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LIE ALGEBRAS ASSOCIATED WITH A STANDARD
QUADRUPLET AND PREHOMOGENEOUS
VECTOR SPACES

By

Nagatoshi SASANO

Abstract. By using the theory of Lie algebras associated with a
standard quadruplet, we can embed an arbitrary reductive pre-
homogeneous vector space with completely reducible representation
into some graded Lie algebra. The purpose of this paper is to study
properties of graded Lie algebras which correspond to the pre-
homogeneity condition of triplets. Moreover, we give another proof
of castling transformation as an application.

Introduction

Let (G,p, V) be a triplet which consists of a connected algebraic group G, a
representation p of G on a finite-dimensional vector space V' all defined over C.
We call a triplet (G,p, V) a prehomogeneous vector space (abbrev. PV) if and
only if there exists an element x € ¥ such that the orbit p(G)x = V is Zariski
dense in V. Such an element x € V' is called a generic point. For example, for any
triplet (G, p, V), it is known that a triplet (G x GL,,p ® A1,V ® C") is always
prehomogeneous for any n > m = dim V', where A; stands for the natural repre-
sentation of GL, on C". Such triplets are called trivial PVs. However, if n < m,
the triplet (G X GL,,p ® A1,V ® C") is not generally a PV. On the other hand,
if the triplet (G x GL,,p ® A1,V ®C") is a PV, it is known that a triplet
(G X GLy—p,p* @ A1, V*®C™™") is also a PV, where (p*, V*) is the dual
module of (p, V). These triplets (G x GL,,p @ A1,V ® C") and (G x GL,,_,
PFROALV*Q®C™") are called castling transform of each other (see [7,
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Definition 11, p. 39]). Now, when G is reductive, we call a PV (G,p,V) a
reductive PV. In [7], M. Sato and T. Kimura classified reductive PVs whose
representation is irreducible by using castling transformations.

The theory of PVs is closely related to the theory of Lie algebras. The
prehomogeneity condition of a triplet (G,p, V) can be expressed by the cor-
responding Lie algebra and its representation (Lie(G),dp, V), where Lie(G) is
the Lie algebra of G and dp the infinitesimal representation of p. That is, a
triplet (G,p, V) is a PV if and only if there exists an element x € ¥ such that
dp(Lie(G))x = V. This condition is useful to check the prehomogeneity of a
triplet. Moreover, we can obtain PVs from a graded semisimple Lic algebra. If we
let [= (—Bne 2 I be a finite-dimensional semisimple Lie algebra and L the adjoint
group of [, then the subgroup Ly of L which corresponds to [y acts on [;. This
representation is prehomogeneous. That is, there exists an element x € [; such that
[lo,x] =1;. In [2, 3, 4], H. Rubenthaler studied these PVs and called them PVs
of parabolic type. In other words, a PV of parabolic type is a triplet which
consists of a reductive Lie algebra and its completely reducible representation
which can be embedded into a finite-dimensional graded Lie algebra. Some
properties of PVs of parabolic type can be described by structures of Lie algebras.
For example, H. Rubenthaler classified irreducible regular PVs of parabolic type
by using subalgebras of semisimple Lie algebras which are isomorphic to sl, (see
[2, 3, 4]). However, the castling transform of a PV of parabolic type is no longer
parabolic type.

In [6], the author introduced a way to embed an arbitrary finite-dimensional
reductive Lie algebra g, its faithful and completely reducible representation (x, V)
and its dual module (z*, V*) into some graded Lie algebra. For this, we use
a non-degenerate symmetric and invariant bilinear form B on g. If the qua-
druplet (g,7, V', B) is a standard quadruplet (see Definition 1.6 or [6, Definition
1.9]), then we can construct a graded Lie algebra L(g,7,V,B) =), , Vx called
the Lie algebra associated with (g,7,V,B) and embed the above objects into
it (see Theorem 1.7 or [6, Theorem 2.11]). In general, these graded Lie algebras
are infinite-dimensional. By the way, H. Rubenthaler obtained a similar result
in [5].

It is well-known that the Lie algebra of a reductive algebraic group is a
reductive Lie algebra. Thus, by using the theory of Lie algebras associated with
a standard quadruplet, any reductive PV (G,p, V) with completely reducible
representation p can be embedded into a graded Lie algebra of the form
L(Lie(G),dp,V,B). Thus, it is expected that we can use the theory of Lie
algebras to study a reductive PV and its castling transform in a similar way to
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the theory of PVs of parabolic type. However, since we have the Lie algebra
L(Lie(G),dp, V,B) regardless whether (G,p, V) is a PV or not, it is required to
give a Lie algebraic property of L(Lie(G),dp, V,B) which corresponds to the
prehomogeneity of the triplet (G,p, V). The purpose of this paper is to answer
this problem, i.e., we shall give a necessary and sufficient condition for a
triplet (G,p, V) to be a PV by using the structure of the graded Lie algebra
L(Lie(G),dp, V,B). Moreover, we give another proof of castling transformation
as an application.

This paper consists of two sections. In section 1, we consider about the
®-map of quadruplets. First, we give the definition of ®-map (Definition 1.1) and
some examples (Example 1.2, 1.3, 1.4). Next, we give the ®-maps of a direct sum
and a tensor product of modules (Proposition 1.5). At the end of this section, we
introduce the notion of the Lie algebras associated with a standard quadruplet
(Definition 1.6 and Theorem 1.7).

In section 2, we shall define the notion of prehomogeneous quadruplet
by using ®-map. The prehomogeneity of quadruplets corresponds to the pre-
homogeneity of triplets. For this, we shall give a way to describe the pre-
homogeneity condition of (G,p, V) by using the ®-map of (Lie(G),dp,V,B)
(Theorem 2.1). Moreover, if (Lie(G),dp, V,B) is a standard quadruplet, we can
describe the prehomogeneity of (G,p, V) by the restricted bracket product
[,]: Vo1 x Vi — Vg of the graded Lie algebra L(Lie(G),dp,V,B) =P, ., Va
(Theorem 2.4). A prehomogeneous quadruplet is a quadruplet such that its
®-map satisfies the same condition.

In the remaining part of this section, we shall consider the prehomogeneity
of triplets of the form (G x GL,,p ® A1,V ® C"). Tt can be described by the
®-map of (Lie(G),dp, V,B). That is, in general, the prehomogeneity condition
of a quadruplet of the form (¢ @ gl,,7® A, V®C",B®T,), where T, is a
bilinear form on gl, (see (1.3)), can be described by the ®-map of (g,7, V', B)
(Lemma 2.7). Finally, as an application of this lemma, we shall give an-
other proof of castling transformation by using the Lie algebraic calculation
(Theorem 2.10). In particular, the correspondence of generic points of
(GXGL,,p® A, V®C") and one of (G X GLy_y,p* @ A1, V*®C™™") and
their generic isotropy subalgebras can be described by using the Lie algebraic
calculation.

Notation: We denote the space of matrices of size n x m by M (n,m;C), the
trace of a matrix 4 by Tr(4), the transpose of a matrix X by ‘X, the zero matrix
and the unit matrix of size n xn by 0, and 1,. In this paper, all objects are
defined over C.
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1 The ®-Map of a Quadruplet

Let g be a finite-dimensional reductive Lie algebra and n a representation of
g on a finite-dimensional vector space V. Moreover, we denote the dual module
of (=, V) by (n*, V*) and the pairing between V" and V* by <-,->. Now, by the
theory of Lie algebras, it is known that there exists a non-degenerate symmetric
and invariant bilinear form B on g (see [l, Chapter 1 §6.4 Proposition 5]).
Throughout this paper, we use these notation. Then we can define the following
linear map from the quadruplet (g, 7, V', B) which plays important roles in this

paper.

DeriNITION 1.1 (®-map of a quadruplet). We define a linear map @, from
V® V* to g by the following equation:

B(a, 0(v® ¢)) = {m(a)v, ) = —<v, 7" (a)¢) (L.1)

for any aeg,ve V and ¢ € V*. Since B is non-degenerate, the equation (1.1)
determines the linear map @, uniquely. We call this map @, the ®-map of
(9,7, V,B) (see [6, Definition 1.1]). Moreover, for an element ve V, we can
define a linear map ®,, from V* to g by:

Dro(4) == D2 (1 @ ) (1.2)

where ¢ € V*. We call this map ®,, the ®-map at v of (g,7, V,B).

ExaMpLE 1.2. Let (g,7, V', B) be a quadruplet (gl,, A;,C", T,), where A; is
the natural representation of gl, on the space of column vectors C" = M(n, 1;C)
and T, is a bilinear form on gl, defined by

T,(a,a') := Tr(aa") (1.3)

where a,a’ € g. Then the dual space V* can be identified with C”". The repre-
sentation A; and the pairing {-,-) are given as follows:

Af(a)g == —'a4, (1.4)
(v, ¢y = ‘v (1.5)

where aeg, ve V and ¢ € V*. Then the ®-map is given as:

D, (v ® @) = v'e. (1.6)
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ExampLE 1.3. Let (g,7, V, B) be a quadruplet (so,,A;,C", T, , Where
A is the natural representation of so, on C" = M(n,1;C). Then the dual space

S0, XS0, )

V* can be identified with C”. The representation A] and the pairing {-,-) are
given as follows:

Aj(a)¢ = ag, (1.7)
(v, ¢) == "v4 (1.8)
where aeg, veV and ¢ € VV*. Then the ®-map is given as:

1

Dp, (v ® §) =5 (v'¢ — ¢'v). (1.9)

o

ExampLE 1.4. Let (g,7,V,B) be a quadruplet (sp,,A;,C*", Ty,

5P, X3P, );

where A; is the natural representation of sp, = {X egly, |'XJ, + J,X =0,
0, 1

I ::( ;’ 0")} on C* = M(2n,1;C). Then the dual space V* can be
—n n

identified with C?. The representation A{ and the pairing <-,-) are given as
follows:

Aj(a) = ag, (1.10)
(v, $) = "vJu (1.11)

where aeg, ve V and ¢ e V*. Then the ®-map is given as:

Dp,(v® @) = —%(vt(/ﬁJ,, + ¢'vdy). (1.12)

The ®-map of a direct sum or tensor product of modules can be obtained as
follows.

PROPOSITION 1.5.  Let g be any reductive Lie algebra, n;, a; representations of
gon Viand U; (i =1,2) and B a non-degenerate symmetric and invariant bilinear
form on g. Then for quadruplets (g,m1 @ 2, V1 @ V2, B) and (g,01 ® 02, U ® Uy,
B), their ®-maps Oy @n, and Oy g4, are given as follows:

q)ﬂ1®ﬂ2((vlvvz) ® (¢17¢2)) = (I)ﬂl (Ul ® ¢l) + (I)ﬂz(vz ® ¢2)7 (113)
DOy, @0, (11 @ 12) @ (¥} @ )
=z, Yy ) @0, (ur @ Y1) + Cur, Y1 Do, (u2 @ ) (1.14)
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where vie Vi, uje U, ¢, V>, Y,e U’ and @, O, are the O-maps of the
quadruplets (ganiv I/HB) and (gvaiv UivB) (l: 172)

Proor. The dual modules of 7} ® V>, and U; ® U, can be identified with
Vi@ V) and U ® Uy respectively. The pairings between them are given as
follows:

(v1,02), (1, 42)> = o1, 41> + <v2, ¢, (1.15)
<u1 ® uZ;lpl ® lﬂ2> = <u17¢1><u27¢2>' (116)
Then, our claim can be checked by a direct calculation. |

When a quadruplet (g,7, V', B) is a standard quadruplet, its ®-map is closely
related to the bracket product of the Lie algebra associated with (g, 7, V,B) (see
[6, Definition 1.9 and Theorem 2.11]).

DErFINITION 1.6 (Standard quadruplets). If a quadruplet (g, 7z, V', B) satisfies
the following conditions, then we call it a standard quadruplet:

7 is faithful, (1.17)
7 is completely reducible, (1.18)
{veV|n(a)p=0 for all aeg}={0}. (1.19)

THeOREM 1.7 (Lie algebra associated with a standard quadruplet). For a
standard quadruplet (g,7, V', B), there exists a graded Lie algebra L(g,n,V,B) =
@nel V, called the Lie algebra associated with (g,n,V,B). This Lie algebra
satisfies that Vy, Vi, V_1 are isomorphic to g, V, V* respectively. The restriction
of the bracket product of L(g, 7, V,B) to V| x V_1 — V4 can be identified with the
®-map of (g,7,V,B).

2 Prehomogeneous Vector Spaces

2.1 Prehomogeneous Quadruplets

Recall that a triplet (G,p, V) is called a prehomogeneous vector space
(abbrev. PV) if and only if there exists an element x € ' such that p(G)x is
Zariski dense in V. In this section, we shall introduce the notion of ‘‘pre-
homogeneity” of quadruplets which corresponds to PVs. For this, we give the
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following theorem to describe the prehomogeneity of (G,p, V') by using the
®-map of a quadruplet of the form (Lie(G),dp, V,B).

THEOREM 2.1. Let G be a connected reductive algebraic group, V a finite-
dimensional vector space and p a representation of G on V. Let Lie(G) be the Lie
algebra of G and dp the infinitesimal representation of p on V. Then the triplet
(G, p, V) is prehomogeneous if and only if there exists an element x € V and a non-
degenerate symmetric and invariant bilinear form B on Lie(G) such that the ®-map
at x of the quadruplet (Lie(G),dp,V,B), denoted by ®g4, .:V* — Lie(G), is
injective.

ProoF. Assume that (G,p, V) is a PV and x is its generic point. Then it
is known that the vector subspace dp(Lie(G))x of V coincides with V (see (7,
Proposition 2, p. 36]). Let us show that the ®-map at x denoted by ®,, . is
injective. In fact, if @y, , is not injective, there exists a non-zero element ¢ € V'*
such that @4, (¢) =0 and we have

0= B(Cl, q)dp.x(¢)) = <d/)(a)xv ¢> (21)

for any a € Lie(G). This is a contradiction to the assumption that dp(Lie(G))x
= V. Thus @y, . is injective.

Conversely, suppose that there exists a non-degenerate symmetric invariant
bilinear form B on Lie(G) and an element x € 7 such that the linear map @, , is
injective. Then (G,p, V) is a PV and x is its generic point. Indeed, if x is not a
generic point, then dp(Lie(G))x is a proper subspace of V' and thus there exists
a non-zero element ¢ € V* such that 0= {dp(a)x,¢) = B(a, D) (4)) for any
a € Lie(G). Since B is non-degenerate, we have ®g4, (¢) = 0. This is a contra-
diction to the assumption that ®g, , is injective. Therefore we have dp(Lie(G))x
=V and thus x is a generic point. |

DerFINITION 2.2. Let g be a finite-dimensional reductive Lie algebra, 7 a
representation of g on a finite-dimensional vector space V' and B a non-degenerate
symmetric invariant bilinear form on g. We say that a quadruplet (g, 7, V', B) is
a prehomogeneous quadruplet if and only if there exists an element x € V' such
that @,  : V* — g is injective. We call such an element x € V' a generic point of
(g,7, V,B). A generic point x satisfies n(g)x = V.

REMARK 2.3. Note that if (g, 7, V, B) is prehomogeneous, then for any other
non-degenerate symmetric and invariant bilinear form B’ on g, (g,7, V, B') is also
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prehomogeneous with the same generic points, i.e. the prehomogeneity of a
quadruplet is independent to the choice of a bilinear form. It can be checked by
the proof of Proposition 2.1.

In particular, when a quadruplet (g, #, V/, B) is standard, its prehomogeneity
is described in terms of graded Lie algebras. We can obtain the following theorem
from Theorems 1.7 and 2.1.

THEOREM 2.4. Under the notation of Definition 2.2, we assume that
(9,7, V,B) is a standard quadruplet. Then the quadruplet (g,7,V,B) is pre-
homogeneous if and only if there exists an element x € V| such that

(ad X)|V71 Vo =T (2.2)

is injective, where ad stands for the adjoint representation of L(g,n,V,B) =
@D,z Va on itself.

To consider a PV (G,p, V) whose representation p is completely reducible,
we can assume that p is faithful without loss of generality. Then a quadruplet
(Lie(G),dp, V,B) is a standard quadruplet for any non-degenerate symmetric
invariant bilinear form B. Thus, we can say that any reductive PV with com-
pletely reducible representation can be embedded into some graded Lie algebra
which corresponds to a prehomogeneous standard quadruplet.

ExampLE 2.5. A triplet (SO,,A;,C"), where A, is the natural representation
of SO, on C" = M(n,1;C), is not a PV for any n > 3. To check this, under the
notation of Example 1.3, let us show that the quadruplet (s0,, A1, C", Thly, vso,)
is not prehomogeneous. In fact, for any column vector v € C", we have

@p,o(v) =1 (v —v'v) = 0. (2.3)

Thus we have our claim.

However, a quadruplet (gl; @ so,, 0 ® A;,C® C”, B) is prehomogeneous,
where [] is a scalar multiplication of gl; = C and B is a bilinear form defined
by:

B((a,4),(a',4")) := —ad’ +1 Tr(44") (2.4)

where a,a’ € gl;, = C and 4,4’ € sv,. In fact, identifying C ® C" with C”", the
representation [] ® A; and the map ®ga, are given as follows:
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(O®Aj)(a,A) -v=av+ Av, (2.5)
Do, (U ® ¢) = (_tv¢v Ut¢ - ¢tv)' (26)
Put vy :='(1,0,...,0). Then we have

(D ® Al)(q)\:\(@/\l,vo((ﬁ)) v = —¢ (27)

for any ¢ e V*. Thus the map ®pga,, is injective. Therefore (gl; @ so,,
O® A, C®C" B) is a prehomogeneous quadruplet.

2.2 Triplets of the Form (G x GL,,p ® A1,V ® C")

In this section, we shall consider an important theorem in the theory
of prehomogeneous vector spaces, castling transformation. We shall study triplets
of the form (G x GL,,p® A1,V ®C") by using quadruplets of the form
(®@gl,,7m®A,L,VRC",B®T,), where B@® T, is a bilinear form on g ® gl,
defined by (B® T,)((a,A),(a’,A")) .= Bla,a’) + T,(4,A") (a,a’ € g,4,4" € gl,).
To consider the prehomogeneity condition of them, we give the following
definition.

DEerFINITION 2.6. Let g be a reductive Lie algebra, m a representation of g
on a finite-dimensional vector space V, B a non-degenerate symmetric invariant
bilinear form on g. For the quadruplet (g,7z,V,B), any ne N and n-vectors
v1,...,p €V and ¢y,...,4, € V", we define vector subspaces S,

yeeny
eeey

n

> a0 @) = 0, <oty = 0

I=1

Soryon) = {(wl, o) e (VH"

for 1 <i,j< n}, (2.8)

n

> Oultr ® ¢) =0, i > =0

=1

S{t/,lw(én) = {(ul,...,un) e "

for 1 <i,j< n} (2.9)

where @, is the ®-map of (g,7, V, B).
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LEMMA 2.7. We continue to use the notation of Example 1.2 and Definition
2.6. Then a quadruplet (§® gl,,n @ A1, VQC",BD® T,) (respectively (g gl,,
" QAL V*Q®C",B®T,)) is prehomogeneous if and only if there exists n-vectors
ULy ..., Uy € V' (respectively ¢,...,¢, € V") such that S, . ) =1(0,...,0)} (re-
spectively Siy ) = {(0,...,0)}).

Proor. We prove for a quadruplet (g @ gl,,7® A, V®C",B@®T,). For a
quadruplet (@ gl,,7* @A, V*® C",B® T,), our claim can be proved by the
same way.

Let ¢; e C" be the column vector whose coefficients are all zero except the
i-th one which is equal to 1 and Ej € gl, be the n x n matrix whose coefficients
are all zero except the (i, j)-th one which is equal to 1. Then for any ve V' and
¢ e V*, we have

Drpn, (0@ €) ® (¢ ® ¢)) = (3;Px(v @ ), (v, $) Ejj) (2.10)

from Example 1.2 and Proposition 1.5 where J; is the Kronecker delta.

Suppose that (g@gl,,7® A, V®C",B®T,) is a prehomogeneous qua-
druplet and vy ®e; + -+ v, ®e, € V®C" is its generic point. Then we have
Sr,o) = 1(0,...,0)}. In fact, take an arbitrary element (Y,...,¥,) € Sq, .4
then we have:

q:)7'5®A1 (( Z Ui®ei> ®< Z l//j®€/>>
1<i<n 1<j<n

- <q>n< > uk®¢k>, > <u,<,¢_,>E,;,> =0. (2.11)

I<k<n 1<i,j<n

Therefore, we have ; ® e; +--- + ¢, ® e, = 0 and thus (y,...,¥,) = (0,...,0).

Conversely, assume that n-vectors wvy,...,v, €V satisfy Sy, . .,)=
{(0,...,0)}. Then v; ® e; + - - + v, ® ¢, is a generic point of (g, 7, V, B). In fact,
suppose that ¢, ® e; +--- + ¢, ® e, satisfies

(D’T@Al((Z Ui®ei>®< Z ¢j®ej>>:0, (2.12)
1<i<n 1<j<n

then we can obtain that (¢,...,¢,) € Sy,...,,) and thus ¢, @e; +---+ ¢, e, =
0. This completes the proof. |

.....

The following corollary is immediate.
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COROLLARY 2.8. Under the notation of Example 1.2 and Definition 2.6, if we
let n=m=dim V, then a quadruplet (@ gl,, 7@ A1,V QC",B®T,) is pre-
homogeneous. Such quadruplets correspond to triplets which are called trivial PVs
(see |7, Definition 5, p. 43]).

ExampLE 2.9. It is known that a triplet (GL; x GL3 x GLy, A1 ® A1 ® Ay,
C’®C*®C?) is a PV (see 7, Proposition 16, p. 100]). Thus the corresponding
quadruplet (g, ® gl; ® gl,Ai @A ®A,CPRCRC T ®T;® T») is pre-
homogeneous. Let us check this by using Lemma 2.7.

First, let us consider a quadruplet (g,p,V,B):= (gl; ®gly, A1 ® Ay,
CGeC e T3). The representation 7 = A; ® A; can be identified with the
representation of gl; @ gl; on the space of square matrices of size 3 defined by

(A1 ®A1)(4,B)- X :=AX + X'B (2.13)

where (4,B)eg=gl; ®gl; and X € V= M(3,3;C). Then the dual module V*
is also identified with M (3,3;C). The dual representation z*, the pairing <-,-»
between ¥ and V* and the ®-map of the quadruplet (g,7, V', B) are given by

(A1 ® A1)*(A4,B) - &= —'AE — B, (2.14)
(X, & :=Tr(X'¢), (2.15)
Dpea, (X ® &) = (X'E,'XE) (2.16)

where (4,B)eg, X eV and e V* = M(3,3;C).
Next, let us show that the following matrices

1 00 1 0 0
Xi=|0 10| Xx=]0 -1 0]ev
00 1 0 0 0

satisfy Sy, v,) = 1{(0,0)} = (V*)2. In fact, the orthogonal space (CX; + CX;)" <
V* is given by

a b e
(CX1+CX2) =X | ¢ a [ |la...,heC}. (2.17)
g h —2a
We take arbitrary elements
a; bl' €;
E=|a a fi |eCxXi+CXy)" (i=1,2).

gi hi —2a
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Then we have

Dpen (X1 ®E+XRE)

art+a c+co git+ag ar+a bi+by e +e
= bi—=by aj—ay h—h |,|a-—ca a—-a fi—/f
e N —2ay g1 hy —2ay

eg. (2.18)

Thus, by an easy calculation, we can obtain that ®p,ga, (X1 ® &+ X ® &) =0
if and only if & =&, =0e V*. Therefore we obtain that a quadruplet (gl; ®
gy gL, ATQAI ® /\1,C3 RC® Cz, T:® T; @ T») is prehomogeneous.

As an application of Lemma 2.7, we can obtain another proof of castling
transformation. For this, let us show the following theorem about quadruplets.

THEOREM 2.10 (Castling transformation). Under the notation of Example 1.2
and Definition 2.6, we let n <m=dim V. Then a quadruplet (g ® gl,,7n ® Aj,
VR®C",B®T,) is prehomogeneous if and only if a quadruplet (g ®gl,_,,
T QALV*Q@C""  B® Tyy_y) is also prehomogeneous. Moreover, if (g ® gl,,
T®A,LV®C",BOT,) is prehomogeneous (and thus (g@®gl,,_,, 7" ® Aj,
V*@ C" ", B® T,,—n) is also prehomogeneous), then for any generic point x €
VRC" of (6®@gl,,n®@AL,VRC",B@®T,) there exists a generic point y€
V*@C" " of (a®agl,_,, 7" QAL V*®C" ", B® Ty—n) such that the g-part of
the isotropy subalgebra at x denoted by g, coincides with the g-part of the isotropy
subalgebra at 'y denoted by g,.

PRrROOF. Suppose that a quadruplet (§ @ gl,,7® A1, V@ C",B@ T,) is pre-
homogeneous and take arbitrary n-vectors vy, ...,v, € V which satisfy S, )=
{(0,...,0)}. Then vectors vj,...,v, € V are linearly independent. In fact, sup-
pose that there exists scalars c¢i,...,c, €C, (c1,...,¢,) # (0,...,0) such that
civy + -+ cyv, = 0. Then, since n < m = dim V, we have a non-zero element
¢ e V* such that <v;,¢>=0 for i=1,...,n and (c14,...,c,¢) is a non-zero
element of S,
{(0,...,0)}.

Put U :=Cv; +---+ Cv, and denote the orthogonal space of U by U-~.
Then the space Ut is a (m — n)-dimensional vector subspace of V*. Take an
arbitrary basis of U+ and denote it by ¢,,...,4,_,€ V*. Then ¢,,...,¢, ,€V*

satisfy Sy, ={(0,...,0)}. In fact, suppose that (u1,...,um—n) €S , .

s Pm—n
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Then for any i,j (1 <i,j <m—n), we have

Sui ¢;) =0, (2.19)
O (11 @+ + Uy ®9,,_,) =0. (2.20)
It follows from (2.19) that uy,...,u,—, € U and thus there exist scalars ¢ ; € C

(1 <k <m—n,1<!<n) which satisfy
U = Cp 101 + -+ cxptn (1 <k <m—n). (2.21)

Then it follows from (2.20) that

> o, <u,®< > ck?/¢k>> =0. (2.22)

1<i<n l1<k<m-n

Thus we have ((Zlgkgmfn Ck, 1¢k)’ A (Zl <k<m-n Ck,"(ék)) € S(Ul-,»»~~,b‘u) =
{(0,...,0)}. Since ¢,,...,4,._, is linearly independent, we have ¢, ;=0 for

any k, [ and thus (u,...,u,) =(0,...,0). Therefore we have S , | =
{(0,...,0)} and thus (¢®gl, ,, 7" AL V*®C" ", B® T),—y) is also pre-
homogeneous. Conversely, if (@ gl,,_,,7* @A, V*Q@C" ", B® T),—y) is pre-
homogeneous, then (3@ gl,,_ () (7°)" @ A1, (V)" ® e B Ton—(m—n))
=(g®gl,, A, VR®C",B®T,) is also prehomogeneous.

Next, we put x .=, ®e;+- -+ 1, ®e, e VR®C" and y:=¢, ®ey + -+
Gyen @ em—p € V@ C"™". Let us show that we have g, = g,. A necessary and
sufficient condition for an element a € g to belong to g, is that there exists an
element 4=}, _; ., b;E; € gl, which satisfies

0=n®A)(a,A4) x

= (@@ A)(@,4)- Y u®e

I<i<n
= Z <n(a)v,~ + Z b[,'l)j) ® e;.
1<i<n 1<j<n
Therefore we have
o, ={aeg|n(a)U c U}. (2.23)
Similarly we have
gy:{aeg|n*(a)Ulc Ut} (2.24)

By an easy calculation, we can obtain g, =g,. This completes the proof. M
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