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lr-CALCULUS II

By

Yuichi Komori

Abstract. In [4], the author introduced the system lr-calculus and

stated without proof that the strong normalization theorem holds.

Here we introduce a lemma (Lemma 4.10) and use it to prove

the strong normalization theorem. While a typed l-term itself is

a derivation of the natural deduction for intuitionistic implica-

tional logic (cf. [2]), a typed lr-term itself is a derivation of the

natural deduction for classical implicational logic. Our system is

simpler than the implicational fragment of Parigot’s lm-calculus

(cf. [5]).

1 The Type Free lr-Calculus

Definition 1.1 (lr-terms). Assume to have an infinite sequence of l-

variables and an infinite sequence of r-variables. Then the linguistic expressions

called lr-terms are defined as:

1. each l-variable is a lr-term, called an atom or atomic term,

2. if M and N are lr-terms then ðMNÞ is a lr-term called an application,

3. if M is a lr-term and a is a r-variable then ðaMÞ is a lr-term called

absurd,

4. if M is a lr-term and f is a l-variable or a r-variable then ðlf :MÞ is

a lr-term called an abstract. (If f is a l-variable or a r-variable, then

ðlf :MÞ is a l-abstract or a r-abstract, respectively.)

Note that r-variables are not terms. l-variables are denoted by ‘‘u’’, ‘‘v’’,

‘‘w’’, ‘‘x’’, ‘‘y’’, ‘‘z’’. r-variables are denoted by ‘‘a’’, ‘‘b’’, ‘‘c’’, ‘‘d’’. A term-

2000 AMS subject classification: 03B05, 03B40.

Key words and phrases: l-calculus, typed l-calculus, normalization theorem, classical logic, lr-calculus,

lm-calculus, LK.

Received December 18, 2012.

Revised March 12, 2013.



variable is a l-variable or a r-variable. Term-variables are denoted by ‘‘ f ’’, ‘‘g’’,

‘‘h’’. Distinct letters denote distinct variables unless stated otherwise.

A term la:M is sometimes denoted by ra:M if the variable a is a r-variable.

Arbitrary lr-terms are denoted by ‘‘L’’, ‘‘M’’, ‘‘N’’, ‘‘P’’, ‘‘Q’’, ‘‘R’’, ‘‘S’’,

‘‘T ’’.

Definition 1.2 (Free variables). The set FVðMÞ of all term variables free in

M, is defined as:

1. FVðxÞ ¼ fxg,
2. FVððMNÞÞ ¼ FVðMÞUFVðNÞ,
3. FVððaMÞÞ ¼ FVðMÞU fag,
4. FVððlf :MÞÞ ¼ FVðMÞ � f f g.

Definition 1.3 (rb-contraction). A rb-redex is any lr-term of form ðaMÞN,

ðlx:MÞN or ðla:MÞN; its contractum is ðaMÞ, ½N=x�M or lb:ð½lx:bðxNÞ=a�MÞN
respectively. The re-write rules are

ðaMÞNq1a ðaMÞ;

ðlx:MÞNq1b ½N=x�M;

ðla:MÞNq1r lb:ð½lx:bðxNÞ=a�MÞN; where b is the first r-variable

and x is the first l-variable such that b and x do

not occur in aMN;

Mq1rb N if Mq1a N; Mq1b N or Mq1r N:

We call a lr-term of form ðaMÞN an a-redex, ðlx:MÞN a b-redex and ðla:MÞN
a r-redex. If P contains a rb-redex-occurence R and Q is the result of replacing

this by its contractum, we say that P rb-contracts to Q (Pq1rb Q), and we call

the triple hP;R;Qi a rb-contraction of P.

Definition 1.4 (rb-reduction). A rb-reduction of a term P is a finite

(perhaps empty) or infinite sequence of rb-contractions with form

hP1;R1;Q1i; hP2;R2;Q2i; . . .

where P1 1a P and Qi 1a Piþ1 for i ¼ 1; 2; . . . . We say a finite rb-reduction is

from P to Q i¤ either it has nb 1 rb-contractions and Qn 1a Q or it is empty

and P1a Q. A reduction from P to Q is said to terminate or end to Q. If there
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is a reduction from P to Q we say that P rb-reduces to Q, in symbols

Pqrb Q:

Note that a-conversions are allowed in a rb-reduction.

Theorem 1.5 (Church-Rosser threorem for rb-reduction). If Mqrb P and

Mqrb Q, then there exists T such that

Pqrb T and Qqrb T :

Proof. Similar to the case of b-reduction, see [3]. r

2 Typed lr-Terms

Definition 2.1 (Types). An infinite sequence of type-variables, distinct from

the term-variables, is assumed to be given. Types are linguistic expressions defined

as:

1. each type-variable is a type called an atom;

2. if s and t are types then ðs ! tÞ is a type called a composite type.

Type-variables are denoted by ‘‘p’’, ‘‘q’’, ‘‘r’’ with or without number-

subscripts, and distinct letters denote distinct variables unless otherwise stated.

Aribitrary types are denoted by lower-case Greek letters except ‘‘l’’ and ‘‘r’’.

Parentheses will often (but not always) be omitted from types, and the reader

should restore omitted ones in the way of association to the right.

Any term-variables is assumed to have one type. For any type t, an infinite

sequence of l-variables with type t and an infinite sequence of r-variables with

type t are assumed to exist.

Definition 2.2 (Typed lr-terms). We shall define typed lr-terms and

TypeðMÞ (assertion typeðMÞ ¼ t is denoted by M : t) simultaneously.

1. A l-variable x with type t is a typed lr-term, called an atom, and x : t.

2. If M and N are typed lr-terms and M : s ! t and N : s, then the

expression ðMNÞ is a typed lr-term called an application and ðMNÞ : t.
3. Let s be any type. If M is a typed lr-term and M : t and a is a r-variable

with type t, then the expression ðaMÞs is a typed lr-term called an absurd

and ðaMÞs : s.
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4. If M is a typed lr-term and M : t and x is a l-variable with type s,

then the expression ðlx:MÞ is a typed lr-term called a l-abstract and

ðlx:MÞ : s ! t.

5. If M is a typed lr-term and M : t and a is a r-variable with type t,

then the expression ðla:MÞ is a typed lr-term called a r-abstract and

ðla:MÞ : t.

Typed lr-terms will be abbreviated using the same conventions as for lr-terms.

Definition 2.3 (Free variables in a typed lr-term). Let M be a typed

lr-term. The set FVðMÞ of all the free term-variables in M, is defined as:

1. FVðxÞ ¼ fxg,
2. FVððMNÞÞ ¼ FVðMÞUFVðNÞ,
3. FVððaMÞsÞ ¼ FVðMÞU fag,
4. FVððlf :MÞÞ ¼ FVðMÞ � f f g,

FVlðMÞ and FVrðMÞ denote the set of all l-variables in FVðMÞ and the set of

all r-variables in FVðMÞ, respectively.

Example 2.4 (Peirce’s Law).

lxa:xðly:ðayÞbÞ; where x : ða ! bÞ ! a; y : a and a : a:

On the other hand, the proof of Peirce’s Law is lxa:½a�ðxðlyb:½a�yÞÞ in Parigot’s

system. We think that proofs in our system are generally simpler than those in the

implicational fragment of Parigot’s system.

The above typed lr-term is writen in a tree form as follows:

x : ða ! bÞ ! a

a : a y : a

b

a ! b
a

a
la

ðða ! bÞ ! aÞ ! a
lx

ly

;

or in a more redundant form as follows:

x : ða ! bÞ ! a

a : a y : a

ay : b

ly:ay : a ! b

xðly:ayÞ : a
la:xðly:ayÞ : a

lxa:xðly:ayÞ : ðða ! bÞ ! aÞ ! a
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Definition 2.5 (Type-erasure and typability). We assume the existence of

two mappings j and k such that j is a one-to-one onto mapping from the set of

all l-variables with type to the set of all l-variables and k is a one-to-one onto

mapping from the set of all r-variables with type to the set of all r-variables. For

simplicity, we write x and a for jðxÞ and kðaÞ, respectively. The type-erasure

erðMÞ of a typed lr-term M is the lr-term obtained by erasing all types from M.

Namely, type-erasure erðMÞ is defined as follows:

1. erðxÞ1 x,

2. erððMNÞÞ1 ðerðMÞ erðNÞÞ,
3. erððaMÞsÞ1 ða erðMÞÞ,
4. erððlx:MÞÞ1 ðlx:erðMÞÞ,
5. erððla:MÞÞ1 ðla:erðMÞÞ.

A lr-term M is called typable i¤ there exists a typed lr-term N such that

erðNÞ1a M.

For typed lr-terms M, N and a l-variable x with type TypeðNÞ, the sub-

stitution of N for x in M ½N=x�M is defined as usual. For a typed lr-term M

and r-variables a, b such that TypeðaÞ ¼ TypeðbÞ, the substitution of b for a in M

½b=a�M is also defined as usual.

To define rb-contraction for typed lr-terms, we have to define the substi-

tution of an expression lx:bðxNÞ for a r-variable. Notice that the expression

lx:bðxNÞ is not a typed lr-term.

Definition 2.6 (Substitution of an expression lx:bðxNÞ for a r-variable).

For typed lr-terms M, N, a r-variable b, we define ½lx:bðxNÞ=a�M to be the

result of substituting lx:bðxNÞ for every free occurrence of a in M, where

TypeðxÞ ¼ TypeðaÞ ¼ a ! b, b : b and N : a.

1. ½lx:bðxNÞ=a�M1M if a B FVðMÞ,
2. ½lx:bðxNÞ=a�ðMRÞ1 ð½lx:bðxNÞ=a�M½lx:bðxNÞ=a�RÞ if a A FVðMRÞ,
3. ½lx:bðxNÞ=a�ðly:MÞ1 ly:½lx:bðxNÞ=a�M if a A FVðMÞ and y B

FVðlx:bðxNÞÞ,
4. ½lx:bðxNÞ=a�ðly:MÞ1 lz:½lx:bðxNÞ=a�½z=y�M if a A FVðMÞ and y A

FVðlx:bðxNÞÞ,
5. ½lx:bðxNÞ=a�ðcMÞs 1 ðc½lx:bðxNÞ=a�MÞs if a A FVðMÞ and c2 a,

6. ½lx:bðxNÞ=a�ðaMÞs 1 ðlx:ðbðxNÞÞsÞ½lx:bðxNÞ=a�M,

7. ½lx:bðxNÞ=a�ðlc:MÞ1 lc:½lx:bðxNÞ=a�M if a A FVðlc:MÞ and c B

FVðbNÞ,
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8. ½lx:bðxNÞ=a�ðlc:MÞ1 ld:½lx:bðxNÞ=a�½d=c�M if a A FVðlc:MÞ and c A

FVðbNÞ.

(In 4 z is the first l-variable with type TypeðyÞ which does not occur in xNM. In

8 d is the first r-variable with type TypeðcÞ which does not occur in bNM.)

Definition 2.7 (rb-contraction for typed lr-terms). A rb-redex is any typed

lr-term of form ðaMÞs!t
N, ðlx:MÞN or ðla:MÞN; its contractum is ðaMÞt,

½N=x�M or lb:ð½lx:bðxNÞ=a�MÞN respectively. The re-write rules are

ðaMÞs!t
Nq1a ðaMÞt;

ðlx:MÞNq1b ½N=x�M;

ðla:MÞNq1r lb:ð½lx:bðxNÞ=a�MÞN; where b is the first r-variable

and x is the first l-variable such that b : TypeðMNÞ;
x : TypeðaÞ and b and x do not occur in aMN;

Mq1rb N if Mq1a N; Mq1b N or Mq1r N:

We call a lr-term of form ðaMÞs!t
N an a-redex, ðlx:MÞN a b-redex and

ðla:MÞN a r-redex. If P contains a rb-redex-occurence R and Q is the result of

replacing this by its contractum, we say that P rb-contracts to Q (Pq1rb Q), and

we call the triple hP;R;Qi a rb-contraction of P.

A rb-reduction for typed lr-terms is defined in the same way as a rb-

reduction for type free lr-terms.

Theorem 2.8 (Church-Rosser theorem for typed lr-terms). Let M, P and Q

be typed lr-terms. If Mqrb P and Mqrb Q, then there exists a typed lr-term T

such that

Pqrb T and Qqrb T :

Proof. Similar to the case of b-reduction, see [3]. r

3 Subject-Reduction Theorem for Typed lr-Calculus

Lemma 3.1. If P and Q are typed lr-terms and x is a l-variable with

type TypeðQÞ, then ½Q=x�P is a typed lr-term and Typeð½Q=x�PÞ ¼ TypeðPÞ and

FVð½Q=x�PÞJ ðFVðPÞ � fxgÞUFVðQÞ.

Proof. By induction on the length of P. r
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Lemma 3.2. If P and Q are typed lr-terms, TypeðxÞ ¼ TypeðaÞ ¼ s ! t,

b : t, Q : s and x B FVðQÞ, then ½lx:bðxQÞ=a�P is a typed lr-term and

Typeð½lx:bðxQÞ=a�PÞ ¼ TypeðPÞ and FVð½lx:bðxQÞ=a�PÞJ ðFVðPÞ � fagÞU
FVðQÞU fbg.

Proof. By induction on the length of P. The only nontrivial case is

P1 ðaP1Þg. Then P1 : s ! t and ½lx:bðxQÞ=a�ðaP1Þg 1 ðlx:ðbðxQÞÞgÞ �
½lx:bðxQÞ=a�P1. Now we have Typeð½lx:bðxQÞ=a�PÞ ¼ TypeðPÞ ¼ g and

FVð½lx:bðxQÞ=a�PÞ ¼ FVð½lx:bðxQÞ=a�P1Þ U FVðQÞ U fbg J ðFVðPÞ � fagÞ U

FVðQÞU fbg. r

Theorem 3.3 (Subject-reduction theorem). If Pqrb Q, then TypeðQÞ ¼
TypeðPÞ and FVðQÞJFVðPÞ.

Proof. By Lemma 3.1, it is enough to take care of the case in which P is

a redex and Q is its contractum. It is enough to prove that if Pq1rb Q, then

TypeðQÞ ¼ TypeðPÞ and FVðQÞJFVðPÞ.
Case 1: P1 ðaP1Þs!t

P2 and Q1 ðaP1Þt. It is obvious that TypeðPÞ ¼
TypeðQÞ ¼ t. Then we have FVðQÞ ¼ FVðP1ÞU fagJFVðP1ÞU fagUFVðP2Þ ¼
FVðPÞ.

Case 2: P1 ðlx:P1ÞP2 and Q1 ½P2=x�P1. By Lemma 3.1, we have

TypeðQÞ ¼ TypeðPÞ and FVðQÞJFVðPÞ.
Case 3: P1 ðla:P1ÞP2 and Q1 lb:ð½lx:bðxP2Þ=a�P1ÞP2. By Lemma 3.2, we

have TypeðQÞ ¼ TypeðPÞ and FVðQÞJFVðPÞ. r

4 Strong Normalization Theorem for Typed lr-Terms

We prove the strong normalization theorem for typed lr-terms, that is, for

every typed lr-term M, all reductions starting at M are finite. To prove the

theorem, we introduce the concept of *-expansion and use the strong normal-

ization theorem for typed l-terms.

Definition 4.1 (�-translation). For every typed lr-term ðla:MÞ, where

M : t, we define �-translation as follows:

1. if t is an atomic type, then ðla:MÞ� 1 ðla:MÞ,
2. if t1 a ! b, then ðla:MÞ� 1 ðly:ðlb:½lx:bðxyÞ=a�MyÞ�Þ, where x, y and b

are the first l-variable with the type a ! b, the second l-variable with the

type a and the first r-variable with the type b which do not occur in aM.
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By the above definition, if M : s1 ! � � � ! sn ! p, then ðla:MÞ� qb

ly1 � � � ynb:½lx:bðxy1 � � � ynÞ=a�My1 � � � yn where x : s1 ! � � � ! sn ! p, y1 : s1 � � �
yn : sn and b : p.

Note that Parigot [6] proved the strong normarization of propositional

typed lm-calculus using Gödel translation. This translation is similar to �-
translation.

Lemma 4.2. Typeððla:MÞ�Þ ¼ Typeðla:MÞ and FVððla:MÞ�Þ ¼ FVðla:MÞ.

Proof. By induction on the length of Typeðla:MÞ. If Typeðla:MÞ is an

atom, then ðla:MÞ� 1 la:M, so Typeðla:MÞ ¼ Typeððla:MÞ�Þ and FVðla:MÞ ¼
FVððla:MÞ�Þ. If la:M : a ! b, then

ðla:MÞ� 1 ðly:ðlb:½lx:bðxyÞ=a�MyÞ�Þ where x : a ! b and y : a:

Since M : a ! b, ½lx:bðxyÞ=a�My : b by Lemma 3.2 and lb:½lx:bðxyÞ=a�My : b.

Hence by the induction hypothesis, ðlb:½lx:bðxyÞ=a�MyÞ� : b and

FVððlb:½lx:bðxyÞ=a�MyÞ�Þ ¼ FVðlb:½lx:bðxyÞ=a�MyÞ ¼ ðFVðMÞ � fagÞ U fyg.
Therefore we have Typeðla:MÞ ¼ Typeððla:MÞ�Þ and FVðla:MÞ ¼ FVððla:MÞ�Þ.

r

Definition 4.3 (*-expansion). For every typed lr-term, we define its

*-expansion as follows:

1. ðxÞ� 1 x,

2. ðMNÞ� 1 ðM �N �Þ,
3. ðlx:MÞ� 1 lx:M �,

4. ððaMÞtÞ� 1 ðaM �Þt,
5. ðla:MÞ� 1 ðla:M �Þ�.

Lemma 4.4. TypeðM �Þ ¼ TypeðMÞ and FVðM �Þ ¼ FVðMÞ.

Proof. By induction on the length of M. The only nontrivial case is

M1 la:N. By the induction hypothesis, TypeðN �Þ ¼ TypeðNÞ and FVðN �Þ ¼
FVðNÞ. In this case we prove the claim by induction on the length of TypeðNÞ.
If TypeðNÞ is an atom, then M � 1 la:N �. Therefore we have TypeðM �Þ ¼
TypeðN �Þ ¼ TypeðNÞ ¼ TypeðMÞ and FVðM �Þ ¼ FVðN �Þ � fag ¼ FVðNÞ � fag
¼ FVðNÞ. Let TypeðNÞ be a composite type a ! b. Since TypeðN �Þ ¼ a ! b,

Typeð½lx:bðxyÞ=a�N �Þ ¼ a ! b by Lemma 3.2 where x : a ! b, y : a and b : b.
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Hence

TypeðM �Þ ¼ Typeððla:N �Þ�Þ

¼ Typeðly:ðlb:½lx:bðxyÞ=a�N �yÞ�Þ

¼ a ! Typeððlb:½lx:bðxyÞ=a�N �yÞ�Þ

¼ a ! Typeðlb:½lx:bðxyÞ=a�N �yÞ ðby Lemma 4:2Þ

¼ a ! Typeð½lx:bðxyÞ=a�N �yÞ

¼ a ! b ¼ TypeðMÞ:

Similarly, we can get FVðM �Þ ¼ FVðMÞ. r

Lemma 4.5. If la:M and N are typed lr-terms and x is a l-variable with type

TypeðNÞ, then

½N=x�ðla:MÞ� 1a ð½N=x�ðla:MÞÞ�:

Proof. By induction on the length of Typeðla:MÞ. r

Lemma 4.6. If M and N are typed lr-terms and TypeðNÞ ¼ TypeðxÞ,
then

½N �=x�M � 1a ð½N=x�MÞ�:

Proof. By induction on the length of M. The only nontrivial case is

M1 la:R. By the induction hypothesis, ½N �=x�R� 1a ð½N=x�RÞ�. We assume that

a B FVðNÞ. If TypeðRÞ is an atom, then

½N �=x�ðla:RÞ� 1 ½N �=x�ðla:R�Þ�

1 ½N �=x�ðla:R�Þ ðas TypeðRÞ is an atomÞ

1a la:½N �=x�R�

1a la:ð½N=x�RÞ� ðby the induction hypothesisÞ

1 ðla:ð½N=x�RÞ�Þ� ðas TypeðRÞ is an atomÞ

1 ðla:ð½N=x�RÞÞ�

1 ð½N=x�ðla:RÞÞ�:
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Let TypeðRÞ be a composite type a ! b. Then

½N �=x�ðla:RÞ� 1 ½N �=x�ðlz:ðlb:½ly:bðyzÞ=a�R�zÞ�Þ

1 lz:½N �=x�ðlb:½ly:bðyzÞ=a�R�zÞ�

1a lz:ð½N �=x�ðlb:½ly:bðyzÞ=a�R�zÞÞ� ðby Lemma 4:5Þ

1 lz:ðlb:½ly:bðyzÞ=a�½N �=x�R�zÞ�

1a lz:ðlb:½ly:bðyzÞ=a�ð½N=x�RÞ�zÞ� ðby the induction hypothesisÞ

1 ðla:ð½N=x�RÞÞ�

1 ð½N=x�ðla:RÞÞ�: r

Lemma 4.7. If M and N are typed lr-terms, then

½lx:aðxN �Þ=a�M � 1a ð½lx:aðxNÞ=a�MÞ�:

Proof. Similar to that of Lemma 4.6. r

Definition 4.8 (ab-contraction for typed lr-terms). An ab-redex is an

a-redex or a b-redex, that is

Mq1ab N if Mq1a N or Mq1b N:

If P contains an ab-redex-occurence R and Q is the result of replacing R by

its contractum, we say that P ab-contracts to Q (Pq1ab Q), and we call the triple

hP;R;Qi an ab-contraction of P.

An ab-reduction for typed lr-terms is defined in the same way as a rb-

reduction for type free lr-terms.

Theorem 4.9 (Strong normalization theorem for ab-reduction). For any

typed lr-term M, all ab-reductions starting at M are finite.

Proof. Similar to the case of typed l-calculus, see [3]. r

The following lemma is the key result to prove strong normalization for

rb-reduction.
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Lemma 4.10. For any typed lr-terms M and N, if Mq1rb N then

M � q1ab N
�.

Proof. Case 1: The redex is ðlx:PÞQ.

ððlx:PÞQÞ� 1 ðlx:P�ÞQ�

q1ab ½Q�=x�P�

1 ð½Q=x�PÞ� ðby Lemma 4:6Þ:

Case 2: The redex is ðaPÞs!t
Q.

ððaPÞs!t
QÞ� 1 ðaP�Þs!t

Q�

q1ab ðaP�Þt

1 ððaPÞtÞ�:

Case 3: The redex is ðla:PÞQ.

ððla:PÞQÞ� 1 ðly:ðlb:½lx:bðxyÞ=a�P�yÞ�ÞQ�

q1ab ½Q�=y�ððlb:½lx:bðxyÞ=a�P�yÞ�Þ

1 ð½Q�=y�lb:½lx:bðxyÞ=a�P�yÞ� ðby Lemma 4:5Þ

1 ðlb:½lx:bðxQ�Þ=a�P�Q�Þ�

1 ðlb:ð½lx:bðxQÞ=a�PÞ�Q�Þ� ðby Lemma 4:7Þ

1 ðlb:ðð½lx:bðxQÞ=a�PÞQÞ�Þ�

1 ðlb:ðð½lx:bðxQÞ=a�PÞQÞÞ�: r

Theorem 4.11 (Strong normalization theorem for rb-reduction). For any

typed lr-term M, all rb-reductions starting at M are finite.

Proof. Let M1;M2; . . . be an infinite rb-reduction. By Lemma 4.10, we can

get an infinite ab-reduction M �
1 ;M

�
2 ; . . . . This contradicts Theorem 4.9. r

Y. Andou [1] proved the weak normalization theorem for rb-reduction, that

is, every typed lr-term M has a normal form. The cut-elimination proof for

LK only needs the weak normalization theorem, though we use the strong

normalization theorem in the section 6.
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5 Subformula Property for Normal Typed lr-Terms

Definition 5.1 (Subterms). The set SubtðMÞ of all subterms of a typed

lr-term M is defined by induction on the length of M as follows:

1. if M is an atom, SubtðMÞ ¼ fMg,
2. SubtððPQÞÞ ¼ SubtðPÞUSubtðQÞU fðPQÞg,
3. SubtððaPÞsÞ ¼ SubtðPÞU fagU fðaPÞsg
4. Subtððlf :PÞÞ ¼ SubtðPÞU f f gU fðlf :PÞg.

r-variables are not lr-terms but r-variables may be in SubtðMÞ. SubtðMÞ is a set

of lr-terms and r-variables. Let S be a set of lr-terms and r-variables. TypeðSÞ
denotes the set fTypeðMÞ jM A Sg.

Notation 5.2. Let G be a set of types. If a type d has an occurrence in a,

or in a type in G, we write as da a, or daG respectively.

Theorem 5.3 (Subformula property for typed lr-terms in the normal form).

Let a typed lr-term M be a rb-normal form. Then for every type d in

TypeðSubtðMÞÞ, daTypeðFVðMÞU fMgÞ.

Proof. By induction on the length of M. The only nontrivial case is

when M is of the form PQ. Since PQ is a rb-normal form, so are P and Q, and

hence by the induction hypothesis, for every type s in TypeðSubtðPÞÞ and every

type t in TypeðSubtðQÞÞ, saTypeðFVðPÞU fPgÞ and taTypeðFVðQÞU fQgÞ.
Now, since PQ is a rb-normal form, P must be in the form xP1 � � �Pn. Hence

TypeðPÞaTypeðxÞ and for every type d in TypeðSubtðMÞÞ, daTypeðfxgU
FVðMÞÞ. Therefore for every type d in TypeðSubtðMÞÞ, daTypeðFVðMÞU fMgÞ.

r

6 Gentzen’s LK and Typed lr-Terms

In this section we prove that a typed lr-term corresponds to a proof in

classical implicational logic and prove simultaneously the cut elimination theorem

for the implicational fragment LK! of LK by using the strong normalization

theorem for typed lr-terms.

The calculus LK! that we use here is the following:

Definition 6.1. Let G, Y, D and L be sets of types. G, D denotes the set

GUD and Gna denotes the set G� fag.
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1. axiom: ðIÞ a ) a.

2. rules:

G ) Y

a;G ) Y
ðw )Þ; G ) Y

G ) Y; a
ð) wÞ;

G ) Y; a a;D ) L

G;D ) Y;L
ðcutÞ;

G ) Y; a b;D ) L

a ! b;G;D ) Y;L
ð!)Þ; G ) Y; b

Gna ) Y; a ! b
ð)!Þ:

Lemma 6.2. If G ) Y is provable the system LK!, then there exists a typed

lr-term M such that GKTypeðFVlðMÞÞ and YKTypeðFVrðMÞU fMgÞ.

Proof. By induction on the length of the LK! proof of G ) Y. r

Lemma 6.3. For any rb-normal typed lr-term M, TypeðFVlðMÞÞ )
TypeðFVrðMÞU fMgÞ is provable without cut in the system LK!.

Proof. By induction on the length of M. The only nontrivial case is

when M is of the form ðPQÞ. Since M is normal, P1 xP1 � � �Pn for some

l-variable x and normal lr-terms P1; . . . ;Pn. Let TypeðxÞ be s1 ! � � � ! sn !
t ! g. Then we have TypeðP1Þ ¼ s1. By the induction hypothesis, there exists

a cut free deduction in LK! proving TypeðFVlðP1ÞÞ ) TypeðFVrðP1ÞÞ; s1. Let

z be a new l-variable with a type s2 ! � � � ! sn ! t ! g. The lr-term

zP2 � � �PnQ is normal. Hence, by the induction hypothesis, there exists a cut

free deduction of LK proving s2 ! � � � ! sn ! t ! g, TypeðFVlðP2 � � �PnQÞÞ )
TypeðFVrðP2 � � �PnQÞÞ, g. By the rule ð!)Þ, we get a a cut free deduction of LK

proving s1 ! � � � ! sn ! t! g, TypeðFVlðP1 � � �PnQÞÞ ) TypeðFVrðP1 � � �PnQÞÞ,
g. As TypeðFVlðMÞÞ1 s1 ! � � � ! sn ! t ! g, TypeðFVlðP1 � � �PnQÞÞ and

TypeðFVrðMÞU fMgÞ1TypeðFVrðP1 � � �PnQÞÞ, g, we get a cut free deduction

of LK proving TypeðFVlðMÞÞ ) TypeðFVrðMÞU fMgÞ. r

Lemma 6.4. For any typed lr-term M, TypeðFVlðMÞÞ ) TypeðFVrðMÞU
fMgÞ is provable without cut in the system LK!.

Proof. By Theorem 4.11, there exists a rb-normal form M � of M. By

Lemma 6.3, TypeðFVlðM �ÞÞ ) TypeðFVrðM �ÞU fM �gÞ is provable without cut
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in the system LK!. By Theorem 3.3, TypeðFVðMÞU fMgÞKTypeðFVðM �ÞU
fM �gÞ. Hence, by the weakening rules ðw )Þ and ð) wÞ, we can get a cut free

deduction of TypeðFVlðMÞÞ ) TypeðFVrðMÞU fMgÞ. r

Theorem 6.5. G ) Y is provable the system LK! if and only if there exists a

typed lr-term M such that GKTypeðFVlðMÞÞ and YKTypeðFVrðMÞU fMgÞ.

Proof. By Lemma 6.2 and Lemma 6.4. r

Theorem 6.6. If G ) Y is provable in the system LK!, then G ) Y is

provable without cut in the system LK!.

Proof. By Lemma 6.2 and Lemma 6.4. r
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