca)
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PrOOF. We use the notion of conjugate Q-systems that was introduced in
Section 5. An Q-system with ¢ = 1 is conjugate to an Q-system with ¢ = 1. The
transformation from the original system to the conjugate system is given by the
substitutions

Xv() ™ Xu(j)
Xu(i, j) ™ Xv(j, i)
Xe@ > Peiy) — Xl
Zoo —Z
and these substitutions entail
Pctiy > Pty
W —b —w.
Note that the assumption that w ¢ Z implies that —b — w ¢ o(F) since o(F) = Z.

It follows from Proposition 5.1 and Theorem 8.1 that

(p/’FD<1—b—/}+7—ﬂ1,...,—ﬁa,l—b—/Lr—w;l—m,...,l—m)
vc) Pc(a)

is a solution to Q-system that we are considering. On the set where x;; = 0 for
1 <i < a this function takes the value

oPEp(1=b =B —Pryes =Pl —b =B —w; ... 1)
and, by Lemma 8.2, this is equal to

(=w)g, "
(I=b—=p, —w),
Note that the hypothesis that w ¢ Z is used again here, and also implies that
(—w) g7 0. It follows that we may normalize the above solution by multiply-

ing it by (1 —b—f, —w)s /(—w), to obtain the required restriction to the set
where Xeiy =0 for 1 <i<a. O

In the case of the Heisenberg ultrahyperbolic equation both @ and ¢ are 1.
Here, Lauricella’s function Fp reduces to the Gaussian hypergeometric function
and the solutions given by Theorems 8.1 and 8.3 are related by a transformation
due to Pfaff. The reader may consult the second formula given in [1, Corollary
2.3.3] for this transformation.



(1]
(2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]

> > » >

-

Type A systems 81

References

. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and Its

Applications, vol. 71, Cambridge University Press, Cambridge, 1999.

. B. Folland and E. M. Stein, Estimates for the d, complex and analysis on the Heisenberg

group, Comm. Pure Appl. Math. 27 (1974), 429-522.

. C. Greiner and T. H. Koornwinder, Variations on the Heisenberg spherical harmonics.

Report ZW 186/83. Mathematisch Centrum, Amsterdam, 1983.

. John, The ultrahyperbolic equation with 4 independent variables, Duke Math. J. 4 (1938),

300-322.

. C. Kable, The Heisenberg ultrahyperbolic equation: the basic solutions as distributions,

Pacific J. Math. 258 (2012), 165-197.
C. Kable, The Heisenberg ultrahyperbolic equation: K-finite and polynomial solutions,
Kyoto J. Math. 52 (2012), no. 4, 839-894.

. C. Kable, On certain conformally invariant systems of differential equations, New York

J. Math. 19 (2013), 189-251.

. Koranyi, Kelvin transforms and harmonic polynomials on the Heisenberg group, J. Funct.

Anal. 49 (1982), 177-185.

. Umeda, Newton’s formula for gl,, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3169-3175.

Department of Mathematics
Oklahoma State University
Stillwater OK 74078, USA
E-mail: akable@math.okstate.edu



