λρ-CALCULUS II

By

Yuichi Komori

Abstract. In [4], the author introduced the system $\lambda \rho$ -calculus and stated without proof that the strong normalization theorem holds. Here we introduce a lemma (Lemma 4.10) and use it to prove the strong normalization theorem. While a typed λ -term itself is a derivation of the natural deduction for intuitionistic implicational logic (cf. [2]), a typed $\lambda \rho$ -term itself is a derivation of the natural deduction for classical implicational logic. Our system is simpler than the implicational fragment of Parigot's $\lambda \mu$ -calculus (cf. [5]).

1 The Type Free $\lambda \rho$ -Calculus

DEFINITION 1.1 ($\lambda \rho$ -terms). Assume to have an infinite sequence of λ -variables and an infinite sequence of ρ -variables. Then the linguistic expressions called $\lambda \rho$ -terms are defined as:

- 1. each λ -variable is a $\lambda \rho$ -term, called an *atom* or *atomic term*,
- 2. if M and N are $\lambda \rho$ -terms then (MN) is a $\lambda \rho$ -term called an application,
- 3. if *M* is a $\lambda \rho$ -term and *a* is a ρ -variable then (aM) is a $\lambda \rho$ -term called *absurd*,
- 4. if M is a $\lambda \rho$ -term and f is a λ -variable or a ρ -variable then $(\lambda f.M)$ is a $\lambda \rho$ -term called an *abstract*. (If f is a λ -variable or a ρ -variable, then $(\lambda f.M)$ is a λ -abstract or a ρ -abstract, respectively.)

Note that ρ -variables are not terms. λ -variables are denoted by "u", "v", "w", "v", "v

²⁰⁰⁰ AMS subject classification: 03B05, 03B40.

Key words and phrases: λ -calculus, typed λ -calculus, normalization theorem, classical logic, $\lambda \rho$ -calculus, $\lambda \mu$ -calculus, LK.

Received December 18, 2012.

variable is a λ -variable or a ρ -variable. Term-variables are denoted by "f", "g", "h". Distinct letters denote distinct variables unless stated otherwise.

A term $\lambda a.M$ is sometimes denoted by $\rho a.M$ if the variable a is a ρ -variable. Arbitrary $\lambda \rho$ -terms are denoted by "L", "M", "N", "P", "Q", "R", "S", "T".

DEFINITION 1.2 (Free variables). The set FV(M) of all term variables free in M, is defined as:

- 1. $FV(x) = \{x\},\$
- 2. $FV((MN)) = FV(M) \cup FV(N)$,
- 3. $FV((aM)) = FV(M) \cup \{a\},\$
- 4. $FV((\lambda f.M)) = FV(M) \{f\}.$

DEFINITION 1.3 ($\rho\beta$ -contraction). A $\rho\beta$ -redex is any $\lambda\rho$ -term of form (aM)N, $(\lambda x.M)N$ or $(\lambda a.M)N$; its contractum is (aM), [N/x]M or $\lambda b.([\lambda x.b(xN)/a]M)N$ respectively. The re-write rules are

$$(aM)N \rhd_{1a} (aM),$$

$$(\lambda x.M)N \rhd_{1\beta} [N/x]M$$
,

 $(\lambda a.M)N
ightharpoonup_{1\rho} \lambda b.([\lambda x.b(xN)/a]M)N$, where b is the first ρ -variable and x is the first λ -variable such that b and x do not occur in aMN,

$$M \rhd_{1\varrho\beta} N$$
 if $M \rhd_{1\varrho} N$, $M \rhd_{1\beta} N$ or $M \rhd_{1\varrho} N$.

We call a $\lambda \rho$ -term of form (aM)N an a-redex, $(\lambda x.M)N$ a β -redex and $(\lambda a.M)N$ a ρ -redex. If P contains a $\rho\beta$ -redex-occurrence \underline{R} and Q is the result of replacing this by its contractum, we say that P $\rho\beta$ -contracts to Q $(P \bowtie_{1\rho\beta} Q)$, and we call the triple $\langle P, R, Q \rangle$ a $\rho\beta$ -contraction of P.

DEFINITION 1.4 ($\rho\beta$ -reduction). A $\rho\beta$ -reduction of a term P is a finite (perhaps empty) or infinite sequence of $\rho\beta$ -contractions with form

$$\langle P_1, R_1, Q_1 \rangle, \langle P_2, R_2, Q_2 \rangle, \dots$$

where $P_1 \equiv_{\alpha} P$ and $Q_i \equiv_{\alpha} P_{i+1}$ for i = 1, 2, ... We say a finite $\rho\beta$ -reduction is from P to Q iff either it has $n \ge 1$ $\rho\beta$ -contractions and $Q_n \equiv_{\alpha} Q$ or it is empty and $P \equiv_{\alpha} Q$. A reduction from P to Q is said to terminate or end to Q. If there

is a reduction from P to Q we say that P $\rho\beta$ -reduces to Q, in symbols

$$P \rhd_{o\beta} Q$$
.

Note that α -conversions are allowed in a $\rho\beta$ -reduction.

THEOREM 1.5 (Church-Rosser threorem for $\rho\beta$ -reduction). If $M \rhd_{\rho\beta} P$ and $M \rhd_{\rho\beta} Q$, then there exists T such that

$$P \rhd_{\rho\beta} T$$
 and $Q \rhd_{\rho\beta} T$.

PROOF. Similar to the case of β -reduction, see [3].

2 Typed $\lambda \rho$ -Terms

DEFINITION 2.1 (Types). An infinite sequence of *type-variables*, distinct from the term-variables, is assumed to be given. *Types* are linguistic expressions defined as:

- 1. each type-variable is a type called an atom;
- 2. if σ and τ are types then $(\sigma \to \tau)$ is a type called a *composite type*.

Type-variables are denoted by "p", "q", "r" with or without numbersubscripts, and distinct letters denote distinct variables unless otherwise stated.

Aribitrary types are denoted by lower-case Greek letters except " λ " and " ρ ".

Parentheses will often (but not always) be omitted from types, and the reader should restore omitted ones in the way of association to the right.

Any term-variables is assumed to have one type. For any type τ , an infinite sequence of λ -variables with type τ and an infinite sequence of ρ -variables with type τ are assumed to exist.

DEFINITION 2.2 (Typed $\lambda \rho$ -terms). We shall define typed $\lambda \rho$ -terms and Type(M) (assertion $type(M) = \tau$ is denoted by $M : \tau$) simultaneously.

- 1. A λ -variable x with type τ is a typed $\lambda \rho$ -term, called an atom, and $x:\tau$.
- 2. If M and N are typed $\lambda \rho$ -terms and $M: \sigma \to \tau$ and $N: \sigma$, then the expression (MN) is a typed $\lambda \rho$ -term called an *application* and $(MN): \tau$.
- 3. Let σ be any type. If M is a typed $\lambda \rho$ -term and M: τ and a is a ρ -variable with type τ , then the expression $(aM)^{\sigma}$ is a typed $\lambda \rho$ -term called an *absurd* and $(aM)^{\sigma}$: σ .

- 4. If M is a typed $\lambda \rho$ -term and $M:\tau$ and x is a λ -variable with type σ , then the expression $(\lambda x.M)$ is a typed $\lambda \rho$ -term called a λ -abstract and $(\lambda x.M):\sigma \to \tau$.
- 5. If M is a typed $\lambda \rho$ -term and $M:\tau$ and a is a ρ -variable with type τ , then the expression $(\lambda a.M)$ is a typed $\lambda \rho$ -term called a ρ -abstract and $(\lambda a.M):\tau$.

Typed $\lambda \rho$ -terms will be abbreviated using the same conventions as for $\lambda \rho$ -terms.

DEFINITION 2.3 (Free variables in a typed $\lambda \rho$ -term). Let M be a typed $\lambda \rho$ -term. The set FV(M) of all the free term-variables in M, is defined as:

- 1. $FV(x) = \{x\},\$
- 2. $FV((MN)) = FV(M) \cup FV(N)$,
- 3. $FV((aM)^{\sigma}) = FV(M) \cup \{a\},\$
- 4. $FV((\lambda f.M)) = FV(M) \{f\},\$

 $FV_{\lambda}(M)$ and $FV_{\rho}(M)$ denote the set of all λ -variables in FV(M) and the set of all ρ -variables in FV(M), respectively.

EXAMPLE 2.4 (Peirce's Law).

$$\lambda x a. x (\lambda y. (ay)^{\beta})$$
, where $x: (\alpha \to \beta) \to \alpha$, $y: \alpha$ and $a: \alpha$.

On the other hand, the proof of Peirce's Law is $\lambda xa.[a](x(\lambda yb.[a]y))$ in Parigot's system. We think that proofs in our system are generally simpler than those in the implicational fragment of Parigot's system.

The above typed $\lambda \rho$ -term is writen in a tree form as follows:

$$\frac{x: (\alpha \to \beta) \to \alpha}{\frac{\beta}{\alpha \to \beta}} \frac{\lambda y}{\lambda y}$$

$$\frac{\frac{\alpha}{\alpha} \lambda a}{\frac{((\alpha \to \beta) \to \alpha) \to \alpha}{\lambda x}} \lambda x$$

or in a more redundant form as follows:

$$\frac{x:(\alpha \to \beta) \to \alpha}{x:(\alpha \to \beta) \to \alpha} \frac{\frac{a:\alpha \quad y:\alpha}{ay:\beta}}{\frac{\lambda y.ay:\alpha \to \beta}{\lambda a.x(\lambda y.ay):\alpha}}$$
$$\frac{\frac{x(\lambda y.ay):\alpha}{\lambda a.x(\lambda y.ay):\alpha}}{\lambda xa.x(\lambda y.ay):((\alpha \to \beta) \to \alpha) \to \alpha}$$

DEFINITION 2.5 (Type-erasure and typability). We assume the existence of two mappings j and k such that j is a one-to-one onto mapping from the set of all λ -variables with type to the set of all λ -variables and k is a one-to-one onto mapping from the set of all ρ -variables with type to the set of all ρ -variables. For simplicity, we write x and a for j(x) and k(a), respectively. The type-erasure er(M) of a typed $\lambda \rho$ -term M is the $\lambda \rho$ -term obtained by erasing all types from M. Namely, type-erasure er(M) is defined as follows:

```
1. er(x) \equiv x,
```

- 2. $er((MN)) \equiv (er(M) \ er(N)),$
- 3. $er((aM)^{\sigma}) \equiv (a \ er(M)),$
- 4. $er((\lambda x.M)) \equiv (\lambda x.er(M)),$
- 5. $er((\lambda a.M)) \equiv (\lambda a.er(M))$.

A $\lambda \rho$ -term M is called *typable* iff there exists a typed $\lambda \rho$ -term N such that $er(N) \equiv_{\alpha} M$.

For typed $\lambda \rho$ -terms M, N and a λ -variable x with type Type(N), the substitution of N for x in M [N/x]M is defined as usual. For a typed $\lambda \rho$ -term M and ρ -variables a, b such that Type(a) = Type(b), the substitution of b for a in M [b/a]M is also defined as usual.

To define $\rho\beta$ -contraction for typed $\lambda\rho$ -terms, we have to define the substitution of an expression $\lambda x.b(xN)$ for a ρ -variable. Notice that the expression $\lambda x.b(xN)$ is not a typed $\lambda\rho$ -term.

DEFINITION 2.6 (Substitution of an expression $\lambda x.b(xN)$ for a ρ -variable). For typed $\lambda \rho$ -terms M, N, a ρ -variable b, we define $[\lambda x.b(xN)/a]M$ to be the result of substituting $\lambda x.b(xN)$ for every free occurrence of a in M, where $Type(x) = Type(a) = \alpha \rightarrow \beta$, $b:\beta$ and $N:\alpha$.

- 1. $[\lambda x.b(xN)/a]M \equiv M$ if $a \notin FV(M)$,
- 2. $[\lambda x.b(xN)/a](MR) \equiv ([\lambda x.b(xN)/a]M[\lambda x.b(xN)/a]R)$ if $a \in FV(MR)$,
- 3. $[\lambda x.b(xN)/a](\lambda y.M) \equiv \lambda y.[\lambda x.b(xN)/a]M$ if $a \in FV(M)$ and $y \notin FV(\lambda x.b(xN))$,
- 4. $[\lambda x.b(xN)/a](\lambda y.M) \equiv \lambda z.[\lambda x.b(xN)/a][z/y]M$ if $a \in FV(M)$ and $y \in FV(\lambda x.b(xN))$,
- 5. $[\lambda x.b(xN)/a](cM)^{\sigma} \equiv (c[\lambda x.b(xN)/a]M)^{\sigma}$ if $a \in FV(M)$ and $c \not\equiv a$,
- 6. $[\lambda x.b(xN)/a](aM)^{\sigma} \equiv (\lambda x.(b(xN))^{\sigma})[\lambda x.b(xN)/a]M$,
- 7. $[\lambda x.b(xN)/a](\lambda c.M) \equiv \lambda c.[\lambda x.b(xN)/a]M$ if $a \in FV(\lambda c.M)$ and $c \notin FV(bN)$,

8. $[\lambda x.b(xN)/a](\lambda c.M) \equiv \lambda d.[\lambda x.b(xN)/a][d/c]M$ if $a \in FV(\lambda c.M)$ and $c \in FV(bN)$.

(In 4 z is the first λ -variable with type Type(y) which does not occur in xNM. In 8 d is the first ρ -variable with type Type(c) which does not occur in bNM.)

DEFINITION 2.7 ($\rho\beta$ -contraction for typed $\lambda\rho$ -terms). A $\rho\beta$ -redex is any typed $\lambda\rho$ -term of form $(aM)^{\sigma\to\tau}N$, $(\lambda x.M)N$ or $(\lambda a.M)N$; its contractum is $(aM)^{\tau}$, [N/x]M or $\lambda b.([\lambda x.b(xN)/a]M)N$ respectively. The re-write rules are

$$(aM)^{\sigma \to \tau} N \rhd_{1a} (aM)^{\tau},$$

$$(\lambda x.M)N \rhd_{1\beta} [N/x]M$$
,

 $(\lambda a.M)N
ightharpoonup_{1\rho} \lambda b.([\lambda x.b(xN)/a]M)N$, where b is the first ρ -variable and x is the first λ -variable such that b: Type(MN), x: Type(a) and b and x do not occur in aMN,

$$M \rhd_{1\rho\beta} N$$
 if $M \rhd_{1a} N$, $M \rhd_{1\beta} N$ or $M \rhd_{1\rho} N$.

We call a $\lambda \rho$ -term of form $(aM)^{\sigma \to \tau}N$ an a-redex, $(\lambda x.M)N$ a β -redex and $(\lambda a.M)N$ a ρ -redex. If P contains a $\rho\beta$ -redex-occurence \underline{R} and Q is the result of replacing this by its contractum, we say that P $\rho\beta$ -contracts to Q $(P \rhd_{1\rho\beta} Q)$, and we call the triple $\langle P, \underline{R}, Q \rangle$ a $\rho\beta$ -contraction of P.

A $\rho\beta$ -reduction for typed $\lambda\rho$ -terms is defined in the same way as a $\rho\beta$ -reduction for type free $\lambda\rho$ -terms.

THEOREM 2.8 (Church-Rosser theorem for typed $\lambda \rho$ -terms). Let M, P and Q be typed $\lambda \rho$ -terms. If $M \bowtie_{\rho\beta} P$ and $M \bowtie_{\rho\beta} Q$, then there exists a typed $\lambda \rho$ -term T such that

$$P \rhd_{\rho\beta} T$$
 and $Q \rhd_{\rho\beta} T$.

PROOF. Similar to the case of β -reduction, see [3].

3 Subject-Reduction Theorem for Typed $\lambda \rho$ -Calculus

LEMMA 3.1. If P and Q are typed $\lambda \rho$ -terms and x is a λ -variable with type Type(Q), then [Q/x]P is a typed $\lambda \rho$ -term and Type([Q/x]P) = Type(P) and $FV([Q/x]P) \subseteq (FV(P) - \{x\}) \cup FV(Q)$.

PROOF. By induction on the length of
$$P$$
.

LEMMA 3.2. If P and Q are typed $\lambda \rho$ -terms, $Type(x) = Type(a) = \sigma \rightarrow \tau$, $b:\tau$, $Q:\sigma$ and $x \notin FV(Q)$, then $[\lambda x.b(xQ)/a]P$ is a typed $\lambda \rho$ -term and $Type([\lambda x.b(xQ)/a]P) = Type(P)$ and $FV([\lambda x.b(xQ)/a]P) \subseteq (FV(P) - \{a\}) \cup FV(Q) \cup \{b\}$.

PROOF. By induction on the length of P. The only nontrivial case is $P \equiv (aP_1)^{\gamma}$. Then $P_1: \sigma \to \tau$ and $[\lambda x.b(xQ)/a](aP_1)^{\gamma} \equiv (\lambda x.(b(xQ))^{\gamma}) \cdot [\lambda x.b(xQ)/a]P_1$. Now we have $Type([\lambda x.b(xQ)/a]P) = Type(P) = \gamma$ and $FV([\lambda x.b(xQ)/a]P) = FV([\lambda x.b(xQ)/a]P_1) \cup FV(Q) \cup \{b\} \subseteq (FV(P) - \{a\}) \cup FV(Q) \cup \{b\}$.

THEOREM 3.3 (Subject-reduction theorem). If $P \rhd_{\rho\beta} Q$, then Type(Q) = Type(P) and $FV(Q) \subseteq FV(P)$.

PROOF. By Lemma 3.1, it is enough to take care of the case in which P is a redex and Q is its contractum. It is enough to prove that if $P \triangleright_{1\rho\beta} Q$, then Tvpe(Q) = Tvpe(P) and $FV(Q) \subseteq FV(P)$.

Case 1: $P \equiv (aP_1)^{\sigma \to \tau} P_2$ and $Q \equiv (aP_1)^{\tau}$. It is obvious that $Type(P) = Type(Q) = \tau$. Then we have $FV(Q) = FV(P_1) \cup \{a\} \subseteq FV(P_1) \cup \{a\} \cup FV(P_2) = FV(P)$.

Case 2: $P \equiv (\lambda x. P_1)P_2$ and $Q \equiv [P_2/x]P_1$. By Lemma 3.1, we have Type(Q) = Type(P) and $FV(Q) \subseteq FV(P)$.

Case 3: $P \equiv (\lambda a. P_1)P_2$ and $Q \equiv \lambda b.([\lambda x. b(xP_2)/a]P_1)P_2$. By Lemma 3.2, we have Type(Q) = Type(P) and $FV(Q) \subseteq FV(P)$.

4 Strong Normalization Theorem for Typed $\lambda \rho$ -Terms

We prove the strong normalization theorem for typed $\lambda \rho$ -terms, that is, for every typed $\lambda \rho$ -term M, all reductions starting at M are finite. To prove the theorem, we introduce the concept of *-expansion and use the strong normalization theorem for typed λ -terms.

DEFINITION 4.1 (o-translation). For every typed λp -term ($\lambda a.M$), where $M:\tau$, we define o-*translation* as follows:

- 1. if τ is an atomic type, then $(\lambda a.M)^{\circ} \equiv (\lambda a.M)$,
- 2. if $\tau \equiv \alpha \to \beta$, then $(\lambda a.M)^{\circ} \equiv (\lambda y.(\lambda b.[\lambda x.b(xy)/a]My)^{\circ})$, where x, y and b are the first λ -variable with the type $\alpha \to \beta$, the second λ -variable with the type α and the first ρ -variable with the type β which do not occur in αM .

By the above definition, if $M: \sigma_1 \to \cdots \to \sigma_n \to p$, then $(\lambda a.M)^{\circ} \rhd_{\beta} \lambda y_1 \cdots y_n b.[\lambda x.b(xy_1 \cdots y_n)/a] M y_1 \cdots y_n$ where $x: \sigma_1 \to \cdots \to \sigma_n \to p$, $y_1: \sigma_1 \cdots y_n: \sigma_n$ and b: p.

Note that Parigot [6] proved the strong normarization of propositional typed $\lambda\mu$ -calculus using Gödel translation. This translation is similar to otranslation.

Lemma 4.2.
$$Type((\lambda a.M)^{\circ}) = Type(\lambda a.M)$$
 and $FV((\lambda a.M)^{\circ}) = FV(\lambda a.M)$.

PROOF. By induction on the length of $Type(\lambda a.M)$. If $Type(\lambda a.M)$ is an atom, then $(\lambda a.M)^{\circ} \equiv \lambda a.M$, so $Type(\lambda a.M) = Type((\lambda a.M)^{\circ})$ and $FV(\lambda a.M) = FV((\lambda a.M)^{\circ})$. If $\lambda a.M : \alpha \to \beta$, then

$$(\lambda a.M)^{\circ} \equiv (\lambda y.(\lambda b.[\lambda x.b(xy)/a]My)^{\circ})$$
 where $x: \alpha \to \beta$ and $y: \alpha$.

Since $M: \alpha \to \beta$, $[\lambda x.b(xy)/a]My: \beta$ by Lemma 3.2 and $\lambda b.[\lambda x.b(xy)/a]My: \beta$. Hence by the induction hypothesis, $(\lambda b.[\lambda x.b(xy)/a]My)^{\circ}: \beta$ and $FV((\lambda b.[\lambda x.b(xy)/a]My)^{\circ}) = FV(\lambda b.[\lambda x.b(xy)/a]My) = (FV(M) - \{a\}) \cup \{y\}$. Therefore we have $Type(\lambda a.M) = Type((\lambda a.M)^{\circ})$ and $FV(\lambda a.M) = FV((\lambda a.M)^{\circ})$.

Definition 4.3 (*-expansion). For every typed $\lambda \rho$ -term, we define its *-expansion as follows:

- 1. $(x)^* \equiv x$,
- 2. $(MN)^* \equiv (M^*N^*),$
- 3. $(\lambda x.M)^* \equiv \lambda x.M^*$,
- 4. $((aM)^{\tau})^* \equiv (aM^*)^{\tau}$,
- 5. $(\lambda a.M)^* \equiv (\lambda a.M^*)^\circ$.

LEMMA 4.4. $Type(M^*) = Type(M)$ and $FV(M^*) = FV(M)$.

PROOF. By induction on the length of M. The only nontrivial case is $M \equiv \lambda a.N$. By the induction hypothesis, $Type(N^*) = Type(N)$ and $FV(N^*) = FV(N)$. In this case we prove the claim by induction on the length of Type(N). If Type(N) is an atom, then $M^* \equiv \lambda a.N^*$. Therefore we have $Type(M^*) = Type(N^*) = Type(N) = Type(M)$ and $FV(M^*) = FV(N^*) - \{a\} = FV(N) - \{a\} = FV(N)$. Let Type(N) be a composite type $\alpha \to \beta$. Since $Type(N^*) = \alpha \to \beta$, $Type([\lambda x.b(xy)/a]N^*) = \alpha \to \beta$ by Lemma 3.2 where $x : \alpha \to \beta$, $y : \alpha$ and $b : \beta$.

Hence

$$Type(M^*) = Type((\lambda a.N^*)^\circ)$$

$$= Type(\lambda y.(\lambda b.[\lambda x.b(xy)/a]N^*y)^\circ)$$

$$= \alpha \to Type((\lambda b.[\lambda x.b(xy)/a]N^*y)^\circ)$$

$$= \alpha \to Type(\lambda b.[\lambda x.b(xy)/a]N^*y) \quad \text{(by Lemma 4.2)}$$

$$= \alpha \to Type([\lambda x.b(xy)/a]N^*y)$$

$$= \alpha \to \beta = Type(M).$$

Similarly, we can get $FV(M^*) = FV(M)$.

LEMMA 4.5. If $\lambda a.M$ and N are typed $\lambda \rho$ -terms and x is a λ -variable with type Type(N), then

$$[N/x](\lambda a.M)^{\circ} \equiv_{\alpha} ([N/x](\lambda a.M))^{\circ}.$$

PROOF. By induction on the length of $Type(\lambda a.M)$.

Lemma 4.6. If M and N are typed $\lambda \rho$ -terms and Type(N) = Type(x), then

$$[N^*/x]M^* \equiv_{\alpha} ([N/x]M)^*.$$

PROOF. By induction on the length of M. The only nontrivial case is $M \equiv \lambda a.R$. By the induction hypothesis, $[N^*/x]R^* \equiv_{\alpha} ([N/x]R)^*$. We assume that $a \notin FV(N)$. If Type(R) is an atom, then

$$[N^*/x](\lambda a.R)^* \equiv [N^*/x](\lambda a.R^*)^\circ$$

$$\equiv [N^*/x](\lambda a.R^*) \quad \text{(as } Type(R) \text{ is an atom)}$$

$$\equiv_{\alpha} \lambda a.[N^*/x]R^*$$

$$\equiv_{\alpha} \lambda a.([N/x]R)^* \quad \text{(by the induction hypothesis)}$$

$$\equiv (\lambda a.([N/x]R)^*)^\circ \quad \text{(as } Type(R) \text{ is an atom)}$$

$$\equiv (\lambda a.([N/x]R))^*$$

$$\equiv ([N/x](\lambda a.R))^*.$$

Let Type(R) be a composite type $\alpha \to \beta$. Then

$$[N^*/x](\lambda a.R)^* \equiv [N^*/x](\lambda z.(\lambda b.[\lambda y.b(yz)/a]R^*z)^\circ)$$

$$\equiv \lambda z.[N^*/x](\lambda b.[\lambda y.b(yz)/a]R^*z)^\circ$$

$$\equiv_{\alpha} \lambda z.([N^*/x](\lambda b.[\lambda y.b(yz)/a]R^*z))^\circ \quad \text{(by Lemma 4.5)}$$

$$\equiv \lambda z.(\lambda b.[\lambda y.b(yz)/a][N^*/x]R^*z)^\circ$$

$$\equiv_{\alpha} \lambda z.(\lambda b.[\lambda y.b(yz)/a]([N/x]R)^*z)^\circ \quad \text{(by the induction hypothesis)}$$

$$\equiv (\lambda a.([N/x]R))^*$$

$$\equiv ([N/x](\lambda a.R))^*.$$

LEMMA 4.7. If M and N are typed $\lambda \rho$ -terms, then

$$[\lambda x.a(xN^*)/a]M^* \equiv_{\alpha} ([\lambda x.a(xN)/a]M)^*.$$

PROOF. Similar to that of Lemma 4.6.

DEFINITION 4.8 ($a\beta$ -contraction for typed $\lambda \rho$ -terms). An $a\beta$ -redex is an a-redex or a β -redex, that is

$$M \rhd_{1a\beta} N$$
 if $M \rhd_{1a} N$ or $M \rhd_{1\beta} N$.

If P contains an $a\beta$ -redex-occurrence \underline{R} and Q is the result of replacing \underline{R} by its contractum, we say that P $a\beta$ -contracts to Q ($P \rhd_{1a\beta} Q$), and we call the triple $\langle P, \underline{R}, Q \rangle$ an $a\beta$ -contraction of P.

An $a\beta$ -reduction for typed $\lambda \rho$ -terms is defined in the same way as a $\rho\beta$ -reduction for type free $\lambda \rho$ -terms.

Theorem 4.9 (Strong normalization theorem for $a\beta$ -reduction). For any typed $\lambda \rho$ -term M, all $a\beta$ -reductions starting at M are finite.

PROOF. Similar to the case of typed
$$\lambda$$
-calculus, see [3].

The following lemma is the key result to prove strong normalization for $\rho\beta$ -reduction.

LEMMA 4.10. For any typed λp -terms M and N, if $M \triangleright_{1\rho\beta} N$ then $M^* \triangleright_{1a\beta} N^*$.

PROOF. Case 1: The redex is $(\lambda x.P)Q$.

$$((\lambda x.P)Q)^* \equiv (\lambda x.P^*)Q^*$$

$$\rhd_{1a\beta} [Q^*/x]P^*$$

$$\equiv ([Q/x]P)^* \text{ (by Lemma 4.6)}.$$

Case 2: The redex is $(aP)^{\sigma \to \tau}Q$.

$$((aP)^{\sigma \to \tau} Q)^* \equiv (aP^*)^{\sigma \to \tau} Q^*$$
$$\rhd_{1a\beta} (aP^*)^{\tau}$$
$$\equiv ((aP)^{\tau})^*.$$

Case 3: The redex is $(\lambda a.P)Q$.

$$((\lambda a.P)Q)^* \equiv (\lambda y.(\lambda b.[\lambda x.b(xy)/a]P^*y)^\circ)Q^*$$

$$\Rightarrow_{1a\beta} [Q^*/y]((\lambda b.[\lambda x.b(xy)/a]P^*y)^\circ)$$

$$\equiv ([Q^*/y]\lambda b.[\lambda x.b(xy)/a]P^*y)^\circ \quad \text{(by Lemma 4.5)}$$

$$\equiv (\lambda b.[\lambda x.b(xQ^*)/a]P^*Q^*)^\circ$$

$$\equiv (\lambda b.([\lambda x.b(xQ)/a]P)^*Q^*)^\circ \quad \text{(by Lemma 4.7)}$$

$$\equiv (\lambda b.(([\lambda x.b(xQ)/a]P)Q)^*)^\circ$$

$$\equiv (\lambda b.(([\lambda x.b(xQ)/a]P)Q)^*.$$

Theorem 4.11 (Strong normalization theorem for $\rho\beta$ -reduction). For any typed $\lambda\rho$ -term M, all $\rho\beta$ -reductions starting at M are finite.

PROOF. Let $M_1, M_2, ...$ be an infinite $\rho\beta$ -reduction. By Lemma 4.10, we can get an infinite $a\beta$ -reduction $M_1^*, M_2^*, ...$ This contradicts Theorem 4.9.

Y. Andou [1] proved the weak normalization theorem for $\rho\beta$ -reduction, that is, every typed $\lambda\rho$ -term M has a normal form. The cut-elimination proof for LK only needs the weak normalization theorem, though we use the strong normalization theorem in the section 6.

5 Subformula Property for Normal Typed $\lambda \rho$ -Terms

DEFINITION 5.1 (Subterms). The set Subt(M) of all *subterms* of a typed $\lambda \rho$ -term M is defined by induction on the length of M as follows:

- 1. if M is an atom, $Subt(M) = \{M\},\$
- 2. $Subt((PQ)) = Subt(P) \cup Subt(Q) \cup \{(PQ)\},\$
- 3. $Subt((aP)^{\sigma}) = Subt(P) \cup \{a\} \cup \{(aP)^{\sigma}\}$
- 4. $Subt((\lambda f.P)) = Subt(P) \cup \{f\} \cup \{(\lambda f.P)\}.$

 ρ -variables are not $\lambda \rho$ -terms but ρ -variables may be in Subt(M). Subt(M) is a set of $\lambda \rho$ -terms and ρ -variables. Let S be a set of $\lambda \rho$ -terms and ρ -variables. Type(S) denotes the set $\{Type(M) \mid M \in S\}$.

NOTATION 5.2. Let Γ be a set of types. If a type δ has an occurrence in α , or in a type in Γ , we write as $\delta \leq \alpha$, or $\delta \leq \Gamma$ respectively.

THEOREM 5.3 (Subformula property for typed $\lambda \rho$ -terms in the normal form). Let a typed $\lambda \rho$ -term M be a $\rho \beta$ -normal form. Then for every type δ in $Type(Subt(M)), \ \delta \leq Type(FV(M) \cup \{M\}).$

PROOF. By induction on the length of M. The only nontrivial case is when M is of the form PQ. Since PQ is a $\rho\beta$ -normal form, so are P and Q, and hence by the induction hypothesis, for every type σ in Type(Subt(P)) and every type τ in Type(Subt(Q)), $\sigma \leq Type(FV(P) \cup \{P\})$ and $\tau \leq Type(FV(Q) \cup \{Q\})$. Now, since PQ is a $\rho\beta$ -normal form, P must be in the form $xP_1 \cdots P_n$. Hence $Type(P) \leq Type(x)$ and for every type δ in Type(Subt(M)), $\delta \leq Type(\{x\} \cup FV(M))$. Therefore for every type δ in Type(Subt(M)), $\delta \leq Type(FV(M) \cup \{M\})$.

6 Gentzen's LK and Typed $\lambda \rho$ -Terms

In this section we prove that a typed $\lambda \rho$ -term corresponds to a proof in classical implicational logic and prove simultaneously the cut elimination theorem for the implicational fragment LK $_{\rightarrow}$ of LK by using the strong normalization theorem for typed $\lambda \rho$ -terms.

The calculus LK that we use here is the following:

DEFINITION 6.1. Let Γ , Θ , Δ and Λ be sets of types. Γ , Δ denotes the set $\Gamma \cup \Delta$ and $\Gamma \setminus \alpha$ denotes the set $\Gamma - \{\alpha\}$.

- 1. axiom: (I) $\alpha \Rightarrow \alpha$.
- 2. rules:

$$\begin{split} \frac{\Gamma \Rightarrow \Theta}{\alpha, \Gamma \Rightarrow \Theta} & (w \Rightarrow), \quad \frac{\Gamma \Rightarrow \Theta}{\Gamma \Rightarrow \Theta, \alpha} & (\Rightarrow w), \\ \frac{\Gamma \Rightarrow \Theta, \alpha \quad \alpha, \Delta \Rightarrow \Lambda}{\Gamma, \Delta \Rightarrow \Theta, \Lambda} & (cut), \\ \frac{\Gamma \Rightarrow \Theta, \alpha \quad \beta, \Delta \Rightarrow \Lambda}{\alpha \rightarrow \beta, \Gamma, \Delta \Rightarrow \Theta, \Lambda} & (\rightarrow \Rightarrow), \quad \frac{\Gamma \Rightarrow \Theta, \beta}{\Gamma \backslash \alpha \Rightarrow \Theta, \alpha \rightarrow \beta} & (\Rightarrow \rightarrow). \end{split}$$

Lemma 6.2. If $\Gamma \Rightarrow \Theta$ is provable the system LK_{\rightarrow} , then there exists a typed $\lambda \rho$ -term M such that $\Gamma \supseteq Type(FV_{\lambda}(M))$ and $\Theta \supseteq Type(FV_{\rho}(M) \cup \{M\})$.

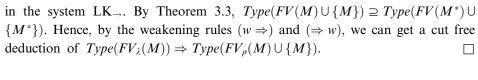
PROOF. By induction on the length of the LK_{\rightarrow} proof of $\Gamma \Rightarrow \Theta$.

LEMMA 6.3. For any $\rho\beta$ -normal typed $\lambda\rho$ -term M, $Type(FV_{\lambda}(M)) \Rightarrow Type(FV_{\rho}(M) \cup \{M\})$ is provable without cut in the system LK_{\rightarrow} .

PROOF. By induction on the length of M. The only nontrivial case is when M is of the form (PQ). Since M is normal, $P \equiv xP_1 \cdots P_n$ for some λ -variable x and normal $\lambda \rho$ -terms P_1, \ldots, P_n . Let Type(x) be $\sigma_1 \to \cdots \to \sigma_n \to \tau \to \gamma$. Then we have $Type(P_1) = \sigma_1$. By the induction hypothesis, there exists a cut free deduction in LK $_{\to}$ proving $Type(FV_{\lambda}(P_1)) \Rightarrow Type(FV_{\rho}(P_1)), \sigma_1$. Let z be a new λ -variable with a type $\sigma_2 \to \cdots \to \sigma_n \to \tau \to \gamma$. The $\lambda \rho$ -term $zP_2\cdots P_nQ$ is normal. Hence, by the induction hypothesis, there exists a cut free deduction of LK proving $\sigma_2 \to \cdots \to \sigma_n \to \tau \to \gamma$, $Type(FV_{\lambda}(P_2\cdots P_nQ)) \Rightarrow Type(FV_{\rho}(P_2\cdots P_nQ)), \gamma$. By the rule $(\to \Rightarrow)$, we get a cut free deduction of LK proving $\sigma_1 \to \cdots \to \sigma_n \to \tau \to \gamma$, $Type(FV_{\lambda}(P_1\cdots P_nQ)), \gamma$. As $Type(FV_{\lambda}(M)) \equiv \sigma_1 \to \cdots \to \sigma_n \to \tau \to \gamma$, $Type(FV_{\lambda}(P_1\cdots P_nQ))$ and $Type(FV_{\rho}(M) \cup \{M\}) \equiv Type(FV_{\rho}(P_1\cdots P_nQ)), \gamma$, we get a cut free deduction of LK proving $Type(FV_{\lambda}(M)) \Rightarrow Type(FV_{\rho}(M) \cup \{M\})$.

Lemma 6.4. For any typed $\lambda \rho$ -term M, $Type(FV_{\lambda}(M)) \Rightarrow Type(FV_{\rho}(M) \cup \{M\})$ is provable without cut in the system LK_{\rightarrow} .

PROOF. By Theorem 4.11, there exists a $\rho\beta$ -normal form M^* of M. By Lemma 6.3, $Type(FV_{\lambda}(M^*)) \Rightarrow Type(FV_{\rho}(M^*) \cup \{M^*\})$ is provable without cut



Theorem 6.5. $\Gamma \Rightarrow \Theta$ is provable the system LK_{\rightarrow} if and only if there exists a typed $\lambda \rho$ -term M such that $\Gamma \supseteq Type(FV_{\lambda}(M))$ and $\Theta \supseteq Type(FV_{\rho}(M) \cup \{M\})$.

Proof. By Lemma 6.2 and Lemma 6.4.

Theorem 6.6. If $\Gamma \Rightarrow \Theta$ is provable in the system LK_{\rightarrow} , then $\Gamma \Rightarrow \Theta$ is provable without cut in the system LK_{\rightarrow} .

PROOF. By Lemma 6.2 and Lemma 6.4.

References

- [1] Yuuki Andou. A proof of the normalization theorem for $\lambda \rho$ -calculus. Reports of Faculty of Literature, Housei Univ., 50:1–5, 2005.
- [2] J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1997.
- [3] J. Roger Hindley and Jonathan P. Seldin. Lambda-calculus and Combinators, an Introduction. Cambridge University Press, 2008.
- [4] Yuichi Komori. λρ-calculus: A natural deduction for classical logic. Bulletin of the Section of Logic, 31:65–70, 2002.
- [5] Michel Parigot. λμ-calculus: An algorithmic interpretation of classical natural deduction. Lecture Notes in Computer Science, 624:190–201, 1992.
- [6] Michel Parigot. Proofs of strong normalization for second order classical natural deduction. Journal of Symbolic Logic, 62(4):1461–1479, 1997.

Department of Mathematics Faculty of Science, Chiba University Inage-ku Chiba 263-8522 Japan e-mail: komori.yuichi@gmail.com