TSUKUBA J. MATH.
Vol. 37 No. 2 (2013), 307-320

Jp-CALCULUS 11

By

Yuichi KoMoRr1

Abstract. In [4], the author introduced the system Ap-calculus and
stated without proof that the strong normalization theorem holds.
Here we introduce a lemma (Lemma 4.10) and use it to prove
the strong normalization theorem. While a typed A-term itself is
a derivation of the natural deduction for intuitionistic implica-
tional logic (cf. [2]), a typed Ap-term itself is a derivation of the
natural deduction for classical implicational logic. Our system is
simpler than the implicational fragment of Parigot’s Au-calculus

(cf. [5]).

1 The Type Free Ap-Calculus

DrerFINITION 1.1 (/Ap-terms). Assume to have an infinite sequence of A-
variables and an infinite sequence of p-variables. Then the linguistic expressions
called Ap-terms are defined as:

1. each A-variable is a Ap-term, called an atom or atomic term,

2. if M and N are Ap-terms then (MN) is a Ap-term called an application,

3. if M is a Jp-term and « is a p-variable then (aM) is a Ap-term called
absurd,

4. if M is a Ap-term and f is a A-variable or a p-variable then (Af.M) is
a Ap-term called an abstract. (If f is a A-variable or a p-variable, then
(Af.M) is a A-abstract or a p-abstract, respectively.)

Note that p-variables are not terms. A-variables are denoted by “u”, “v”

€6 9% G699 G690 ¢C_9) [T]

w”, “x”, “y”, “z”. p-variables are denoted by “a”, “b”, “c”, “d”. A term-

>

2000 AMS subject classification: 03B05, 03B40.

Key words and phrases: A-calculus, typed A-calculus, normalization theorem, classical logic, Ap-calculus,
Au-calculus, LK.

Received December 18, 2012.

Revised March 12, 2013.

308 Yuichi KoMoR1
variable is a A-variable or a p-variable. Term-variables are denoted by “f”, “g”,
“h”. Distinct letters denote distinct variables unless stated otherwise.
A term Aa.M is sometimes denoted by pa.M if the variable a is a p-variable.
Arbitrary Ap-terms are denoted by “L”, “M”, “N” “P” “Q” “R” “S”,
CCT”‘

DErFINITION 1.2 (Free variables). The set FV' (M) of all term variables free in
M, is defined as:

1. FV(x) ={x},

2. FV((MN)) = FV(M)UFV(N),
3. FV((aM)) = FV(M)U{a},

4. FV((Mf M) =FV(M)—{f}.

"q

DEerINITION 1.3 (pf-contraction). A pf-redex is any Ap-term of form (aM)N,
(Ax.M)N or (Aa.M)N; its contractum is (aM), [N/x]M or Ab.([Ax.b(xN)/a]M)N
respectively. The re-write rules are

(aM)N =y, (aM),
(Ax.M)N =15 [N /x| M,

(Aa.M)N 1, Ab.([Ax.b(xN)/a)M)N, where b is the first p-variable
and x is the first A-variable such that » and x do
not occur in aMN,

Moy N if M=y N, Mg N or M, N.

We call a Ap-term of form (aM)N an a-redex, (Ax.M)N a f-redex and (la.M)N
a p-redex. If P contains a pf-redex-occurence R and Q is the result of replacing
this by its contractum, we say that P pf-contracts to Q (Pr1,5 Q), and we call
the triple (P, R, Q) a pf-contraction of P.

DEFINITION 1.4 (pp-reduction). A pp-reduction of a term P is a finite
(perhaps empty) or infinite sequence of pf-contractions with form

<P1a&an>,<P2,&,Q2>,...

where Py =, P and Q; =, P;;) for i=1,2,.... We say a finite pf-reduction is
from P to Q iff either it has n > 1 pf-contractions and Q, =, Q or it is empty
and P =, Q. A reduction from P to Q is said to terminate or end to Q. If there

Ap-calculus II 309

is a reduction from P to Q we say that P pf-reduces to Q, in symbols

P >p/)’ Q

Note that a-conversions are allowed in a pp-reduction.

THEOREM 1.5 (Church-Rosser threorem for pf-reduction). If M,z P and
M =,5 Q, then there exists T such that

Py T and Qo T.
Proor. Similar to the case of f-reduction, see [3]. O
2 Typed Ap-Terms

DeriNiTION 2.1 (Types). An infinite sequence of type-variables, distinct from
the term-variables, is assumed to be given. Types are linguistic expressions defined
as:

1. each type-variable is a type called an atom;

2. if ¢ and 7 are types then (¢ — t) is a type called a composite type.

Type-variables are denoted by “p”, “¢”, “r’ with or without number-
subscripts, and distinct letters denote distinct variables unless otherwise stated.

Aribitrary types are denoted by lower-case Greek letters except “A” and “p”.

Parentheses will often (but not always) be omitted from types, and the reader
should restore omitted ones in the way of association to the right.

Any term-variables is assumed to have one type. For any type 7, an infinite
sequence of A-variables with type 7 and an infinite sequence of p-variables with
type t are assumed to exist.

DeriNiTION 2.2 (Typed /Jp-terms). We shall define typed Jp-terms and
Type(M) (assertion type(M) = 7 is denoted by M :) simultaneously.

1. A Z-variable x with type 7 is a typed Ap-term, called an atom, and x : 7.

2. If M and N are typed Ap-terms and M :6 — 7 and N :o, then the
expression (MN) is a typed Ap-term called an application and (MN) : 7.

3. Let o be any type. If M is a typed Ap-term and M : 7 and « is a p-variable
with type 7, then the expression (aM)’ is a typed Ap-term called an absurd
and (aM)? : a.

310 Yuichi KoMoRI

4. If M is a typed Ap-term and M : 7t and x is a A-variable with type o,
then the expression (Ax.M) is a typed Ap-term called a A-abstract and
(AxM):0— 1.

5. If M is a typed Ap-term and M : 7 and «a is a p-variable with type t,
then the expression (la.M) is a typed Ap-term called a p-abstract and
(la.M) : 7.

Typed Ap-terms will be abbreviated using the same conventions as for Jp-terms.

DeriNITION 2.3 (Free variables in a typed /p-term). Let M be a typed
Ap-term. The set FV (M) of all the free term-variables in M, is defined as:

1. FV(x) = {x},

2. FV((MN)) = FV(M)UFV(N),
3. FV((aM)®) = FV(M)U{a},
4 FV((f.M)) = FV(M) - {1},

FV),(M) and FV,(M) denote the set of all A-variables in FV' (M) and the set of
all p-variables in FV (M), respectively.

ExampLE 2.4 (Peirce’s Law).

Jxa.x(2y.(ay)?), where x: (a0 —f) —a, y:o and a: o

On the other hand, the proof of Peirce’s Law is Axa.[a](x(Ayb.[a]y)) in Parigot’s
system. We think that proofs in our system are generally simpler than those in the
implicational fragment of Parigot’s system.

The above typed Ap-term is writen in a tree form as follows:

ao y:o
B
A
x:(a—=p)—a o—p Y
o,
= la
x X

CEY T ECI

or in a more redundant form as follows:

ao y:o
ay:p
x:(ao—=p)—a Ayay:a—f
x(Ay.ay) : o

la.x(Ay.ay) : o
Axax(Ay.ay): ((o — f) = o) — o

Ap-calculus 11 311

DeriNITION 2.5 (Type-erasure and typability). We assume the existence of
two mappings j and k such that j is a one-to-one onto mapping from the set of
all Z-variables with type to the set of all A-variables and k is a one-to-one onto
mapping from the set of all p-variables with type to the set of all p-variables. For
simplicity, we write x and a for j(x) and k(a), respectively. The type-erasure
er(M) of a typed Ap-term M is the Ap-term obtained by erasing all types from M.
Namely, type-erasure er(M) is defined as follows:

1. er(x) = x,

2. er((MN)) = (er(M) er(N)),
3. er((aM)?) = (a er(M)),

4. er((Ax.M)) = (Ax.er(M)),
5. er((Aa.M)) = (la.er(M))

A Jp-term M is called typable iff there exists a typed Ap-term N such that
er(N) =, M.

For typed Ap-terms M, N and a A-variable x with type Type(N), the sub-
stitution of N for x in M [N/x]M is defined as usual. For a typed Jp-term M
and p-variables a, b such that Type(a) = Type(b), the substitution of b for a in M
[b/alM is also defined as usual.

To define pf-contraction for typed Ap-terms, we have to define the substi-
tution of an expression Ax.h(xN) for a p-variable. Notice that the expression
Ax.b(xN) is not a typed Ap-term.

DEFINITION 2.6 (Substitution of an expression Ax.h(xN) for a p-variable).
For typed ip-terms M, N, a p-variable b, we define [Ax.b(xN)/a]M to be the
result of substituting Ax.h(xN) for every free occurrence of a in M, where
Type(x) = Type(a) =a— f, b: f and N : a.

1. [Ax.b(xN)/alM = M if a¢ FV(M),

2. [Ax.b(xN)/al(MR) = ([Ax.b(xN)/a|M[/x.b(xN)/a]R) if a € FV(MR),

3. [Ax.b(xN)/a|(Ay.M) = Ay.[Ax.b(xN)/a]M if aeFV(M) and y¢
FV(2x.b(xN)),

4. [Ax.b(xN)/al(ly.M) = Az.[Ax.b(xN)/a][z/y|M if aeFV(M) and ye
FV(ix.b(xN)),

5. [Ax.b(xN)/a)(cM)? = (c[Ax.b(xN)/a]M)° if ae FV(M) and ¢ # a,

6. [Jx.b(xN)/al(aM)? = (4x.(b(xN))?)[Ax.b(xN)/a|M,

7. [Ax.b(xN)/a)(Ac.M) = Ac.[Jx.b(xN)/alM if aeFV(ic.M) and c¢
FV(bN),

312 Yuichi KoMoORI

8. [Ax.b(xN)/a](Ac.M) = Ad.[Ax.b(xN)/a][d/c]M if ae FV(ic.M) and ce
FV(bN).
(In 4 z is the first A-variable with type Type(y) which does not occur in xNM. In
8 d is the first p-variable with type Type(c) which does not occur in bNM.)

DEerINITION 2.7 (pf-contraction for typed Ap-terms). A pf-redex is any typed
Jp-term of form (aM)°"'N, (Ax.M)N or (la.M)N; its contractum is (aM)",
[N/x]M or Ab.([Ax.b(xN)/a]M)N respectively. The re-write rules are

(@aM)” "N =1, (aM)",
()LX.M)N =1p [N/X]M,

(Aa.M)N o1, b.([Ax.b(xN)/a]M)N, where b is the first p-variable
and x is the first A-variable such that b: Type(MN),
x: Type(a) and b and x do not occur in aMN,

Moy N if M=y N, Mg N or M, N.

We call a Ap-term of form (aM)’°N an a-redex, (Ax.M)N a p-redex and
(Aa.M)N a p-redex. If P contains a pf-redex-occurence R and Q is the result of
replacing this by its contractum, we say that P pf-contracts to Q (P 1,z Q), and
we call the triple {(P,R, Q) a pf-contraction of P.

A pf-reduction for typed Ap-terms is defined in the same way as a pf-
reduction for type free Ap-terms.

THEOREM 2.8 (Church-Rosser theorem for typed Ap-terms). Let M, P and Q
be typed ip-terms. If M =,p P and M ©,3 Q, then there exists a typed Ap-term T
such that
Py T and QuopT.

ProoF. Similar to the case of f-reduction, see [3]. O

3 Subject-Reduction Theorem for Typed Ap-Calculus

Lemma 3.1. If P and Q are typed Jp-terms and x is a A-variable with
type Type(Q), then [Q/x|P is a typed ip-term and Type(|Q/x|P) = Type(P) and

FV([Q/x]P) = (FV(P) = {x}) UFV(Q).

Proor. By induction on the length of P. O

Ap-calculus 11 313

LemMa 3.2. If P and Q are typed Jp-terms, Type(x) = Type(a) =0 — T,
b:t, Q:06 and x¢ FV(Q), then [Ax.b(xQ)/a|lP is a typed Iip-term and
Type([Ax.b(xQ)/a|P) = Type(P) and FV([Ax.b(xQ)/a]P) = (FV(P)—{a})U
FV(Q)U{b}.

Proor. By induction on the length of P. The only nontrivial case is
P=(aP))’. Then Py:oc—1t and [ix.b(xQ)/d](aP))” = (Ax.(b(xQ))?) -
[Ax.b(xQ)/a]lPy;. Now we have Type([ix.b(xQ)/a]P)= Type(P)=7y and
FV([Ax.b(xQ)/a]P) = FV([Ax.b(xQ)/a]P1) U FV(Q) U {b} = (FV(P) — {a}) U
FV(Q)U{b}. O

THEOREM 3.3 (Subject-reduction theorem). If Pr,30, then Type(Q) =
Type(P) and FV(Q) < FV(P).

Proor. By Lemma 3.1, it is enough to take care of the case in which P is
a redex and Q is its contractum. It is enough to prove that if P>,z Q, then
Type(Q) = Type(P) and FV(Q) < FV(P).

Case 1: P=(aPy)” "P, and Q= (aPy)". It is obvious that Type(P) =
Type(Q) = . Then we have FV(Q) = FV(P)U{a} = FV(P))U{a} UFV(P;) =
FV(P).

Case 2: P=(ix.P)P, and Q=]
Type(Q) = Type(P) and FV(Q) < FV(P).

Case 3: P = (la.P;)Py and Q = Ab.([Ax.b(xP2)/a]P\)P>. By Lemma 3.2, we
have Type(Q) = Type(P) and FV(Q) < FV(P). O

P,/x]P;. By Lemma 3.1, we have

4 Strong Normalization Theorem for Typed Ap-Terms

We prove the strong normalization theorem for typed Ap-terms, that is, for
every typed Ap-term M, all reductions starting at M are finite. To prove the
theorem, we introduce the concept of #-expansion and use the strong normal-
ization theorem for typed A-terms.

DErFINITION 4.1 (o-translation). For every typed Ap-term (la.M), where
M : 7, we define o-translation as follows:

1. if 7 is an atomic type, then (la.M)° = (la.M),

2. ift=0— B, then (la.M)° = (Ay.(Ab.[Ax.b(xy)/a|My)®), where x, y and b
are the first A-variable with the type o — f, the second ZA-variable with the
type o and the first p-variable with the type f which do not occur in aM.

314 Yuichi KoMoORI

By the above definition, if M:0y —---— 0, — p, then (la.M)° >y
Iyt yab Ax.b(xy1 - yu)/alMyy -+ -y, where x:01 — - —a, —p, y1:0] -
Yn:o, and b: p.

Note that Parigot [6] proved the strong normarization of propositional
typed Ap-calculus using Godel translation. This translation is similar to o-
translation.

Lemma 4.2. Type((Aa.M)°) = Type(la.M) and FV((Aa.M)°) = FV(la.M).

Proor. By induction on the length of Type(ia.M). If Type(la.M) is an
atom, then (la.M)° = la.M, so Type(Ja.M) = Type((2a.M)°) and FV(la.M) =
FV((Aa.M)®). If la.M : o — f, then

(a.M)° = (Ly.(Ab.[Ax.b(xy)/a]My)°) where x:0— f and y:a.

Since M : o — f, [Ax.b(xy)/alMy : f by Lemma 3.2 and Ab.[Ax.b(xy)/a|My : .
Hence by the induction hypothesis, (4b.[Ax.b(xy)/a]My)°: and
FV((Ab.[2x.b(xy)/alMy)°) = FV(b.[Ax.b(xy)/a|My) = (FV(M) — {a}) U {y}.
Therefore we have Type(da.M) = Type((Ja.M)°) and FV (la.M) = FV((Aa.M)®).

O

DeriNITION 4.3 (x-expansion). For every typed Ap-term, we define its
x-expansion as follows:

L (

2. (

3. (Ax.M)" = Ix.M*,
4. (!

5.(

LemMmA 4.4. Type(M*) = Type(M) and FV(M™*) = FV(M).

Proor. By induction on the length of M. The only nontrivial case is
M = Ja.N. By the induction hypothesis, Type(N*) = Type(N) and FV(N*) =
FV(N). In this case we prove the claim by induction on the length of Type(N).
If Type(N) is an atom, then M* = Aa.N*. Therefore we have Type(M*) =
Type(N*) = Type(N) = Type(M) and FV(M*) = FV(N*) —{a} = FV(N) — {a}
= FV(N). Let Type(N) be a composite type o — f. Since Type(N*) = o — f3,
Type([Ax.b(xy)/a]N*) = o — by Lemma 3.2 where x: o — f, y:o and b:f.

Ap-calculus 11 315

Hence
Type(M™) = Type((2a.N")")
= Type(iy.(b.[Ax.b(xy) Ja]N*y)°)
= o — Type((4b.[2x.b(xy)/alN"y)®)
= o — Type(Ab.[x.b(xy)/a]N*y) (by Lemma 4.2)
= a— Type([Ax.b(xy)/alN"y)

=o— = Type(M).

Similarly, we can get FV(M*) = FV(M). O

Lemma 4.5. If la.M and N are typed Ap-terms and x is a J-variable with type
Type(N), then

[N/x)(4a.M)° =, ([N /x](4a.M))".

Proor. By induction on the length of Type(la.M). O

LemmA 4.6. If M and N are typed Jp-terms and Type(N) = Type(x),
then

[N*/x]M™ =, ([N/x]M)".
Proor. By induction on the length of M. The only nontrivial case is

M = Ja.R. By the induction hypothesis, [N*/x]R* =, ([N/x]R)". We assume that
a¢ FV(N). If Type(R) is an atom, then

[N*/x](2a.R)* = [N*/x](a.R*)°

= [N*/x](Aa.R*) (as Type(R) is an atom)

=, Ja[N*/x]R*

=, a.([N/x]R)" (by the induction hypothesis)

= (Ja.([N/X]R)*)° (as Type(R) is an atom)
= (2a.([N/x]R))
)

= (IN/x](a.R))".

316 Yuichi KoMORI

Let Type(R) be a composite type « — B. Then
[N*/x)(Ja.R)* = [N*/x](Az.(3b.[Ay.b(yz) /a|R"z2)°)
= Jz.[N*/x](2b.[Ay.b(yz) /a) R*z)°
=, z.([N"/x](Ab.[Ay.b(yz) /a]R*z))° (by Lemma 4.5)
= Jz.(2b.[Ay.b(yz) /a[N* /x|R"z)°
=, \z.(Jb.[Jy.b(yz)/a)([N/x]R)*z)° (by the induction hypothesis)
= (Ja.(IN/X]R))"
= ([N/x](Ja.R))". O

Lemma 4.7. If M and N are typed Ap-terms, then

[Ax.a(xN*)/alM* =, ([Ax.a(xN)/a)M)".
Proor. Similar to that of Lemma 4.6. O

DerFNITION 4.8 (afi-contraction for typed Ap-terms). An afi-redex is an
a-redex or a f-redex, that is

Ml>1aﬁN if Ml>laN or Ml>1ﬁN.

If P contains an afi-redex-occurence R and Q is the result of replacing R by
its contractum, we say that P af-contracts to Q (P45 Q), and we call the triple
{P,R, Q> an af-contraction of P.

An af-reduction for typed /p-terms is defined in the same way as a pf-
reduction for type free Ap-terms.

THEOREM 4.9 (Strong normalization theorem for af-reduction). For any
typed Ap-term M, all af-reductions starting at M are finite.

ProoF. Similar to the case of typed A-calculus, see [3]. O

The following lemma is the key result to prove strong normalization for
pf-reduction.

Ap-calculus 11 317

Lemma 4.10. For any typed ip-terms M and N, if Mtz N then
M* >, N*.

Proor. Case 1: The redex is (1x.P)Q.

((4x.P)Q)" = (Ax.P*)Q*
10 (0" /x]P*
= ([0/x]P)* (by Lemma 4.6).
Case 2: The redex is (aP)""°Q.
((@P)""Q)" = (aP")" Q"
o1ap (aP*)°
= ((aP))".
Case 3: The redex is (ia.P)O.
((ha.P)Q)" = (4y.(3b.[2x.b(xy) [aP*y)*) Q"
10 (0" /Y1 ((Ab.[2x.b(xy) [a] P y)°)
= ([0° /y)b.[ixb(xy)/alP"y)" (by Lemma 4.5)

= (2b.[x.b(xQ") /alP* Q")°

= (Jb.([Jx.b(x0)/a]P)*Q*)° (by Lemma 4.7)

= (1b.(([/xb(x0) /a]P)0)")°

= (Jb.(([Ax.b(x0Q)/d]P)Q))". O

THEOREM 4.11 (Strong normalization theorem for pp-reduction). For any
typed Ap-term M, all pf-reductions starting at M are finite.

Proor. Let My, M,,... be an infinite pf-reduction. By Lemma 4.10, we can
get an infinite af-reduction M|, M;,.... This contradicts Theorem 4.9. O

Y. Andou [1] proved the weak normalization theorem for pf-reduction, that
is, every typed Ap-term M has a normal form. The cut-elimination proof for
LK only needs the weak normalization theorem, though we use the strong
normalization theorem in the section 6.

318 Yuichi KoMoR1
5 Subformula Property for Normal Typed Ap-Terms

DerFiNITION 5.1 (Subterms). The set Subt(M) of all subterms of a typed
Ap-term M is defined by induction on the length of M as follows:

1. if M is an atom, Subt(M) = {M},

2. Subt((PQ)) = Subt(P)U Subt(Q) U{(PQ)},
3. Subt((aP)?) = Subt(P)U{a} VU {(aP)’}

4. Subt((Af.P)) = Subt(P)U{f}U{(Af.P)}.

p-variables are not Ap-terms but p-variables may be in Subt(M). Subt(M) is a set
of Jp-terms and p-variables. Let S be a set of Ap-terms and p-variables. Type(S)
denotes the set {Type(M)| M e S}.

NoOTATION 5.2. Let I be a set of types. If a type 0 has an occurrence in o,
or in a type in I', we write as d < a, or 6 < I' respectively.

THEOREM 5.3 (Subformula property for typed Ap-terms in the normal form).
Let a typed Jlp-term M be a pp-normal form. Then for every type O in
Type(Subt(M)), 6 < Type(FV(M)U{M}).

Proor. By induction on the length of M. The only nontrivial case is
when M is of the form PQ. Since PQ is a pf-normal form, so are P and Q, and
hence by the induction hypothesis, for every type o in Type(Subt(P)) and every
type t in Type(Subt(Q)), o < Type(FV(P)U{P}) and t < Type(FV(Q)U{Q}).
Now, since PQ is a pf-normal form, P must be in the form xP;--- P,. Hence
Type(P) < Type(x) and for every type o in Type(Subt(M)), 6 < Type({x}U
FV(M)). Therefore for every type o in Type(Subt(M)), d < Type(FV(M)U{M}).

O

6 Gentzen’s LK and Typed /Jp-Terms

In this section we prove that a typed Ap-term corresponds to a proof in
classical implicational logic and prove simultaneously the cut elimination theorem
for the implicational fragment LK_, of LK by using the strong normalization
theorem for typed Ap-terms.

The calculus LK . that we use here is the following:

DerFmiTION 6.1. Let I, ®, A and A be sets of types. I', A denotes the set
I'UA and I'\a denotes the set I' — {a}.

Ap-calculus 11 319

1. axiom: (1) o= o.
2. rules:

=0 o), 129 4.
o, =0 T T'=0,« ’

=0« ,A=A

TASeA @

I'=0,ua ﬂ,A:>A() I'=0,p
o— B, T,A=0,A T TMoa=0,0—p

(=-).

LemMa 6.2. If T = O is provable the system LK_,, then there exists a typed
Ap-term M such that T 2 Type(FV;(M)) and © 2 Type(FV,(M)U{M}).

Proor. By induction on the length of the LK_. proof of I' = ®. O

Lemma 6.3. For any pf-normal typed Jip-term M, Type(FV,(M))=
Type(FV,(M)U{M}) is provable without cut in the system LK_..

Proor. By induction on the length of M. The only nontrivial case is
when M is of the form (PQ). Since M is normal, P = xP;--- P, for some
J-variable x and normal Ap-terms Py,...,P,. Let Type(x) be ¢ — -+ — g, —
7 — p. Then we have Type(P;) = g;. By the induction hypothesis, there exists
a cut free deduction in LK_, proving Type(FV,(P1)) = Type(FV,(P1)),01. Let
z be a new J-variable with a type g, — - — 0, > 17— y. The Jp-term
zPy--- P,Q is normal. Hence, by the induction hypothesis, there exists a cut
free deduction of LK proving o — -+ — g, — 17—y, Type(FV,(P5--- P,Q)) =
Type(FV,(P>---P,Q)), y. By the rule (—=), we get a a cut free deduction of LK
proving g1 — -+ — a, =t — 7, Type(FV;(Py--- P,Q)) = Type(FV,(Py - P,Q)),
y. As Type(FV,(M))=6,— -+ —0,—1t—7y, Type(FV,(P---P,Q)) and
Type(FV,(M)U{M}) = Type(FV,(Py---P,0)), y, we get a cut free deduction
of LK proving Type(FV;(M)) = Type(FV,(M)U{M}). O

LemMA 6.4. For any typed Jp-term M, Type(FV;(M)) = Type(FV,(M)U
{M?}) is provable without cut in the system LK_..

Proor. By Theorem 4.11, there exists a pf-normal form M* of M. By
Lemma 6.3, Type(FV,(M*)) = Type(FV,(M*)U{M*}) is provable without cut

320 Yuichi KoMoORI

in the system LK_,. By Theorem 3.3, Type(FV(M)U{M}) = Type(FV(M*)U
{M*}). Hence, by the weakening rules (w =) and (= w), we can get a cut free
deduction of Type(FV;(M)) = Type(FV,(M)U{M}). O

THEOREM 6.5. T = @ is provable the system LK_, if and only if there exists a
typed Ap-term M such that T 2 Type(FV;(M)) and © 2 Type(FV,(M)U{M}).

Proor. By Lemma 6.2 and Lemma 6.4. O

THEOREM 6.6. If T = ® is provable in the system LK_., then I = @ is
provable without cut in the system LK_..

Proor. By Lemma 6.2 and Lemma 6.4. O

References

[1] Yuuki Andou. A proof of the normalization theorem for /Ap-calculus. Reports of Faculty of
Literature, Housei Univ., 50:1-5, 2005.

[2] J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

[3] J. Roger Hindley and Jonathan P. Seldin. Lambda—calculus and Combinators, an Introduction.
Cambridge University Press, 2008.

[4] Yuichi Komori. /p-calculus: A natural deduction for classical logic. Bulletin of the Section of
Logic, 31:65-70, 2002.

[5] Michel Parigot. Au-calculus: An algorithmic interpretation of classical natural deduction. Lecture
Notes in Computer Science, 624:190-201, 1992.

[6] Michel Parigot. Proofs of strong normalization for second order classical natural deduction.
Journal of Symbolic Logic, 62(4):1461-1479, 1997.

Department of Mathematics

Faculty of Science, Chiba University
Inage-ku Chiba 263-8522 Japan
e-mail: komori.yuichi@gmail.com

