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ON FINITE FACTORS OF CENTRALIZERS OF
PARABOLIC SUBGROUPS IN COXETER GROUPS

By

Koji Numa

Abstract. It has been known that the centralizer Zy (W;) of a
parabolic subgroup W; of a Coxeter group W is a split extension of
a naturally defined reflection subgroup by a subgroup defined by a
2-cell complex #. In this paper, we study the structure of Zy (W)
further and show that, if 7 has no irreducible components of type A4,
with 2 < n < oo, then every element of finite irreducible components
of the inner factor is fixed by a natural action of the fundamental
group of %. This property has an application to the isomorphism
problem in Coxeter groups.

1. Introduction

A pair (W,S) of a group W and its (possibly infinite) generating set S is
called a Coxeter system if W admits the following presentation

W =S| (st)") =1 for all 5,7€ S with m(s,1) < o0,

where m : (s,t) — m(s, 1) € {1,2,...} U{o0} is a symmetric mapping in s,7€ S
with the property that we have m(s,7) =1 if and only if s=1¢ A group W is
called a Coxeter group if (W,S) is a Coxeter system for some S < W. Since
Coxeter systems and some associated objects, such as root systems, appear
frequently in various topics of mathematics, algebraic or combinatorial properties
of Coxeter systems and those associated objects have been investigated very well,
forming a long history and establishing many beautiful theories (see e.g., [5] and
references therein). For example, it has been well known that, given an arbitrary

2000 Mathematics Subject Classification: 20F55 (primary), 20E34 (secondary).

Key words and phrases: Coxeter groups, reflections, parabolic subgroups, centralizers, finite factors.
Received January 10, 2012.

Revised August 6, 2012.



236 Koji Nuipa

Coxeter system (W,S), the mapping m by which the above group presentation
defines the same group W is uniquely determined.

In recent decades, not only the properties of a Coxeter group W associated
to a specific generating set S, but also the group-theoretic properties of an
arbitrary Coxeter group W itself have been studied well. One of the recent main
topics in the study of group-theoretic properties of Coxeter groups is the iso-
morphism problem, that is, the problem of determining which of the Coxeter
groups are isomorphic to each other as abstract groups. In other words, the
problem is to investigate the possible “types” of generating sets S for a given
Coxeter group W. For example, it has been known that for a Coxeter group W
in certain classes, the set of reflections S" := {wsw™'|we W and se S} asso-
ciated to any possible generating set S of W (as a Coxeter group) is equal to each
other and independent of the choice of S (see e.g., [1]). A Coxeter group W
having this property is called reflection independent. A simplest nontrivial example
of a Coxeter group which is not reflection independent is Weyl group of type G,
(or the finite Coxeter group of type I,(6)) with two simple reflections s, ¢, which
admits another generating set {s, ststs, (st)3} of type A x A, involving an element
(s7)® that is not a reflection with respect to the original generating set. One of the
main branches of the isomorphism problem in Coxeter groups is to determine the
possibilities of a group isomorphism between two Coxeter groups which preserves
the sets of reflections (with respect to some specified generating sets). Such an
isomorphism is called reflection-preserving.

In a recent study by the author of this paper, it is revealed that some
properties of the centralizers Zy/(r) of reflections r in a Coxeter group W (with
respect to a generating set S) can be applied to the study of reflection inde-
pendent Coxeter groups and reflection-preserving isomorphisms. An outline of
the idea is as follows. First, by a general result on the structures of the cen-
tralizers of parabolic subgroups [7] or the normalizers of parabolic subgroups
[2] in Coxeter groups applied to the case of a single reflection, we have a
decomposition Zy (r) = <r) x (W' > Y,), where W' denotes the subgroup
generated by all the reflections except r itself that commute with r, and Y, is a
subgroup isomorphic to the fundamental group of a certain graph associated to
(W,S). The above-mentioned general results also give a canonical presentation
of Wt as a Coxeter group. Then the unique maximal reflection subgroup (i.e.,
subgroup generated by reflections) of Zy (r) is {r) x W*'. Now suppose that
W+ has no finite irreducible components. In this case, the maximal reflection
subgroup of Zy/(r) has only one finite irreducible component, that is <{r). Now it
can be shown that, if the image f(r) of r by a group isomorphism f from W to
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another Coxeter group W’ is not a reflection with respect to a generating set of
W' then the finite irreducible components of the unique maximal reflection
subgroup of the centralizer of f(r) in W' have more elements than <{r)», which
is a contradiction. Hence, in such a case of r, the image of r by any group
isomorphism from W to another Coxeter group is always a reflection. See the
author’s preprint [6] for more detailed arguments.

As we have seen in the previous paragraph, it is worthy to look for a class of
Coxeter groups W for which the above subgroup W+ of the centralizer Zy (r) of
each reflection r has no finite irreducible components. The aim of this paper is to
establish a tool for finding Coxeter groups having the desired property. The main
theorem (in a special case) of this paper can be stated as follows:

Main Theorem (in a special case). Let re W be a reflection, and let s,
be a generator of W+’ (as a Coxeter group) which belongs to a finite
irreducible component of W-". Then s, commutes with every element
of Y,. (See the previous paragraph for the notations.)

By virtue of this result, to show that W' has no finite irreducible components, it
suffices to find (by using the general structural results in [7] or [2]) for each
generator s, of W+ an element of Y, that does not commute with s,. A detailed
argument along this strategy is given in the preprint [6].

In fact, the main theorem (Theorem 4.1) of this paper is not only proven for
the above-mentioned case of single reflection r, but also generalized to the case
of centralizers Zy (W;) of parabolic subgroups W; generated by some subsets
I = S, with the property that I has no irreducible components of type 4, with
2 <n < oo. (We notice that there exists a counterexample when the assumption
on [ is removed; see Section 7 for details.) In the generalized statement, the group
W+ is replaced naturally with the subgroup of W generated by all the reflections
except those in / that commute with every element of /, while the group Y, is
replaced with a subgroup of W isomorphic to the fundamental group of a certain
2-cell complex defined in [7]. We emphasize that, although the general structures
of these subgroups of Zy (W;) have been described in [7] (or [2]), the main
theorem of this paper is still far from being trivial; moreover, to the author’s best
knowledge, no other results on the structures of the centralizers Zy (W) which is
in a significantly general form and involves much detailed information than those
given in the general structural results [2, 7] have been known in the literature.

The paper is organized as follows. In Section 2, we summarize some
fundamental properties and definitions for Coxeter groups. In Section 3, we
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summarize some properties of the centralizers of parabolic subgroups relevant to
our argument in the following sections, which have been shown in some pre-
ceding works (mainly in [7]). In Section 4, we give the statement of the main
theorem of this paper (Theorem 4.1), and give a remark on its application to the
isomorphism problem in Coxeter groups (also mentioned in a paragraph above).
The proof of the main theorem is divided into two main steps: First, Section 5
presents some auxiliary results which do not require the assumption, put in the
main theorem, on the subset 7 of S that I has no irreducible components of type
A, with 2 < n < co. Then, based on the results in Section 5, Section 6 deals with
the special case as in the main theorem that / has no such irreducible com-
ponents, and completes the proof of the main theorem. The proof of the main
theorem makes use of the list of positive roots given in Section 2 several times.
Finally, in Section 7, we describe in detail a counterexample of our main theorem
when the assumption that / has no irreducible components of type A4, with
2 <n< oo is removed.
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2. Coxeter Groups

The basics of Coxeter groups summarized here are found in [5] unless
otherwise noticed. For some omitted definitions, see also [5] or the author’s
preceding paper [7].

2.1. Basic Notions

A pair (W,S) of a group W and its (possibly infinite) generating set S is
called a Coxeter system, and W is called a Coxeter group, if W admits the
following presentation

W =S| (st)") =1 for all 5,1€S with m(s,1) < o0,
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where m : (s,t) — m(s, 1) € {1,2,...} U{o0} is a symmetric mapping in s,7e€ S
with the property that we have m(s,f) =1 if and only if s =z Let I' denote the
Coxeter graph of (W,S), which is a simple undirected graph with vertex set S
in which two vertices s, 7 € S are joined by an edge with label m(s, ¢) if and only
if m(s,7) >3 (by usual convention, the label is omitted when m(s,?) = 3; see
Figure 1 below for example). If T is connected, then (W,S) is called irreducible.
Let / denote the length function of (W,S). For w,ue W, we say that u is a
right divisor of w if /(w) = /(wu~") + ¢(u). For each subset I = S, the subgroup
Wy := ) of W generated by I is called a parabolic subgroup of W. Let I
denote the Coxeter graph of the Coxeter system (W;,I).

For two subsets I,J = S, we say that [ is adjacent to J if an element of [/
is joined by an edge with an element of J in the Coxeter graph I'. We say
that [ is apart from J if INJ = and I is not adjacent to J. For the ter-
minologies, we often abbreviate a set {s} with a single element of S to s for
simplicity.

2.2. Root Systems and Reflection Subgroups

Let V' denote the geometric representation space of (W,S), which is an
R-linear space equipped with a basis IT = {a;|s€ S} and a W-invariant sym-
metric bilinear form {,) determined by

—cos(n/m(s, 1)) if m(s, ) < oo;
-1 if m(s, 1) = o0,

Lot 07 » :{

where W acts faithfully on V by s-v =0 — 2<{ay, vyo, for se€ S and ve V. Then
the root system ® = W -I1 consists of unit vectors with respect to the bilinear
form ¢, ), and @ is the disjoint union of ®* := ® NR5(Il and ®~ := —® " where
R.oIT signifies the set of nonnegative linear combinations of elements of TI.
Elements of @, ®*, and ®~ are called roots, positive roots, and negative roots,
respectively. For a subset ¥ < @ and an element we W, define

Y =¥YNo', ¥ =¥YNO, Y¥Yw:={pe¥ |wyed }.

It is well known that the length Z(w) of w is equal to |®[w].

For an element v =) _¢c,0, of V, define the support Supp v of v to be the
set of all s € S with ¢; # 0. For a subset ¥ of @, define the support Supp ¥ of ¥
to be the union of Supp y over all y e ¥. For each I = S, define

H[SZ{OCS|S€I}EH, V]IZSP&HH[EV, O, :=0NV;.
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It is well known that ®; coincides with the root system W;-II; of (Wj,I). We
notice the following well-known fact:

Lemma 2.1. The support of any root y € ® is irreducible.

Proor. Note that y € ®; = W, - I1;, where I = Supp y. On the other hand, it
follows by induction on the length of w that, for any we W; and se I, the
support of w- o, is contained in the irreducible component of / containing s.
Hence the claim follows. [

For a root y=w-oa,e®, let s, := wsw~! be the reflection along y, which
acts on V by s,-v=0v—2{y,v)y for ve V. For any subset ¥ = @, let W (¥)
denote the reflection subgroup of W generated by {s,|y e ¥}. It was shown by
Deodhar [3] and by Dyer [4] that W (V) is a Coxeter group. To determine their
generating set S(¥) for W(¥), let II(¥) denote the set of all “simple roots”
ye (W(¥P)-¥)" in the “root system” W(W¥)-W¥ of W(¥), that is, all the y for
which any expression y = Y./ ¢;f; with ¢; > 0 and f; e (W(¥) - ¥) ™ satisfies that
p; =7y for every index i. Then the set S(¥) is given by

S(F) = {s, [y e II(¥)}.

We call I1(¥) the simple system of (W (¥),S(¥)). Note that the “root system”
W(¥) -¥ and the simple system IT(W) for (W (W), S(¥)) have several properties
that are similar to the usual root systems @ and simple systems IT for (W, S); see
e.g., Theorem 2.3 of [7] for the detail. In particular, we have the following result:

THEOREM 2.2 (e.g., [7, Theorem 2.3]). Let W = @, and let (g be the length
function of (W(¥),S(W)). Then for we W(¥) and ye (W(¥)-¥)", we have
lw(wsy) < Lg(w) if and only if w-ye @™,

We say that a subset ¥ = ® is a root basis if for each pair 8,y € P, we have

{P,y> = —cos(n/m) if sgs, has order m < oo;
Py < —1 if sgs, has infinite order.

For example, it follows from Theorem 2.3 below that the simple system IT(¥) of
(W(¥),S(¥)) is a root basis for any ¥ < ®@. For two root bases ¥, ¥, = @,
we say that a mapping from ¥, = I[1(¥;) to ¥, = I[1(¥,) is an isomorphism if it
induces an isomorphism from S(¥;) to S(¥2). We show some properties of root
bases:
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THEOREM 2.3 ([4, Theorem 4.4])). Let ¥ < ®F. Then we have TI(¥) =¥ if
and only if ¥ is a root basis.

ProPOSITION 2.4 ([7, Corollary 2.6]). Let ¥ =< ®" be a root basis with
|W ()| < co. Then Y is a basis of a positive definite subspace of V with respect to
the bilinear form ().

PROPOSITION 2.5 ([7, Proposition 2.7]). Let ¥ < ®" be a root basis with
[W(¥)| < o0, and U = span V. Then there exist an element we W and a subset
I < S satisfying that |W;| < o and w- (UN®Y) = ®;. Moreover, the action of
this w maps U NI into I1;.

2.3. Finite Parabolic Subgroups

We say that a subset I = S is of finite type if |W;| < co. The finite irreducible
Coxeter groups have been classified as summarized in [5, Chapter 2]. Here we
determine a labelling ry,r,...,r, (where n=|I|) of elements of an irreducible
subset / = S of each finite type in the following manner, where the values m(r;, r;)
not listed here are equal to 2 (see Figure 1):

(An) (Bn)
4 O—O— -
O—O— - —O o—O0— —O0—0 1 3 n_2
1 2 n 1 2 n—1 n 1 — 1
(Fy) (Hn) (I2(m))
%i% =0 O—O—O—O w =0 00
1 2

Figure 1: Coxeter graphs of the finite irreducible Coxeter groups (here we write 7 instead of r; for each
vertex)

Type A, (1 <n< o) m(ri,rip1) =3 (1<i<n-—1);

Type B, 2<n< o) m(ririy1) =3 (1 <i<n-—2) and m(r,_1,r4) =4;
Type D, (4 <n< o) m(ririgy1) =m(rp_a,r) =3 (1 <i<n-2)

Type E, (n=6,7,8): m(r1,r3) =m(ra,ra) = m(ri,ris1) =3 B3<i<n—1);

Type Fy: m(ri,r2) =m(rs,rg) =3 and m(ry,r3) = 4;
Type H, (n=3,4): m(r,r2) =5 and m(ri,rip1) =3 2 <i<n-—1);
Type 12("”) (5 <m< OO): m(rl,rz) = m.
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We call the above labelling ry,...,r, the standard labelling of I.

Let wo(I) denote the (unique) longest element of a finite parabolic subgroup
W;. It is well known that wo(1)2:1 and wo(I)-II; = —II;. Now let I be
irreducible of finite type. If I is of type A, (n > 2), D (k odd), E¢ or L(m) (m
odd), then the automorphism of the Coxeter graph I'; of W; induced by (the
conjugation action of) wgy(I) is the unique nontrivial automorphism of I7;.
Otherwise, wo(I) lies in the center Z(Wj) of W and the induced automorphism
of T’y is trivial, in which case we say that I is of (—1)-type. Moreover, if W;
is finite but not irreducible, then wo(I) = wo(l}) - wo(Ix) where the I; are the
irreducible components of 1.

3. Known Properties of the Centralizers

This section summarizes some known properties (mainly proven in [7]) of the
centralizers Zy (W) of parabolic subgroups W, in Coxeter groups W, especially
those relevant to the argument in this paper.

First, we fix an abstract index set A with |A| = ||, and define S to be

the set of all injective mappings x: A — S. For xe S®W

and 1e A, we put
x; = x(4); thus x may be regarded as a duplicate-free “A-tuple” (x;) = (x,), .5
of elements of S. For each x € S, let [x] denote the image of the mapping x;
[x] = {x;]|Ae A}. In the following argument, we fix an element x; € S with

[x7] = 1. We define
Cy,:={weW/|a, =w-a, for every Ae A} for x,yeSN.
Note that Cy,-C,.< C,. and C} = C,, for x,y,z¢€ SW. Now we define
wxy,:=x,; for x,ye SN we C,, and AeA,

therefore we have w- oy = o, for any we Cy, and se[y]. (This * can be
interpreted as the conjugation action of elements of Cy , to the elements of [y].)
Moreover, we define

(A

wky:=x for x,yeS™ and we Cy,y

(this * can be interpreted as the diagonal action on the A-tuples). We define
Cr = Cy, «,, therefore we have

Cr={weW]|w-oa, =0, for every sel},

which is a normal subgroup of Zy (W7).
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To describe generators of C;, we introduce some notations. For subsets

J,K =8, let J_g denote the set of elements of JU K that belongs to the same

(A)

connected component of I'yux as an element of K. Now for xe S and

s e S\[x] for which [x]_, is of finite type, there exists a unique y € S™ for which
the element

wy = wo([X] o) wo([x] ., \{s})
belongs to C, .. In this case, we define
p(x,s) =y,

therefore ¢(x,s) = w?*x in the above notations. We have the following result:

ProposiTION 3.1 (see [7, Theorem 3.5(iii)]). Let x,yeS™ and we C,,.
Then there are a finite sequence zy = y,Z1,...,Zn 1,2, = X of elements of S™
and a finite sequence so,s1,...,s,-1 of elements of S satisfying that s; ¢ [z)], [zi] .
is of finite type and ¢(z;,s;) = ziz1 for each index 0 <i<n—1, and we have
w = M}fﬂ—l e Wflm;fO.

Zn—1 Z1 20
For subsets J,K = S, define
D75 = {ye®;|{y,0) =0 for every se K}, W;* .= w(@;)

(see Section 2.2 for notations). Then (WX R7K) is a Coxeter system with root
system @jK and simple system IT7°X where

RMK .= s(@%), K .=1(o5)

(see [7, Section 3.1]). In the notations, the symbol J will be omitted when J = S;
hence we have

WH = wi = s, |y e @'},
On the other hand, we define
Yo, ={weCoy|w- (@h" =@} for x,yeSW.

Note that Y., = {we Cy, | (@)" =w. (@D1)*} (see [7, Section 3.1]). Note
also that Yy, -Y,.< Y,. and Y;; =7Y,, for x,y,z€ SN. Now we define
Y =Yy, , therefore we have

Yi={weC (@t =w. (@)}

We have the following results:
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PROPOSITION 3.2 (see [7, Lemma 4.1]). For x e S™ and s e S\[x|, the three
conditions are equivalent:

1. [x]_, is of finite type, and ¢(x,s) = x;
2. [x]., is of finite type, and ®+M[ws] # 7;
3. @, # @

If these three conditions are satisfied, then we have ®N[ws] = ((I)[t][ﬂ{s}fz

{y(x,8)} for a unique positive root y(x,s) satisfying s,y = w;

X

PrROPOSITION 3.3. Let x,ye SW,

1. (See [7, Theorem 4.6(i) (iv)].) The group C. . admits a semidirect product
decomposition Cy = W x Y, .. Moreover, if we Yy, then the con-
Jugation action by w defines an isomorphism u — wuw™" of Coxeter systems
from (WHDI R 1o (W RIM),

2. (See [7, Theorem 4.6(ii)].) Let we Y. ,. Then there are a finite sequence
20 = VyZly .-y Zn—1,Zn =X 0of elements of SN and a finite sequence
80,81, .- ,Sn—1 Of elements of S satisfying that zi1 # zi, i ¢ [zi], [z,']w[ is

of finite type and wi €Y.

Zi+1,Z

. for each index 0 <i<n-—1, and we have
W= Wl Wi w

3. (See [7, Theorem 4.13].) The generating set R™ of WM consists of
elements of the form ws},(y,S)w‘1 satisfying that ye S™, we Y., and
y(y,s) is a positive root as in the statement of Proposition 3.2 (hence [y]
is of finite type and ¢(y,s) = y).

~8

PROPOSITION 3.4 (see [7, Proposition 4.8]). For any x e SW, the group Y.,
is torsion-free.

For the structure of the entire centralizer Zy (W), a general result (Theorem
5.2 of [7]) implies the following proposition in a special case (a proof of the
proposition from Theorem 5.2 of [7] is straightforward by noticing the fact that,
under the hypothesis of the following proposition, the group .o/ defined in the
last paragraph before Theorem 5.2 of 7] is trivial and hence the group B; used in
Theorem 5.2 of [7] coincides with Y;):

ProrosiTION 3.5 (see [7, Theorem 5.2]). If every irreducible component of I
of finite type is of (—1)-type (see Section 2.3 for the terminology), then we have
Zw(W[) = Z(W]) X (WJ‘I et Y]).
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We also present an auxiliary result, which will be used later:

LeEMMA 3.6 (see [7, Lemma 3.2]). Let we W and J,K = S, and suppose that
w-TI; <l and w-Tlg € ®~. Then JNK = J, the set J_x is of finite type, and
wo(J<x)wo(Jox\K) is a right divisor of w (see Section 2.1 for the terminology).

4. Main Results

In this section, we state the main results of this paper, and give some relevant
remarks. The proof will be given in the following sections.

The main results deal with the relations between the ‘““finite part” of the
reflection subgroup W*! and the subgroup Y; of the centralizer Zy (Wy). In
general, for any Coxeter group W, the product of the finite irreducible com-
ponents of W is called the finite part of W; here we write it as Wy,. Then,
since W'/ is a Coxeter group (with generating set R’ and simple system IT17)
as mentioned in Section 3, W*! has its own finite part W

To state the main theorem, we introduce a terminology: We say that a subset
I of S is A~ -free if I has no irreducible components of type A, with 2 <n < 0.
Then the main theorem of this paper is stated as follows:

THEOREM 4.1. Let I be an A--free subset of S (see above for the termi-
nology). Then for each y e 1! with s, € Wi!, we have w-y =y for every we Y.
Hence each element of the subgroup Y; of Zw (W) commutes with every element
of Wil

Among the several cases for the subset I of S covered by Theorem 4.1, we
emphasize the following important special case:

COROLLARY 4.2. Let I = S. If every irreducible component of I of finite type
is of (—1)-type (see Section 2.3 for the terminology), then we have

Zw (W) = Z(Wp) x Wal x (W > Yp),

inf
where WEI' denotes the product of the infinite irreducible components of W
(hence W+ = Wil x wih.
Proor. Note that the assumption on / in Theorem 4.1 is now satisfied.
In this situation, Proposition 3.5 implies that Zy (W) = Z(W;) x (W > Y7).
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Now by Theorem 4.1, both Y; and W[ centralize Wg!, therefore the latter
factor of Zy (W;) decomposes further as Wil x (WL > v;). O

We notice that the conclusion of Theorem 4.1 will not generally hold when
we remove the 4. -freeness assumption on /. A counterexample will be given in
Section 7.

Here we give a remark on an application of the main results to a study of the
isomorphism problem in Coxeter groups. An important branch in the research
on the isomorphism problem in Coxeter groups is to investigate, for two Coxeter
systems (W,S), (W’,S’) and a group isomorphism f : W — W', the possibilities
of “shapes” of the images f(r) € W’ by f of reflections r € W (with respect to the
generating set S); for example, whether f(r) is always a reflection in W’ (with
respect to S’) or not. Now if r € S, then Corollary 4.2 and Proposition 3.4 imply
that the unique maximal reflection subgroup of the centralizer of r in W is
ry x W which has finite part ) x Wf;{r}. Moreover, the property of WﬁLn{r}
shown in Theorem 4.1 can imply that the factor W;l{r} becomes ‘“‘frequently”
almost trivial. In such a case, the finite part of the unique maximal reflection
subgroup of the centralizer of f(r) in W' should be very small, which can be
shown to be impossible if f(r) is too far from being a reflection. Thus the
possibilities of the shape of f(r) in W' can be restricted by using Theorem 4.1.
See [6] for a detailed study along this direction. The author hope that such an
argument can be generalized to the case that r is not a reflection but an in-
volution of ‘“‘type” which is A-;-free (in a certain appropriate sense).

5. Proof of Theorem 4.1: General Properties

In this and the next sections, we give a proof of Theorem 4.1. First, this
section gives some preliminary results that hold for an arbitrary 7 =S (not
necessarily A4--free; see Section 4 for the terminology). Then the next section will
focus on the case that I is A~ -free as in Theorem 4.1 and complete the proof of
Theorem 4.1.

5.1. Decompositions of Elements of Y.,

It is mentioned in Proposition 3.3(2) that each element ue Y., with
y,z€ S admits a kind of decomposition into elements of some Y. Here we
introduce a generalization of such decompositions, which will play an important
role below. We give a definition:
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DrerFINITION 5.1, Let ue Y., with y,ze S We say that an expression
D = wp_1 - w1 of u is a semi-standard decomposilion of u with respect to
a subset J of S if there exist y() = y(2) e SW for 0 <i<n, 1) =1D(2)e S
for0<i<n—1and J) =J0(2) < S for 0 <i<n, with y© =y 3 =z and
JO) = J, satisfying the following conditions for each index 0 <i<n— I:

« We have (@) ¢ [y)]UJ and ¢ is adjacent to [y)].

* The subset K = K(2) := ([y?|UJD)_,, of S is of finite type (see
Section 3 for the notation).

+ We have w; = w}’f()) o = wo(KD)wo(KO\{}).

+ We have w; € Y,wy 0 and o; -0 = I ).

We call the above subset K of S the support of w;. We call a component ;
of @ a wide transformation if its support K intersects with J(@\[y()]; otherwise,

C. . W ®

we call w; a narrow transformation, in which case we have w; = a)}’ o Jo = w}{ -

Moreover, we say that & = w,_1---wjwy 18 a standard decomposition of u if &
1

is a semi-standard decomposition of u and /(u) = > /(w;). The integer n is

j
called the length of 2 and is denoted by /(2).

ExaMPLE 5.2. We give an example of a semi-standard decomposition. Let
(W,S) be a Coxeter system of type D7, with standard labelling ri,...,r; of
elements of S given in Section 2.3. We put n := 4, and define the objects ), ()
and J® as in Table 1, where we abbreviate each r; to i for simplicity. In this
case, the subsets K) of S introduced in Definition 5.1 are determined as in the
last row of Table 1. We have

=W {Vl,Vz,V37”4,V5})W0({1’1ﬂ’2,V371’5}) = I2F3r4rsr1rarsry,

(
w1 = wo({rs3, ra,rs,re })wo({rs, ra,rs}) = rararsre,
wy = wo({r4,7s,76, 17} )Wo({ra, 5,76 }) = rarsrarersrs,
(

w3 = Wo {V3,V4,V5,V6}) ({r4,r5,r6}):r6r5r4r3.

Let u denote the element w3wywiwy of W. Then it can be shown that ue Y.,
where y:= y© = (r,ry,r3) and z:= y™ = (rs,r4,r3), and the expression & =
w3waw g 1s a semi-standard decomposition of u of length 4 with respect to
J :=J = {rs}. Moreover, Z is in fact a standard decomposition of u (which is
the same as the one obtained by using Proposition 5.3 below). Among the four
component «;, the first one wy is a wide transformation and the other three
w1, wy, ws are narrow transformations.
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Table 1: The data for the example of semi-standard decompositions

i 4 3 2 1 0

vl (5,4,3) | (6,5,4) (4,5,6) (3,4,5) (1,2,3)
£ — 3 7 6 4

JO {1} {1} {1} {1} {5}
KW — {3,4,5,6} | {4,5,6,7} | {3,4,5,6} | {1,2,3,4,5}

The next proposition shows existence of standard decompositions:

PrROPOSITION 5.3. Let ue Y., with y,ze SN, and let J <= S satisfying
that u-Ily < II. Then there exists a standard decomposition of u with respect
to J.

Proor. We proceed the proof by induction on /(u). For the case /(u) =0,
ie., u=1, the empty expression satisfies the conditions for a standard de-
composition of u. From now, we consider the case /(u) > 0. Then there is an
element =" e S satisfying that u-o, e ® . Since ue Y., and u-II; =
1= ®, we have 7 ¢ [y]UJ and o, ¢ @Y therefore 7 is adjacent to [y]. Now by
Lemma 3.6, K = K" := ([y]UJ)_,
divisor of u (see Section 2.1 for the terminology). By the definition of ] ; in

is of finite type and wy :=wy ; is a right

Definition 5.1, there exist unique y( e S®) and JU) = § satistying that p(1) =
wo xy (see Section 3 for the notation) and wy - I, = IT;1. Moreover, since wq
is a right divisor of u, it follows that ®[wy] = ®[u] (see e.g., Lemma 2.2 of
[7]), therefore ®*[wy] € Ny = & and o) € Y,n . Put u’ =uw;'. Then
we have u' €Y, ,w, u' -Tl; €1 and /(u') = /(u) — /(wo) < /(u) (note that
wo # 1). Hence the concatenation of wy to a standard decomposition of u’ e
Y. ,m with respect to J (1) obtained by the induction hypothesis gives a desired
standard decomposition of u. O

We present some properties of (semi-)standard decompositions. First, we have
the following:

Lemma 5.4.  For any semi-standard decomposition w,_ - - - w1wq of an element
of W, for each 0 <i<n-—1, there exists an element of g 0y which is not
fixed by w;.
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PROOF.  Assume contrary that w; fixes Ilgo\ 0y pointwise. Then by applying
Proposition 3.2 to the pair of [y)]UJ@ and ) instead of the pair of [x] and s, it
It{f)(l)\{t([)}ﬁ with w; -y e @~ (note that, in
this case, the element w? in Proposition 3.2 coincides with w;). By the definition

follows that there exists a root y € (®

of the support K of w,;, K is apart from [y®]\K ), therefore this root y also
belongs to (d*1 (')])+. Hence we have d)“y(')][a)i] # (, contradicting the property
w; € Yy y0) in Definition 5.1. Hence Lemma 5.4 holds. O

For a semi-standard decomposition ¥ = w, ---wjwg of ue Y., let 0 <i; <
i < --- < ix <n be the indices i with the property that [y(*)(2)] = [y)(2)] and
JE(2) = JO(2). Then we define the simplification & of % to be the expres-
sion @, -+ @, - @; - @ -+ wy obtained from Z =, -wwy by removing
all terms w; with 1 < j<k. Let & denote the element of W expressed by the
product 2. The following lemma is straightforward to prove:

LEMMA 5.5. In the above setting, let o denote the mapping from
{0,1,...,n—k} to {0,1,...,n} satisfying that 9 = Dgn—k) * * * Og(1)Wg(0)- Then we
have @i € Yz, for some 2 S™ with [2] = [z]; @ is a semi-standard decomposition
of it with respect to J(2) = JO(2); we have J"* (%) = J")(D); and for
cach 0 < j<n—k, we have [y(2)] = [y"U)(2)], [y (2)] = [y (2),
JI(D) = TN and JUD (D) = JeWDHD) (),

EXAMPLE 5.6. For the case of Example 5.2, the simplification & of the
standard decomposition ¥ = wzwywjwy of u is obtained by removing the third
component @,, therefore 9 = wyw 9. We have

YD) = yOUD) = (r1,m2,m3), YD) = YD) = (r3,ra,15),
y(Z)(g) = y(2>(‘>@) = (7'4,}’577'6), y(3)(9) = (73,}’4,}’5) =Z.

Now since wj is the inverse of wi, the semi-standard decomposition & of # is
not a standard decomposition of .

Moreover, we have the following result:

Lemma 5.7. Let 9 =w, - wwy be a semi-standard decomposition of an
element ue W. Let re [y"), and suppose that the support of each w; is apart
from r. Moreover, let seJO s e J") and suppose that uxs=s'. Then we
have re [y, uxr=r and ue Y. ., where z and z' are elements of S™

obtained from y© and y"*V by replacing r with s and with s', respectively.
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Proor. We use induction on n>0. Put 2' = w,_1---wjwy, and let u' e
Y,m 0 be the element expressed by the product &'. Let 5" :=u'+seJ (. By
the induction hypothesis, we have re [y™)], ' *r=r and u'€ Y., where z”
is the element of S™ obtained from y" by replacing r with s”. Now, since
the support K" of w, is apart from re [y™], it follows that re [y"+)] and
wy * r = r, therefore u * r = w,u’ * r = r. On the other hand, we have z/ = w, * z”
by the construction of z’ and z”. Moreover, by the definition of w,, the set K
is apart from ([y™]UJM™)\K™, therefore K" is also apart from the subset
(Z"TUJONK® of ([y™WUJINK™. Since [y™W]NKW < [z"]N K™, it follows
that ®F,] = dLETE" ] < @MK= @) [0,] = & (note that
w, € Yy<n+1),y<n>), therefore we have w, € Y., .». Hence we have u=w,u' € Y. .,

concluding the proof. O

5.2. Reduction to a Special Case

Here we give a reduction of our proof of Theorem 4.1 to a special case where
the possibility of the subset / = S is restricted in a certain manner.

First, for J =S, let 1(J) denote temporarily the union of the irreducible
components of J that are not of finite type, and let 7(J) denote temporarily the
set of elements of S that are not apart from (J) (hence JNi(J)=1(J)). For
example, when (W,S) is given by the Coxeter graph in Figure 2 (where we
abbreviate each r; € S to i) and J = {ry,r3,r4,rs,76} (indicated in Figure 2 by the
black vertices), we have i1(J) = {ry,rs,r¢} and 1(J) = {r,ra2,rs,rs,r7}, therefore
JNi(J)={r,rs,r¢} =1(J) as mentioned above. Now we have the following:

1 2 3 4
5 6 7 8

Figure 2: An example for the notations i(J) and 7(J); here J = {1,3,4,5,6}

LemMA 5.8.  Let I be an arbitrary subset of S. Then we have w e Wy for
any we Y, , with yeSW, and we have @' = (D§\17>11()[)~

Proor. First, let we Y, ,, with y e SW. Then by Proposition 3.3(2), there
are a finite sequence zy = xy,z1,...,2y—1,2y = y of elements of SW) and a finite

sequence sy, s1,...,S,—1 of elements of S satisfying that z;,1 # z;, s; ¢ [zi], [z,-}wi
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for each index 0 <i<n-—1, and we have

Zitls Zi

is of finite type and wl e Y.
w=wil...wiw We show, by induction on 0 <i <n— 1, that 1([z;11]) = 1(I),
1([zit1]) =1(1), and w}' € Wz It follows from the induction hypothesis when
i >0, and is trivial when i = 0, that i([z;]) = (1) and ([z;]) = 1(I). Since s; ¢ [z/]
and [z;] _ is of finite type, it follows from the definition of 7 that [z;] _, = S\1([z]]),
therefore we have wi' € Waz)) = W), W[zi1]) = 1([zi]) = (1), and 1([z;11]) =
i([zi]) =1(1), as desired. This implies that w = w! ... wiw e W), therefore
the first part of the claim holds.

For the second part of the claim, the inclusion = is obvious by the
definitions of (/) and 7(/). For the other inclusion, it suffices to show that
o < ®g\7p), or equivalently In’ Oz Let y e I1’. By Proposition 3.3(3), we

have y =w - p(y,s) for some ye S®

, we Yy, , and a root y(y,s) introduced in
the statement of Proposition 3.2. Now by applying the result of the previous
paragraph to w™! € Y, ,, it follows that 1([y]) = 1(I), 1([y]) = 1(I), and w € W\sy).

Moreover, since [y]_. is of finite type (see Proposition 3.2), a similar argument

implies that [y]_; = S\i([y]) = S\i({) and w) € Ws\z1), therefore y(y,s) € Ds\zr)-
Hence we have y =w-y(y,s) € @gjy), concluding the proof of Lemma 5.8.

O

For an arbitrary subset I of S, suppose that y e IT/, s, € Wil and we Y.
Then by the second part of Lemma 5.8, we have y e IT/ = IT5V)-/\) gpd s, also
belongs to the finite part of W;\i(\;gl) Moreover, we have we Wgy) by the
first part of Lemma 5.8, therefore w also belongs to the group Yjz;) constructed
from the pair S\7(I), I\7(I) instead of the pair S, I. Hence we have the follow-
ing result: If the conclusion of Theorem 4.1 holds for the pair S\i(I), I\i(I)
instead of the pair S, 7, then the conclusion of Theorem 4.1 also holds for the
pair S, I. Note that I\7(I) = I\i() is the union of the irreducible components
of I of finite type. As a consequence, we may assume without loss of generality
that every irreducible component of 7 is of finite type (note that the A.-
freeness in the hypothesis of Theorem 4.1 is preserved by considering I'\:(I)
instead of 7).

From now on, we assume that every irreducible component of 7 is of finite
type, as mentioned in the last paragraph. For any J = S, we say that a subset ¥
of the simple system IT7 of W</ is an irreducible component of T17 if S(¥) =
{sp|p € ¥} is an irreducible component of the generating set R’ of W+’/. Now,
as in the statement of Theorem 4.1, let we ¥; and y e I17, and suppose that
s, € Wil Let ¥ denote the union of the irreducible components of I/ containing
some w* -y with ke Z. Then we have the following:
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LemMA 5.9. In this setting, ¥ is of finite type; in particular, |¥| < oo.
Moreover, the two subsets I\Supp ¥ and Supp ¥ of S are not adjacent.

Proor. First, there exists a finite subset K of S for which we Wg and
7 € ®k. Then, the number of mutually orthogonal roots of the form w* -y is at
most |K| < oo, since those roots are linearly independent and contained in the
|K|-dimensional space Vk. This implies that the number of irreducible compo-
nents of I17 containing some w* -y, which are of finite type by the property
s, € Wil and Proposition 3.3(1), is finite. Therefore, the union ¥ of those ir-
reducible components is also of finite type. Hence the first part of the claim holds.

For the second part of the claim, assume contrary that some s e I\Supp ¥
and ¢ € Supp ¥ are adjacent. By the definition of Supp ¥, we have ¢ e Supp f <
Supp ¥ for some € ¥. Now we have s ¢ Supp f. Let ¢ > 0 be the coefficient of
o, in 5. Then the property s ¢ Supp f implies that {u, ) < c{as, ) <0, con-
tradicting the property S € ®/. Hence the claim holds, concluding the proof of
Lemma 5.9. O

We temporarily write L = I N Supp ¥, and put ¥' = WUII;. Then we have
Supp ¥’ = Supp ¥, therefore by Lemma 5.9, I\Supp ¥’ and Supp ¥’ are not
adjacent. On the other hand, we have |¥|< oo by Lemma 5.9, therefore
Supp W' = Supp ¥ is a finite set. By these properties and the above-mentioned
assumption that every irreducible component of 7 is of finite type, it follows that
I1; is of finite type as well as ¥. Note that ¥ = II/ = ®*~. Hence the two root
bases ¥ and II; are orthogonal, therefore their union ¥’ is also a root basis
by Theorem 2.3, and we have |W(¥')| < co. By Proposition 2.4, ¥’ is a basis
of a subspace U := span ¥’ of Vsupp w’- By applying Proposition 2.5 to Wgyp,
instead of W, it follows that there exist u € Wy, and J < Supp ¥’ satisfying
that W, is finite, u- (UN®") =®} and u- (UNII) < I1;. Now we have the
following:

Lemma 5.10. In this setting, if we choose such an element u of minimal
length, then there exists an element y € SN satisfying that u € Y, ,, the sets [y|\J
and J are not adjacent, and (u-¥)UIl,n; is a basis of V.

PrOOF. Since W' is a basis of U, the property u-(UN®*) =®; implies
that u - ¥’ is a basis of V;. Now we have u - I1; < I, since I1; < U NII, while u

fixes IT;, pointwise since the sets I\Supp ¥’ =I\L and Supp ¥’ are not

(A)

adjacent. By these properties, there exists an element ye S'M satisfying that
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y=uxx, [y]NSupp ¥' = J and [y]\Supp ¥’ = I\Supp ¥'. Since J < Supp ¥/,
it follows that [y]\J and J are not adjacent. On the other hand, since u-ITj; =
My, u-(UN®T)=@; and Mp, NU =, it follows that Iy, N®; = F,
therefore we have u - I1; = Il},)n;. Hence u - ¥ =(u YU I,ns is a basis of V.

Finally, we show that such an element u of minimal length satisfies that
u-T' < ®*, hence u- (®)" < ®" and ue Y, ,,. We have u- ¥ cu- (UND)
= ®;. Secondly, for any feI1’\¥, assume contrary that u-f e ® . Then we
have f € gy, p' since u € Wy, g, therefore sz € W,y On the other hand,
since ¥ is the union of some irreducible components of IT, it follows that f
is orthogonal to W, hence orthogonal to W’. By these properties, the element
usg also satisfies the above characteristics of the element u. However, now the
property u - f € @~ implies that /(usg) < /(u) (see Theorem 2.2), contradicting the
choice of u. Hence we have u-f e ®" for every f e I1'\\P, therefore u -1/ = @,

concluding the proof of Lemma 5.10. O

For an element u € Y, ,, as in Lemma 5.10, Proposition 3.3(1) implies that
u-yel and s,, =usu'e Wﬁan. Now w fixes the root y if and only if the
element uwu ! € Y, , fixes the root u-y. Moreover, the conjugation by u defines
an isomorphism of Coxeter systems (W;,I) — (W}, [y]). Hence, by considering
=S, uwu ey, u-yeT and u-¥ = Y instead of I, w, y and ¥ if

necessary, we may assume without loss of generality the following conditions:

(A1) Every irreducible component of [ is of finite type.
(A2) There exists a subset J = S of finite type satisfying that 7\J and J are not
adjacent and W UII;n; is a basis of V.

Moreover, if an irreducible component J’ of J is contained in I, then a smaller
subset J\J' instead of J also satisfies the assumption (A2); indeed, now I, <
I1;ny spans Vy/, and since WUII;n, is a basis of V; and the support of any
root is irreducible (see Lemma 2.1), it follows that the support of any element
of WUII;nn s does not intersect with J'. Hence, by choosing a subset J = S in
(A2) as small as possible, we may also assume without loss of generality the
following condition:

(A3) Any irreducible component of J is not contained in I.
We also notice the following properties:

LEMMA 5.11. In this setting, we have ¥ = 7% hence 1™ U0y is a
basis of V.
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ProOF. The inclusion ¥ = IT’/"V follows from the definition of ¥ and the
condition (A2). Now assume contrary that g e IT7/"V\W. Then we have f§ e I
by (A2). Since W is the union of some irreducible components of I/, it follows
that S is orthogonal to ¥ as well as to Il;n;. This implies that § belongs to the
radical of V;, which should be trivial by Proposition 2.4. This is a contradiction.
Hence the claim holds. O

LeEMMA 5.12. In this setting, the element w € Y; satisfies that w-®; = @y,
and the subgroup {w) generated by w acts transitively on the set of the irreducible

components of T171V.

ProoF. The second part of the claim follows immediately from the defi-

nition of ¥ and Lemma 5.11. It also implies that w-I17/"/ = 17!/

, while
w-TI;ny = [y since we Y;. Moreover, I/ UIl;n, is a basis of V; by
Lemma 5.11. This implies that w- V; =V, therefore we have w-®; = ®,.

Hence the claim holds. [l

5.3. A Key Lemma

Let I+ denote the set of all elements of S that are apart from I. Then there
are two possibilities: TT7/" ¢ ®,., or I17"/"Y < ®,.. Here we present a key
lemma regarding the former possibility (recall the three conditions (Al)—(A3)
specified above):

LemMA 5.13. If 171 & @, then we have INJ # & and J is irreducible.

Proor. First, take an element £ e IT//"/\®,.. Then we have f ¢ ®; since
17" = ®*!. Moreover, since the support Supp 8 of f is irreducible (see Lemma
2.1), there exists an element s e Supp f\/ which is adjacent to an element of I,
say s’ € I. Now the property e ®/ implies that s’ e Supp f8, since otherwise
we have {f,ay> < c{ay, 0y » < 0 where ¢ > 0 is the coefficient of o, in . Hence
we have s’ € Supp 117"/ < J.

Let K denote the irreducible component of J containing s’. Put W' =
17" N ®g. Then, since 17"/ UTl;n, is a basis of ¥, by Lemma 5.11 and the
support of any root is irreducible (see Lemma 2.1), it follows that fe W', ¥’ is
orthogonal to TT7 ™\’ and ¥’ UTI;nk is a basis of Vx. Now W' is the union of
some irreducible components of IT7*/"V. We show that J is irreducible if we have
w-®g = Og. In this case, we have w- ¥’ =¥/, therefore 117"V = ¥’ = dg by
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the second part of Lemma 5.12. Now by the condition (A3), J has no irreducible
components other than K (indeed, if such an irreducible component J' of J exists,
then the property I17:/"V = dy implies that the space ¥, should be spanned by a
subset of Ijny, therefore J' = I). Hence J = K is irreducible.

Thus it suffices to show that w-®g = ®g. For the purpose, it also suffices
to show that w-®gx = @k (since K is of finite type as well as J), or equiv-
alently w-Ilg < ®g. Moreover, by the three properties that K is irreducible,
KNI # @& and w-Tgn; = Mgnyg, it suffices to show that w-a, € ®g provided
t' € K is adjacent to some te K with w-o; € ®gx. Now note that w-®; = Oy
by Lemma 5.12. Assume contrary that w:-oy ¢ ®x. Then we have w-o, €
®;\®gx = @, g since K is an irreducible component of J, therefore w- o, is
orthogonal to w - o, € ®k. This contradicts the property that ¢’ is adjacent to ¢,
since w leaves the bilinear form <, ) invariant. Hence we have w- o, € @k, as
desired. O

6. Proof of Theorem 4.1: On the Special Case

In this section, we introduce the assumption in Theorem 4.1 that [ is A-q-
free, and continue the argument in Section 5. Recall the properties (Al), (A2)
and (A3) of 7, J and ¥ = IT7"/"V (see Lemma 5.11) given in Section 5.2. Our aim

here is to prove that w fixes IT7/"/

pointwise, which implies our goal w-y =7y
since y € ¥ = I17!"V by the definition of ¥. We divide the following argument
into two cases: [T ¢ @, or 17"V < ®,. (see Section 5.3 for the definition

of I).

6.1. The First Case 117" ¢ @,.

Here we consider the case that I17*/"/ & ®,.. In this case, the subset J = S
of finite type is irreducible by Lemma 5.13, therefore we can apply the clas-
sification of finite irreducible Coxeter groups. Let J = {ri,r2,...,ry}, where
N =J|, be the standard labelling of J (see Section 2.3). We write o; = «,, for
simplicity.

We introduce some temporal terminology. We say that an element y e S®)
satisfies Property P if [y]\J = I\J (hence [y]\J is apart from J by the condition
(A2)) and HJ‘D’]WUHMW is a basis of V;. For example, x; itself satisfies
Property P. For any y e S satisfying Property P and any element s € J\[y] with
¢(»,s) # y, we say that the isomorphism ¢+ wj ¢ from [y]NJ to [p(y,s)]NJ
is a local transformation (note that now [y| ;< J and wje W, by the above-
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mentioned property that [y]\J is apart from J). By abusing the terminology, in
such a case we also call the correspondence y — ¢(y,s) a local transformation.
Note that, in this case, ¢(y,s) also satisfies Property P, we have wy € Y, ;) , and
wy =1 for any 7€ [y]\J, and the action of w) induces an isomorphism from
|3 CARLANT § CA G 0%

Since w- I/ = 17" the claim is trivial if [TT//"| = 1. From now, we
consider the case that [IT7/V| > 2, therefore we have N =|J| > |[INJ|+2 >3
(note that INJ # & by Lemma 5.13). In particular, J is not of type I,(m). On
the other hand, we have the following results:

LemMMA 6.1. In this setting, J is not of type Apy.

PrOOF. We show that 17"V UTl,n; cannot span V7 if J is of type Ay,
which deduces a contradiction and hence concludes the proof. By the A4.;-
freeness of I, each irreducible component of 7 NJ (which is also an irreducible
component of I) is of type 4;. Now by applying successive local transformations,
we may assume without loss of generality that ry € I (indeed, if the minimal
index i with r; €I satisfies i > 2, then we have ¢(x;,ri_1)*ri =ri_1). In this
case, we have r, ¢ I, while we have (D}I S @,y by the fact that any positive
root in the root system ®; of type Ay is of the form o; + a;y + - -+ + oy with
1 <i< i < N. This implies that the subset " Ut of d)jl UII;ns cannot
span V7, as desired. O

To prove the next lemma (and some other results below), we give a list of all
positive roots of the Coxeter group of type Eg. The list is divided into six parts
(Tables 2-7). In the lists, we use the standard labelling ry,...,rs of generators.
The coefficients of each root are placed at the same relative positions as the
corresponding vertices of the Coxeter graph of type Eg in Figure 1; for example,
the last root y;,, in Table 7 is 2oy + 30 + 4oz + 60 + Sas + 4o + 307 + 208
(which is the highest root of type Es). For the columns for actions of generators
(4th to 11th columns), a blank cell means that the generator r; fixes the root
y; (or equivalently, {o;,y;> =0); while a cell filled by “—” means that y;, = ;.
Moreover, the positive roots of the parabolic subgroup of type Es (respectively,
E7) generated by {ry,...,r¢} (respectively, {r,...,r7}) correspond to the rows
indicated by “Es” (respectively, “E;”"). By the data for actions of generators, it
can be verified that the list indeed exhausts all the positive roots.
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Table 2: List of positive roots for Coxeter group of type Eg (part 1)

index k with r; -y, =y,

height i root y; 1 ol rs | e | s | e | F7 | 1
0
1 1 1000000 | — 9
1
2 { 0000000 — 10
0
3 10100000 | 9 — | 11
0
4 10010000 10|11 —112
0
510001000 12| — |13
0
6 [ 0000100 13| — | 14
0
7 10000010 14— |15
0
8 | 0000001 15| —
0
2 9 [ 1100000 | 3 1 16
1
10 | 0010000 4 |17 2 | 18
0
1110110000 | 16 | 17 | 4 3119
0
1210011000 18119 5 4 |20
0
13 { 0001100 20 | 6 5|21
0
14 1 0000110 21 | 7 6 | 22
0
1510000011 22| 8 7

Eg

Eg

Es

Es

Es

Eg

Eg

Eg

Es

Es

Eg

E;

Eq

E;

E;

E;

Er

E;

E;

Er

E;

E;

E;

E;
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Table 2 (continued)
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Eg

Eg

Es

Eg

Eg

Eg

Es

Es

Es

Es

index k with r; -y, =y,
height i root y; 1 n|n rg | rs 6 7 g
0
3 16 | 1110000 | 11 | 23 9 | 24
1
17 10110000 | 23 | 11 | 10 25
1
18 | 0011000 12 | 25 10 | 26
0
19 [ 0111000 | 24 | 25| 12 11 | 27
0
201 0011100 26 | 27 | 13 12 | 28
0
21 | 0001110 28 | 14 13 | 29
0
22 1 0000111 29 | 15 14
Table 3: List of positive roots for Coxeter group of type Eg (part 2)
index k with rj-y; =y,
height i root Vi T mn r3 T4 rs re r7 rg
1
4 2311110000 | 17 | 16 30
0
241 1111000 | 19 | 30 16 | 31
1
2510111000 | 30 | 19 | 18 | 32 | 17 | 33
1
26 | 0011100 20 | 33 18 | 34
0
27 1 0111100 | 31 | 33 | 20 19 | 35
0
28 1 0011110 34 1 35| 21 20 | 36
0
29 | 0001111 36 | 22 21

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;



On finite factors of centralizers of parabolic

Table 3 (continued)

subgroups

index k with r; -y, =y,

height i root y; 1 " 3 rg | rs T6 7 rg
1
5 30 [ 1111000 | 25 | 24 37 | 23 | 38
0
31 | 1111100 | 27 | 38 24 | 39
1
32 (10121000 | 37 25 40
1
33 10111100 | 38 | 27 | 26 | 40 25 | 41
1
34 0011110 28 | 41 26 | 42
0
3510111110 | 39 | 41 | 28 27 | 43
0
36 | 0011111 42 | 43 | 29 28
1
6 37 { 1121000 | 32 44 | 30 45
1
38 [ 1111100 | 33 | 31 45 30 | 46
0
39 [ 1111110 | 35 | 46 31 | 47
1
40 | 0121100 | 45 33 | 48| 32| 49
1
41 | O111110 | 46 | 35| 34 | 49 33 | 50
1
42 | 0011111 36 | 50 34
0
43 | 0111111 | 47 | 50 | 36 35

Eg

Eg

Eg

Eg

Eg

Eg

Es

E;

Eq

E;

E;

E;

Er

E;

E;

E;

E;

E;

259



260

Koji Nuiba

Table 4: List of positive roots for Coxeter group of type Eg (part 3)

index k with r; -y, =y,

height i root y; 1 n|n rg | rs 6 7 g
1
7 44 1 1221000 37 51
1
45 |1 1121100 | 40 51| 38| 52| 37| 53
1
46 | 1111110 | 41 | 39 53 38 | 54
0
47 | 1111111 | 43 | 54 39
1
48 | 0122100 | 52 40 55
1
49 [ 0121110 | 53 41 | 55 40 | 56
1
50 | 0111111 | 54|43 | 42| 56 41
1
8 51| 1221100 45 57 | 44 | 58
1
52 | 1122100 | 48 57 45 59
1
53 | 1121110 | 49 58 | 46 | 59 45 | 60
1
54 | 1111111 | 50 | 47 60 46
1
5510122110 | 59 49 | 61 | 48 | 62
1
56 | 0121111 | 60 50 | 62 49
1
9 57 | 1222100 52 | 63 | 51 64
1
58 | 1221110 53 64 51 | 65
1
59 | 1122110 | 55 64 53166 | 52| 67
1
60 | 1121111 | 56 65 | 54 | 67 53
1
61 | 0122210 | 66 55 68
1
62 | 0122111 | 67 56 | 68 55

Eg

Eg

Eg

Eg

Eg

Eg

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;

E;
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Table 5: List of positive roots for Coxeter group of type Eg (part 4)

index k with r; -y, =y,
height i root y; 1 " 3 rg | rs T6 7 rg
1
10 63 | 1232100 69 57 70 Es Ep
1
64 | 1222110 59|70 | 58 | 71 | 57 | 72 E;
1
65 | 1221111 60 72 58
1
66 | 1122210 | 61 71 59 73 E;
1
67 | 1122111 | 62 72 60 | 73 59
1
68 | 0122211 | 73 62 | 74 | 61
2
11 69 | 1232100 63 75 Es E;
1
70 | 1232110 75 64 76 | 63 | 77 E;
1
71 | 1222210 66 | 76 64 78 E;
1
72 | 1222111 67 | 77 | 65| 78 64
1
73 | 1122211 | 68 78 67 | 79 | 66
1
74 | 0122221 | 79 68
2
12 75 | 1232110 70 80 | 69 | 81 E;
1
76 | 1232210 80 71 | 82 | 70 83 E;
1
77 | 1232111 81 72 83 70
1
78 | 1222211 73 | 83 72 | 84 | 71
1
79 | 1122221 | 74 84 73
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Table 6: List of positive roots for Coxeter group of type Eg (part 5)

index k with r; -y, =y,

height i root y; r " r 4 I's T'6 r7 T8
2
13 80 | 1232210 76 85 | 75 86
2
81 1232111 77 86 75
1
82 | 1233210 85 76 87
1
83 | 1232211 86 78 | 87 | 77 88 76
1
84 | 1222221 79 88 78
2
14 85 | 1233210 82 89 | 80 90
2
86 | 1232211 83 90 | 81 91 80
1
87 | 1233211 90 83 92 82
1
88 | 1232221 91 84 | 92 83
2
15 89 | 1243210 93 85 94
2
90 | 1233211 87 94 | 86 95 85
2
91 1232221 88 95 86
1
92 | 1233221 95 88 | 96 87
2
16 93 | 1343210 | 97 89 98
2
94 | 1243211 98 90 99 89
2
95 | 1233221 92 99 | 91 | 100 | 90
1
96 | 1233321 100 92

E;

E

E;

E;

E;
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Table 6 (continued)

index k with 7 -y, =y,
height i root y; r [y 3 4 rs 6 r7 g
2
17 97 2343210 93 101
2
98 1343211 101 94 102 93
2
99 1243221 102 95 103 94
2
100 | 1233321 96 103 95
Table 7: List of positive roots for Coxeter group of type Eg (part 6)
index k with r;-y; =y,
height i root y; r n 3 4 I's T'6 r7 T8
2
18 101 | 2343211 98 104 | 97
2
102 | 1343221 | 104 99 105 98
2
103 | 1243321 105 | 100 | 106 99
2
19 104 | 2343221 | 102 107 | 101
2
105 | 1343321 | 107 103 108 | 102
2
106 | 1244321 108 103
2
20 107 | 2343321 | 105 109 | 104
2
108 | 1344321 | 109 106 | 110 | 105
2
21 109 | 2344321 | 108 111 | 107
2
110 | 1354321 | 111 112 108
2
22 111 | 2354321 | 110 | 113 | 114 | 109
3
112 | 1354321 | 113 | 110

£y

263
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Table 7 (continued)

index k with rj -y, =y,
height i root y; o] I s 4 rs 6 ry g
3
23 113 | 2354321 | 112 | 111 | 115
2
114 | 2454321 115 | 111
3
24 115 | 2454321 114 | 113 | 116
3
25 116 | 2464321 115 | 117
3
26 117 | 2465321 116 | 118
3
27 118 | 2465421 117 | 119
3
28 119 | 2465431 118 | 120
3
29 120 | 2465432 119

Then we have the following:
LemMA 6.2. In this setting, if J is of type Eg, then |[INJ|= 1.

Proor. By the property N > [INJ|+2 and the 4. -freeness of I, it fol-
lows that INJ is either {ry,r3,rs,r5} (of type D4) or the union of irre-
ducible components of type A4,. In the former case, we have d)J“ = (see
Tables 2-7), a contradiction. Therefore, 7 NJ consists of irreducible components
of type A;.

Now assume contrary that /NJ is not irreducible. Then, by applying suc-
cessive local transformations and by using symmetry, we may assume without
loss of generality that rj €l (cf.,, the proof of Lemma 6.1). Now we have
-t = {0z, 0, 05, 006, &’ } which is the standard labelling of type As, where o’ is
the root y,4 in Table 4. Note that ITn)\ () S I’} Now the same argument
as Lemma 6.1 implies that the subspace V' spanned by IT/:/"/ UTL gy 18 @
proper subspace of the space spanned by IT7:{"} therefore dim ¥’ < 5. This
implies that the subspace spanned by "y, 7, which is the sum of V'’ and
Roy, has dimension less than 6 = dim ¥, contradicting the fact that I1//" U
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I;n; spans V; (see Lemma 5.11). Hence I NJ is irreducible, therefore the claim
holds. |

We also give a list of all positive roots of the Coxeter group of type D,
(Table 8) in order to prove the next lemma (and some other results below). Some
notations are similar to the above case of type Eg. For the data for actions of
generators on the roots, if the action r; -y does not appear in the list, then it
means either r; fixes y (or equivalently, y is orthogonal to ay), or y = ay. Again,
these data imply that the list indeed exhausts all the positive roots.

Then we have the following:

LemMMA 6.3. In this setting, suppose that J is of type Dy.

1. If INJ has an irreducible component of type Dy with k >4 and N — k is
odd, then we have |INJ|<k+ (N —k-3)/2

2. If N is odd, INJ does not have an irreducible component of type Dy with
k>4 and {ry_1,ry} & I, then we have |[INJ| < (N —3)/2.

3. If N is odd, INJ does not have an irreducible component of type Dy with
k>4 and {ry_1,rn} = I, then we have |INJ]| < (N —1)/2.

ProOF. Assume contrary that the hypothesis of one of the three cases in
the statement is satisfied but the inequality in the conclusion does not hold.
We show that IV UTI;n, cannot span V;, which is a contradiction and
therefore concludes the proof. First, recall the property N > [INJ|+ 2 and the
Asi-freeness of I. Then, in the case 1, by applying successive local trans-
formations, we may assume without loss of generality that I NJ consists of
elements ry; with 1 < j< (N —k—1)/2 and r; with N —k+1<j<N. Simi-
larly, in the case 2 (respectively, the case 3), by applying successive local
transformations and using symmetry, we may assume without loss of generality
that 7N J consists of elements r5; with 1 < j < (N —1)/2 (respectively, ry; with
1 <j<(N-1)/2 and ry). In any case, we have ®;' = @), (see Table 8),
therefore the subspace spanned by IT//" UTI;n; is contained in Vpry- Hence
7" U, cannot span V;, concluding the proof. OJ

We divide the following argument into two cases.

6.1.1. Case w-II; £ ®"

In order to prove that w - I1; = @™, here we assume contrary that w - I1; & @
and deduce a contradiction.
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Table 8: List of positive roots for Coxeter group of type D,

roots actions of generators
1 1 .
y[ j . Eh i Ti-1 'yi(,j) = 7[(—>l.j (l = 2)
1 1 L.
(1§z<]§n72) r,--y,.('j):yfﬁ_)IJ (i<j-1)
1 1 1 . .
(i) =) - /ffzyf}l (i<j-1)

1 .
Tjt1 - yl(j) =7 j)+l (j =n-— 3)
2
RVEES

1 3
Tn - yi(,n)72 = yr( :

2 - 2
71( )= /7:[] O Ti-1 Vz( )= fo)l (i=2)
(I<i<n-1) r,--y,(z)—y,-(i)l (i<n-2)
2 2 1 .
(yy(’_)l = an—l) Ip—1- Vi( ) = yl< 11)—2 (l =n- 2)

1 = Yo+ oy ey =90 (12 2)
(l<i<n-1) rep) =y (i<n-2)
(yr(li)l = oy) T 7;3) = V[(.,lrLz (i<n-2)
rae 9 = Vf,t—l (i<n-2)
yi“/) = ,{’, oy + Eh 20 + oyt + oty Ti-1 ‘V,-(,A‘,') = V,Fi‘)l‘j (i=2)
(I<i<j<n-—1) ri‘yi(j‘j):"/;yl,j (i<j-2)
r yz(4f) _ Vz(z‘;)—l i<j—2)

(
4 )
N 7,(;)_7,(,+1 (j<n=2)

Fp—1 - yi‘n—] =

In this setting, we construct a decomposition of w in the following man-
ner. Take an element s e J with w-o,e ®. By Lemma 3.6, the element w} is
a right divisor of w. This implies that ®*/ wyl s O+ [w] = & (see Lemma 2.2
of [7] for the first inclusion), therefore we have w; €Y, where we put
y:=o(x;,s) e SN, By Proposition 3.2, we have y# x;. This element wy,

induces a local transformation x; +— y. Now if w(w? )" T, & @F, then we
Al

can similarly factor out from w(w;il)fl

a right divisor of the form wj e Y, ),
with ¢ e J. Iterating this process, we finally obtain a decomposition of w of
the form w=uwy!---witw) satisfying that n>1, ue Yy, . with ze S,
wii € Yy, N Wy for every 0 <i<n-—1 where we put yo=x; and y, =z,
and u-T; € ®™.

Put ' := wyrt--owilwi 3 1. By the construction, the action of weY. ,NW,
induces (as the composition of successive local transformations) an isomorphism

o:INJ — [zZ]NJ, t— u'xt, while u’ fixes every element of IT;;. Now o is not
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an identity mapping; otherwise, we have z = x; and 1 # u' € Yy, ,, while ' has
finite order since |W;| < oo, contradicting Proposition 3.4. On the other hand, we
have u-®; = wi/~! - ®; = w- ®; = @, therefore u-®} = ®; since u-I1; = O*.
This implies that u - [T, = I, therefore the action of u defines an automorphism
7 of J. Since w = uu’ € Y;, the composite mapping 7 o ¢ is the identity mapping
on INJ, while ¢ is not identity as above. As a consequence, we have t![,;1, = o

1

and hence 77" is a nontrivial automorphism of J, therefore the possibilities of the

type of J are Dy, Es and Fy (recall that J is neither of type Ay nor of type
L(m)).

LEMMA 6.4. In this setting, J is not of type Fjy.

PrOOF. Assume contrary that J = {r,ry,r3,r4} is of type Fy. In this case,
each of r; and r, is not conjugate in W, to one of r; and r4 by the well-known
fact that the conjugacy classes for the simple reflections r; are determined by
the connected components of the graph obtained from the Coxeter graph by
removing all edges having non-odd labels. Therefore, the mapping 7 !|,r, = o
induced by the action of u’ € W, cannot map an element r; (1 <i<4) to rs_;.
This contradicts the fact that t~! is a nontrivial automorphism of J. Hence the
claim holds. |

From now, we consider the remaining case that J is either of type Dy with
4 <N < o or of type Es. Take a standard decomposition & = ws(g)_| - - w1wp
of u e Yy, . with respect to J (see Proposition 5.3). Note that J is irreducible and
J & [z]. This implies that, if 0 <i < /(%) — 1 and w; is a narrow transformation
for every 0 < j <, then it follows by induction on 0 < j < i that the support
of w; is apart from J, the product w; - --wjw, fixes I1; pointwise, [y TV]NJ =
[zZ]NJ, and [yU*D]\J is not adjacent to J (note that [z]\J = I\J is not adjacent
to J). By these properties, since u does not fix I, pointwise, & contains at least
one wide transformation. Let w := w; be the first (from right) wide transfor-
mation in &, and write y = y(2), t = 1)(2) and K = K¥(2) for simplicity.
Note that J@(Z) =J by the above argument. Note also that ITX DMK < bl
since [y]\K is not adjacent to K by the definition of K. Now the action of
w1 ---wjoou’ € Yy, induces an isomorphism IT/ — I which maps IT1/-/"
onto 177 = 117E"  Hence we have the following (recall that IT17-/" is the

union of some irreducible components of TT/):

N7 s isomorphic to T1"'" and is the union

nJ

LEMMA 6.5. In this setting, 171"
of some irreducible components of TIP\. In particular, each element of T17Y
orthogonal to any element of TIXDINK\ @,

is
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Now note that K = ([y|]UJ)_,
adjacent to [y]. Moreover, by Lemma 5.4, the element @ = w; ; does not fix

is irreducible and of finite type, and ¢ is

IMk\(;y pointwise. By these properties and symmetry, we may assume without
loss of generality that the possibilities of K are as follows:

1. J is of type Es, and;
(a) K=JU{t,t'} is of type Eg where ¢ is adjacent to r¢ and ¢/, and
1€y,
(b) K =JU{t} is of type E; where ¢ is adjacent to rg, and rg € [y],
2. J is of type D;, K =JU{t} is of type Es where ¢ is adjacent to r;, and
r7 € [y,
3. J is of type Ds, and;
(a) K=JU{t,t'} is of type E; where ¢ is adjacent to rs and ¢/, and
1" e[y,
(b) K =JU{t} is of type Es where ¢ is adjacent to rs, and rs € [y],
4. J is of type Dy, K =JU{t} is of type Dy, where ¢ is adjacent to ry,
and r € [y].

We consider Case 1la. We have |[y]NJ| = |INJ]| =1 by Lemma 6.2. Now by
Tables 2—7 (where r; = ¢ and rg = ), we have {f,5'> # 0 for some f e IT”: ng
and f'e MCPI\D; (namely, (8,5') = (ou,75) when [yINJ = {r}; (f.f") =
(716:774) When [y]NJ = {rs}; and (B,') = (a1,774) when [y]NJ = {r;} with
je€{2,4,5,6}, where the roots y, are as in Tables 2-7). This contradicts
Lemma 6.5.

We consider Case 1b. We have |[y]NJ|=|INJ| =1 by Lemma 6.2, hence
[y]NJ = {r¢}. Now we have as + ag + o, € HK’[}’]HK\(DJ, ag € 17N and these
two roots are not orthogonal, contradicting Lemma 6.5.

We consider Case 2. Note that N =7 > |[INJ|+2 = |[y|NJ|+ 2, therefore
[[¥]NJ| < 5. By Lemma 6.3 and A-;-freeness of I, it follows that the possibilities
of [yJNJ are as listed in Table 9, where we put (r{,r,rj,ry, rh,rg,rh,rs) =
(t,76,77,75,74,13,72,71) (hence K = {r{,...,rs} is the standard labelling of type
Eg). Now by Tables 2-7, we have (f,5'> #0 for some feII” DIV and g’
DI \@; as listed in Table 9, where we write of = o, and the roots y, are
as in Tables 2—7. This contradicts Lemma 6.5.

We consider Case 3a. Note that N =5> [INJ| +2 =|[y]NJ| + 2, therefore
[[¥]NJ| < 3. By A -freeness of I, every irreducible component of [y]NJ is of
type 4;. Now by Lemma 6.3, the possibilities of [y]NJ are as listed in Table 10,
where we put (r],r,r5,ry, 15,16, 15) = (r1,ra,r2, 13,15, t,¢') (hence K = {r},...,r}}
is the standard labelling of type E7). Now by Tables 2-7, we have {f,5'> # 0



On finite factors of centralizers of parabolic subgroups 269

Table 9: List of roots for Case 2

nJ B | B
ry€[YINJ S {r,rgrg,rg} % | 716
{rs,r5} % | 7

{3} = DINT {3, rg, 5,76} | % | 9o

{I‘& rév "7/} 722

- i ,
{13,318} % | V104

Table 10: List of roots for Case 3a
binJ B F
WINT c{rg,rgrst | og | va
{r3} 716

{ri} % | rn

for some e 171" and g e IIX MQK\(DJ as listed in Table 10, where we write
o = %1 and the roots y, are as in Tables 2—7. This contradicts Lemma 6.5.
We consider Case 3b. By the same reason as Case 3a, every irreducible
component of [y]NJ is of type 4;. Now by Lemma 6.3, we have only two
possibilities of [y]|NJ; {rs} and {rs,rs}. In the first case [y]NJ = {rs}, we have
o € HJ’MW, o3 +os + oy € HK’D’]OK\CDJ, and these two roots are not orthogonal,
contradicting Lemma 6.5. Hence we consider the second case [y|NJ = {r4,rs5}. In
this case, the action of the first wide transformation @ in % maps the elements
r1, 12, 13, r4 and rs to t, rs, r3, 12 and r4, respectively (note that {¢,rs,r3,r2,r4} is
the standard labelling of type Ds). Now, by a similar argument as above, the
possibility of the second wide transformation w; in 2 (if exists) is as in Case 3b,
where ¢ := 1")(2) is adjacent to either r, or r4 (note that Case 3a cannot occur
as discussed above, while Case 4 cannot occur by the shape of J and the property
r1 ¢ [y]NJ). This implies that the action of w;/ either maps the elements ¢, rs, r3, r4
and r, to t”, ry, r3, rs and ra, respectively (forming a subset of type Ds with the
ordering being the standard labelling), or maps the elements ¢, rs, r3, 1, and r4 to
", rs, 13, rs and ry, respectively (forming a subset of type Ds with the ordering
being the standard labelling). By iterating the same argument, it follows that the
sequence of elements (ry,r3,r4,7s) is mapped by successive wide transformations
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in 2 to one of the following three sequences; (ra,r3,ra,rs), (rs,r3,r2,r4) and
(ra,r3,rs,1r2). Hence u itself should map (ry,r3,r4,rs) to one of the above three
sequences; while the action of u induces the nontrivial automorphism 7z of J,
which maps (ry,r2,r3,r4,rs) to (r1,r,r3,rs,r4). This is a contradiction.

Finally, we consider the case 4. First we have the following lemma:

LEMMA 6.6. In this setting, suppose further that there exists an integer k > 1
satisfying that 2k <N —3, ry_1 €[y and 1y ¢[y] for every 1< j<k, and
rus1 ¢ [v]. Then there exist a root ff € 7V and a root penk [y]mK\(I)] with

(B> #0.

Proor. Put J':={r;|2k+ 1< j < N}. First, we have ' := o, + Z]Z‘l o €
58\ @, in this case. On the other hand, II”'PN/\®; consists of k roots
75?11,2,» with 1 < j <k (see Table 8 for the notation), while ITj,)n;\®;  consists
of k roots op_y with 1<j<k Hence |[(IT"M"VUII,n,)\®,|=2k. Since
/- bins UTI[,ns is a basis of the space V; of dimension N, it follows that the
subset (IT7'11" U I[,)ns) N @, spans a subspace of dimension N — 2k = |J'|. This
implies that (IT7-D1Y UTL,0,) N @, & @)y, ), therefore (since o ¢ ITjyny)
we have TT"V1V N®; & @0y, ), namely there exists a root fe 17V Na,
which has non-zero coefficient of oo i. These f and B’ satisfy (B, ’> # 0 by the
construction, concluding the proof. O

By Lemma 6.6 and Lemma 6.5, the hypothesis of Lemma 6.6 should
not hold. By this fact, A.;-freeness of I and the property N > |INJ|+2 =
[[¥]NJ] 42, it follows that the possibilities of [y]NJ are as follows (up to
the symmetry ry_1 < ry); (I) [y]NJ =J\{ry|1 < j <k} for an integer k with
2<k<(N-2)/2and 2k #N —3; (II) N is odd and [y|NJ ={ry_1|1 <<
(N —1)/2}; (III) N is even and [y|NJ ={ry_1 |1 <j<(N—-2)/2}; (IV) N is
even and [y|NJ = {ry_1|1 <j<N/2}. For Case (I), by the shape of J and
[y]NJ, it follows that INJ = [y]NJ, and each local transformation can permute
the irreducible components of 7 NJ containing neither ry_; nor ry but it fixes
pointwise the irreducible component(s) of INJ containing ry_; or ry. This
contradicts the fact that ¢ =1t"!|,,, for a nontrivial automorphism 7~! of J
(note that ! exchanges ry_; and ry). Case (II) contradicts Lemma 6.3(2). For
Case (III), the roots oy_; € IT7"1" and oc,—l—zjli}z o € TEDIE\®; are not
orthogonal, contradicting Lemma 6.5. '

Finally, for the remaining case, i.e., Case (IV), by the shape of J and [y] N J,
it follows that 7NJ = [y]NJ and each local transformation leaves the set 71 NJ
invariant. By this result and the property that ¢ = 77!|,, for a nontrivial auto-
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morphism 7~! of J, only the possibility of [y]NJ is that N =4 and [y]NJ =
INJ ={r,r;}, and o exchanges r; and r;. Now we arrange the standard
decomposition & of u as u = w/w;_jw;_; -+ wywjwjw], where each w/ is a wide
transformation and each a)jf’ is a (possibly empty) product of narrow trans-
formations. Let each wide transformation w; belong to Y. -, with zj,z/ €S W), In

particular, we have w|{ = w and z; = y. Now we give the following lemma:

LEMMA 6.7. In this setting, the following properties hold for every 1 < j <
¢ — 1t The action of the element u; := cajf’cojf_la)_;’_l - maps (r1,r2,13,14) t0
(ri,ra,r3,14) when j is odd and to (ri,ry,ra,1r3) when j is even; the subsets J and
[zj]\J are not adjacent; the support of ] is as in Case 4 above, with t replaced by
some element t; € S; and a)_]f maps (ri,ry,r3,ra) to (ri,ra,ra,r3).

Proor. We use induction on j. By the definition of narrow transformations,
the first and the second parts of the claim hold obviously when j = 1 and follow
from the induction hypothesis when j > 1. In particular, we have u; - I1; = I1;.
Put (h, i) := (3,4) when j is odd and (&, /') := (4,3) when j is even. Then we
have [z;]NJ = {r,r;}. Now, by using the above argument, it follows that the
support of a)]’ is of the form {ri,r,,r3,r4,4;} which is the standard labelling of
type Ds, where ¢; is adjacent to one of the two elements of [z;] NJ. We show that
t; is adjacent to ri, which already holds when j =1 (note that #; = ¢ when j = 1).
Suppose j > 1 and assume contrary that #; is adjacent to r;. In this case, f; is
apart from [z;]\{r;}. On the other hand, we have [z} ,]NJ = {ri,r;}, the subsets
[z;_1]\J and J are not adjacent, and the support of each narrow transformation
in a)j” is apart from to J. Moreover, by the induction hypothesis, we have
[zi.1]NJ = {ri,rpy} and the action of a)_/f_l maps (ri,r2, rp, r) to (ri,r2, v, ry)
while it fixes every element of [z;1]\J. This implies that w; € Y.» ., for the
element z” € S® obtained from z; by replacing r, with r,,. Now we have
%, e since 7 is not adjacent to [z”] = ([z]\{rs}) U {rw}, therefore ' :=
(o]
o, since the support of each narrow transformation in a)jf’ is not adjacent to
J and hence does not contain #. Therefore, the roots f’ € [TF-\TT7-E-1M and
o1 4 205 + a3 + o € IT7 1511 are not orthogonal. This contradicts the fact that

117:07 s the union of some irreducible components of 1" (see Lemma 6.5) and
!

)71 <Ol e I, This root belongs to @ ; and has non-zero coefficient of

the isomorphism IT") — I1%1 induced by the action of o o]

zw_/{/—z oy
maps 1701 to T1715-10 (since the action of this element leaves the set I,
invariant). This contradiction proves that ¢ is adjacent to ry, therefore the third
part of the claim holds. Finally, the fourth part of the claim follows immediately

from the third part. Hence the proof of Lemma 6.7 is concluded. O
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By Lemma 6.7, the action of the element w, o) ,---wiwjwiw{, hence
of u=wjw, ju,—;, maps the elements (ri,rs,r3,r4) to either (ri,rs,r3,rs) or
(r1,r2,ra,r3). This contradicts the above-mentioned fact that o exchanges r
and r3.

Summarizing, we have derived a contradiction in each of the six possible
cases, Cases la—4. Hence we have proven that the assumption w-II; & @7
implies a contradiction, as desired.

6.1.2. Case w-II; € ®*

By the result of Section 6.1.1, we have w-II; < ®*. Since w-®; = ®; by
Lemma 5.12, it follows that w-®; < @}, therefore w-®} = ®; (note that
|®,;| < oo). Hence the action of w defines an automorphism 7 of J (in particular,
w-I1; =TI1I;). To show that 7 is the identity mapping (which implies the claim
that w fixes IT7/" pointwise), assume contrary that r is a nontrivial automor-
phism of J. Then the possibilities of the type of J are as follows: Dy, Egs and
Fy (recall that J is neither of type Ay nor of type Ih(m)). Moreover, since the
action of w e Y; fixes every element of 7 NJ, the subset /NJ of J is contained in
the fixed point set of 7. This implies that J is not of type Fj, since the nontrivial
automorphism of a Coxeter graph of type F; has no fixed points.

Suppose that J is of type Eg. Then, by the above argument on the fixed
points of 7 and Lemma 6.2, we have INJ = {r} or INJ = {ry}. Now take a
standard decomposition of w with respect to J (see Proposition 5.3). Then no
wide transformation can appear due to the shape of J and the position of INJ
in J (indeed, we cannot obtain a subset of finite type by adding to J an element
of S adjacent to INJ). This implies that the decomposition of w consists of
narrow transformations only, therefore w fixes Il; pointwise, contradicting the
fact that 7 is a nontrivial automorphism.

Secondly, suppose that J is of type Dy with N > 5. Then, by the above
argument on the fixed points of 7, we have INJ < J\{ry_1,ry}, therefore every
irreducible component of 7N J is of type A4, (by A-;-freeness of I). Now take a
standard decomposition & of w with respect to J (see Proposition 5.3). Note that
2 involves at least one wide transformation, since 7 is not the identity mapping.
By the shape of J and the position of /NJ in J, only the possibility of the first
(from right) wide transformation w = w; in & is as follows: K = JU {¢} is of type
Dy.1, t is adjacent to ry, and r| € [y], where we put y = y)(2), t = /)(2), and
K = K(2). Now the claim of Lemma 6.6 in Section 6.1.1 also holds in this
case, while TT*"I"/ is the union of some irreducible components of IT" by the
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same reason as in Section 6.1.1. Hence the hypothesis of Lemma 6.6 should not
hold. This argument and the properties that N > [INJ|+2=|[y]NJ|+2 and
INJ = J\{ry_1,rn} imply that the possibilities of [y] NJ are the followings: N is
odd and [y]NJ consists of elements ry;_; with 1 < j < (N —1)/2; or, N is even
and [y]NJ consists of elements rp;_; with 1 < j < (N —2)/2. The former pos-
sibility contradicts Lemma 6.3(2). On the other hand, for the latter possibility,
the roots ay_; e IT7' 1N and oc,+Zj'i]2 o; e IPN\IT DI are not orthogonal,

I/ is the union of some ir-

contradicting the above-mentioned fact that IT”:
reducible components of TT""). Hence we have a contradiction for any of the two
possibilities.

Finally, we consider the remaining case that J is of type D4. By the property
N=4>|INJ|+2 and A-,-freeness of I, it follows that 7NJ consists of at
most two irreducible components of type A;. On the other hand, by the shape
of J, the fixed point set of the nontrivial automorphism 7 of J is of type 4; or
Aj. Since INJ is contained in the fixed point set of 7 as mentioned above, it
follows that |[INJ| = 1. If INJ = {ry}, then we have 7" = {o3, a4, B} where
p=oy+20+as+as (see Table 8), and every element of 17" forms an
irreducible component of I1/+/"V. However, now the property w - IT; = IT; implies
that w fixes ap, and permutes the three simple roots «;, o3 and o4, therefore
w- f = f, contradicting the fact that {w) acts transitively on the set of the
irreducible components of I1/:/"/ (see Lemma 5.12). By symmetry, the same
result holds when INJ = {r;} or {rs}. Hence we have INJ = {rn}. Take a
standard decomposition of w with respect to J (see Proposition 5.3). Then no
wide transformation can appear due to the shape of J and the position of 7NJ in
J (indeed, we cannot obtain a subset of finite type by adding to J an element of
S adjacent to /N J). This implies that the decomposition of w consists of narrow
transformations only, therefore w fixes IT, pointwise, contradicting the fact that 7
is a nontrivial automorphism.

Summarizing, we have derived in any case a contradiction from the as-
sumption that 7 is a nontrivial automorphism. Hence it follows that 7 is the
identity mapping, therefore our claim has been proven in the case I17/" ¢ @, ..

6.2. The Second Case IT' " = @,

In this subsection, we consider the remaining case that IT7-/"V < ®,.. In this
case, we have I1;. < I/, therefore 117/ =TI - Let L be an irreducible com-
ponent of J\I. Then L is of finite type. The aim of the following argument is
to show that w fixes Il; pointwise; indeed, if this is satisfied, then we have
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mn " = s =TIl since {w) acts transitively on the set of irreducible com-
ponents of TT7:/" (see Lemma 5.12), therefore w fixes IT1/:/™ pointwise, as desired.
Note that w-IIp < I1j,, since now w leaves the set n’"v = J\/ invariant.

6.2.1. Possibilities of Semi-Standard Decompositions

Here we investigate the possibilities of narrow and wide transformations in a
semi-standard decomposition of the element w, in a somewhat wider context. Let
9D = wy(g)-1 -+ w1y be a semi-standard decomposition of an element u of W,
with the property that [y(®] is isomorphic to 7, J© is irreducible and of finite
type, and J(© is apart from [y(?)]. Note that any semi-standard decomposition of
the element w € Y; with respect to the set L defined above satisfies the condition.
Note also that 7! := (wo)fl(col)*l~~~(w/(@)_1)71 is also a semi-standard de-
composition of «~!, and (w;)”" is a narrow (respectively, wide) transformation if
and only if w; is a narrow (respectively, wide) transformation.

The proof of the next lemma uses a concrete description of root systems of
all finite irreducible Coxeter groups except types A and I,(m). Table 11 shows the
list for type B,, where the notational conventions are similar to the case of type

D, (Table 8). For the list for type F4 (Table 12), the list includes only one of the
M

two conjugacy classes of positive roots (denoted by y; ’), and the other positive
roots (denoted by yl@) are obtained by using the symmetry r; <> ry, 15 < r3. In

the list, [c1,¢a,¢3,c¢q] signifies a positive root cjay + 0 + 303 + 404, and the

Table 11: List of positive roots for Coxeter group of type B,

roots actions of generators
1 j 1 1 .
V;_j) = i O Tiz1 i)Vz'(,;? Tl)yi—)l.j (i=2)
(I<i<j<n-1) FiVij = Vit1,j (i<j-1
1 1 1 . .
(V;Ef) =) T Vi<,/') = yi(j)*l (i=<j-1)
1
Fig1 =i j) = y£j+1 (/ <n 72)
M Q)
I'n yi,n—l yi,n
yi<,2') = Z,j’;.l oy + Z,:l;jl 2o, + \/jan ri—l(é)"/i(,zj) TZ)V,'(E)L/' (i = 2)
(1£l<an) ri'y,"j:Vpr]_j (IS/_Z)
2 2 .
rjo1 (y{()’) = 2;21.()‘].)7] (i<j-2)
T Vij =7ij+ (j<n-1)
p) 1
Ty - yr(n) = yi(‘n)—l
7 = o V2o + o Ti-1 é%-m :3)3’;(3)1 (i=2)
(1(%iSn) r,-‘y,-():y,-(ﬂ (i<n-1)
(= o)
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Table 12: List of positive roots for Coxeter group of type Fy
The data of the remaining positive roots y,(-z) are obtained by replacing [c1, ¢z, ¢3, ¢a)
with [c4,¢3,¢2,¢1] and replacing each r; with rs_;.

ks rppt =)
height i root yﬁl) |l | |

1 1 [1,0,0,0] — | 3

2 [0,1,0,0] 3| — | 4
2 3 [1,1,0,0] 21 1|5

4 [0,1,v2,0] 5 216
3 5 [1,1,v2,0] 4171|318

6 | 0,1,vV2,v2] | 8 4
4 7 [1,2,v2,0] 5 9

8 | ,L,v2,v2] | 6 | 9 5
5 9 | [1,2,v2,V2] 8 | 10| 7
6 10 | [1,2,2v2,V2] 111]9
7 11| [1,3,2v2,v2] | 12| 10
8 12 | [2,3,2v2,v2] | 11

description in the columns for actions of generators is similar to the case of type
Eg (Tables 2-7). The list for type H, is divided into two parts (Tables 13 and 14).
In the list, [c1,¢2,¢3,cq] signifies a positive root cjoq + caar + c303 + ca0lq, Where
we put ¢ =2cos(n/5) for simplicity and therefore ¢?> =c+ 1. The other de-
scription is in a similar manner as the case of type FEg, and the marks “H3;”
indicate the positive roots of the parabolic subgroup of type H; generated by
{ri,ra,r3}.
Then, for the wide transformations in &, we have the following:

LemmaA 6.8. In this setting, if w; is a wide transformation, then there exist
only the following two possibilities, where K\ = {r\,rs,...,ry} is the standard
labelling of K given in Section 2.3:

1. K9 is of type Ay with N =3, tO =ry, [yO)INKD ={r} and J =
{rs,...,rn}; now the action of w; maps ry to ry and (ri,ra,...,ry) to

(ri,r2, .o rN22);
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Table 13: List of positive roots for Coxeter group of type Hy (part 1),
where ¢ =2 cos(n/5), 2 =c+1

ks ri -y =k

height i root y; I oy 3 4
1 1 [1,0,0,0] — | 5 H;
2 [0,1,0,0] 6 | — 1| 7 Hj
3 [0,0,1,0] 7| —| 8 | Hs

4 [0,0,0,1] 8 | —
2 5 [1,¢,0,0] 9 1|10 Hs
6 [¢,1,0,0] 2 9 | 11 H3
7 [0,1,1,0] 1] 3 2 | 12| H;

8 [0,0,1,1] 12| 4 3
3 9 [e,¢,0,0] 5 6 | 13 Hs
10 [1,¢,¢,0] 13 5| 14| Hs
11 [e,1,1,0] 7 115] 6 |16 | Hs

12 [0,1,1,1] 16 | 12 7
4 13 [¢,¢,¢,0] 10179 |18 | H;

14 (1,¢,¢,¢] 18 10

15| [ee+1,1,00 [ 191117 |20 | Hs

16 lc,1,1,1] 12 | 20 11

5 17 [e,e+1,¢,0] 21 | 13 | 15 | 22 | H3
18 [e,c,c,c] 14 | 22 13
19 | [e+1,e+1,1,0] | 15 21 | 23 | H;

20| Jee+1,1,1] | 23|16 24|15

6 20 | fe+1e+1,6,00 | 17 | 25| 19 | 26 | H3

2| [ee+led | 26182717

23 | e+ 1c+1,1,1] | 20 28 | 19

24 | [ee+1,c+1,1) | 28 20 | 27
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Table 14: List of positive roots for Coxeter group of type Hy (part 2),

where ¢ =2 cos(n/5), 2 =c+1

ks -y =k

height i root y; 1 [ [ 4
7 25 [e+1,2¢,¢,0] 21 29
26 [c+1,c+1,c.d 2212930 |21
27 le,et+1,c41,] 30 2 | 24
28 e+ 1c+1c+1,1] 24 | 31|23 30
8 29 [c+1,2¢,¢,¢] 26 | 32 | 25
30 [e+Le+1,e+1,( 27 | 33 | 26 | 28
31 [c+1,2c+1,c+1,1] 34 | 28 33

9 32 [c+1,2¢,2¢,c] 35| 29
33 [c+1,2c+1,c+1,d 36 | 30 | 35| 31
34 e+ 1,2¢+ 1,c+1,1] 31| 37 36

10 | 35 le+1,2¢+1,2¢,¢] 38 | 32|33
36 e+ 1,2¢+1,c+1,( 3339 | 38 | 34
37| et 1,2¢+2,¢+1,1] 34 | 40 | 39

1| 38 Rc+1,2¢+1,2¢,d] 35 | 41 | 36
39 | PRe+1,2e+2,¢41,d 36 | 42 | 37
40 2c+1,2c+2,c+2,1] 37 | 43

12 || 41 [2¢+1,3¢+1,2¢,¢] 44 | 38 | 45
42 Re+1,2¢42,2¢+ 1,(] 45 1 39 | 46
43 | Re+1,2¢+2,c42,c+1] 46 | 40

13 || 44 [2¢+2,3¢+1,2¢,(] 41 47
45 | Pe+13c+12c+1,d |47 | 42| 41| 48
46 | 2¢+1,2¢+2,2c+1,c+1] 48 | 43 | 42
14 47 2c+2,3¢+1,2c+1,(] 45 1 49 | 44 | 50
48 | Re+1,3c+1,2c+ Le+1] | 50 | 46 45

H;

277
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Table 14 (continued)

ks 1y v =%
height i root y; r I 3 4
15 49 2c+2,3c+2,2c+1,(] 51 | 47 52
50 | 2¢+2,3¢+1,2¢+1,c+1] | 48 | 52 47
16 51 Be+1,3¢+2,2¢+1,(] 49 53

52 | Re+2.3¢+2,2c+1,c+1] | 53|50 | 54 | 49

17 || 53 | Be+1,3¢+2,2c+1,c+1] | 52 55| st

54 | 2¢+2,3¢+2,2¢+2,c+1] | 55 52

18 55 | Be+1,3¢+2,2c+2,c+1] | 54 | 56 | 53

19 || 56 | Be+1,3¢+3,2c+2,c+1] | 57 | 55

20 57 | Be+2,3¢+3,2c+2,c+1] | 56 | 58

21 58 | Be+2,4c+2,2c+2,c+1] 57 | 59
22 59 | Be+2,4c+2,3¢+1,c+1] 58 | 60
23 60 | [Be+2,4c+2,3¢+1,2] 59

2. KW is of type Eq, 1Y) =re, [yO)NKYD = {r,r2,r3,r4,r5} and JO = {rs};
now the action of w; maps (ri,r2,13,74,7s5) to (ri,rs,r3,ra,12) and r7 to ry.

Hence, if 9 involves a wide transformation, then J© is of type Ay: with
I <N < oo

Proor. The latter part of the claim follows from the former part and the
fact that the sets J() for 0 <i < /(%) are all isomorphic to each other. For the
former part, note that J) is an irreducible subset of K which is not adjacent
to [y] (by the above condition that J( is apart from [p®)]), @) is adjacent
to [y?)NKY, and ; cannot fix the set Mo\ pointwise (see Lemma 5.4).
Moreover, since I is A--free, [y(i)] is also A.-free. By these properties, a
case-by-case argument shows that the possibilities of K, [y(®)] and ) are as
enumerated in Table 15 up to symmetry (note that J = K@\ ([y®D]U {¢D})).
Now, for each case in Table 15 except the two cases specified in the statement, it
follows by using the tables for the root systems of finite irreducible Coxeter

. LOINK®
groups that there exists a root f € (<I>l[J Ink

ot )" that has non-zero coefficient of
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Table 15: List for the proof of Lemma 6.8

type of K 01N KO | p

Ay (N =3) {r} 2 —

By (N>4) {rea,.. v} B<k<N-1) neo | o)

Dy {rv1,rn} IN-2 ”/;2
{Fes1s .. srvciv} 2 <k <N -—4) i

En(6 <N <38) {r} 3 Vas

E; {r1,r2,73,14,75} 76 —

{r7} T'6 Y61

Eg {ri,ra,r3, 14,7} 76 V119
{ri,r2,73,714,75,76} 17

{rs} 7 V74

Fy {r} ) 7;”

H, {r} m V40
{ri,r2} r3

{ra} 3 732

o, as listed in Table 15 (where the notations for the roots f are as in the
tables). This implies that w; - f € ®~. Moreover, the definition of K implies that
the set [y@\K®@ is apart from K@, therefore fe ®"") and @"[w] # &.
However, this contradicts the property w; € Y, 0. Hence one of the two
conditions specified in the statement should be satisfied, concluding the proof of
Lemma 6.8. O

On the other hand, for the narrow transformations in &, we have the
following:

LemMmA 6.9. In this setting, suppose that w; is a narrow transformation,
(D] # (D], and KON [yD] = KO\{tD} has an irreducible component of type
Ay. Then K is of type Ay or of type I(m) with m an odd number.

Proor. First, by the condition [y(*+1] # [p()] and the definition of w;, the
action of the longest element of Wy induces a nontrivial automorphism of
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K which does not fix the element ). This property restricts the possibilities
of K to one of the followings (where we use the standard labelling of K):
KO ={r,...,ry} is of type Ay and ¥ # F(N41)/25 KO ={r,...,ry} is of
type Dy with N odd and 1) e {ry_1,ry}; K = {r,... 16} is of type Eg and
t@ ¢ {ry,14}; or K is of type L(m) with m odd. Secondly, by considering the
A -freeness of I (hence of [y]), the possibilities are further restricted to the
followings: K is of type A,; K is of type Eg and 1) € {ry,rs}; and K is of
type IL(m) with m odd. Moreover, by the hypothesis that KV N[y(®] has an
irreducible component of type A;, the above possibility of type Eg is denied.
Hence the claim holds. O

6.2.2. Proof of the Claim

From now, we prove our claim that w fixes the set Il; pointwise. First, we
have w-TIy = I1;; as mentioned above, therefore Proposition 5.3 implies that
there exists a standard decomposition of w with respect to L. Moreover, L is
apart from I = [x;], since IT; is an irreducible component of II/. Now if L is
not of type Ay with 1 < N < oo, then Lemma 6.8 implies that the standard
decomposition of w involves no wide transformations, therefore w fixes Il
pointwise, as desired (note that any narrow transformation w; fixes IT;; pointwise
by the definition). Hence, from now, we consider the case that L is of type Ay
with 1 < N < o0.

First, we present some definitions:

DEFINITION 6.10.  Suppose that 2 < N < o0. Let & = wyg)-; -+ wiwp be
a semi-standard decomposition of an element of W. We say that a sequence
S1,82,...,5, of distinct elements of S is admissible of type Ay with respect to &,
if J© is of type Ay, u =N (mod 2), and the following conditions are satisfied,
where we put M := {s1,s>...,5,} (see Figure 3).

1. ;e is an irreducible component of jn AN

2. m(s;,841) =3 for every 1 < j<u—1.

3. For each 0 < h < /(2), there exists an odd number A(h) with 1 < A(h) <
u— N+ 1 satisfying the following conditions, where we put p(h) :=
A(h)+ N —1:

T = {s5;|4(h) < j < p(h)},
®INM = {5]1<j<A(h)—2 and j=1 (mod2)}

U{sj|p(h)+2<j<pand j=pu (mod2)}.
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s1 82+ S\(h)—2 SA(h) Sp(h) sy

Vo Vo JM } i

[ WeW WP WP WP Wellgngngmomonono T Nor Wo |
K(h)

7 7 7 7 77

[ SO8 Z0n SO0 SOSOnOnOnOnOnononty ROn RON RO
t ot t J(h+1) t t
81 82+ SA(h+1) Sp(h+1) T Su

Figure 3: Admissible sequence when N > 2; here N = 7, black circles in the top and the bottom rows
indicate elements of [y]N M and [y"*+)]N M, respectively, and wy, is a wide transformation with
1 = S(h)—1

4. For each 0 < h < /(2), every element of [y™]N M forms an irreducible
component of [y] of type 4.
5. For each 0 </h < /(2) — 1, if wy is a narrow transformation, then one of
the following two conditions is satisfied:
« K" intersects with [y™]N M, and [y"+1)] = [y")];
« K" is apart from [y]N M (hence [y"*+V]NM = [y"]N M).
6. Foreach 0 <h </(2) — 1, if w), is a wide transformation, then one of the
following two conditions is satisfied:
cAh+1)=A(h) -2, KM =gy {83m—2,Samy—1} 1 of type Ao, t =
S;h—1, and the action of w, maps s;p).; € JW 0<j<N-1) to
Sty and maps ;-2 € [YM] to s,423
. i(h + 1) = /L(h) + 2, KW = gy {s/,(;,Hl,sp(th} is of type Ani2, 1 =
Spih+1, and the action of w;, maps s,y ;€ JW 0<j<N-1) to

Sihi1)+; and maps sy(42 € ("] to s

Moreover, we say that such a sequence si,52,...,s, is tight if M = U;g) JHh.

DErFINITION 6.11. Suppose that N = 1. Let & = w/(g)-; -+ - w1 be a semi-
standard decomposition of an element of W. We say that a sequence s1,52,...,5,
of distinct elements of S is admissible of type A, with respect to 2, if J© is
of type A; and the following conditions are satisfied, where we put M =
{s1,82,...,8.} (see Figure 4).

1. I1I; is an irreducible component of 5 Gl

2. For each 0 <h < /(Z), we have J" = M and M\J") < [p™)].

3
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® ) e—\—FO| () )
K ()
@—O—\o
) ) ) )

J(h+1)

Figure 4: Admissible sequence when N =1; here w; is a wide transformation of the first type
in Definition 6.11(5), the circles in each row signify elements of M, and the diamond signifies the
element ¢

3. For each 0 < h < /(2), every element of [y]N M forms an irreducible
component of [y] of type 4.

4. For each 0 </ < /(2) — 1, if w), is a narrow transformation, then one of
the following two conditions is satisfied:
« K™ intersects with [y]N M, and [y"*1)] = [p®")];
« K™ is apart from [y™]N M, hence [y"+DV]NM = [y®]N M.

5. For each 0 <h </(2)— 1, if wy is a wide transformation, then one of
the following two conditions is satisfied:
« JUED £ g0 KO s of type A3, KW\{tM} =Wy gt ghtl)

[y"]N M, and the action of w, exchanges the unique element of J©

and the unique element of J(+1

« JUHD — g0 and [pttl] = [p0)].

. . . . /(D) (h)
Moreover, we say that such a sequence si,s2,...,s, is tight if M = tho JU,

Note that, if a sequence s1, 5>, ...,5, is admissible of type 4y with respect to
a semi-standard decomposition & = w/()_; - -~ W@y, then the subsequence of
S1,82,...,5, consisting of the elements of U]/:(f)/) J) is admissible of type Ay with
respect to & and is tight (for the case N > 2, the property of wide trans-
formations in Definition 6.10(6) implies that U]/fof) JU = {si|alk) <i < p(k")}
for some k,k'e€{0,1,...,/(2)}). Moreover, the sequence si,5,...,s, is also
admissible of type Ay with respect to &'

The above definitions are relevant to our purpose in the following manner:

LeMMmA 6.12. Let 9 = wyg)—1 - wiwy be a semi-standard decomposition of
w with respect to L. If there exists a sequence which is admissible of type Ay with
respect to 9, then w fixes Il; pointwise.
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ProOF. First, note that y((“) = x; = »(© since w e ¥;, therefore [y“(“)]N
M =[yO)NM where M is as defined in Definition 6.10 (when N >2) or
Definition 6.11 (when N =1). Now it follows from the properties in Definition
6.10(3) when N > 2, or Definition 6.11(2) when N =1, that J“(¥) = JO) =,
Hence w fixes I1; pointwise when N = 1. Moreover, when N > 2, the property in
Definition 6.10(6) implies that wy, * ;)4 ; = S;h+1)+,; for every 0 <h </(Z) -1
and 0 < j< N —1. Now by this property and the above-mentioned property
JU@) = JO it follows that w fixes the set IT,o = IT; pointwise. Hence the
proof is concluded. Il

As mentioned above, a standard decomposition of w with respect to L exists.
Therefore, by virtue of Lemma 6.12, it suffices to show that there exists a
sequence which is admissible with respect to this standard decomposition. More
generally, we prove the following proposition (note that the above-mentioned
standard decomposition of w satisfies the assumption in this proposition):

PROPOSITION 6.13.  Let 9 = wy(g)-1 -+ - wi1wgy be a semi-standard decomposi-
tion of an element. Suppose that J©) is of type Ay with 1 < N < oo, and 1,0 is
an irreducible component of ") Then there exists a sequence which is admissible
of type An with respect to 9.

To prove Proposition 6.13, we give the following key lemma, which will be
proven below:

LEMMA 6.14. Let n>0. Let 9 = w,w,_1---wiwy be a semi-standard de-
composition of an element, and put 9’ = w,_1---wiwy, which is also a semi-
standard decomposition of an element satisfying that y°(2') = y(2) and
JO(Z") = JO(D). Suppose that si,...,s, is a sequence which is admissible of
type Ay with respect to 9'. For simplicity, put yV) = yU)(2), JU) = JU)(2),
(V) = t0(2), and KY) = KY(2) for each index j.

1. If w, is a narrow transformation, then we have either [y"*+V)] = [y™)], or
K" is apart from [y™]N U;:o JU),

2. If N=1, w, is a wide transformation and J'
D] = [y

3. If N=1, w, is a wide transformation and J"V) # J"  then K" is of
type Az, KW\(JMU{t™Y) < [yW], and the action of w, exchanges the
unique element of J" and the unique element of K"\ (J" U {t™}) (the
latter belonging to [y™]NJ"+D).

D = J0 ] then we have
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4. If N >2 and w, is a wide transformation, then K" is of type Ayya, the
unique element s' of KMW\(J" U{t"™}) belongs to [y™], and one of the
following two conditions is satisfied:

(a) 1™ is adjacent to s' and Sin)> and the action of w, maps the elements
S;L(n>,S;~(n)+1,S;L(,1)+2, ce ,Sp(,,) and s’ to S/, [(n), S/l(n)v ‘e 7Sp(n)72 and Sp(n)’
respectively. Moreover,
iif An) =3 and ;-2 € U;l:o JU), then we have s’ = syy)_ and

(") = 53015
ii. otherwise, we have s’ ¢ U;:o J.

(b) 1™ is adjacent to s' and Spiny, and the action of w, maps the elements
Sp(n)s Sp(n)—15 Sp(n) =25 - + = s SAn) and s' to ', l(n), Sp(n)s « - 2 SA(n)+2 and Si(n)s
respectively. Moreover;
ioif p(n) < pu—2 and sypu0 € U;:O JU), then we have s’ = Sp(ny+2 and

1) = Sp(n)+15
ii. otherwise, we have s’ ¢ U;l:o J),

Then Proposition 6.13 is deduced by applying Lemma 6.14 and the next
lemma to the semi-standard decompositions &, := w,_1---wjwy (0 <v < /(D))
successively (note that, when v =0, i.e., &, is an empty expression, the sequence
S1,...,5n, where JO© = {5 ... sy} is the standard labelling of type Ay, is
admissible of type Ay with respect to 2,):

LemMmA 6.15. In the situation of Lemma 6.14, we define a sequence o of
elements of S in the following manner: For Cases 1, 2, 4(a)i and 4(b)i, let o be the
sequence si, .. .,s,; for Case 3, let s' be the unique element of K"\ (J"W U {t"}) =
JUY and let o be the sequence s, .. S Su, s’ when s" ¢ {s1,...,s,} and the
sequence sy,...,8, when s € {si,...,s,}; for Case 4(a)ii, let o be the sequence
s, 1, S3(n)s Si(n)+1» - - - 8p1, Where p' denotes the largest index 1 <p' <y with
Sy € U_;:o JU); for the case 4(bii, let o be the sequence s', 1", Sp(n)s Sp(m)—1» -+ + 5375
where ' denotes the smallest index 1 < ' <y with s; € U;’:O JD . Then o is
admissible of type An with respect to 9 = wy - w10yp.

Now our remaining task is to prove Lemma 6.14 and Lemma 6.15. For the
purpose, we present an auxiliary result:

LemMMA 6.16. Let s1,...,s, be a sequence which is admissible of type An,
where N > 2, with respect to a semi-standard decomposition & of an element of W.
Suppose that the sequence si,...,s, is tight. If 1 < ji < ph <u, jo— j1 =2, and
either ji =1 (mod2) or j» =p (mod2), then s is not adjacent to s;,.
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PrOOF. By symmetry, we may assume without loss of generality that
Jji=1 (mod?2). Put 2 =w,_---wiwy. Since the sequence si,...,s, is tight,
there exists an index 0 </ <n with s;, € J ("), Now the properties 2 and 3 in
Definition 6.10 imply that J* = {83h)s Saqhy+15 - -+ > Spn + 18 the standard labelling
of type Ay, therefore the claim holds if s;, € J () (note that j» — j; > 2). On the
other hand, if s;, ¢ J (") then the property 3 in Definition 6.10 and the fact j; < j
imply that ji < A(h), therefore s;, € [y] since j; =1 (mod 2). Hence the claim
follows from the fact that J® is apart from [y"] (see the property 1 in
Definition 6.10). O

From now, we prove the pair of Lemma 6.14 and Lemma 6.15 by induction
on n > 0. First, we give a proof of Lemma 6.15 for n = ny by assuming Lemma
6.14 for 0 < n < ny. Secondly, we will give a proof of Lemma 6.14 for n = ny by
assuming Lemma 6.14 for 0 <n < ny and Lemma 6.15 for 0 < n < ny.

ProOOF OF LEMMA 6.15 (for n=mny) FRoM LEMMA 6.14 (for n < ny). When
np = 0, the claim is obvious from the property of w,, specified in Lemma 6.14.
From now, we suppose that ny > 0. We may assume without loss of generality
that the sequence s,...,s, (denoted here by ¢’) which is admissible with respect
to &' is tight, therefore we have M’ := {s|,...,s,} = U_/.nio JU). We divide the
proof according to the possibility of w,, listed in Lemma 6.14. By symmetry, we
may omit the argument for Case 4b without loss of generality.

In Case 1, since M = (). JU) as above, w, satisfies the condition for ¢’ in
Definition 6.10(5) (when N > 2) or Definition 6.11(4) (when N = 1), hence ¢ = ¢’
is admissible of type Ay with respect to 2. Similarly, in Case 2, Case 4(a)i,
and Case 3 with s’ € M', respectively, the wide transformation w,, satisfies the
condition for ¢’ in Definition 6.11(5), Definition 6.10(6), and Definition 6.11(5),
respectively. Hence o = ¢’ is admissible of type Ay with respect to & in these
three cases.

From now, we consider the remaining two cases: Case 3 with s’ ¢ M', and
Case 4(a)ii. Note that, in Case 4(a)ii, the tightness of ¢’ implies that A(ng) =1
and p’ = p, therefore o is the sequence s, t™), s, ... ,Su. Moreover, in this case
the unique element s of K N[y()] does not belong to U;:OO JU =M,
therefore (™) cannot be adjacent to [y™)] N M’; hence t"™) ¢ M’ by the property
of ¢’ in Definition 6.10(3). Note also that, in both of the two cases, we have
s"e Jm+D) and {s'} is an irreducible component of [y(™)].

We prove by induction on 0 < v < no that the sequence ¢ is admissible of
type Ay with respect to Z, and s’ € [y (2,)], where
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Dy = 0,0,_ -+ 0] = (wnofv)il(wnrwl)il e (wnofl)il(wno)il

is a semi-standard decomposition of an element with respect to J*!. Note
that y()(2,) = ytr+D g (@) = Jmt0) ()(g,) = (w7+t) and K)(2,) =
K=+ for each index j. When v =0, this claim follows immediately from
the property of w,, specified in Lemma 6.14, properties of ¢’ and the definition of
. Suppose that v > 0. Note that 5" € [y(")(2,_1)] (which is equal to [y (2,)] =
[p(=+1)]) by the induction hypothesis. First, we consider the case that
(or equivalently, w,,—,) is a wide transformation. In this case, the possibility of
Wy,—v 18 as specified in the condition of ¢’ in Definition 6.10(6) (when N > 2)
or Definition 6.11(5) (when N =1), where h =ny—v; in particular, we have
K=\ {tm="} < M', therefore [y +*D]\M' = [y™=]\M'. Hence the ele-
ment s’ of [y D)\ M’ belongs to [y )] = [y*+1)(2,)], and the property of

/

no)fl implies that ¢ is admissible of type Ay with respect to &, as

Wyy—y = (@
well as 2,_;. Secondly, we consider the case that w, (or equivalently, w,,—,) is
a narrow transformation. By applying Lemma 6.14 (for n =v) to the pair Z,,
Z,-1 and the sequence o, it follows that either [y("*1(2,)] = [y (2,)], or the
support of w] is apart from [y")(2,)]N{J._, J ()(2,). Now in the former case,
we have s' € [y"(2,)] = [y"*)(2,)]. On the other hand, in the latter case, we
have s’ € [y (2,)]N U;:o JU)(2,) since s" € [y (2,)] as above and 5" € J(2,)
= J+) by the choice of s/, therefore s’ is apart from the support of w’.
Hence, it follows in any case that s’ € [y*"*1)(2,)]; and the property of w,, , =
(cu;)f1 specified by the condition of ¢’ in Definition 6.10(5) (when N > 2) or
Definition 6.11(4) (when N = 1), where & = ny — v, implies that ¢ is admissible of
type Ay with respect to &, as well as &,_;. Hence the claim of this paragraph
follows.

By using the result of the previous paragraph with v = ng, the sequence o
is admissible of type 4y with respect to Z,, = 2!, hence with respect to Z as

well. This completes the proof. O

By virtue of the above result, our remaining task is finally to prove Lemma
6.14 for n=mny by assuming Lemma 6.14 for 0 <n <ny and Lemma 6.15
for 0 <n < ny (in particular, with no assumptions when ny =0). Put M’ :=
{s1,...,8.}. In the proof, we may assume without loss of generality that the
sequence si,...,s, (denoted here by ¢’) which is admissible with respect to 2’ is
tight (hence we have J(©) = M’ when ny = 0). Now by Lemma 6.8, the claim of
Lemma 6.14 holds for the case that N =1 and w,, is a wide transformation.
From now, we consider the other case that either N >2 or w,, is a narrow
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transformation. Assume contrary that the claim of Lemma 6.14 does not hold.
Then, by Lemma 6.8, Lemma 6.9 and the properties of the tight sequence ¢’ in
Definition 6.10 (when N > 2) or Definition 6.11 (when N = 1), it follows that
the possibilities for the w,, is as follows (up to symmetry):

Case (I): @, is a narrow transformation, K is of type 4, or type L(m) with
m odd, and we have s, € K™ N [p(™)] for some index 1 <# < x; hence
tt0) ¢ M', Km) = {5, ™)} and the action of w,, exchanges the two
elements of K0,

Case (II): N > 2, w,, is a wide transformation, K (m) is of type Ay.a, and t™) is
adjacent to s,(,, and the unique element s’ of | y)] N K™); hence the

action of w,, maps the elements 5;(,)), Si(ny)+15 Si(n)+2> - - - »Sp(no) and s’
to s/, 1), Sitno)s -+ 2 Sping)—2  and sy, Tespectively. Moreover,
") ¢ M’ and

Case (II-1): 5" =s;, for an index p(ng) +2 < jo < pu with jo = u (mod 2);
Case (II-2): A(no) =3 and 5" ¢ {Si(ng)—25 Si(n)—15 - -+ » Su}s
Case (II-3): A(n9) =3 and 5" = s;(,)—2.

In particular, by the tightness of ¢’, the conditions in the above four cases cannot
be satisfied when ny = 0. Hence the claim holds when ny = 0. From now, we
suppose that ry > 0.

For each of the four cases, we determine an element 5 e [y™)]N M’ and an
element 7e S\[y™)] in the following manner: §=s, and 7= ¢™) in Case (I);
§=sj, and 7= ) in Case (II-1); § = Sin)—2 and 7 = s;,y—1 in Case (II-2); and
§ = Sj(n)—2 and 7= ™) in Case (II-3). Note that § and 7 are adjacent by the
definition. Since ¢’ is tight, there exists an index 0 < iy < ny — 1 with §e J");
let hy be the largest index with this property. By the definition of hg, wp, is
a wide transformation and J"+D 2 jU0) Tet 7 denote the element of J(o*!)
with @y, * § = 7. Then we have 7 e [y0)] by the property of @, and the choice
of 3.

Let ¥ :=w),_, - wjw) denote the simplification of

(Ony1 -~ Opy 1201 1) = (O i1) (@py2) "+ (@p1) "

(see Section 5.1 for the terminology), and let # be the element of W expressed
by the product Z. Here we present the following lemma:

LEMMA 6.17. In this setting, the support of each transformation in 4 does not
contain t and is apart from 3.
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Proor. We prove by induction on 0 <v' <n' — 1 that the support K’ of

! be the term in

!, does not contain 7 and is apart from 5. Let (w,)
(@pys1) " (@pys2) "+ (@wny—1)"" corresponding to the term w,, in the simplifi-
cation Z. First, by the definition of simplification and the property of narrow
transformations specified in Definition 6.10 (when N >2) or Definition 6.11
(when N =1), K’ is apart from [y®)(2)]N M’ = [y**D]N M’ (see Lemma 5.5
for the equality) if @], (or equivalently, w,) is a narrow transformation. Now we
have §e [p")] = [y (Z)] and §€ M’ by the definition, therefore the induction
hypothesis implies that 5§ e [y")(Z)]N M'. Hence K’ is apart from 5 if !, is a
narrow transformation. This also implies that 7¢ K’ if ], is a narrow trans-

formation, since f is adjacent to §.

i
v/

From now, we consider the other case that w/, (or equivalently, w,) is a
wide transformation. Recall that § e [y(")(Z)] as mentioned above. Then, by the
property of wide transformation w, specified in Definition 6.10 (when N > 2)
or Definition 6.11 (when N = 1) and the definition of simplification, it follows
that 5§ e J"+1)(Z) provided K’ is not apart from 5. On the other hand, by the
definition of /iy, we have §¢ J\) for any hy+ 1 < j < ng. This implies that K’
should be apart from 3; therefore we have 7 ¢ K', since 7 is adjacent to 5. Hence

the proof of Lemma 6.17 is concluded. O
Now, in all the cases except Case (II-2), the following property holds:

Lemma 6.18. In Cases (I), (II-1) and (11-3), there exists a root ff € ™ in
which the coefficient of oz is zero and the coefficient of o; = o, is non-zero.

Proor. First, Lemma 5.5 implies that @ - IT;u,) = 1,4, and [y] = [p0tD)]
where y':= y")(Z). Put ¥’ := @'« 7€ J"). Then by Lemma 6.17 and Lemma
5.7, we have iie Y, ., where z and z' are elements of SW) obtained from
y©(Z) = y) and y’ by replacing the element § with ' and 7, respectively. Now
by the property of the wide transformation cwy,, it follows that y) is obtained
from y(*1) by replacing § with 7 hence we have [z/] = [y")].

We show that there exists a root ' e 11 in which the coefficient of «; is
zero and the coefficient of o,w, is non-zero. In Case (I), ) is apart from both
[y)]\{s} and J") while we have [z] < ([y"]\{5})UJ) by the definition;
hence B’ :=o,u, satisfies the required condition. In Case (II-1), we have 7=
Si(mp+1) by the property of wy,, therefore r’ =s,,, by the property of wide
transformations in Z (see Definition 6.10(6)). Put B’ := o,y + o, + &%, ., €

A(ng) Ang)+1

X" "} (note that N > 2 and K™ is of type Ay.2). Now K™ is apart from
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[ym\{5} = [z]\{r'}, therefore we have S’ €1 and f’ satisfies the required
condition. Moreover, in Case (II-3), we have 7= s,p,+1) by the property of
wy,, therefore r’' =5, by the property of wide transformations in 9 (see
Definition 6.10(6)). Now, since N >2 and K™ is of type Ay, t™ is not
adjacent to r/, while K is apart from [y™)]\{s} = [z]\{r'}. Hence ' := o,u
satisfies the required condition.

By Lemma 6.17, the action of & does not change the coefficients of o; and «;.
Hence by the result of the previous paragraph, the root f:=i- ' e I1F = b
satisfies the required condition, concluding the proof of Lemma 6.18. O

Since 7 ¢ J0) and 7 is adjacent to §, the root S € ™ given by Lemma 6.18
does not belong to II,u, and is not orthogonal to oz However, since §e J (ko)
this contradicts the fact that Il,u, is an irreducible component of ™ (see
Definition 6.10(1) when N > 2, or Definition 6.11(1) when N = 1). Hence we
have derived a contradiction in the three cases in Lemma 6.18.

From now, we consider the remaining case, i.e., Case (II-2). In this case, the
following property holds:

LEMMA 6.19. In this setting, the support of each transformation in & does not
contain t") and is apart from s'.

Proor. For each 0 <i<ny—hy—1, let &; denote the semi-standard de-

composition of an element defined by
9; = wr{/ T w{/w(lf = (wno*i)71 U (wnl>*1)7l(wn())71'

For each 0<i<mny—hy—1, let o; denote the sequence s', "), S3(no)»
Sim)+1s - -+ Sp(i)» Where p(i) denotes the largest index s;,) < p(i) <u with
Sj(i) € jl:é J(D) (= U;’SOI_[ JU)). We prove the following properties by
induction on 1 <i <mny—hy— 1: The sequence g; is admissible with respect to
Z;; we have s' e [y*)(2;)]; and we have either [y (2,)] = [y?(2Z;)] and
JE (@) = JD(2;), or the support K" =K (Z,) of w! is apart from s'.
Note that, by the properties of ,, and ¢’, we have s’ € [y™)] = [y1)(Zy)], and
the sequence gy (which is s/, ¢mo) Si(no)s - -+ »Sp(ng)) 18 admissible with respect to
Dy.

By the induction hypothesis and Lemma 6.14 for n =i applied to the se-
quence o;—; and the pair 2; and &, ; (note that i <ny—hy—1<ny—1), it
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follows that the possibilities of ! = (w,,_;)"" are as listed in Lemma 6.14. Now
if w/ is a narrow transformation, then as in Case 1 of Lemma 6.14, we have
either [y*1(2)] = [y(2;)], or K" is apart from s’ (note that s' e [y?)(2))]
by the induction hypothesis, while s’ € J(©(Z;) = J"*1)). On the other hand,
suppose that o] = (cu,,o_i)_1 is a wide transformation. Then, by the property
of o', the support K” of the wide transformation w,,_; is contained in M’,
therefore s’ ¢ K”. This implies that K” is apart from s’, since we have s’ €
[yD(2,)] by the induction hypothesis. Moreover, in any case of w/, we have
s e [y (2,)] by the above-mentioned fact s’ e[y (2Z;)] and the above ar-
gument. On the other hand, the sequence ¢ in Lemma 6.15 corresponding to
the current case is equal to g;, therefore o; is admissible with respect to &; by
Lemma 6.15 for n=1i (note again that i <ny— 1). Hence the claim of the
previous paragraph holds.

By the above result, the simplification D = w),_;---wyq of ) _ 1
satisfies the following conditions: For each 0 <V <#' — 1, we have s’ € [y(‘ )(D)],
and the support of @/, is apart from s’. Since ¢ is adjacent to s’, this implies
that the support of each !, does not contain #"). Hence the proof of Lemma
6.19 is concluded. [

By Lemma 6.19, we have s’ e [y")(Z)] = [y"0*+V], therefore the set K ()
of type Ayy> consisting of s ,,O) 25 Si(ng)—1»-+++Sp(ny) 1 apart from s’. On the
other hand, since s;(,,)-2 € [p)], the set K™) of type Ay.o is apart from s’'.
From now, by using these properties, we construct a root f' e I Y] \H J0)
which is not orthogonal to ay,, ., € IT;u) (note that N >2), in the following five
steps.

Step 1. Note that the set K is apart from [y)]\K ) Put z(0) .= pim),
Then we have u; == w (03’) s'tm) e Y.o) .0, where z e SAN) is obtained from

%) by replacing s” with ). Similarly, we have u, := wj’{f:“) = t(”")s;,(no) € Y.o .0,
where z( e S is obtained from z(!) by replacing :™) with s;,,). Now, since
By == o, and Bj:=ay,, , are non-orthogonal elements of IT,u, < I1° ()] the
roots f, = wouy - fy = oy and fy = wpur - fy = oty + 0ty + oy, are non-
orthogonal elements of =,

Step 2. By the construction, z? is obtained from y) by replacing s’ with
Sin)- On the other hand, we have J™) = JM*tD) and i xs;,) = 5,0, by the
property of wide transformations in Z. Now by Lemma 5.7, we have uz :=
ie Y.y o, where z8) e S is obtained from y")(Z) by replacing s’ with
S Note that 9] = (@)D Ui} = (DN (DU {0 ). Pat
/33 :=uz- B, and B :=us-p5 Then we have B, f, e TIF”) and (s, B> # 0.
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Moreover, by Lemma 6.17 and Lemma 6.19, u3 fixes oy, hence f; = ay; and the
action of u3 does not change the coefficients of oy, o, a5 and o; hence the
coefficients of these four simple roots in B3 are 0, 1, 0 and 0, respectively. This

also implies that the coefficient of oy, = in f5 is non-zero, since t') is adjacent to

()
Si(no) € [ZB)}

Step 3. Note that the set K0 is apart from [pU+D]\K() hence from
[zZON\KW). Then we have uy:=w!, = Is;,)5T€ Yo .o, where z® e SA s
obtained from z(® by exchanging S;n) and 5. Now we have f, :=uy-f; =
oy e TTEY Byri=us-Pie ™! and {Ba4,Bs> # 0. Moreover, by the property of
coefficients in f; mentioned in Step 2 and the fact that 7 is adjacent to S3(no)
and 3, it follows that the coefficient of «; in f8; is non-zero.

Step 4. Since [z*] =[z0)], there exists an element z®) e S satisfying
that [z] = [z®)] and us:=a"' € V.9 .. We have fs:=us-f, € =l gl
us- By € =" and {Bs,Ps> #0. Now by Lemma 6.17 and Lemma 6.19, us fixes
oy, hence f5 = oy ; and the action of us does not change the coefficient of ag,
hence the coefficient of «; in 5 is non-zero.

Step 5. Put ug := u;"' and u; := uy'. Since [z09)] = [z(?)] as above, there exists
an element z(7 e SW satisfying that [z7] = [z0] = [y™)] and wusue € Y.0) ..
Now we have f;:=ujus-fs =oy, since f5=p,. On the other hand, put
By := ugug - . Then we have f eI = ™" and {B7,B7> # 0. Moreover,
since u7ug € W\ (5, the coeflicient of o; in p; is the same as the coefficient of o;
in 5, which is non-zero as mentioned in Step 4.

Hence we have constructed a root ' = f; satisfying the above condition.
However, this contradicts the fact that II,u, is an irreducible component of
") (see Definition 6.10(1)).

Summarizing, we have derived a contradiction in any of the four cases, Case
(I)-Case (II-3), therefore Lemma 6.14 for n =ny holds. Hence our claim has
been proven in the case I/ < @,..

This completes the proof of Theorem 4.1.

7. A Counterexample for the General Case

In this section, we present an example which shows that our main theorem,
Theorem 4.1, will not generally hold when the assumption on the A.;-freeness
of I < S is removed.

We consider a Coxeter system (W,S) of rank 7 with Coxeter graph I' in
Figure 5, where the vertex labelled by an integer i corresponds to a generator
s;i€S. Put I ={s4,55} which is of type A, (hence is not A-,-free).
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Figure 5: Coxeter graph I' and subset / = S for the counterexample; here the two duplicated circles
correspond to I = {s4,s5}

To determine the simple system IT/ of W=/, Proposition 3.3(3) implies that

each element of T’ is written as u-p(y,s), where ye SV, ue Y, ,, seS\[y,
LD+

. i ! . iUt

as in Proposition 3.2. In this case, the element u~! € Y, \, admits a decomposition

[y]., is of finite type, ¢(y,s) = y, and y(y,s) is the unique element of (®

as in Proposition 3.3(2). In particular, such an element y can be obtained from
x; by applying a finite number of operations of the form z — ¢(z,¢) with an
appropriate element fe S. Table 16 gives a list of all the element ye S®)
obtained in this way. In the second and the fourth columns of the table, we
abbreviate each s; (1 <i < 7) to i for simplicity. This table shows, for each y, all
the elements ¢ € S\[y] satisfying that [y]_, is of finite type and ¢(y, ) # y, as well
as the corresponding element ¢(y,7) e S (more precisely, the subset [p(y,?)]
of S). Now the list of the y in the table is closed by the operations y — ¢(y,?),
while it involves the starting point x; (No. I in Table 16), therefore the list indeed
includes a complete list of the possible y.

On the other hand, Table 16 also includes some elements of (1) for each

(A) In the third column of the table, we abbreviate a root 2[7:1 Citts,

possible y € S
to [c1ca | czcacs | cge7]. Moreover, a line is drawn under the coefficient ¢; of o, if s;
belongs to [y]. Now for each y, each root y e (®*1))* and each r appearing in
the table, the root wj -ye€ (@707 also appears in the row corresponding
to the element ¢(y,t) e S¥. Moreover, for each y in the table, if an element
se S\[y] satisfies that [y]_, is of finite type and ¢(y,s) = y, then the corre-
sponding root y(y,s) always appears in the row corresponding to the y. By these
properties, the above-mentioned characterization of the elements of IT/ and the
decompositions of elements of Y., , given by Proposition 3.3(2), it follows that all
the elements of TI’ indeed appear in the list. Hence we have IT/ = {ay,, o} (see
the row I in Table 16), therefore both elements of I1’ satisfy that the corre-
sponding reflection belongs to Wl
Moreover, we consider the following sequence of operations:
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Table 16: List for the counterexample

No. || [y] ye @ t| oy

I || {4,5} | [10[000/00],[01]000[00] || 3 | II

6 111

7 v

|| {3,4} | [10[111]00], [01[111j00] || 1 | V

2 VI

I || {5,6} | [10[000/00],[01/000/00] || 4 | I

7 v

IV || {57} | [10]000J00], [01/000[00] || 4 | 1

6 111

v || {1,3} | [00[001]00], [11[221]00] || 2 | VI

4 II

VI || {23} | [00joot(o0], [11j221j00] || 1| V

3 1 2 4

Xr = (84,85) — (53,84) — (51,83) = (83,82) — (54,53)
5 6 7 4

= (85,84) — (6,55) — (85,57) — (84,85) = X,

where we write z - 2/ to signify the operation z +— z’ = ¢(z,s;). Then a direct
calculation shows that the element w of Y; defined by the product of the elements
w! corresponding to the above operations satisfies that w - o, = o,. Hence the
conclusion of Theorem 4.1 does not hold in this case where the assumption on
the A-i-freeness of I is not satisfied.
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