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ON FINITE FACTORS OF CENTRALIZERS OF

PARABOLIC SUBGROUPS IN COXETER GROUPS
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Koji Nuida

Abstract. It has been known that the centralizer ZW ðWI Þ of a

parabolic subgroup WI of a Coxeter group W is a split extension of

a naturally defined reflection subgroup by a subgroup defined by a

2-cell complex Y. In this paper, we study the structure of ZW ðWI Þ
further and show that, if I has no irreducible components of type An

with 2a n < y, then every element of finite irreducible components

of the inner factor is fixed by a natural action of the fundamental

group of Y. This property has an application to the isomorphism

problem in Coxeter groups.

1. Introduction

A pair ðW ;SÞ of a group W and its (possibly infinite) generating set S is

called a Coxeter system if W admits the following presentation

W ¼ hS j ðstÞmðs; tÞ ¼ 1 for all s; t A S with mðs; tÞ < yi;

where m : ðs; tÞ 7! mðs; tÞ A f1; 2; . . .gU fyg is a symmetric mapping in s; t A S

with the property that we have mðs; tÞ ¼ 1 if and only if s ¼ t. A group W is

called a Coxeter group if ðW ;SÞ is a Coxeter system for some SJW . Since

Coxeter systems and some associated objects, such as root systems, appear

frequently in various topics of mathematics, algebraic or combinatorial properties

of Coxeter systems and those associated objects have been investigated very well,

forming a long history and establishing many beautiful theories (see e.g., [5] and

references therein). For example, it has been well known that, given an arbitrary
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Coxeter system ðW ;SÞ, the mapping m by which the above group presentation

defines the same group W is uniquely determined.

In recent decades, not only the properties of a Coxeter group W associated

to a specific generating set S, but also the group-theoretic properties of an

arbitrary Coxeter group W itself have been studied well. One of the recent main

topics in the study of group-theoretic properties of Coxeter groups is the iso-

morphism problem, that is, the problem of determining which of the Coxeter

groups are isomorphic to each other as abstract groups. In other words, the

problem is to investigate the possible ‘‘types’’ of generating sets S for a given

Coxeter group W . For example, it has been known that for a Coxeter group W

in certain classes, the set of reflections SW :¼ fwsw�1 jw A W and s A Sg asso-

ciated to any possible generating set S of W (as a Coxeter group) is equal to each

other and independent of the choice of S (see e.g., [1]). A Coxeter group W

having this property is called reflection independent. A simplest nontrivial example

of a Coxeter group which is not reflection independent is Weyl group of type G2

(or the finite Coxeter group of type I2ð6Þ) with two simple reflections s, t, which

admits another generating set fs; ststs; ðstÞ3g of type A1 � A2 involving an element

ðstÞ3 that is not a reflection with respect to the original generating set. One of the

main branches of the isomorphism problem in Coxeter groups is to determine the

possibilities of a group isomorphism between two Coxeter groups which preserves

the sets of reflections (with respect to some specified generating sets). Such an

isomorphism is called reflection-preserving.

In a recent study by the author of this paper, it is revealed that some

properties of the centralizers ZW ðrÞ of reflections r in a Coxeter group W (with

respect to a generating set S) can be applied to the study of reflection inde-

pendent Coxeter groups and reflection-preserving isomorphisms. An outline of

the idea is as follows. First, by a general result on the structures of the cen-

tralizers of parabolic subgroups [7] or the normalizers of parabolic subgroups

[2] in Coxeter groups applied to the case of a single reflection, we have a

decomposition ZW ðrÞ ¼ hri� ðW?r zYrÞ, where W?r denotes the subgroup

generated by all the reflections except r itself that commute with r, and Yr is a

subgroup isomorphic to the fundamental group of a certain graph associated to

ðW ;SÞ. The above-mentioned general results also give a canonical presentation

of W?r as a Coxeter group. Then the unique maximal reflection subgroup (i.e.,

subgroup generated by reflections) of ZW ðrÞ is hri�W?r. Now suppose that

W?r has no finite irreducible components. In this case, the maximal reflection

subgroup of ZW ðrÞ has only one finite irreducible component, that is hri. Now it

can be shown that, if the image f ðrÞ of r by a group isomorphism f from W to
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another Coxeter group W 0 is not a reflection with respect to a generating set of

W 0, then the finite irreducible components of the unique maximal reflection

subgroup of the centralizer of f ðrÞ in W 0 have more elements than hri, which

is a contradiction. Hence, in such a case of r, the image of r by any group

isomorphism from W to another Coxeter group is always a reflection. See the

author’s preprint [6] for more detailed arguments.

As we have seen in the previous paragraph, it is worthy to look for a class of

Coxeter groups W for which the above subgroup W?r of the centralizer ZW ðrÞ of
each reflection r has no finite irreducible components. The aim of this paper is to

establish a tool for finding Coxeter groups having the desired property. The main

theorem (in a special case) of this paper can be stated as follows:

Main Theorem (in a special case). Let r A W be a reflection, and let sg

be a generator of W?r (as a Coxeter group) which belongs to a finite

irreducible component of W?r. Then sg commutes with every element

of Yr. (See the previous paragraph for the notations.)

By virtue of this result, to show that W?r has no finite irreducible components, it

su‰ces to find (by using the general structural results in [7] or [2]) for each

generator sg of W?r an element of Yr that does not commute with sg. A detailed

argument along this strategy is given in the preprint [6].

In fact, the main theorem (Theorem 4.1) of this paper is not only proven for

the above-mentioned case of single reflection r, but also generalized to the case

of centralizers ZW ðWI Þ of parabolic subgroups WI generated by some subsets

I JS, with the property that I has no irreducible components of type An with

2a n < y. (We notice that there exists a counterexample when the assumption

on I is removed; see Section 7 for details.) In the generalized statement, the group

W?r is replaced naturally with the subgroup of W generated by all the reflections

except those in I that commute with every element of I , while the group Yr is

replaced with a subgroup of W isomorphic to the fundamental group of a certain

2-cell complex defined in [7]. We emphasize that, although the general structures

of these subgroups of ZW ðWI Þ have been described in [7] (or [2]), the main

theorem of this paper is still far from being trivial; moreover, to the author’s best

knowledge, no other results on the structures of the centralizers ZW ðWI Þ which is

in a significantly general form and involves much detailed information than those

given in the general structural results [2, 7] have been known in the literature.

The paper is organized as follows. In Section 2, we summarize some

fundamental properties and definitions for Coxeter groups. In Section 3, we
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summarize some properties of the centralizers of parabolic subgroups relevant to

our argument in the following sections, which have been shown in some pre-

ceding works (mainly in [7]). In Section 4, we give the statement of the main

theorem of this paper (Theorem 4.1), and give a remark on its application to the

isomorphism problem in Coxeter groups (also mentioned in a paragraph above).

The proof of the main theorem is divided into two main steps: First, Section 5

presents some auxiliary results which do not require the assumption, put in the

main theorem, on the subset I of S that I has no irreducible components of type

An with 2a n < y. Then, based on the results in Section 5, Section 6 deals with

the special case as in the main theorem that I has no such irreducible com-

ponents, and completes the proof of the main theorem. The proof of the main

theorem makes use of the list of positive roots given in Section 2 several times.

Finally, in Section 7, we describe in detail a counterexample of our main theorem

when the assumption that I has no irreducible components of type An with

2a n < y is removed.
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2. Coxeter Groups

The basics of Coxeter groups summarized here are found in [5] unless

otherwise noticed. For some omitted definitions, see also [5] or the author’s

preceding paper [7].

2.1. Basic Notions

A pair ðW ;SÞ of a group W and its (possibly infinite) generating set S is

called a Coxeter system, and W is called a Coxeter group, if W admits the

following presentation

W ¼ hS j ðstÞmðs; tÞ ¼ 1 for all s; t A S with mðs; tÞ < yi;
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where m : ðs; tÞ 7! mðs; tÞ A f1; 2; . . .gU fyg is a symmetric mapping in s; t A S

with the property that we have mðs; tÞ ¼ 1 if and only if s ¼ t. Let G denote the

Coxeter graph of ðW ;SÞ, which is a simple undirected graph with vertex set S

in which two vertices s; t A S are joined by an edge with label mðs; tÞ if and only

if mðs; tÞb 3 (by usual convention, the label is omitted when mðs; tÞ ¼ 3; see

Figure 1 below for example). If G is connected, then ðW ;SÞ is called irreducible.

Let l denote the length function of ðW ;SÞ. For w; u A W , we say that u is a

right divisor of w if lðwÞ ¼ lðwu�1Þ þ lðuÞ. For each subset I JS, the subgroup

WI :¼ hIi of W generated by I is called a parabolic subgroup of W . Let GI

denote the Coxeter graph of the Coxeter system ðWI ; IÞ.
For two subsets I ; JJS, we say that I is adjacent to J if an element of I

is joined by an edge with an element of J in the Coxeter graph G. We say

that I is apart from J if I V J ¼ q and I is not adjacent to J. For the ter-

minologies, we often abbreviate a set fsg with a single element of S to s for

simplicity.

2.2. Root Systems and Reflection Subgroups

Let V denote the geometric representation space of ðW ;SÞ, which is an

R-linear space equipped with a basis P ¼ fas j s A Sg and a W -invariant sym-

metric bilinear form h ; i determined by

has; ati ¼ �cosðp=mðs; tÞÞ if mðs; tÞ < y;

�1 if mðs; tÞ ¼ y;

�

where W acts faithfully on V by s � v ¼ v� 2has; vias for s A S and v A V . Then

the root system F ¼ W �P consists of unit vectors with respect to the bilinear

form h ; i, and F is the disjoint union of Fþ :¼ FVRb0P and F� :¼ �Fþ where

Rb0P signifies the set of nonnegative linear combinations of elements of P.

Elements of F, Fþ, and F� are called roots, positive roots, and negative roots,

respectively. For a subset CJF and an element w A W , define

Cþ :¼ CVFþ; C� :¼ CVF�; C½w� :¼ fg A Cþ jw � g A F�g:

It is well known that the length lðwÞ of w is equal to jF½w�j.
For an element v ¼

P
s AS csas of V , define the support Supp v of v to be the

set of all s A S with cs 0 0. For a subset C of F, define the support Supp C of C

to be the union of Supp g over all g A C. For each I JS, define

PI :¼ fas j s A IgJP; VI :¼ span PI JV ; FI :¼ FVVI :
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It is well known that FI coincides with the root system WI �PI of ðWI ; IÞ. We

notice the following well-known fact:

Lemma 2.1. The support of any root g A F is irreducible.

Proof. Note that g A FI ¼ WI �PI , where I ¼ Supp g. On the other hand, it

follows by induction on the length of w that, for any w A WI and s A I , the

support of w � as is contained in the irreducible component of I containing s.

Hence the claim follows. r

For a root g ¼ w � as A F, let sg :¼ wsw�1 be the reflection along g, which

acts on V by sg � v ¼ v� 2hg; vig for v A V . For any subset CJF, let WðCÞ
denote the reflection subgroup of W generated by fsg j g A Cg. It was shown by

Deodhar [3] and by Dyer [4] that WðCÞ is a Coxeter group. To determine their

generating set SðCÞ for WðCÞ, let PðCÞ denote the set of all ‘‘simple roots’’

g A ðWðCÞ �CÞþ in the ‘‘root system’’ WðCÞ �C of WðCÞ, that is, all the g for

which any expression g ¼
Pr

i¼1 cibi with ci > 0 and bi A ðWðCÞ �CÞþ satisfies that

bi ¼ g for every index i. Then the set SðCÞ is given by

SðCÞ :¼ fsg j g A PðCÞg:

We call PðCÞ the simple system of ðWðCÞ;SðCÞÞ. Note that the ‘‘root system’’

WðCÞ �C and the simple system PðCÞ for ðWðCÞ;SðCÞÞ have several properties

that are similar to the usual root systems F and simple systems P for ðW ;SÞ; see
e.g., Theorem 2.3 of [7] for the detail. In particular, we have the following result:

Theorem 2.2 (e.g., [7, Theorem 2.3]). Let CJF, and let lC be the length

function of ðWðCÞ;SðCÞÞ. Then for w A WðCÞ and g A ðWðCÞ �CÞþ, we have

lCðwsgÞ < lCðwÞ if and only if w � g A F�.

We say that a subset CJFþ is a root basis if for each pair b; g A C, we have

hb; gi ¼ �cosðp=mÞ if sbsg has order m < y;

hb; gia�1 if sbsg has infinite order:

�

For example, it follows from Theorem 2.3 below that the simple system PðCÞ of

ðWðCÞ;SðCÞÞ is a root basis for any CJF. For two root bases C1;C2 JFþ,

we say that a mapping from C1 ¼ PðC1Þ to C2 ¼ PðC2Þ is an isomorphism if it

induces an isomorphism from SðC1Þ to SðC2Þ. We show some properties of root

bases:
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Theorem 2.3 ([4, Theorem 4.4]). Let CJFþ. Then we have PðCÞ ¼ C if

and only if C is a root basis.

Proposition 2.4 ([7, Corollary 2.6]). Let CJFþ be a root basis with

jWðCÞj < y. Then C is a basis of a positive definite subspace of V with respect to

the bilinear form h ; i.

Proposition 2.5 ([7, Proposition 2.7]). Let CJFþ be a root basis with

jWðCÞj < y, and U ¼ span C. Then there exist an element w A W and a subset

I JS satisfying that jWI j < y and w � ðU VFþÞ ¼ Fþ
I . Moreover, the action of

this w maps U VP into PI .

2.3. Finite Parabolic Subgroups

We say that a subset I JS is of finite type if jWI j < y. The finite irreducible

Coxeter groups have been classified as summarized in [5, Chapter 2]. Here we

determine a labelling r1; r2; . . . ; rn (where n ¼ jI j) of elements of an irreducible

subset I JS of each finite type in the following manner, where the values mðri; rjÞ
not listed here are equal to 2 (see Figure 1):

Type An (1a n < y): mðri; riþ1Þ ¼ 3 (1a ia n� 1);

Type Bn (2a n < y): mðri; riþ1Þ ¼ 3 (1a ia n� 2) and mðrn�1; rnÞ ¼ 4;

Type Dn (4a n < y): mðri; riþ1Þ ¼ mðrn�2; rnÞ ¼ 3 (1a ia n� 2);

Type En (n ¼ 6; 7; 8): mðr1; r3Þ ¼ mðr2; r4Þ ¼ mðri; riþ1Þ ¼ 3 (3a ia n� 1);

Type F4: mðr1; r2Þ ¼ mðr3; r4Þ ¼ 3 and mðr2; r3Þ ¼ 4;

Type Hn (n ¼ 3; 4): mðr1; r2Þ ¼ 5 and mðri; riþ1Þ ¼ 3 (2a ia n� 1);

Type I2ðmÞ (5am < y): mðr1; r2Þ ¼ m.

Figure 1: Coxeter graphs of the finite irreducible Coxeter groups (here we write i instead of ri for each

vertex)
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We call the above labelling r1; . . . ; rn the standard labelling of I .

Let w0ðIÞ denote the (unique) longest element of a finite parabolic subgroup

WI . It is well known that w0ðIÞ2 ¼ 1 and w0ðIÞ �PI ¼ �PI . Now let I be

irreducible of finite type. If I is of type An (nb 2), Dk (k odd), E6 or I2ðmÞ (m

odd), then the automorphism of the Coxeter graph GI of WI induced by (the

conjugation action of ) w0ðIÞ is the unique nontrivial automorphism of GI .

Otherwise, w0ðIÞ lies in the center ZðWI Þ of WI and the induced automorphism

of GI is trivial, in which case we say that I is of ð�1Þ-type. Moreover, if WI

is finite but not irreducible, then w0ðIÞ ¼ w0ðI1Þ � � �w0ðIkÞ where the Ii are the

irreducible components of I .

3. Known Properties of the Centralizers

This section summarizes some known properties (mainly proven in [7]) of the

centralizers ZW ðWI Þ of parabolic subgroups WI in Coxeter groups W , especially

those relevant to the argument in this paper.

First, we fix an abstract index set L with jLj ¼ jI j, and define S ðLÞ to be

the set of all injective mappings x : L ! S. For x A S ðLÞ and l A L, we put

xl ¼ xðlÞ; thus x may be regarded as a duplicate-free ‘‘L-tuple’’ ðxlÞ ¼ ðxlÞl AL
of elements of S. For each x A S ðLÞ, let ½x� denote the image of the mapping x;

½x� ¼ fxl j l A Lg. In the following argument, we fix an element xI A S ðLÞ with

½xI � ¼ I . We define

Cx;y :¼ fw A W j axl ¼ w � ayl for every l A Lg for x; y A S ðLÞ:

Note that Cx;y � Cy; z JCx; z and C�1
x;y ¼ Cy;x for x; y; z A S ðLÞ. Now we define

w � yl :¼ xl for x; y A S ðLÞ;w A Cx;y and l A L;

therefore we have w � as ¼ aw�s for any w A Cx;y and s A ½y�. (This � can be

interpreted as the conjugation action of elements of Cx;y to the elements of ½y�.)
Moreover, we define

w � y :¼ x for x; y A S ðLÞ and w A Cx;y

(this � can be interpreted as the diagonal action on the L-tuples). We define

CI ¼ CxI ;xI , therefore we have

CI ¼ fw A W jw � as ¼ as for every s A Ig;

which is a normal subgroup of ZW ðWI Þ.
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To describe generators of CI , we introduce some notations. For subsets

J;KJS, let J@K denote the set of elements of J UK that belongs to the same

connected component of GJUK as an element of K. Now for x A S ðLÞ and

s A Sn½x� for which ½x�@s is of finite type, there exists a unique y A S ðLÞ for which

the element

ws
x :¼ w0ð½x�@sÞw0ð½x�@snfsgÞ

belongs to Cy;x. In this case, we define

jðx; sÞ :¼ y;

therefore jðx; sÞ ¼ ws
x � x in the above notations. We have the following result:

Proposition 3.1 (see [7, Theorem 3.5(iii)]). Let x; y A S ðLÞ and w A Cx;y.

Then there are a finite sequence z0 ¼ y; z1; . . . ; zn�1; zn ¼ x of elements of S ðLÞ

and a finite sequence s0; s1; . . . ; sn�1 of elements of S satisfying that si B ½zi�, ½zi�@si

is of finite type and jðzi; siÞ ¼ ziþ1 for each index 0a ia n� 1, and we have

w ¼ wsn�1
zn�1

� � �ws1
z1
ws0
z0
.

For subsets J;KJS, define

F?K
J :¼ fg A FJ j hg; asi ¼ 0 for every s A Kg; W?K

J :¼ WðF?K
J Þ

(see Section 2.2 for notations). Then ðW?K
J ;RJ;KÞ is a Coxeter system with root

system F?K
J and simple system PJ;K , where

RJ;K :¼ SðF?K
J Þ; PJ;K :¼ PðF?K

J Þ

(see [7, Section 3.1]). In the notations, the symbol J will be omitted when J ¼ S;

hence we have

W?I ¼ W?I
S ¼ hfsg j g A F?Igi:

On the other hand, we define

Yx;y :¼ fw A Cx;y jw � ðF?½y�Þþ JFþg for x; y A S ðLÞ:

Note that Yx;y ¼ fw A Cx;y j ðF?½x�Þþ ¼ w � ðF?½y�Þþg (see [7, Section 3.1]). Note

also that Yx;y � Yy; z JYx; z and Y�1
x;y ¼ Yy;x for x; y; z A S ðLÞ. Now we define

YI ¼ YxI ;xI , therefore we have

YI ¼ fw A CI j ðF?I Þþ ¼ w � ðF?I Þþg:

We have the following results:
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Proposition 3.2 (see [7, Lemma 4.1]). For x A S ðLÞ and s A Sn½x�, the three

conditions are equivalent:

1. ½x�@s is of finite type, and jðx; sÞ ¼ x;

2. ½x�@s is of finite type, and F?½x�½ws
x�0q;

3. F
?½x�
½x�Ufsg 0q.

If these three conditions are satisfied, then we have F?½x�½ws
x� ¼ ðF?½x�

½x�UfsgÞ
þ ¼

fgðx; sÞg for a unique positive root gðx; sÞ satisfying sgðx; sÞ ¼ ws
x.

Proposition 3.3. Let x; y A S ðLÞ.

1. (See [7, Theorem 4.6(i) (iv)].) The group Cx;x admits a semidirect product

decomposition Cx;x ¼ W?½x� zYx;x. Moreover, if w A Yx;y, then the con-

jugation action by w defines an isomorphism u 7! wuw�1 of Coxeter systems

from ðW?½y�;R½y�Þ to ðW?½x�;R½x�Þ.
2. (See [7, Theorem 4.6(ii)].) Let w A Yx;y. Then there are a finite sequence

z0 ¼ y; z1; . . . ; zn�1; zn ¼ x of elements of S ðLÞ and a finite sequence

s0; s1; . . . ; sn�1 of elements of S satisfying that ziþ1 0 zi, si B ½zi�, ½zi�@si
is

of finite type and wsi
zi
A Yziþ1; zi for each index 0a ia n� 1, and we have

w ¼ wsn�1
zn�1

� � �ws1
z1
ws0
z0
.

3. (See [7, Theorem 4.13].) The generating set R½x� of W?½x� consists of

elements of the form wsgðy; sÞw
�1 satisfying that y A S ðLÞ, w A Yx;y and

gðy; sÞ is a positive root as in the statement of Proposition 3.2 (hence ½y�@s

is of finite type and jðy; sÞ ¼ y).

Proposition 3.4 (see [7, Proposition 4.8]). For any x A S ðLÞ, the group Yx;x

is torsion-free.

For the structure of the entire centralizer ZW ðWI Þ, a general result (Theorem

5.2 of [7]) implies the following proposition in a special case (a proof of the

proposition from Theorem 5.2 of [7] is straightforward by noticing the fact that,

under the hypothesis of the following proposition, the group A defined in the

last paragraph before Theorem 5.2 of [7] is trivial and hence the group BI used in

Theorem 5.2 of [7] coincides with YI ):

Proposition 3.5 (see [7, Theorem 5.2]). If every irreducible component of I

of finite type is of ð�1Þ-type (see Section 2.3 for the terminology), then we have

ZW ðWI Þ ¼ ZðWI Þ � ðW?I zYI Þ.
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We also present an auxiliary result, which will be used later:

Lemma 3.6 (see [7, Lemma 3.2]). Let w A W and J;KJS, and suppose that

w �PJ JP and w �PK JF�. Then J VK ¼ q, the set J@K is of finite type, and

w0ðJ@KÞw0ðJ@KnKÞ is a right divisor of w (see Section 2.1 for the terminology).

4. Main Results

In this section, we state the main results of this paper, and give some relevant

remarks. The proof will be given in the following sections.

The main results deal with the relations between the ‘‘finite part’’ of the

reflection subgroup W?I and the subgroup YI of the centralizer ZW ðWI Þ. In

general, for any Coxeter group W , the product of the finite irreducible com-

ponents of W is called the finite part of W ; here we write it as Wfin. Then,

since W?I is a Coxeter group (with generating set RI and simple system PI )

as mentioned in Section 3, W?I has its own finite part W?I
fin .

To state the main theorem, we introduce a terminology: We say that a subset

I of S is A>1-free if I has no irreducible components of type An with 2a n < y.

Then the main theorem of this paper is stated as follows:

Theorem 4.1. Let I be an A>1-free subset of S (see above for the termi-

nology). Then for each g A PI with sg A W?I
fin , we have w � g ¼ g for every w A YI .

Hence each element of the subgroup YI of ZW ðWI Þ commutes with every element

of W?I
fin .

Among the several cases for the subset I of S covered by Theorem 4.1, we

emphasize the following important special case:

Corollary 4.2. Let I JS. If every irreducible component of I of finite type

is of ð�1Þ-type (see Section 2.3 for the terminology), then we have

ZW ðWI Þ ¼ ZðWI Þ �W?I
fin � ðW?I

inf zYI Þ;

where W?I
inf denotes the product of the infinite irreducible components of W?I

(hence W?I ¼ W?I
fin �W?I

inf ).

Proof. Note that the assumption on I in Theorem 4.1 is now satisfied.

In this situation, Proposition 3.5 implies that ZW ðWI Þ ¼ ZðWI Þ � ðW?I zYI Þ.
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Now by Theorem 4.1, both YI and W?I
inf centralize W?I

fin , therefore the latter

factor of ZW ðWI Þ decomposes further as W?I
fin � ðW?I

inf zYI Þ. r

We notice that the conclusion of Theorem 4.1 will not generally hold when

we remove the A>1-freeness assumption on I . A counterexample will be given in

Section 7.

Here we give a remark on an application of the main results to a study of the

isomorphism problem in Coxeter groups. An important branch in the research

on the isomorphism problem in Coxeter groups is to investigate, for two Coxeter

systems ðW ;SÞ, ðW 0;S 0Þ and a group isomorphism f : W ! W 0, the possibilities

of ‘‘shapes’’ of the images f ðrÞ A W 0 by f of reflections r A W (with respect to the

generating set S); for example, whether f ðrÞ is always a reflection in W 0 (with

respect to S 0) or not. Now if r A S, then Corollary 4.2 and Proposition 3.4 imply

that the unique maximal reflection subgroup of the centralizer of r in W is

hri�W?frg, which has finite part hri�W
?frg
fin . Moreover, the property of W

?frg
fin

shown in Theorem 4.1 can imply that the factor W
?frg
fin becomes ‘‘frequently’’

almost trivial. In such a case, the finite part of the unique maximal reflection

subgroup of the centralizer of f ðrÞ in W 0 should be very small, which can be

shown to be impossible if f ðrÞ is too far from being a reflection. Thus the

possibilities of the shape of f ðrÞ in W 0 can be restricted by using Theorem 4.1.

See [6] for a detailed study along this direction. The author hope that such an

argument can be generalized to the case that r is not a reflection but an in-

volution of ‘‘type’’ which is A>1-free (in a certain appropriate sense).

5. Proof of Theorem 4.1: General Properties

In this and the next sections, we give a proof of Theorem 4.1. First, this

section gives some preliminary results that hold for an arbitrary I JS (not

necessarily A>1-free; see Section 4 for the terminology). Then the next section will

focus on the case that I is A>1-free as in Theorem 4.1 and complete the proof of

Theorem 4.1.

5.1. Decompositions of Elements of Yz;y

It is mentioned in Proposition 3.3(2) that each element u A Yz;y with

y; z A S ðLÞ admits a kind of decomposition into elements of some Y . Here we

introduce a generalization of such decompositions, which will play an important

role below. We give a definition:
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Definition 5.1. Let u A Yz;y with y; z A S ðLÞ. We say that an expression

D :¼ on�1 � � �o1o0 of u is a semi-standard decomposition of u with respect to

a subset J of S if there exist yðiÞ ¼ yðiÞðDÞ A S ðLÞ for 0a ia n, tðiÞ ¼ tðiÞðDÞ A S

for 0a ia n� 1 and J ðiÞ ¼ J ðiÞðDÞJS for 0a ia n, with yð0Þ ¼ y, yðnÞ ¼ z and

J ð0Þ ¼ J, satisfying the following conditions for each index 0a ia n� 1:

� We have tðiÞ B ½yðiÞ�U J ðiÞ and tðiÞ is adjacent to ½yðiÞ�.
� The subset K ðiÞ ¼ K ðiÞðDÞ :¼ ð½yðiÞ�U J ðiÞÞ@tðiÞ of S is of finite type (see

Section 3 for the notation).
� We have oi ¼ o tðiÞ

yðiÞ;J ðiÞ :¼ w0ðK ðiÞÞw0ðK ðiÞnftðiÞgÞ.
� We have oi A Yyðiþ1Þ;yðiÞ and oi �PJ ðiÞ ¼ PJ ðiþ1Þ .

We call the above subset K ðiÞ of S the support of oi. We call a component oi

of D a wide transformation if its support K ðiÞ intersects with J ðiÞn½yðiÞ�; otherwise,
we call oi a narrow transformation, in which case we have oi ¼ o tðiÞ

yðiÞ;J ðiÞ ¼ wtðiÞ

yðiÞ
.

Moreover, we say that D ¼ on�1 � � �o1o0 is a standard decomposition of u if D

is a semi-standard decomposition of u and lðuÞ ¼
Pn�1

j¼0 lðojÞ. The integer n is

called the length of D and is denoted by lðDÞ.

Example 5.2. We give an example of a semi-standard decomposition. Let

ðW ;SÞ be a Coxeter system of type D7, with standard labelling r1; . . . ; r7 of

elements of S given in Section 2.3. We put n :¼ 4, and define the objects yðiÞ, tðiÞ

and J ðiÞ as in Table 1, where we abbreviate each ri to i for simplicity. In this

case, the subsets K ðiÞ of S introduced in Definition 5.1 are determined as in the

last row of Table 1. We have

o0 ¼ w0ðfr1; r2; r3; r4; r5gÞw0ðfr1; r2; r3; r5gÞ ¼ r2r3r4r5r1r2r3r4;

o1 ¼ w0ðfr3; r4; r5; r6gÞw0ðfr3; r4; r5gÞ ¼ r3r4r5r6;

o2 ¼ w0ðfr4; r5; r6; r7gÞw0ðfr4; r5; r6gÞ ¼ r7r5r4r6r5r7;

o3 ¼ w0ðfr3; r4; r5; r6gÞw0ðfr4; r5; r6gÞ ¼ r6r5r4r3:

Let u denote the element o3o2o1o0 of W . Then it can be shown that u A Yz;y

where y :¼ yð0Þ ¼ ðr1; r2; r3Þ and z :¼ yðnÞ ¼ ðr5; r4; r3Þ, and the expression D ¼
o3o2o1o0 is a semi-standard decomposition of u of length 4 with respect to

J :¼ J ð0Þ ¼ fr5g. Moreover, D is in fact a standard decomposition of u (which is

the same as the one obtained by using Proposition 5.3 below). Among the four

component oi, the first one o0 is a wide transformation and the other three

o1, o2, o3 are narrow transformations.
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The next proposition shows existence of standard decompositions:

Proposition 5.3. Let u A Yz;y with y; z A S ðLÞ, and let JJS satisfying

that u �PJ JP. Then there exists a standard decomposition of u with respect

to J.

Proof. We proceed the proof by induction on lðuÞ. For the case lðuÞ ¼ 0,

i.e., u ¼ 1, the empty expression satisfies the conditions for a standard de-

composition of u. From now, we consider the case lðuÞ > 0. Then there is an

element t ¼ tð0Þ A S satisfying that u � at A F�. Since u A Yz;y and u �PJ J
PJFþ, we have t B ½y�U J and at B F?½y�, therefore t is adjacent to ½y�. Now by

Lemma 3.6, K ¼ K ð0Þ :¼ ð½y�U JÞ@t is of finite type and o0 :¼ o t
y;J is a right

divisor of u (see Section 2.1 for the terminology). By the definition of o t
y;J in

Definition 5.1, there exist unique yð1Þ A S ðLÞ and J ð1Þ JS satisfying that yð1Þ ¼
o0 � y (see Section 3 for the notation) and o0 �PJ ¼ PJ ð1Þ . Moreover, since o0

is a right divisor of u, it follows that F½o0�JF½u� (see e.g., Lemma 2.2 of

[7]), therefore F?½y�½o0�JF?½y�½u� ¼ q and o0 A Yyð1Þ;y. Put u 0 ¼ uo�1
0 . Then

we have u 0 A Yz; yð1Þ , u 0 �PJ ð1Þ JP and lðu 0Þ ¼ lðuÞ � lðo0Þ < lðuÞ (note that

o0 0 1). Hence the concatenation of o0 to a standard decomposition of u 0 A

Yz; yð1Þ with respect to J ð1Þ obtained by the induction hypothesis gives a desired

standard decomposition of u. r

We present some properties of (semi-)standard decompositions. First, we have

the following:

Lemma 5.4. For any semi-standard decomposition on�1 � � �o1o0 of an element

of W , for each 0a ia n� 1, there exists an element of PK ðiÞnftðiÞg which is not

fixed by oi.

Table 1: The data for the example of semi-standard decompositions

i 4 3 2 1 0

yðiÞ ð5; 4; 3Þ ð6; 5; 4Þ ð4; 5; 6Þ ð3; 4; 5Þ ð1; 2; 3Þ

tðiÞ — 3 7 6 4

J ðiÞ f1g f1g f1g f1g f5g

K ðiÞ — f3; 4; 5; 6g f4; 5; 6; 7g f3; 4; 5; 6g f1; 2; 3; 4; 5g
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Proof. Assume contrary that oi fixes PK ðiÞnftðiÞg pointwise. Then by applying

Proposition 3.2 to the pair of ½yðiÞ�U J ðiÞ and tðiÞ instead of the pair of ½x� and s, it

follows that there exists a root g A ðF?K ðiÞnftðiÞg
K ðiÞ Þþ with oi � g A F� (note that, in

this case, the element ws
x in Proposition 3.2 coincides with oi). By the definition

of the support K ðiÞ of oi, K
ðiÞ is apart from ½yðiÞ�nK ðiÞ, therefore this root g also

belongs to ðF?½yðiÞ�Þþ. Hence we have F?½yðiÞ�½oi�0q, contradicting the property

oi A Yyðiþ1Þ;yðiÞ in Definition 5.1. Hence Lemma 5.4 holds. r

For a semi-standard decomposition D ¼ on � � �o1o0 of u A Yz;y, let 0a i1 <

i2 < � � � < ik a n be the indices i with the property that ½yðiþ1ÞðDÞ� ¼ ½yðiÞðDÞ� and
J ðiþ1ÞðDÞ ¼ J ðiÞðDÞ. Then we define the simplification D̂D of D to be the expres-

sion on � � � coikoik � � � coi1oi1 � � � coi0oi0 � � �o0 obtained from D ¼ on � � �o1o0 by removing

all terms oij with 1a ja k. Let ûu denote the element of W expressed by the

product D̂D. The following lemma is straightforward to prove:

Lemma 5.5. In the above setting, let s denote the mapping from

f0; 1; . . . ; n� kg to f0; 1; . . . ; ng satisfying that D̂D ¼ osðn�kÞ � � �osð1Þosð0Þ. Then we

have ûu A Yẑz;y for some ẑz A S ðLÞ with ½ẑz� ¼ ½z�; D̂D is a semi-standard decomposition

of ûu with respect to J ð0ÞðD̂DÞ ¼ J ð0ÞðDÞ; we have J ðn�kþ1ÞðD̂DÞ ¼ J ðnþ1ÞðDÞ; and for

each 0a ja n� k, we have ½yð jÞðD̂DÞ� ¼ ½yðsð jÞÞðDÞ�, ½yð jþ1ÞðD̂DÞ� ¼ ½yðsð jÞþ1ÞðDÞ�,
J ð jÞðD̂DÞ ¼ J ðsð jÞÞðDÞ and J ð jþ1ÞðD̂DÞ ¼ J ðsð jÞþ1ÞðDÞ.

Example 5.6. For the case of Example 5.2, the simplification D̂D of the

standard decomposition D ¼ o3o2o1o0 of u is obtained by removing the third

component o2, therefore D̂D ¼ o3o1o0. We have

yð0ÞðD̂DÞ ¼ yð0ÞðDÞ ¼ ðr1; r2; r3Þ; yð1ÞðD̂DÞ ¼ yð1ÞðDÞ ¼ ðr3; r4; r5Þ;

yð2ÞðD̂DÞ ¼ yð2ÞðDÞ ¼ ðr4; r5; r6Þ; yð3ÞðD̂DÞ ¼ ðr3; r4; r5Þ ¼ ẑz:

Now since o3 is the inverse of o1, the semi-standard decomposition D̂D of ûu is

not a standard decomposition of ûu.

Moreover, we have the following result:

Lemma 5.7. Let D ¼ on � � �o1o0 be a semi-standard decomposition of an

element u A W. Let r A ½yð0Þ�, and suppose that the support of each oi is apart

from r. Moreover, let s A J ð0Þ, s 0 A J ðnþ1Þ and suppose that u � s ¼ s 0. Then we

have r A ½yðnþ1Þ�, u � r ¼ r and u A Yz 0; z, where z and z 0 are elements of S ðLÞ

obtained from yð0Þ and yðnþ1Þ by replacing r with s and with s 0, respectively.
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Proof. We use induction on nb 0. Put D 0 ¼ on�1 � � �o1o0, and let u 0 A

YyðnÞ;yð0Þ be the element expressed by the product D 0. Let s 00 :¼ u 0 � s A J ðnÞ. By

the induction hypothesis, we have r A ½yðnÞ�, u 0 � r ¼ r and u 0 A Yz 00; z, where z 00

is the element of S ðLÞ obtained from yðnÞ by replacing r with s 00. Now, since

the support K ðnÞ of on is apart from r A ½yðnÞ�, it follows that r A ½yðnþ1Þ� and

on � r ¼ r, therefore u � r ¼ onu
0 � r ¼ r. On the other hand, we have z 0 ¼ on � z 00

by the construction of z 0 and z 00. Moreover, by the definition of on, the set K ðnÞ

is apart from ð½yðnÞ�U J ðnÞÞnK ðnÞ, therefore K ðnÞ is also apart from the subset

ð½z 00�U J ðnÞÞnK ðnÞ of ð½yðnÞ�U J ðnÞÞnK ðnÞ. Since ½yðnÞ�VK ðnÞ J ½z 00�VK ðnÞ, it follows

that F?½z 00 �½on� ¼ F
?½z 00 �VK ðnÞ

K ðnÞ ½on�JF
?½yðnÞ�VK ðnÞ

K ðnÞ ½on� ¼ F?½yðnÞ�½on� ¼ q (note that

on A Yyðnþ1Þ;yðnÞ ), therefore we have on A Yz 0; z 00 . Hence we have u ¼ onu
0 A Yz 0; z,

concluding the proof. r

5.2. Reduction to a Special Case

Here we give a reduction of our proof of Theorem 4.1 to a special case where

the possibility of the subset I JS is restricted in a certain manner.

First, for JJS, let iðJÞ denote temporarily the union of the irreducible

components of J that are not of finite type, and let iðJÞ denote temporarily the

set of elements of S that are not apart from iðJÞ (hence J V iðJÞ ¼ iðJÞ). For

example, when ðW ;SÞ is given by the Coxeter graph in Figure 2 (where we

abbreviate each ri A S to i) and J ¼ fr1; r3; r4; r5; r6g (indicated in Figure 2 by the

black vertices), we have iðJÞ ¼ fr1; r5; r6g and iðJÞ ¼ fr1; r2; r5; r6; r7g, therefore

J V iðJÞ ¼ fr1; r5; r6g ¼ iðJÞ as mentioned above. Now we have the following:

Lemma 5.8. Let I be an arbitrary subset of S. Then we have w A WSniðIÞ for

any w A Yy;xI with y A S ðLÞ, and we have F?I ¼ F
?IniðIÞ
SniðIÞ .

Proof. First, let w A Yy;xI with y A S ðLÞ. Then by Proposition 3.3(2), there

are a finite sequence z0 ¼ xI ; z1; . . . ; zn�1; zn ¼ y of elements of S ðLÞ and a finite

sequence s0; s1; . . . ; sn�1 of elements of S satisfying that ziþ1 0 zi, si B ½zi�, ½zi�@si

Figure 2: An example for the notations iðJÞ and iðJÞ; here J ¼ f1; 3; 4; 5; 6g
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is of finite type and wsi
zi
A Yziþ1; zi for each index 0a ia n� 1, and we have

w ¼ wsn�1
zn�1

� � �ws1
z1
ws0
z0
. We show, by induction on 0a ia n� 1, that ið½ziþ1�Þ ¼ iðIÞ,

ið½ziþ1�Þ ¼ iðIÞ, and wsi
zi
A WSniðIÞ. It follows from the induction hypothesis when

i > 0, and is trivial when i ¼ 0, that ið½zi�Þ ¼ iðIÞ and ið½zi�Þ ¼ iðIÞ. Since si B ½zi�
and ½zi�@si

is of finite type, it follows from the definition of i that ½zi�@si
JSnið½zi�Þ,

therefore we have wsi
zi
A WSnið½zi �Þ ¼ WSniðIÞ, ið½ziþ1�Þ ¼ ið½zi�Þ ¼ iðIÞ, and ið½ziþ1�Þ ¼

ið½zi�Þ ¼ iðIÞ, as desired. This implies that w ¼ wsn�1
zn�1

� � �ws1
z1
ws0
z0
A WSniðIÞ, therefore

the first part of the claim holds.

For the second part of the claim, the inclusion K is obvious by the

definitions of iðIÞ and iðIÞ. For the other inclusion, it su‰ces to show that

F?I JFSniðIÞ, or equivalently PI JFSniðIÞ. Let g A PI . By Proposition 3.3(3), we

have g ¼ w � gðy; sÞ for some y A S ðLÞ, w A YxI ;y and a root gðy; sÞ introduced in

the statement of Proposition 3.2. Now by applying the result of the previous

paragraph to w�1 A Yy;xI , it follows that ið½y�Þ ¼ iðIÞ, ið½y�Þ ¼ iðIÞ, and w A WSniðIÞ.

Moreover, since ½y�@s is of finite type (see Proposition 3.2), a similar argument

implies that ½y�@s JSnið½y�Þ ¼ SniðIÞ and ws
y A WSniðIÞ, therefore gðy; sÞ A FSniðIÞ.

Hence we have g ¼ w � gðy; sÞ A FSniðIÞ, concluding the proof of Lemma 5.8.

r

For an arbitrary subset I of S, suppose that g A PI , sg A W?I
fin , and w A YI .

Then by the second part of Lemma 5.8, we have g A PI ¼ PSniðIÞ; IniðIÞ and sg also

belongs to the finite part of W
?IniðIÞ
SniðIÞ . Moreover, we have w A WSniðIÞ by the

first part of Lemma 5.8, therefore w also belongs to the group YIniðIÞ constructed

from the pair SniðIÞ, IniðIÞ instead of the pair S, I . Hence we have the follow-

ing result: If the conclusion of Theorem 4.1 holds for the pair SniðIÞ, IniðIÞ
instead of the pair S, I , then the conclusion of Theorem 4.1 also holds for the

pair S, I . Note that IniðIÞ ¼ IniðIÞ is the union of the irreducible components

of I of finite type. As a consequence, we may assume without loss of generality

that every irreducible component of I is of finite type (note that the A>1-

freeness in the hypothesis of Theorem 4.1 is preserved by considering IniðIÞ
instead of I ).

From now on, we assume that every irreducible component of I is of finite

type, as mentioned in the last paragraph. For any JJS, we say that a subset C

of the simple system PJ of W?J is an irreducible component of PJ if SðCÞ ¼
fsb j b A Cg is an irreducible component of the generating set RJ of W?J . Now,

as in the statement of Theorem 4.1, let w A YI and g A PI , and suppose that

sg A W?I
fin . Let C denote the union of the irreducible components of PI containing

some wk � g with k A Z. Then we have the following:
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Lemma 5.9. In this setting, C is of finite type; in particular, jCj < y.

Moreover, the two subsets InSupp C and Supp C of S are not adjacent.

Proof. First, there exists a finite subset K of S for which w A WK and

g A FK . Then, the number of mutually orthogonal roots of the form wk � g is at

most jK j < y, since those roots are linearly independent and contained in the

jK j-dimensional space VK . This implies that the number of irreducible compo-

nents of PI containing some wk � g, which are of finite type by the property

sg A W?I
fin and Proposition 3.3(1), is finite. Therefore, the union C of those ir-

reducible components is also of finite type. Hence the first part of the claim holds.

For the second part of the claim, assume contrary that some s A InSupp C

and t A Supp C are adjacent. By the definition of Supp C, we have t A Supp bJ
Supp C for some b A C. Now we have s B Supp b. Let c > 0 be the coe‰cient of

at in b. Then the property s B Supp b implies that has; bia chas; ati < 0, con-

tradicting the property b A F?I . Hence the claim holds, concluding the proof of

Lemma 5.9. r

We temporarily write L ¼ I V Supp C, and put C 0 ¼ CUPL. Then we have

Supp C 0 ¼ Supp C, therefore by Lemma 5.9, InSupp C 0 and Supp C 0 are not

adjacent. On the other hand, we have jCj < y by Lemma 5.9, therefore

Supp C 0 ¼ Supp C is a finite set. By these properties and the above-mentioned

assumption that every irreducible component of I is of finite type, it follows that

PL is of finite type as well as C. Note that CJPI JF?L. Hence the two root

bases C and PL are orthogonal, therefore their union C 0 is also a root basis

by Theorem 2.3, and we have jWðC 0Þj < y. By Proposition 2.4, C 0 is a basis

of a subspace U :¼ span C 0 of VSupp C 0 . By applying Proposition 2.5 to WSupp C 0

instead of W , it follows that there exist u A WSupp C 0 and JJ Supp C 0 satisfying

that WJ is finite, u � ðU VFþÞ ¼ Fþ
J and u � ðU VPÞJPJ . Now we have the

following:

Lemma 5.10. In this setting, if we choose such an element u of minimal

length, then there exists an element y A S ðLÞ satisfying that u A Yy;xI , the sets ½y�nJ
and J are not adjacent, and ðu �CÞUP½y�VJ is a basis of VJ.

Proof. Since C 0 is a basis of U , the property u � ðU VFþÞ ¼ Fþ
J implies

that u �C 0 is a basis of VJ . Now we have u �PL JPJ since PL JU VP, while u

fixes PInL pointwise since the sets InSupp C 0 ¼ InL and Supp C 0 are not

adjacent. By these properties, there exists an element y A S ðLÞ satisfying that
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y ¼ u � xI , ½y�V Supp C 0 J J and ½y�nSupp C 0 ¼ InSupp C 0. Since JJ Supp C 0,

it follows that ½y�nJ and J are not adjacent. On the other hand, since u �PInL ¼
PInL, u � ðU VFþÞ ¼ Fþ

J and PInL VU ¼ q, it follows that PInL VFþ
J ¼ q,

therefore we have u �PL ¼ P½y�VJ . Hence u �C 0 ¼ ðu �CÞUP½y�VJ is a basis of VJ .

Finally, we show that such an element u of minimal length satisfies that

u �PI JFþ, hence u � ðF?I Þþ JFþ and u A Yy;xI . We have u �CJ u � ðU VFþÞ
¼ Fþ

J . Secondly, for any b A PInC, assume contrary that u � b A F�. Then we

have b A FSupp C 0 since u A WSupp C 0 , therefore sb A WSupp C 0 . On the other hand,

since C is the union of some irreducible components of PI , it follows that b

is orthogonal to C, hence orthogonal to C 0. By these properties, the element

usb also satisfies the above characteristics of the element u. However, now the

property u � b A F� implies that lðusbÞ < lðuÞ (see Theorem 2.2), contradicting the

choice of u. Hence we have u � b A Fþ for every b A PInC, therefore u �P I JFþ,

concluding the proof of Lemma 5.10. r

For an element u A Yy;xI as in Lemma 5.10, Proposition 3.3(1) implies that

u � g A P½y� and su�g ¼ usgu
�1 A W

?½y�
fin . Now w fixes the root g if and only if the

element uwu�1 A Yy;y fixes the root u � g. Moreover, the conjugation by u defines

an isomorphism of Coxeter systems ðWI ; IÞ ! ðW½y�; ½y�Þ. Hence, by considering

½y�JS, uwu�1 A Y½y�, u � g A P½y� and u �CJP½y� instead of I , w, g and C if

necessary, we may assume without loss of generality the following conditions:

(A1) Every irreducible component of I is of finite type.

(A2) There exists a subset JJS of finite type satisfying that InJ and J are not

adjacent and CUPIVJ is a basis of VJ .

Moreover, if an irreducible component J 0 of J is contained in I , then a smaller

subset JnJ 0 instead of J also satisfies the assumption (A2); indeed, now PJ 0 J
PIVJ spans VJ 0 , and since CUPIVJ is a basis of VJ and the support of any

root is irreducible (see Lemma 2.1), it follows that the support of any element

of CUPIVðJnJ 0Þ does not intersect with J 0. Hence, by choosing a subset JJS in

(A2) as small as possible, we may also assume without loss of generality the

following condition:

(A3) Any irreducible component of J is not contained in I .

We also notice the following properties:

Lemma 5.11. In this setting, we have C ¼ PJ; IVJ , hence PJ; IVJ UPIVJ is a

basis of VJ.
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Proof. The inclusion CJPJ; IVJ follows from the definition of C and the

condition (A2). Now assume contrary that b A PJ; IVJnC. Then we have b A PI

by (A2). Since C is the union of some irreducible components of PI , it follows

that b is orthogonal to C as well as to PIVJ . This implies that b belongs to the

radical of VJ , which should be trivial by Proposition 2.4. This is a contradiction.

Hence the claim holds. r

Lemma 5.12. In this setting, the element w A YI satisfies that w �FJ ¼ FJ ,

and the subgroup hwi generated by w acts transitively on the set of the irreducible

components of PJ; IVJ .

Proof. The second part of the claim follows immediately from the defi-

nition of C and Lemma 5.11. It also implies that w �PJ; IVJ ¼ PJ; IVJ , while

w �PIVJ ¼ PIVJ since w A YI . Moreover, PJ; IVJ UPIVJ is a basis of VJ by

Lemma 5.11. This implies that w � VJ ¼ VJ , therefore we have w �FJ ¼ FJ .

Hence the claim holds. r

5.3. A Key Lemma

Let I? denote the set of all elements of S that are apart from I . Then there

are two possibilities: PJ; IVJ UFI ? , or PJ; IVJ JFI ? . Here we present a key

lemma regarding the former possibility (recall the three conditions (A1)–(A3)

specified above):

Lemma 5.13. If PJ; IVJ UFI ? , then we have I V J0q and J is irreducible.

Proof. First, take an element b A PJ; IVJnFI ? . Then we have b B FI since

PJ; IVJ JF?I . Moreover, since the support Supp b of b is irreducible (see Lemma

2.1), there exists an element s A Supp bnI which is adjacent to an element of I ,

say s 0 A I . Now the property b A F?I implies that s 0 A Supp b, since otherwise

we have hb; as 0ia chas; as 0i < 0 where c > 0 is the coe‰cient of as in b. Hence

we have s 0 A Supp PJ; IVJ J J.

Let K denote the irreducible component of J containing s 0. Put C 0 ¼
PJ; IVJ VFK . Then, since PJ; IVJ UPIVJ is a basis of VJ by Lemma 5.11 and the

support of any root is irreducible (see Lemma 2.1), it follows that b A C 0, C 0 is

orthogonal to PJ; IVJnC 0 and C 0 UPIVK is a basis of VK . Now C 0 is the union of

some irreducible components of PJ; IVJ . We show that J is irreducible if we have

w �FK ¼ FK . In this case, we have w �C 0 ¼ C 0, therefore PJ; IVJ ¼ C 0 JFK by
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the second part of Lemma 5.12. Now by the condition (A3), J has no irreducible

components other than K (indeed, if such an irreducible component J 0 of J exists,

then the property PJ; IVJ JFK implies that the space VJ 0 should be spanned by a

subset of PIVJ , therefore J 0 J I ). Hence J ¼ K is irreducible.

Thus it su‰ces to show that w �FK ¼ FK . For the purpose, it also su‰ces

to show that w �FK JFK (since K is of finite type as well as J), or equiv-

alently w �PK JFK . Moreover, by the three properties that K is irreducible,

K V I 0q and w �PK V I ¼ PK V I , it su‰ces to show that w � at 0 A FK provided

t 0 A K is adjacent to some t A K with w � at A FK . Now note that w �FJ ¼ FJ

by Lemma 5.12. Assume contrary that w � at 0 B FK . Then we have w � at 0 A
FJnFK ¼ FJnK since K is an irreducible component of J, therefore w � at 0 is

orthogonal to w � at A FK . This contradicts the property that t 0 is adjacent to t,

since w leaves the bilinear form h ; i invariant. Hence we have w � at 0 A FK , as

desired. r

6. Proof of Theorem 4.1: On the Special Case

In this section, we introduce the assumption in Theorem 4.1 that I is A>1-

free, and continue the argument in Section 5. Recall the properties (A1), (A2)

and (A3) of I , J and C ¼ PJ; IVJ (see Lemma 5.11) given in Section 5.2. Our aim

here is to prove that w fixes PJ; IVJ pointwise, which implies our goal w � g ¼ g

since g A C ¼ PJ; IVJ by the definition of C. We divide the following argument

into two cases: PJ; IVJ UFI ? , or PJ; IVJ JFI ? (see Section 5.3 for the definition

of I?).

6.1. The First Case PJ; IVJ UFI ?

Here we consider the case that PJ; IVJ UFI ? . In this case, the subset JJS

of finite type is irreducible by Lemma 5.13, therefore we can apply the clas-

sification of finite irreducible Coxeter groups. Let J ¼ fr1; r2; . . . ; rNg, where

N ¼ jJj, be the standard labelling of J (see Section 2.3). We write ai ¼ ari for

simplicity.

We introduce some temporal terminology. We say that an element y A S ðLÞ

satisfies Property P if ½y�nJ ¼ InJ (hence ½y�nJ is apart from J by the condition

(A2)) and PJ; ½y�VJ UP½y�VJ is a basis of VJ . For example, xI itself satisfies

Property P. For any y A S ðLÞ satisfying Property P and any element s A Jn½y� with
jðy; sÞ0 y, we say that the isomorphism t 7! ws

y � t from ½y�V J to ½jðy; sÞ�V J

is a local transformation (note that now ½y�@s J J and ws
y A WJ by the above-
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mentioned property that ½y�nJ is apart from J). By abusing the terminology, in

such a case we also call the correspondence y 7! jðy; sÞ a local transformation.

Note that, in this case, jðy; sÞ also satisfies Property P, we have ws
y A Yjðy; sÞ;y and

ws
y � t ¼ t for any t A ½y�nJ, and the action of ws

y induces an isomorphism from

PJ; ½y�VJ to PJ; ½jðy; sÞ�VJ .

Since w �PJ; IVJ ¼ PJ; IVJ , the claim is trivial if jPJ; IVJ j ¼ 1. From now, we

consider the case that jPJ; IVJ jb 2, therefore we have N ¼ jJjb jI V Jj þ 2b 3

(note that I V J0q by Lemma 5.13). In particular, J is not of type I2ðmÞ. On

the other hand, we have the following results:

Lemma 6.1. In this setting, J is not of type AN.

Proof. We show that PJ; IVJ UPIVJ cannot span VJ if J is of type AN ,

which deduces a contradiction and hence concludes the proof. By the A>1-

freeness of I , each irreducible component of I V J (which is also an irreducible

component of I ) is of type A1. Now by applying successive local transformations,

we may assume without loss of generality that r1 A I (indeed, if the minimal

index i with ri A I satisfies ib 2, then we have jðxI ; ri�1Þ � ri ¼ ri�1). In this

case, we have r2 B I , while we have F?I
J JFJnfr1; r2g by the fact that any positive

root in the root system FJ of type AN is of the form ai þ aiþ1 þ � � � þ ai 0 with

1a ia i 0 aN. This implies that the subset PJ; IVJ UPIVJ of F?I
J UPIVJ cannot

span VJ , as desired. r

To prove the next lemma (and some other results below), we give a list of all

positive roots of the Coxeter group of type E8. The list is divided into six parts

(Tables 2–7). In the lists, we use the standard labelling r1; . . . ; r8 of generators.

The coe‰cients of each root are placed at the same relative positions as the

corresponding vertices of the Coxeter graph of type E8 in Figure 1; for example,

the last root g120 in Table 7 is 2a1 þ 3a2 þ 4a3 þ 6a4 þ 5a5 þ 4a6 þ 3a7 þ 2a8

(which is the highest root of type E8). For the columns for actions of generators

(4th to 11th columns), a blank cell means that the generator rj fixes the root

gi (or equivalently, haj; gii ¼ 0); while a cell filled by ‘‘—’’ means that gi ¼ aj.

Moreover, the positive roots of the parabolic subgroup of type E6 (respectively,

E7) generated by fr1; . . . ; r6g (respectively, fr1; . . . ; r7g) correspond to the rows

indicated by ‘‘E6’’ (respectively, ‘‘E7’’). By the data for actions of generators, it

can be verified that the list indeed exhausts all the positive roots.
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Table 2: List of positive roots for Coxeter group of type E8 (part 1)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

1 1 1 0 0
0
0 0 0 0 — 9 E6 E7

2 0 0 0
1
0 0 0 0 — 10 E6 E7

3 0 1 0
0
0 0 0 0 9 — 11 E6 E7

4 0 0 1
0
0 0 0 0 10 11 — 12 E6 E7

5 0 0 0
0
1 0 0 0 12 — 13 E6 E7

6 0 0 0
0
0 1 0 0 13 — 14 E6 E7

7 0 0 0
0
0 0 1 0 14 — 15 E7

8 0 0 0
0
0 0 0 1 15 —

2 9 1 1 0
0
0 0 0 0 3 1 16 E6 E7

10 0 0 1
1
0 0 0 0 4 17 2 18 E6 E7

11 0 1 1
0
0 0 0 0 16 17 4 3 19 E6 E7

12 0 0 1
0
1 0 0 0 18 19 5 4 20 E6 E7

13 0 0 0
0
1 1 0 0 20 6 5 21 E6 E7

14 0 0 0
0
0 1 1 0 21 7 6 22 E7

15 0 0 0
0
0 0 1 1 22 8 7
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Table 2 (continued)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

3 16 1 1 1
0
0 0 0 0 11 23 9 24 E6 E7

17 0 1 1
1
0 0 0 0 23 11 10 25 E6 E7

18 0 0 1
1
1 0 0 0 12 25 10 26 E6 E7

19 0 1 1
0
1 0 0 0 24 25 12 11 27 E6 E7

20 0 0 1
0
1 1 0 0 26 27 13 12 28 E6 E7

21 0 0 0
0
1 1 1 0 28 14 13 29 E7

22 0 0 0
0
0 1 1 1 29 15 14

Table 3: List of positive roots for Coxeter group of type E8 (part 2)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

4 23 1 1 1
1
0 0 0 0 17 16 30 E6 E7

24 1 1 1
0
1 0 0 0 19 30 16 31 E6 E7

25 0 1 1
1
1 0 0 0 30 19 18 32 17 33 E6 E7

26 0 0 1
1
1 1 0 0 20 33 18 34 E6 E7

27 0 1 1
0
1 1 0 0 31 33 20 19 35 E6 E7

28 0 0 1
0
1 1 1 0 34 35 21 20 36 E7

29 0 0 0
0
1 1 1 1 36 22 21
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Table 3 (continued)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

5 30 1 1 1
1
1 0 0 0 25 24 37 23 38 E6 E7

31 1 1 1
0
1 1 0 0 27 38 24 39 E6 E7

32 0 1 2
1
1 0 0 0 37 25 40 E6 E7

33 0 1 1
1
1 1 0 0 38 27 26 40 25 41 E6 E7

34 0 0 1
1
1 1 1 0 28 41 26 42 E7

35 0 1 1
0
1 1 1 0 39 41 28 27 43 E7

36 0 0 1
0
1 1 1 1 42 43 29 28

6 37 1 1 2
1
1 0 0 0 32 44 30 45 E6 E7

38 1 1 1
1
1 1 0 0 33 31 45 30 46 E6 E7

39 1 1 1
0
1 1 1 0 35 46 31 47 E7

40 0 1 2
1
1 1 0 0 45 33 48 32 49 E6 E7

41 0 1 1
1
1 1 1 0 46 35 34 49 33 50 E7

42 0 0 1
1
1 1 1 1 36 50 34

43 0 1 1
0
1 1 1 1 47 50 36 35
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Table 4: List of positive roots for Coxeter group of type E8 (part 3)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

7 44 1 2 2
1
1 0 0 0 37 51 E6 E7

45 1 1 2
1
1 1 0 0 40 51 38 52 37 53 E6 E7

46 1 1 1
1
1 1 1 0 41 39 53 38 54 E7

47 1 1 1
0
1 1 1 1 43 54 39

48 0 1 2
1
2 1 0 0 52 40 55 E6 E7

49 0 1 2
1
1 1 1 0 53 41 55 40 56 E7

50 0 1 1
1
1 1 1 1 54 43 42 56 41

8 51 1 2 2
1
1 1 0 0 45 57 44 58 E6 E7

52 1 1 2
1
2 1 0 0 48 57 45 59 E6 E7

53 1 1 2
1
1 1 1 0 49 58 46 59 45 60 E7

54 1 1 1
1
1 1 1 1 50 47 60 46

55 0 1 2
1
2 1 1 0 59 49 61 48 62 E7

56 0 1 2
1
1 1 1 1 60 50 62 49

9 57 1 2 2
1
2 1 0 0 52 63 51 64 E6 E7

58 1 2 2
1
1 1 1 0 53 64 51 65 E7

59 1 1 2
1
2 1 1 0 55 64 53 66 52 67 E7

60 1 1 2
1
1 1 1 1 56 65 54 67 53

61 0 1 2
1
2 2 1 0 66 55 68 E7

62 0 1 2
1
2 1 1 1 67 56 68 55
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Table 5: List of positive roots for Coxeter group of type E8 (part 4)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

10 63 1 2 3
1
2 1 0 0 69 57 70 E6 E7

64 1 2 2
1
2 1 1 0 59 70 58 71 57 72 E7

65 1 2 2
1
1 1 1 1 60 72 58

66 1 1 2
1
2 2 1 0 61 71 59 73 E7

67 1 1 2
1
2 1 1 1 62 72 60 73 59

68 0 1 2
1
2 2 1 1 73 62 74 61

11 69 1 2 3
2
2 1 0 0 63 75 E6 E7

70 1 2 3
1
2 1 1 0 75 64 76 63 77 E7

71 1 2 2
1
2 2 1 0 66 76 64 78 E7

72 1 2 2
1
2 1 1 1 67 77 65 78 64

73 1 1 2
1
2 2 1 1 68 78 67 79 66

74 0 1 2
1
2 2 2 1 79 68

12 75 1 2 3
2
2 1 1 0 70 80 69 81 E7

76 1 2 3
1
2 2 1 0 80 71 82 70 83 E7

77 1 2 3
1
2 1 1 1 81 72 83 70

78 1 2 2
1
2 2 1 1 73 83 72 84 71

79 1 1 2
1
2 2 2 1 74 84 73
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Table 6: List of positive roots for Coxeter group of type E8 (part 5)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

13 80 1 2 3
2
2 2 1 0 76 85 75 86 E7

81 1 2 3
2
2 1 1 1 77 86 75

82 1 2 3
1
3 2 1 0 85 76 87 E7

83 1 2 3
1
2 2 1 1 86 78 87 77 88 76

84 1 2 2
1
2 2 2 1 79 88 78

14 85 1 2 3
2
3 2 1 0 82 89 80 90 E7

86 1 2 3
2
2 2 1 1 83 90 81 91 80

87 1 2 3
1
3 2 1 1 90 83 92 82

88 1 2 3
1
2 2 2 1 91 84 92 83

15 89 1 2 4
2
3 2 1 0 93 85 94 E7

90 1 2 3
2
3 2 1 1 87 94 86 95 85

91 1 2 3
2
2 2 2 1 88 95 86

92 1 2 3
1
3 2 2 1 95 88 96 87

16 93 1 3 4
2
3 2 1 0 97 89 98 E7

94 1 2 4
2
3 2 1 1 98 90 99 89

95 1 2 3
2
3 2 2 1 92 99 91 100 90

96 1 2 3
1
3 3 2 1 100 92
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Table 6 (continued)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

17 97 2 3 4
2
3 2 1 0 93 101 E7

98 1 3 4
2
3 2 1 1 101 94 102 93

99 1 2 4
2
3 2 2 1 102 95 103 94

100 1 2 3
2
3 3 2 1 96 103 95

Table 7: List of positive roots for Coxeter group of type E8 (part 6)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

18 101 2 3 4
2
3 2 1 1 98 104 97

102 1 3 4
2
3 2 2 1 104 99 105 98

103 1 2 4
2
3 3 2 1 105 100 106 99

19 104 2 3 4
2
3 2 2 1 102 107 101

105 1 3 4
2
3 3 2 1 107 103 108 102

106 1 2 4
2
4 3 2 1 108 103

20 107 2 3 4
2
3 3 2 1 105 109 104

108 1 3 4
2
4 3 2 1 109 106 110 105

21 109 2 3 4
2
4 3 2 1 108 111 107

110 1 3 5
2
4 3 2 1 111 112 108

22 111 2 3 5
2
4 3 2 1 110 113 114 109

112 1 3 5
3
4 3 2 1 113 110
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Then we have the following:

Lemma 6.2. In this setting, if J is of type E6, then jI V Jj ¼ 1.

Proof. By the property Nb jI V Jj þ 2 and the A>1-freeness of I , it fol-

lows that I V J is either fr2; r3; r4; r5g (of type D4) or the union of irre-

ducible components of type A1. In the former case, we have F?I
J ¼ q (see

Tables 2–7), a contradiction. Therefore, I V J consists of irreducible components

of type A1.

Now assume contrary that I V J is not irreducible. Then, by applying suc-

cessive local transformations and by using symmetry, we may assume without

loss of generality that r1 A I (cf., the proof of Lemma 6.1). Now we have

PJ;fr1g ¼ fa2; a4; a5; a6; a 0g which is the standard labelling of type A5, where a 0 is

the root g44 in Table 4. Note that PðIVJÞnfr1g JPJ;fr1g. Now the same argument

as Lemma 6.1 implies that the subspace V 0 spanned by PJ; IVJ UPðIVJÞnfr1g is a

proper subspace of the space spanned by PJ;fr1g, therefore dim V 0 < 5. This

implies that the subspace spanned by PJ; IVJ UPIVJ , which is the sum of V 0 and

Ra1, has dimension less than 6 ¼ dim VJ , contradicting the fact that PJ; IVJ U

Table 7 (continued)

index k with rj � gi ¼ gk

height i root gi r1 r2 r3 r4 r5 r6 r7 r8

23 113 2 3 5
3
4 3 2 1 112 111 115

114 2 4 5
2
4 3 2 1 115 111

24 115 2 4 5
3
4 3 2 1 114 113 116

25 116 2 4 6
3
4 3 2 1 115 117

26 117 2 4 6
3
5 3 2 1 116 118

27 118 2 4 6
3
5 4 2 1 117 119

28 119 2 4 6
3
5 4 3 1 118 120

29 120 2 4 6
3
5 4 3 2 119
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PIVJ spans VJ (see Lemma 5.11). Hence I V J is irreducible, therefore the claim

holds. r

We also give a list of all positive roots of the Coxeter group of type Dn

(Table 8) in order to prove the next lemma (and some other results below). Some

notations are similar to the above case of type E8. For the data for actions of

generators on the roots, if the action rk � g does not appear in the list, then it

means either rk fixes g (or equivalently, g is orthogonal to ak), or g ¼ ak. Again,

these data imply that the list indeed exhausts all the positive roots.

Then we have the following:

Lemma 6.3. In this setting, suppose that J is of type DN.

1. If I V J has an irreducible component of type Dk with kb 4 and N � k is

odd, then we have jI V Jja k þ ðN � k � 3Þ=2.
2. If N is odd, I V J does not have an irreducible component of type Dk with

kb 4 and frN�1; rNgU I , then we have jI V Jja ðN � 3Þ=2.
3. If N is odd, I V J does not have an irreducible component of type Dk with

kb 4 and frN�1; rNgJ I , then we have jI V Jja ðN � 1Þ=2.

Proof. Assume contrary that the hypothesis of one of the three cases in

the statement is satisfied but the inequality in the conclusion does not hold.

We show that PJ; IVJ UPIVJ cannot span VJ , which is a contradiction and

therefore concludes the proof. First, recall the property Nb jI V Jj þ 2 and the

A>1-freeness of I . Then, in the case 1, by applying successive local trans-

formations, we may assume without loss of generality that I V J consists of

elements r2j with 1a ja ðN � k � 1Þ=2 and rj with N � k þ 1a jaN. Simi-

larly, in the case 2 (respectively, the case 3), by applying successive local

transformations and using symmetry, we may assume without loss of generality

that I V J consists of elements r2j with 1a ja ðN � 1Þ=2 (respectively, r2j with

1a ja ðN � 1Þ=2 and rN ). In any case, we have F?I
J JFJnfr1g (see Table 8),

therefore the subspace spanned by PJ; IVJ UPIVJ is contained in VJnfr1g. Hence

PJ; IVJ UPIVJ cannot span VJ , concluding the proof. r

We divide the following argument into two cases.

6.1.1. Case w �PJ UFþ

In order to prove that w �PJ JFþ, here we assume contrary that w �PJ UFþ

and deduce a contradiction.
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In this setting, we construct a decomposition of w in the following man-

ner. Take an element s A J with w � as A F�. By Lemma 3.6, the element ws
xI

is

a right divisor of w. This implies that F?I ½ws
xI
�JF?I ½w� ¼ q (see Lemma 2.2

of [7] for the first inclusion), therefore we have ws
xI
A Yy;xI where we put

y :¼ jðxI ; sÞ A S ðLÞ. By Proposition 3.2, we have y0 xI . This element ws
xI

induces a local transformation xI 7! y. Now if wðws
xI
Þ�1 �PJ UFþ, then we

can similarly factor out from wðws
xI
Þ�1 a right divisor of the form wt

y A Yjðy; tÞ;y
with t A J. Iterating this process, we finally obtain a decomposition of w of

the form w ¼ uwsn�1
yn�1

� � �ws1
y1
ws0
y0

satisfying that nb 1, u A YxI ; z with z A S ðLÞ,

wsi
yi
A Yyiþ1;yi VWJ for every 0a ia n� 1 where we put y0 ¼ xI and yn ¼ z,

and u �PJ JFþ.

Put u 0 :¼ wsn�1
yn�1

� � �ws1
y1
ws0
y0
0 1. By the construction, the action of u 0 A Yz;xI VWJ

induces (as the composition of successive local transformations) an isomorphism

s : I V J ! ½z�V J, t 7! u 0 � t, while u 0 fixes every element of PInJ . Now s is not

Table 8: List of positive roots for Coxeter group of type Dn

roots actions of generators

g
ð1Þ
i; j :¼

P j
h¼i ah ri�1 � gð1Þi; j ¼ g

ð1Þ
i�1; j ðib 2Þ

ð1a ia ja n� 2Þ ri � gð1Þi; j ¼ g
ð1Þ
iþ1; j ðia j � 1Þ

ðgð1Þi; i ¼ aiÞ rj � gð1Þi; j ¼ g
ð1Þ
i; j�1 ðia j � 1Þ

rjþ1 � gð1Þi; j ¼ g
ð1Þ
i; jþ1 ð ja n� 3Þ

rn�1 � gð1Þi; n�2 ¼ g
ð2Þ
i

rn � gð1Þi; n�2 ¼ g
ð3Þ
i

g
ð2Þ
i :¼

Pn�1
h¼i ah ri�1 � gð2Þi ¼ g

ð2Þ
i�1 ðib 2Þ

ð1a ia n� 1Þ ri � gð2Þi ¼ g
ð2Þ
iþ1 ðia n� 2Þ

ðgð2Þn�1 ¼ an�1Þ rn�1 � gð2Þi ¼ g
ð1Þ
i; n�2 ðia n� 2Þ

rn � gð2Þi ¼ g
ð4Þ
i; n�1 ðia n� 2Þ

g
ð3Þ
i :¼

Pn�2
h¼i ah þ an ri�1 � gð3Þi ¼ g

ð3Þ
i�1 ðib 2Þ

ð1a ia n� 1Þ ri � gð3Þi ¼ g
ð3Þ
iþ1 ðia n� 2Þ

ðgð3Þn�1 ¼ anÞ rn � gð3Þi ¼ g
ð1Þ
i; n�2 ðia n� 2Þ

rn�1 � gð3Þi ¼ g
ð4Þ
i; n�1 ðia n� 2Þ

g
ð4Þ
i; j :¼

P j�1
h¼i ah þ

Pn�2
h¼ j 2ah þ an�1 þ an ri�1 � gð4Þi; j ¼ g

ð4Þ
i�1; j ðib 2Þ

ð1a i < ja n� 1Þ ri � gð4Þi; j ¼ g
ð4Þ
iþ1; j ðia j � 2Þ

rj�1 � gð4Þi; j ¼ g
ð4Þ
i; j�1 ðia j � 2Þ

rj � gð4Þi; j ¼ g
ð4Þ
i; jþ1 ð ja n� 2Þ

rn�1 � gð4Þi; n�1 ¼ g
ð3Þ
i

rn � gð4Þi; n�1 ¼ g
ð2Þ
i
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an identity mapping; otherwise, we have z ¼ xI and 10 u 0 A YxI ;xI , while u 0 has

finite order since jWJ j < y, contradicting Proposition 3.4. On the other hand, we

have u �FJ ¼ wu0�1 �FJ ¼ w �FJ ¼ FJ , therefore u �Fþ
J ¼ Fþ

J since u �PJ JFþ.

This implies that u �PJ ¼ PJ , therefore the action of u defines an automorphism

t of J. Since w ¼ uu 0 A YI , the composite mapping t � s is the identity mapping

on I V J, while s is not identity as above. As a consequence, we have t�1jIVJ ¼ s

and hence t�1 is a nontrivial automorphism of J, therefore the possibilities of the

type of J are DN , E6 and F4 (recall that J is neither of type AN nor of type

I2ðmÞ).

Lemma 6.4. In this setting, J is not of type F4.

Proof. Assume contrary that J ¼ fr1; r2; r3; r4g is of type F4. In this case,

each of r1 and r2 is not conjugate in WJ to one of r3 and r4 by the well-known

fact that the conjugacy classes for the simple reflections ri are determined by

the connected components of the graph obtained from the Coxeter graph by

removing all edges having non-odd labels. Therefore, the mapping t�1jIVJ ¼ s

induced by the action of u 0 A WJ cannot map an element ri (1a ia 4) to r5�i.

This contradicts the fact that t�1 is a nontrivial automorphism of J. Hence the

claim holds. r

From now, we consider the remaining case that J is either of type DN with

4aN < y or of type E6. Take a standard decomposition D ¼ olðDÞ�1 � � �o1o0

of u A YxI ; z with respect to J (see Proposition 5.3). Note that J is irreducible and

JU ½z�. This implies that, if 0a ia lðDÞ � 1 and oj is a narrow transformation

for every 0a ja i, then it follows by induction on 0a ja i that the support

of oj is apart from J, the product oj � � �o1o0 fixes PJ pointwise, ½yð jþ1Þ�V J ¼
½z�V J, and ½yð jþ1Þ�nJ is not adjacent to J (note that ½z�nJ ¼ InJ is not adjacent

to J). By these properties, since u does not fix PJ pointwise, D contains at least

one wide transformation. Let o :¼ oi be the first (from right) wide transfor-

mation in D, and write y ¼ yðiÞðDÞ, t ¼ tðiÞðDÞ and K ¼ K ðiÞðDÞ for simplicity.

Note that J ðiÞðDÞ ¼ J by the above argument. Note also that PK; ½y�VK JP½y�,

since ½y�nK is not adjacent to K by the definition of K . Now the action of

oi�1 � � �o1o0u
0 A Yy;xI induces an isomorphism PI ! P½y� which maps PJ; IVJ

onto PJ; ½y�VJ ¼ PJ; ½z�VJ . Hence we have the following (recall that PJ; IVJ is the

union of some irreducible components of PI ):

Lemma 6.5. In this setting, PJ; ½y�VJ is isomorphic to PJ; IVJ and is the union

of some irreducible components of P½y�. In particular, each element of PJ; ½y�VJ is

orthogonal to any element of PK ; ½y�VKnFJ .
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Now note that K ¼ ð½y�U JÞ@t is irreducible and of finite type, and t is

adjacent to ½y�. Moreover, by Lemma 5.4, the element o ¼ o t
y;J does not fix

PKnftg pointwise. By these properties and symmetry, we may assume without

loss of generality that the possibilities of K are as follows:

1. J is of type E6, and;

(a) K ¼ J U ft; t 0g is of type E8 where t is adjacent to r6 and t 0, and

t 0 A ½y�,
(b) K ¼ J U ftg is of type E7 where t is adjacent to r6, and r6 A ½y�,

2. J is of type D7, K ¼ J U ftg is of type E8 where t is adjacent to r7, and

r7 A ½y�,
3. J is of type D5, and;

(a) K ¼ J U ft; t 0g is of type E7 where t is adjacent to r5 and t 0, and

t 0 A ½y�,
(b) K ¼ J U ftg is of type E6 where t is adjacent to r5, and r5 A ½y�,

4. J is of type DN , K ¼ J U ftg is of type DNþ1 where t is adjacent to r1,

and r1 A ½y�.

We consider Case 1a. We have j½y�V Jj ¼ jI V Jj ¼ 1 by Lemma 6.2. Now by

Tables 2–7 (where r7 ¼ t and r8 ¼ t 0), we have hb; b 0i0 0 for some b A PJ; ½y�VJ

and b 0 A PK ; ½y�VKnFJ (namely, ðb; b 0Þ ¼ ða4; g84Þ when ½y�V J ¼ fr1g; ðb; b 0Þ ¼
ðg16; g74Þ when ½y�V J ¼ fr3g; and ðb; b 0Þ ¼ ða1; g74Þ when ½y�V J ¼ frjg with

j A f2; 4; 5; 6g, where the roots gk are as in Tables 2–7). This contradicts

Lemma 6.5.

We consider Case 1b. We have j½y�V Jj ¼ jI V Jj ¼ 1 by Lemma 6.2, hence

½y�V J ¼ fr6g. Now we have a5 þ a6 þ at A PK ; ½y�VKnFJ , a4 A PJ; ½y�VJ , and these

two roots are not orthogonal, contradicting Lemma 6.5.

We consider Case 2. Note that N ¼ 7b jI V Jj þ 2 ¼ j½y�V Jj þ 2, therefore

j½y�V Jja 5. By Lemma 6.3 and A>1-freeness of I , it follows that the possibilities

of ½y�V J are as listed in Table 9, where we put ðr 01; r 02; r 03; r 04; r 05; r 06; r 07; r 08Þ ¼
ðt; r6; r7; r5; r4; r3; r2; r1Þ (hence K ¼ fr 01; . . . ; r 08g is the standard labelling of type

E8). Now by Tables 2–7, we have hb; b 0i0 0 for some b A PJ; ½y�VJ and b 0 A

PK ; ½y�VKnFJ as listed in Table 9, where we write a 0
j ¼ ar 0

j
and the roots gk are

as in Tables 2–7. This contradicts Lemma 6.5.

We consider Case 3a. Note that N ¼ 5b jI V Jj þ 2 ¼ j½y�V Jj þ 2, therefore

j½y�V Jja 3. By A>1-freeness of I , every irreducible component of ½y�V J is of

type A1. Now by Lemma 6.3, the possibilities of ½y�V J are as listed in Table 10,

where we put ðr 01; r 02; r 03; r 04; r 05; r 06; r 07Þ ¼ ðr1; r4; r2; r3; r5; t; t0Þ (hence K ¼ fr 01; . . . ; r 07g
is the standard labelling of type E7). Now by Tables 2–7, we have hb; b 0i0 0
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for some b A PJ; ½y�VJ and b 0 A PK; ½y�VKnFJ as listed in Table 10, where we write

a 0
j ¼ ar 0

j
and the roots gk are as in Tables 2–7. This contradicts Lemma 6.5.

We consider Case 3b. By the same reason as Case 3a, every irreducible

component of ½y�V J is of type A1. Now by Lemma 6.3, we have only two

possibilities of ½y�V J; fr5g and fr4; r5g. In the first case ½y�V J ¼ fr5g, we have

a2 A PJ; ½y�VJ , a3 þ a5 þ at A PK; ½y�VKnFJ , and these two roots are not orthogonal,

contradicting Lemma 6.5. Hence we consider the second case ½y�V J ¼ fr4; r5g. In
this case, the action of the first wide transformation o in D maps the elements

r1, r2, r3, r4 and r5 to t, r5, r3, r2 and r4, respectively (note that ft; r5; r3; r2; r4g is

the standard labelling of type D5). Now, by a similar argument as above, the

possibility of the second wide transformation oi 0 in D (if exists) is as in Case 3b,

where t 00 :¼ tði
0ÞðDÞ is adjacent to either r2 or r4 (note that Case 3a cannot occur

as discussed above, while Case 4 cannot occur by the shape of J and the property

r1 B ½y�V J). This implies that the action of oi 0 either maps the elements t, r5, r3, r4

and r2 to t 00, r2, r3, r5 and r4, respectively (forming a subset of type D5 with the

ordering being the standard labelling), or maps the elements t, r5, r3, r2 and r4 to

t 00, r4, r3, r5 and r2, respectively (forming a subset of type D5 with the ordering

being the standard labelling). By iterating the same argument, it follows that the

sequence of elements ðr2; r3; r4; r5Þ is mapped by successive wide transformations

Table 9: List of roots for Case 2

½y�V J b b 0

r 03 A ½y�V JJ fr 03; r 06; r 07; r 08g a 0
2 g16

fr 03; r 05g a 0
2 g31

fr 02; r 03gJ ½y�V JJ fr 02; r 03; r 04; r 05; r 06g a 0
8 g97

fr 02; r 03; r 07g g22

fr 02; r 03; r 08g a 0
6 g104

Table 10: List of roots for Case 3a

½y�V J b b 0

½y�V JJ fr 02; r 04; r 05g a 0
1 g61

fr 03g g16

fr 01g a 0
4 g71
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in D to one of the following three sequences; ðr2; r3; r4; r5Þ, ðr5; r3; r2; r4Þ and

ðr4; r3; r5; r2Þ. Hence u itself should map ðr2; r3; r4; r5Þ to one of the above three

sequences; while the action of u induces the nontrivial automorphism t of J,

which maps ðr1; r2; r3; r4; r5Þ to ðr1; r2; r3; r5; r4Þ. This is a contradiction.

Finally, we consider the case 4. First we have the following lemma:

Lemma 6.6. In this setting, suppose further that there exists an integer kb 1

satisfying that 2kaN � 3, r2j�1 A ½y� and r2j B ½y� for every 1a ja k, and

r2kþ1 B ½y�. Then there exist a root b A PJ; ½y�VJ and a root b 0 A PK ; ½y�VKnFJ with

hb; b 0i0 0.

Proof. Put J 0 :¼ frj j 2k þ 1a jaNg. First, we have b 0 :¼ at þ
P2k

j¼1 aj A

PK ; ½y�VKnFJ in this case. On the other hand, PJ; ½y�VJnFJ 0 consists of k roots

g
ð4Þ
2j�1;2j with 1a ja k (see Table 8 for the notation), while P½y�VJnFJ 0 consists

of k roots a2j�1 with 1a ja k. Hence jðPJ; ½y�VJ UP½y�VJÞnFJ 0 j ¼ 2k. Since

PJ; ½y�VJ UP½y�VJ is a basis of the space VJ of dimension N, it follows that the

subset ðPJ; ½y�VJ UP½y�VJÞVFJ 0 spans a subspace of dimension N � 2k ¼ jJ 0j. This
implies that ðPJ; ½y�VJ UP½y�VJÞVFJ 0 UFJ 0nfr2kþ1g, therefore (since a2kþ1 B P½y�VJ )

we have PJ; ½y�VJ VFJ 0 UFJ 0nfr2kþ1g, namely there exists a root b A PJ; ½y�VJ VFJ 0

which has non-zero coe‰cient of a2kþ1. These b and b 0 satisfy hb; b 0i0 0 by the

construction, concluding the proof. r

By Lemma 6.6 and Lemma 6.5, the hypothesis of Lemma 6.6 should

not hold. By this fact, A>1-freeness of I and the property Nb jI V Jj þ 2 ¼
j½y�V Jj þ 2, it follows that the possibilities of ½y�V J are as follows (up to

the symmetry rN�1 $ rN ); (I) ½y�V J ¼ Jnfr2j j 1a ja kg for an integer k with

2a ka ðN � 2Þ=2 and 2k0N � 3; (II) N is odd and ½y�V J ¼ fr2j�1 j 1a ja

ðN � 1Þ=2g; (III) N is even and ½y�V J ¼ fr2j�1 j 1a ja ðN � 2Þ=2g; (IV) N is

even and ½y�V J ¼ fr2j�1 j 1a jaN=2g. For Case (I), by the shape of J and

½y�V J, it follows that I V J ¼ ½y�V J, and each local transformation can permute

the irreducible components of I V J containing neither rN�1 nor rN but it fixes

pointwise the irreducible component(s) of I V J containing rN�1 or rN . This

contradicts the fact that s ¼ t�1jIVJ for a nontrivial automorphism t�1 of J

(note that t�1 exchanges rN�1 and rN ). Case (II) contradicts Lemma 6.3(2). For

Case (III), the roots aN�1 A PJ; ½y�VJ and at þ
PN�2

j¼1 aj A PK ; ½y�VKnFJ are not

orthogonal, contradicting Lemma 6.5.

Finally, for the remaining case, i.e., Case (IV), by the shape of J and ½y�V J,

it follows that I V J ¼ ½y�V J and each local transformation leaves the set I V J

invariant. By this result and the property that s ¼ t�1jIVJ for a nontrivial auto-
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morphism t�1 of J, only the possibility of ½y�V J is that N ¼ 4 and ½y�V J ¼
I V J ¼ fr1; r3g, and s exchanges r1 and r3. Now we arrange the standard

decomposition D of u as u ¼ o 00
lo

0
l�1o

00
l�1 � � �o 0

2o
00
2o

0
1o

00
1 , where each o 0

j is a wide

transformation and each o 00
j is a (possibly empty) product of narrow trans-

formations. Let each wide transformation o 0
j belong to Yz 0

j
; zj with zj; z

0
j A S ðLÞ. In

particular, we have o 0
1 ¼ o and z1 ¼ y. Now we give the following lemma:

Lemma 6.7. In this setting, the following properties hold for every 1a ja

l� 1: The action of the element uj :¼ o 00
j o

0
j�1o

00
j�1 � � �o 0

1o
00
1 maps ðr1; r2; r3; r4Þ to

ðr1; r2; r3; r4Þ when j is odd and to ðr1; r2; r4; r3Þ when j is even; the subsets J and

½zj�nJ are not adjacent; the support of o 0
j is as in Case 4 above, with t replaced by

some element tj A S; and o 0
j maps ðr1; r2; r3; r4Þ to ðr1; r2; r4; r3Þ.

Proof. We use induction on j. By the definition of narrow transformations,

the first and the second parts of the claim hold obviously when j ¼ 1 and follow

from the induction hypothesis when j > 1. In particular, we have uj �PJ ¼ PJ .

Put ðh; h0Þ :¼ ð3; 4Þ when j is odd and ðh; h0Þ :¼ ð4; 3Þ when j is even. Then we

have ½zj�V J ¼ fr1; rhg. Now, by using the above argument, it follows that the

support of o 0
j is of the form fr1; r2; r3; r4; tjg which is the standard labelling of

type D5, where tj is adjacent to one of the two elements of ½zj�V J. We show that

tj is adjacent to r1, which already holds when j ¼ 1 (note that tj ¼ t when j ¼ 1).

Suppose j > 1 and assume contrary that tj is adjacent to rh. In this case, tj is

apart from ½zj�nfrhg. On the other hand, we have ½z 0j�1�V J ¼ fr1; rhg, the subsets

½z 0j�1�nJ and J are not adjacent, and the support of each narrow transformation

in o 00
j is apart from to J. Moreover, by the induction hypothesis, we have

½zj�1�V J ¼ fr1; rh 0 g and the action of o 0
j�1 maps ðr1; r2; rh; rh 0 Þ to ðr1; r2; rh 0 ; rhÞ

while it fixes every element of ½zj�1�nJ. This implies that o 00
j A Yz 00; zj�1

for the

element z 00 A S ðLÞ obtained from zj by replacing rh with rh 0 . Now we have

atj A P½z 00 � since tj is not adjacent to ½z 00� ¼ ð½zj�nfrhgÞU frh 0 g, therefore b 0 :¼
ðo 00

j Þ
�1 � atj A P½zj�1�. This root belongs to FSnJ and has non-zero coe‰cient of

atj , since the support of each narrow transformation in o 00
j is not adjacent to

J and hence does not contain tj. Therefore, the roots b 0 A P½zj�1�nPJ; ½zj�1�VJ and

a1 þ 2a2 þ a3 þ a4 A PJ; ½zj�1�VJ are not orthogonal. This contradicts the fact that

PJ; ½y�VJ is the union of some irreducible components of P½y� (see Lemma 6.5) and

the isomorphism P½y� ! P½zj�1� induced by the action of o 00
j�1o

0
j�2o

00
j�2 � � �o 00

2o
0
1

maps PJ; ½y�VJ to PJ; ½zj�1�VJ (since the action of this element leaves the set PJ

invariant). This contradiction proves that tj is adjacent to r1, therefore the third

part of the claim holds. Finally, the fourth part of the claim follows immediately

from the third part. Hence the proof of Lemma 6.7 is concluded. r
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By Lemma 6.7, the action of the element o 0
l�1o

00
l�1 � � �o 0

2o
00
2o

0
1o

00
1 , hence

of u ¼ o 00
lo

0
l�1ul�1, maps the elements ðr1; r2; r3; r4Þ to either ðr1; r2; r3; r4Þ or

ðr1; r2; r4; r3Þ. This contradicts the above-mentioned fact that s exchanges r1

and r3.

Summarizing, we have derived a contradiction in each of the six possible

cases, Cases 1a–4. Hence we have proven that the assumption w �PJ UFþ

implies a contradiction, as desired.

6.1.2. Case w �PJ JFþ

By the result of Section 6.1.1, we have w �PJ JFþ. Since w �FJ ¼ FJ by

Lemma 5.12, it follows that w �Fþ
J JFþ

J , therefore w �Fþ
J ¼ Fþ

J (note that

jFJ j < y). Hence the action of w defines an automorphism t of J (in particular,

w �PJ ¼ PJ ). To show that t is the identity mapping (which implies the claim

that w fixes PJ; IVJ pointwise), assume contrary that t is a nontrivial automor-

phism of J. Then the possibilities of the type of J are as follows: DN , E6 and

F4 (recall that J is neither of type AN nor of type I2ðmÞ). Moreover, since the

action of w A YI fixes every element of I V J, the subset I V J of J is contained in

the fixed point set of t. This implies that J is not of type F4, since the nontrivial

automorphism of a Coxeter graph of type F4 has no fixed points.

Suppose that J is of type E6. Then, by the above argument on the fixed

points of t and Lemma 6.2, we have I V J ¼ fr2g or I V J ¼ fr4g. Now take a

standard decomposition of w with respect to J (see Proposition 5.3). Then no

wide transformation can appear due to the shape of J and the position of I V J

in J (indeed, we cannot obtain a subset of finite type by adding to J an element

of S adjacent to I V J). This implies that the decomposition of w consists of

narrow transformations only, therefore w fixes PJ pointwise, contradicting the

fact that t is a nontrivial automorphism.

Secondly, suppose that J is of type DN with Nb 5. Then, by the above

argument on the fixed points of t, we have I V JJ JnfrN�1; rNg, therefore every

irreducible component of I V J is of type A1 (by A>1-freeness of I ). Now take a

standard decomposition D of w with respect to J (see Proposition 5.3). Note that

D involves at least one wide transformation, since t is not the identity mapping.

By the shape of J and the position of I V J in J, only the possibility of the first

(from right) wide transformation o ¼ oi in D is as follows: K ¼ J U ftg is of type

DNþ1, t is adjacent to r1, and r1 A ½y�, where we put y ¼ yðiÞðDÞ, t ¼ tðiÞðDÞ, and
K ¼ K ðiÞðDÞ. Now the claim of Lemma 6.6 in Section 6.1.1 also holds in this

case, while PJ; ½y�VJ is the union of some irreducible components of P½y� by the
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same reason as in Section 6.1.1. Hence the hypothesis of Lemma 6.6 should not

hold. This argument and the properties that Nb jI V Jj þ 2 ¼ j½y�V Jj þ 2 and

I V JJ JnfrN�1; rNg imply that the possibilities of ½y�V J are the followings: N is

odd and ½y�V J consists of elements r2j�1 with 1a ja ðN � 1Þ=2; or, N is even

and ½y�V J consists of elements r2j�1 with 1a ja ðN � 2Þ=2. The former pos-

sibility contradicts Lemma 6.3(2). On the other hand, for the latter possibility,

the roots aN�1 A PJ; ½y�VJ and at þ
PN�2

j¼1 aj A P½y�nPJ; ½y�VJ are not orthogonal,

contradicting the above-mentioned fact that PJ; ½y�VJ is the union of some ir-

reducible components of P½y�. Hence we have a contradiction for any of the two

possibilities.

Finally, we consider the remaining case that J is of type D4. By the property

N ¼ 4b jI V Jj þ 2 and A>1-freeness of I , it follows that I V J consists of at

most two irreducible components of type A1. On the other hand, by the shape

of J, the fixed point set of the nontrivial automorphism t of J is of type A1 or

A2. Since I V J is contained in the fixed point set of t as mentioned above, it

follows that jI V Jj ¼ 1. If I V J ¼ fr1g, then we have PJ; IVJ ¼ fa3; a4; bg where

b ¼ a1 þ 2a2 þ a3 þ a4 (see Table 8), and every element of PJ; IVJ forms an

irreducible component of PJ; IVJ . However, now the property w �PJ ¼ PJ implies

that w fixes a2 and permutes the three simple roots a1, a3 and a4, therefore

w � b ¼ b, contradicting the fact that hwi acts transitively on the set of the

irreducible components of PJ; IVJ (see Lemma 5.12). By symmetry, the same

result holds when I V J ¼ fr3g or fr4g. Hence we have I V J ¼ fr2g. Take a

standard decomposition of w with respect to J (see Proposition 5.3). Then no

wide transformation can appear due to the shape of J and the position of I V J in

J (indeed, we cannot obtain a subset of finite type by adding to J an element of

S adjacent to I V J). This implies that the decomposition of w consists of narrow

transformations only, therefore w fixes PJ pointwise, contradicting the fact that t

is a nontrivial automorphism.

Summarizing, we have derived in any case a contradiction from the as-

sumption that t is a nontrivial automorphism. Hence it follows that t is the

identity mapping, therefore our claim has been proven in the case PJ; IVJ UFI ? .

6.2. The Second Case PJ; IVJ JFI ?

In this subsection, we consider the remaining case that PJ; IVJ JFI ? . In this

case, we have PI ? JPI , therefore PJ; IVJ ¼ PJnI . Let L be an irreducible com-

ponent of JnI . Then L is of finite type. The aim of the following argument is

to show that w fixes PL pointwise; indeed, if this is satisfied, then we have
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PJ; IVJ ¼ PJnI ¼ PL since hwi acts transitively on the set of irreducible com-

ponents of PJ; IVJ (see Lemma 5.12), therefore w fixes PJ; IVJ pointwise, as desired.

Note that w �PL JPJnI , since now w leaves the set PJ; IVJ ¼ PJnI invariant.

6.2.1. Possibilities of Semi-Standard Decompositions

Here we investigate the possibilities of narrow and wide transformations in a

semi-standard decomposition of the element w, in a somewhat wider context. Let

D ¼ olðDÞ�1 � � �o1o0 be a semi-standard decomposition of an element u of W ,

with the property that ½yð0Þ� is isomorphic to I , J ð0Þ is irreducible and of finite

type, and J ð0Þ is apart from ½yð0Þ�. Note that any semi-standard decomposition of

the element w A YI with respect to the set L defined above satisfies the condition.

Note also that D�1 :¼ ðo0Þ�1ðo1Þ�1 � � � ðolðDÞ�1Þ�1 is also a semi-standard de-

composition of u�1, and ðoiÞ�1 is a narrow (respectively, wide) transformation if

and only if oi is a narrow (respectively, wide) transformation.

The proof of the next lemma uses a concrete description of root systems of

all finite irreducible Coxeter groups except types A and I2ðmÞ. Table 11 shows the

list for type Bn, where the notational conventions are similar to the case of type

Dn (Table 8). For the list for type F4 (Table 12), the list includes only one of the

two conjugacy classes of positive roots (denoted by g
ð1Þ
i ), and the other positive

roots (denoted by g
ð2Þ
i ) are obtained by using the symmetry r1 $ r4, r2 $ r3. In

the list, ½c1; c2; c3; c4� signifies a positive root c1a1 þ c2a2 þ c3a3 þ c4a4, and the

Table 11: List of positive roots for Coxeter group of type Bn

roots actions of generators

g
ð1Þ
i; j :¼

P j
h¼i ah ri�1 � gð1Þi; j ¼ g

ð1Þ
i�1; j ðib 2Þ

ð1a ia ja n� 1Þ ri � gð1Þi; j ¼ g
ð1Þ
iþ1; j ðia j � 1Þ

ðgð1Þi; i ¼ aiÞ rj � gð1Þi; j ¼ g
ð1Þ
i; j�1 ðia j � 1Þ

rjþ1 � gð1Þi; j ¼ g
ð1Þ
i; jþ1 ð ja n� 2Þ

rn � gð1Þi; n�1 ¼ g
ð2Þ
i; n

g
ð2Þ
i; j :¼

P j�1
h¼i ah þ

Pn�1
h¼ j 2ah þ

ffiffiffi
2

p
an ri�1 � gð2Þi; j ¼ g

ð2Þ
i�1; j ðib 2Þ

ð1a i < ja nÞ ri � gð2Þi; j ¼ g
ð2Þ
iþ1; j ðia j � 2Þ

rj�1 � gð2Þi; j ¼ g
ð2Þ
i; j�1 ðia j � 2Þ

rj � gð2Þi; j ¼ g
ð2Þ
i; jþ1 ð ja n� 1Þ

rn � gð2Þi; n ¼ g
ð1Þ
i; n�1

g
ð3Þ
i :¼

Pn�1
h¼i

ffiffiffi
2

p
ah þ an ri�1 � gð3Þi ¼ g

ð3Þ
i�1 ðib 2Þ

ð1a ia nÞ ri � gð3Þi ¼ g
ð3Þ
iþ1 ðia n� 1Þ

ðgð3Þn ¼ anÞ
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description in the columns for actions of generators is similar to the case of type

E8 (Tables 2–7). The list for type H4 is divided into two parts (Tables 13 and 14).

In the list, ½c1; c2; c3; c4� signifies a positive root c1a1 þ c2a2 þ c3a3 þ c4a4, where

we put c ¼ 2 cosðp=5Þ for simplicity and therefore c2 ¼ cþ 1. The other de-

scription is in a similar manner as the case of type E8, and the marks ‘‘H3’’

indicate the positive roots of the parabolic subgroup of type H3 generated by

fr1; r2; r3g.
Then, for the wide transformations in D, we have the following:

Lemma 6.8. In this setting, if oi is a wide transformation, then there exist

only the following two possibilities, where K ðiÞ ¼ fr1; r2; . . . ; rNg is the standard

labelling of K ðiÞ given in Section 2.3:

1. K ðiÞ is of type AN with Nb 3, tðiÞ ¼ r2, ½yðiÞ�VK ðiÞ ¼ fr1g and J ðiÞ ¼
fr3; . . . ; rNg; now the action of oi maps r1 to rN and ðr3; r4; . . . ; rNÞ to

ðr1; r2; . . . ; rN�2Þ;

Table 12: List of positive roots for Coxeter group of type F4

The data of the remaining positive roots g
ð2Þ
i are obtained by replacing ½c1; c2; c3; c4�

with ½c4; c3; c2; c1� and replacing each rj with r5�j .

k; rj � gð1Þi ¼ g
ð1Þ
k

height i root g
ð1Þ
i r1 r2 r3 r4

1 1 ½1; 0; 0; 0� — 3

2 ½0; 1; 0; 0� 3 — 4

2 3 ½1; 1; 0; 0� 2 1 5

4 ½0; 1;
ffiffiffi
2

p
; 0� 5 2 6

3 5 ½1; 1;
ffiffiffi
2

p
; 0� 4 7 3 8

6 ½0; 1;
ffiffiffi
2

p
;

ffiffiffi
2

p
� 8 4

4 7 ½1; 2;
ffiffiffi
2

p
; 0� 5 9

8 ½1; 1;
ffiffiffi
2

p
;

ffiffiffi
2

p
� 6 9 5

5 9 ½1; 2;
ffiffiffi
2

p
;

ffiffiffi
2

p
� 8 10 7

6 10 ½1; 2; 2
ffiffiffi
2

p
;

ffiffiffi
2

p
� 11 9

7 11 ½1; 3; 2
ffiffiffi
2

p
;

ffiffiffi
2

p
� 12 10

8 12 ½2; 3; 2
ffiffiffi
2

p
;

ffiffiffi
2

p
� 11
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Table 13: List of positive roots for Coxeter group of type H4 (part 1),

where c ¼ 2 cosðp=5Þ, c2 ¼ cþ 1

k; rj � gi ¼ gk

height i root gi r1 r2 r3 r4

1 1 ½1; 0; 0; 0� — 5 H3

2 ½0; 1; 0; 0� 6 — 7 H3

3 ½0; 0; 1; 0� 7 — 8 H3

4 ½0; 0; 0; 1� 8 —

2 5 ½1; c; 0; 0� 9 1 10 H3

6 ½c; 1; 0; 0� 2 9 11 H3

7 ½0; 1; 1; 0� 11 3 2 12 H3

8 ½0; 0; 1; 1� 12 4 3

3 9 ½c; c; 0; 0� 5 6 13 H3

10 ½1; c; c; 0� 13 5 14 H3

11 ½c; 1; 1; 0� 7 15 6 16 H3

12 ½0; 1; 1; 1� 16 12 7

4 13 ½c; c; c; 0� 10 17 9 18 H3

14 ½1; c; c; c� 18 10

15 ½c; cþ 1; 1; 0� 19 11 17 20 H3

16 ½c; 1; 1; 1� 12 20 11

5 17 ½c; cþ 1; c; 0� 21 13 15 22 H3

18 ½c; c; c; c� 14 22 13

19 ½cþ 1; cþ 1; 1; 0� 15 21 23 H3

20 ½c; cþ 1; 1; 1� 23 16 24 15

6 21 ½cþ 1; cþ 1; c; 0� 17 25 19 26 H3

22 ½c; cþ 1; c; c� 26 18 27 17

23 ½cþ 1; cþ 1; 1; 1� 20 28 19

24 ½c; cþ 1; cþ 1; 1� 28 20 27
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Table 14: List of positive roots for Coxeter group of type H4 (part 2),

where c ¼ 2 cosðp=5Þ, c2 ¼ cþ 1

k; rj � gi ¼ gk

height i root gi r1 r2 r3 r4

7 25 ½cþ 1; 2c; c; 0� 21 29 H3

26 ½cþ 1; cþ 1; c; c� 22 29 30 21

27 ½c; cþ 1; cþ 1; c� 30 22 24

28 ½cþ 1; cþ 1; cþ 1; 1� 24 31 23 30

8 29 ½cþ 1; 2c; c; c� 26 32 25

30 ½cþ 1; cþ 1; cþ 1; c� 27 33 26 28

31 ½cþ 1; 2cþ 1; cþ 1; 1� 34 28 33

9 32 ½cþ 1; 2c; 2c; c� 35 29

33 ½cþ 1; 2cþ 1; cþ 1; c� 36 30 35 31

34 ½2cþ 1; 2cþ 1; cþ 1; 1� 31 37 36

10 35 ½cþ 1; 2cþ 1; 2c; c� 38 32 33

36 ½2cþ 1; 2cþ 1; cþ 1; c� 33 39 38 34

37 ½2cþ 1; 2cþ 2; cþ 1; 1� 34 40 39

11 38 ½2cþ 1; 2cþ 1; 2c; c� 35 41 36

39 ½2cþ 1; 2cþ 2; cþ 1; c� 36 42 37

40 ½2cþ 1; 2cþ 2; cþ 2; 1� 37 43

12 41 ½2cþ 1; 3cþ 1; 2c; c� 44 38 45

42 ½2cþ 1; 2cþ 2; 2cþ 1; c� 45 39 46

43 ½2cþ 1; 2cþ 2; cþ 2; cþ 1� 46 40

13 44 ½2cþ 2; 3cþ 1; 2c; c� 41 47

45 ½2cþ 1; 3cþ 1; 2cþ 1; c� 47 42 41 48

46 ½2cþ 1; 2cþ 2; 2cþ 1; cþ 1� 48 43 42

14 47 ½2cþ 2; 3cþ 1; 2cþ 1; c� 45 49 44 50

48 ½2cþ 1; 3cþ 1; 2cþ 1; cþ 1� 50 46 45
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2. K ðiÞ is of type E7, t
ðiÞ ¼ r6, ½yðiÞ�VK ðiÞ ¼ fr1; r2; r3; r4; r5g and J ðiÞ ¼ fr7g;

now the action of oi maps ðr1; r2; r3; r4; r5Þ to ðr1; r5; r3; r4; r2Þ and r7 to r7.

Hence, if D involves a wide transformation, then J ð0Þ is of type AN 0 with

1aN 0 < y.

Proof. The latter part of the claim follows from the former part and the

fact that the sets J ðiÞ for 0a ia lðDÞ are all isomorphic to each other. For the

former part, note that J ðiÞ is an irreducible subset of K ðiÞ which is not adjacent

to ½yðiÞ� (by the above condition that J ð0Þ is apart from ½yð0Þ�), tðiÞ is adjacent

to ½yðiÞ�VK ðiÞ, and oi cannot fix the set PK ðiÞnftg pointwise (see Lemma 5.4).

Moreover, since I is A>1-free, ½yðiÞ� is also A>1-free. By these properties, a

case-by-case argument shows that the possibilities of K ðiÞ, ½yðiÞ� and tðiÞ are as

enumerated in Table 15 up to symmetry (note that J ðiÞ ¼ K ðiÞnð½yðiÞ�U ftðiÞgÞ).
Now, for each case in Table 15 except the two cases specified in the statement, it

follows by using the tables for the root systems of finite irreducible Coxeter

groups that there exists a root b A ðF?½yðiÞ�VK ðiÞ

K ðiÞ Þþ that has non-zero coe‰cient of

Table 14 (continued)

k; rj � gi ¼ gk

height i root gi r1 r2 r3 r4

15 49 ½2cþ 2; 3cþ 2; 2cþ 1; c� 51 47 52

50 ½2cþ 2; 3cþ 1; 2cþ 1; cþ 1� 48 52 47

16 51 ½3cþ 1; 3cþ 2; 2cþ 1; c� 49 53

52 ½2cþ 2; 3cþ 2; 2cþ 1; cþ 1� 53 50 54 49

17 53 ½3cþ 1; 3cþ 2; 2cþ 1; cþ 1� 52 55 51

54 ½2cþ 2; 3cþ 2; 2cþ 2; cþ 1� 55 52

18 55 ½3cþ 1; 3cþ 2; 2cþ 2; cþ 1� 54 56 53

19 56 ½3cþ 1; 3cþ 3; 2cþ 2; cþ 1� 57 55

20 57 ½3cþ 2; 3cþ 3; 2cþ 2; cþ 1� 56 58

21 58 ½3cþ 2; 4cþ 2; 2cþ 2; cþ 1� 57 59

22 59 ½3cþ 2; 4cþ 2; 3cþ 1; cþ 1� 58 60

23 60 ½3cþ 2; 4cþ 2; 3cþ 1; 2c� 59
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atðiÞ , as listed in Table 15 (where the notations for the roots b are as in the

tables). This implies that oi � b A F�. Moreover, the definition of K ðiÞ implies that

the set ½yðiÞ�nK ðiÞ is apart from K ðiÞ, therefore b A F?½yðiÞ� and F?½yðiÞ�½oi�0q.

However, this contradicts the property oi A Yyðiþ1Þ;yðiÞ . Hence one of the two

conditions specified in the statement should be satisfied, concluding the proof of

Lemma 6.8. r

On the other hand, for the narrow transformations in D, we have the

following:

Lemma 6.9. In this setting, suppose that oi is a narrow transformation,

½yðiþ1Þ�0 ½yðiÞ�, and K ðiÞ V ½yðiÞ� ¼ K ðiÞnftðiÞg has an irreducible component of type

A1. Then K ðiÞ is of type A2 or of type I2ðmÞ with m an odd number.

Proof. First, by the condition ½yðiþ1Þ�0 ½yðiÞ� and the definition of oi, the

action of the longest element of WK ðiÞ induces a nontrivial automorphism of

Table 15: List for the proof of Lemma 6.8

type of K ðiÞ ½yðiÞ�VK ðiÞ tðiÞ b

AN ðNb 3Þ fr1g r2 —

BN ðNb 4Þ frkþ1; . . . ; rNg ð3a kaN � 1Þ rk g
ð3Þ
k

DN frN�1; rNg rN�2 g
ð4Þ
1; 2

frkþ1; . . . ; rN�1; rNg ð2a kaN � 4Þ rk

ENð6aNa 8Þ fr1g r3 g44

E7 fr1; r2; r3; r4; r5g r6 —

fr7g r6 g61

E8 fr1; r2; r3; r4; r5g r6 g119

fr1; r2; r3; r4; r5; r6g r7

fr8g r7 g74

F4 fr1g r2 g
ð1Þ
7

H4 fr1g r2 g40

fr1; r2g r3

fr4g r3 g32
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K ðiÞ which does not fix the element tðiÞ. This property restricts the possibilities

of K ðiÞ to one of the followings (where we use the standard labelling of K ðiÞ):

K ðiÞ ¼ fr1; . . . ; rNg is of type AN and tðiÞ 0 rðNþ1Þ=2; K ðiÞ ¼ fr1; . . . ; rNg is of

type DN with N odd and tðiÞ A frN�1; rNg; K ðiÞ ¼ fr1; . . . ; r6g is of type E6 and

tðiÞ B fr2; r4g; or K ðiÞ is of type I2ðmÞ with m odd. Secondly, by considering the

A>1-freeness of I (hence of ½yðiÞ�), the possibilities are further restricted to the

followings: K ðiÞ is of type A2; K
ðiÞ is of type E6 and tðiÞ A fr1; r6g; and K ðiÞ is of

type I2ðmÞ with m odd. Moreover, by the hypothesis that K ðiÞ V ½yðiÞ� has an

irreducible component of type A1, the above possibility of type E6 is denied.

Hence the claim holds. r

6.2.2. Proof of the Claim

From now, we prove our claim that w fixes the set PL pointwise. First, we

have w �PL JPJnI as mentioned above, therefore Proposition 5.3 implies that

there exists a standard decomposition of w with respect to L. Moreover, L is

apart from I ¼ ½xI �, since PL is an irreducible component of PI . Now if L is

not of type AN with 1aN < y, then Lemma 6.8 implies that the standard

decomposition of w involves no wide transformations, therefore w fixes PL

pointwise, as desired (note that any narrow transformation oi fixes PJ ðiÞ pointwise

by the definition). Hence, from now, we consider the case that L is of type AN

with 1aN < y.

First, we present some definitions:

Definition 6.10. Suppose that 2aN < y. Let D ¼ olðDÞ�1 � � �o1o0 be

a semi-standard decomposition of an element of W . We say that a sequence

s1; s2; . . . ; sm of distinct elements of S is admissible of type AN with respect to D,

if J ð0Þ is of type AN , m1N ðmod 2Þ, and the following conditions are satisfied,

where we put M :¼ fs1; s2 . . . ; smg (see Figure 3).

1. PJ ð0Þ is an irreducible component of P½yð0Þ�.

2. mðsj; sjþ1Þ ¼ 3 for every 1a ja m� 1.

3. For each 0a ha lðDÞ, there exists an odd number lðhÞ with 1a lðhÞa
m�N þ 1 satisfying the following conditions, where we put rðhÞ :¼
lðhÞ þN � 1:

J ðhÞ ¼ fsj j lðhÞa ja rðhÞg;

½yðhÞ�VM ¼ fsj j 1a ja lðhÞ � 2 and j1 1 ðmod 2Þg

U fsj j rðhÞ þ 2a ja m and j1 m ðmod 2Þg:
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4. For each 0a ha lðDÞ, every element of ½yðhÞ�VM forms an irreducible

component of ½yðhÞ� of type A1.

5. For each 0a ha lðDÞ � 1, if oh is a narrow transformation, then one of

the following two conditions is satisfied:
� K ðhÞ intersects with ½yðhÞ�VM, and ½yðhþ1Þ� ¼ ½yðhÞ�;
� K ðhÞ is apart from ½yðhÞ�VM (hence ½yðhþ1Þ�VM ¼ ½yðhÞ�VM).

6. For each 0a ha lðDÞ � 1, if oh is a wide transformation, then one of the

following two conditions is satisfied:
� lðhþ 1Þ ¼ lðhÞ � 2, K ðhÞ ¼ J ðhÞ U fslðhÞ�2; slðhÞ�1g is of type ANþ2, t

ðhÞ ¼
slðhÞ�1, and the action of oh maps slðhÞþ j A J ðhÞ (0a jaN � 1) to

slðhþ1Þþ j and maps slðhÞ�2 A ½yðhÞ� to srðhÞþ2;
� lðhþ 1Þ ¼ lðhÞ þ 2, K ðhÞ ¼ J ðhÞ U fsrðhÞþ1; srðhÞþ2g is of type ANþ2, t

ðhÞ ¼
srðhÞþ1, and the action of oh maps slðhÞþ j A J ðhÞ (0a jaN � 1) to

slðhþ1Þþ j and maps srðhÞþ2 A ½yðhÞ� to slðhÞ�2.

Moreover, we say that such a sequence s1; s2; . . . ; sm is tight if M ¼ 6lðDÞ
h¼0

J ðhÞ.

Definition 6.11. Suppose that N ¼ 1. Let D ¼ olðDÞ�1 � � �o1o0 be a semi-

standard decomposition of an element of W . We say that a sequence s1; s2; . . . ; sm

of distinct elements of S is admissible of type A1 with respect to D, if J ð0Þ is

of type A1 and the following conditions are satisfied, where we put M ¼
fs1; s2; . . . ; smg (see Figure 4).

1. PJ ð0Þ is an irreducible component of P½yð0Þ�.

2. For each 0a ha lðDÞ, we have J ðhÞ JM and MnJ ðhÞ J ½yðhÞ�.

Figure 3: Admissible sequence when Nb 2; here N ¼ 7, black circles in the top and the bottom rows

indicate elements of ½yðhÞ�VM and ½yðhþ1Þ�VM, respectively, and oh is a wide transformation with

tðhÞ ¼ slðhÞ�1
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3. For each 0a ha lðDÞ, every element of ½yðhÞ�VM forms an irreducible

component of ½yðhÞ� of type A1.

4. For each 0a ha lðDÞ � 1, if oh is a narrow transformation, then one of

the following two conditions is satisfied:
� K ðhÞ intersects with ½yðhÞ�VM, and ½yðhþ1Þ� ¼ ½yðhÞ�;
� K ðhÞ is apart from ½yðhÞ�VM, hence ½yðhþ1Þ�VM ¼ ½yðhÞ�VM.

5. For each 0a ha lðDÞ � 1, if oh is a wide transformation, then one of

the following two conditions is satisfied:
� J ðhþ1Þ 0 J ðhÞ, K ðhÞ is of type A3, K ðhÞnftðhÞg ¼ J ðhÞ U J ðhþ1Þ, J ðhþ1Þ J
½yðhÞ�VM, and the action of oh exchanges the unique element of J ðhÞ

and the unique element of J ðhþ1Þ;
� J ðhþ1Þ ¼ J ðhÞ and ½yðhþ1Þ� ¼ ½yðhÞ�.

Moreover, we say that such a sequence s1; s2; . . . ; sm is tight if M ¼ 6lðDÞ
h¼0

J ðhÞ.

Note that, if a sequence s1; s2; . . . ; sm is admissible of type AN with respect to

a semi-standard decomposition D ¼ olðDÞ�1 � � �o1o0, then the subsequence of

s1; s2; . . . ; sm consisting of the elements of 6lðDÞ
j¼0

J ð jÞ is admissible of type AN with

respect to D and is tight (for the case Nb 2, the property of wide trans-

formations in Definition 6.10(6) implies that 6lðDÞ
j¼0

J ð jÞ ¼ fsi j lðkÞa ia rðk 0Þg
for some k; k 0 A f0; 1; . . . ; lðDÞg). Moreover, the sequence s1; s2; . . . ; sm is also

admissible of type AN with respect to D�1.

The above definitions are relevant to our purpose in the following manner:

Lemma 6.12. Let D ¼ olðDÞ�1 � � �o1o0 be a semi-standard decomposition of

w with respect to L. If there exists a sequence which is admissible of type AN with

respect to D, then w fixes PL pointwise.

Figure 4: Admissible sequence when N ¼ 1; here oh is a wide transformation of the first type

in Definition 6.11(5), the circles in each row signify elements of M, and the diamond signifies the

element tðhÞ
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Proof. First, note that yðlðDÞÞ ¼ xI ¼ yð0Þ since w A YI , therefore ½yðlðDÞÞ�V
M ¼ ½yð0Þ�VM where M is as defined in Definition 6.10 (when Nb 2) or

Definition 6.11 (when N ¼ 1). Now it follows from the properties in Definition

6.10(3) when Nb 2, or Definition 6.11(2) when N ¼ 1, that J ðlðDÞÞ ¼ J ð0Þ ¼ L.

Hence w fixes PL pointwise when N ¼ 1. Moreover, when Nb 2, the property in

Definition 6.10(6) implies that oh � slðhÞþ j ¼ slðhþ1Þþ j for every 0a ha lðDÞ � 1

and 0a jaN � 1. Now by this property and the above-mentioned property

J ðlðDÞÞ ¼ J ð0Þ, it follows that w fixes the set PJ ð0Þ ¼ PL pointwise. Hence the

proof is concluded. r

As mentioned above, a standard decomposition of w with respect to L exists.

Therefore, by virtue of Lemma 6.12, it su‰ces to show that there exists a

sequence which is admissible with respect to this standard decomposition. More

generally, we prove the following proposition (note that the above-mentioned

standard decomposition of w satisfies the assumption in this proposition):

Proposition 6.13. Let D ¼ olðDÞ�1 � � �o1o0 be a semi-standard decomposi-

tion of an element. Suppose that J ð0Þ is of type AN with 1aN < y, and PJ ð0Þ is

an irreducible component of P½yð0Þ�. Then there exists a sequence which is admissible

of type AN with respect to D.

To prove Proposition 6.13, we give the following key lemma, which will be

proven below:

Lemma 6.14. Let nb 0. Let D ¼ onon�1 � � �o1o0 be a semi-standard de-

composition of an element, and put D 0 :¼ on�1 � � �o1o0, which is also a semi-

standard decomposition of an element satisfying that yð0ÞðD 0Þ ¼ yð0ÞðDÞ and

J ð0ÞðD 0Þ ¼ J ð0ÞðDÞ. Suppose that s1; . . . ; sm is a sequence which is admissible of

type AN with respect to D 0. For simplicity, put yð jÞ ¼ yð jÞðDÞ, J ð jÞ ¼ J ð jÞðDÞ,
tð jÞ ¼ tð jÞðDÞ, and K ð jÞ ¼ K ð jÞðDÞ for each index j.

1. If on is a narrow transformation, then we have either ½yðnþ1Þ� ¼ ½yðnÞ�, or

K ðnÞ is apart from ½yðnÞ�V6n

j¼0
J ð jÞ.

2. If N ¼ 1, on is a wide transformation and J ðnþ1Þ ¼ J ðnÞ, then we have

½yðnþ1Þ� ¼ ½yðnÞ�.
3. If N ¼ 1, on is a wide transformation and J ðnþ1Þ 0 J ðnÞ, then K ðnÞ is of

type A3, K ðnÞnðJ ðnÞ U ftðnÞgÞJ ½yðnÞ�, and the action of on exchanges the

unique element of J ðnÞ and the unique element of K ðnÞnðJ ðnÞ U ftðnÞgÞ (the

latter belonging to ½yðnÞ�V J ðnþ1Þ).
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4. If Nb 2 and on is a wide transformation, then K ðnÞ is of type ANþ2, the

unique element s 0 of K ðnÞnðJ ðnÞ U ftðnÞgÞ belongs to ½yðnÞ�, and one of the

following two conditions is satisfied:

(a) tðnÞ is adjacent to s 0 and slðnÞ, and the action of on maps the elements

slðnÞ; slðnÞþ1; slðnÞþ2; . . . ; srðnÞ and s 0 to s 0, tðnÞ, slðnÞ; . . . ; srðnÞ�2 and srðnÞ,

respectively. Moreover;

i. if lðnÞb 3 and slðnÞ�2 A 6n

j¼0
J ð jÞ, then we have s 0 ¼ slðnÞ�2 and

tðnÞ ¼ slðnÞ�1;

ii. otherwise, we have s 0 B 6n

j¼0
J ð jÞ.

(b) tðnÞ is adjacent to s 0 and srðnÞ, and the action of on maps the elements

srðnÞ; srðnÞ�1; srðnÞ�2; . . . ; slðnÞ and s 0 to s 0, tðnÞ, srðnÞ; . . . ; slðnÞþ2 and slðnÞ,

respectively. Moreover;

i. if rðnÞa m� 2 and srðnÞþ2 A 6n

j¼0
J ð jÞ, then we have s 0 ¼ srðnÞþ2 and

tðnÞ ¼ srðnÞþ1;

ii. otherwise, we have s 0 B 6n

j¼0
J ð jÞ.

Then Proposition 6.13 is deduced by applying Lemma 6.14 and the next

lemma to the semi-standard decompositions Dn :¼ on�1 � � �o1o0 (0a na lðDÞ)
successively (note that, when n ¼ 0, i.e., Dn is an empty expression, the sequence

s1; . . . ; sN , where J ð0Þ ¼ fs1; . . . ; sNg is the standard labelling of type AN , is

admissible of type AN with respect to Dn):

Lemma 6.15. In the situation of Lemma 6.14, we define a sequence s of

elements of S in the following manner: For Cases 1, 2, 4(a)i and 4(b)i, let s be the

sequence s1; . . . ; sm; for Case 3, let s 0 be the unique element of K ðnÞnðJ ðnÞ U ftðnÞgÞ ¼
J ðnþ1Þ, and let s be the sequence s1; . . . ; sm; s

0 when s 0 B fs1; . . . ; smg and the

sequence s1; . . . ; sm when s 0 A fs1; . . . ; smg; for Case 4(a)ii, let s be the sequence

s 0, tðnÞ, slðnÞ; slðnÞþ1; . . . ; sr 0 , where r 0 denotes the largest index 1a r 0 a m with

sr 0 A 6n

j¼0
J ð jÞ; for the case 4(b)ii, let s be the sequence s 0, tðnÞ, srðnÞ; srðnÞ�1; . . . ; sl 0 ,

where l 0 denotes the smallest index 1a l 0
a m with sl 0 A 6n

j¼0
J ð jÞ. Then s is

admissible of type AN with respect to D ¼ on � � �o1o0.

Now our remaining task is to prove Lemma 6.14 and Lemma 6.15. For the

purpose, we present an auxiliary result:

Lemma 6.16. Let s1; . . . ; sm be a sequence which is admissible of type AN ,

where Nb 2, with respect to a semi-standard decomposition D of an element of W.

Suppose that the sequence s1; . . . ; sm is tight. If 1a j1 < j2 a m, j2 � j1 b 2, and

either j1 1 1 ðmod 2Þ or j2 1 m ðmod 2Þ, then sj1 is not adjacent to sj2 .
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Proof. By symmetry, we may assume without loss of generality that

j1 1 1 ðmod 2Þ. Put D ¼ on�1 � � �o1o0. Since the sequence s1; . . . ; sm is tight,

there exists an index 0a ha n with sj2 A J ðhÞ. Now the properties 2 and 3 in

Definition 6.10 imply that J ðhÞ ¼ fslðhÞ; slðhÞþ1; . . . ; srðhÞg is the standard labelling

of type AN , therefore the claim holds if sj1 A J ðhÞ (note that j2 � j1 b 2). On the

other hand, if sj1 B J ðhÞ, then the property 3 in Definition 6.10 and the fact j1 < j2

imply that j1 < lðhÞ, therefore sj1 A ½yðhÞ� since j1 1 1 ðmod 2Þ. Hence the claim

follows from the fact that J ðhÞ is apart from ½yðhÞ� (see the property 1 in

Definition 6.10). r

From now, we prove the pair of Lemma 6.14 and Lemma 6.15 by induction

on nb 0. First, we give a proof of Lemma 6.15 for n ¼ n0 by assuming Lemma

6.14 for 0a na n0. Secondly, we will give a proof of Lemma 6.14 for n ¼ n0 by

assuming Lemma 6.14 for 0a n < n0 and Lemma 6.15 for 0a n < n0.

Proof of Lemma 6.15 (for n ¼ n0) from Lemma 6.14 (for na n0). When

n0 ¼ 0, the claim is obvious from the property of on0 specified in Lemma 6.14.

From now, we suppose that n0 > 0. We may assume without loss of generality

that the sequence s1; . . . ; sm (denoted here by s 0) which is admissible with respect

to D 0 is tight, therefore we have M 0 :¼ fs1; . . . ; smg ¼ 6n0
j¼0

J ð jÞ. We divide the

proof according to the possibility of on0 listed in Lemma 6.14. By symmetry, we

may omit the argument for Case 4b without loss of generality.

In Case 1, since M 0 ¼ 6n0
j¼0

J ð jÞ as above, on0 satisfies the condition for s 0 in

Definition 6.10(5) (when Nb 2) or Definition 6.11(4) (when N ¼ 1), hence s ¼ s 0

is admissible of type AN with respect to D. Similarly, in Case 2, Case 4(a)i,

and Case 3 with s 0 A M 0, respectively, the wide transformation on0 satisfies the

condition for s 0 in Definition 6.11(5), Definition 6.10(6), and Definition 6.11(5),

respectively. Hence s ¼ s 0 is admissible of type AN with respect to D in these

three cases.

From now, we consider the remaining two cases: Case 3 with s 0 B M 0, and

Case 4(a)ii. Note that, in Case 4(a)ii, the tightness of s 0 implies that lðn0Þ ¼ 1

and r 0 ¼ m, therefore s is the sequence s 0, tðn0Þ, s1; . . . ; sm. Moreover, in this case

the unique element s 0 of K ðn0Þ V ½yðn0Þ� does not belong to 6n0
j¼0

J ð jÞ ¼ M 0,

therefore tðn0Þ cannot be adjacent to ½yðn0Þ�VM 0; hence tðn0Þ B M 0 by the property

of s 0 in Definition 6.10(3). Note also that, in both of the two cases, we have

s 0 A J ðn0þ1Þ and fs 0g is an irreducible component of ½yðn0Þ�.
We prove by induction on 0a na n0 that the sequence s is admissible of

type AN with respect to Dn and s 0 A ½yðnþ1ÞðDnÞ�, where
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Dn ¼ o 0
no

0
n�1 � � �o 0

1o
0
0 :¼ ðon0�nÞ�1ðon0�nþ1Þ�1 � � � ðon0�1Þ�1ðon0Þ

�1

is a semi-standard decomposition of an element with respect to J ðn0þ1Þ. Note

that yð jÞðDnÞ ¼ yðn0�jþ1Þ, J ð jÞðDnÞ ¼ J ðn0�jþ1Þ, tð jÞðDnÞ ¼ tðn0�jþ1Þ and K ð jÞðDnÞ ¼
K ðn0�jþ1Þ for each index j. When n ¼ 0, this claim follows immediately from

the property of on0 specified in Lemma 6.14, properties of s 0 and the definition of

s. Suppose that n > 0. Note that s 0 A ½yðnÞðDn�1Þ� (which is equal to ½yðnÞðDnÞ� ¼
½yðn0�nþ1Þ�) by the induction hypothesis. First, we consider the case that o 0

n

(or equivalently, on0�n) is a wide transformation. In this case, the possibility of

on0�n is as specified in the condition of s 0 in Definition 6.10(6) (when Nb 2)

or Definition 6.11(5) (when N ¼ 1), where h ¼ n0 � n; in particular, we have

K ðn0�nÞnftðn0�nÞgJM 0, therefore ½yðn0�nþ1Þ�nM 0 ¼ ½yðn0�nÞ�nM 0. Hence the ele-

ment s 0 of ½yðn0�nþ1Þ�nM 0 belongs to ½yðn0�nÞ� ¼ ½yðnþ1ÞðDnÞ�, and the property of

on0�n ¼ ðo 0
n0
Þ�1 implies that s is admissible of type AN with respect to Dn as

well as Dn�1. Secondly, we consider the case that o 0
n (or equivalently, on0�n) is

a narrow transformation. By applying Lemma 6.14 (for n ¼ n) to the pair Dn,

Dn�1 and the sequence s, it follows that either ½yðnþ1ÞðDnÞ� ¼ ½yðnÞðDnÞ�, or the

support of o 0
n is apart from ½yðnÞðDnÞ�V6n

j¼0
J ð jÞðDnÞ. Now in the former case,

we have s 0 A ½yðnÞðDnÞ� ¼ ½yðnþ1ÞðDnÞ�. On the other hand, in the latter case, we

have s 0 A ½yðnÞðDnÞ�V6n

j¼0
J ð jÞðDnÞ since s 0 A ½yðnÞðDnÞ� as above and s 0 A J ð0ÞðDnÞ

¼ J ðn0þ1Þ by the choice of s 0, therefore s 0 is apart from the support of o 0
n.

Hence, it follows in any case that s 0 A ½yðnþ1ÞðDnÞ�; and the property of on0�n ¼
ðo 0

nÞ
�1 specified by the condition of s 0 in Definition 6.10(5) (when Nb 2) or

Definition 6.11(4) (when N ¼ 1), where h ¼ n0 � n, implies that s is admissible of

type AN with respect to Dn as well as Dn�1. Hence the claim of this paragraph

follows.

By using the result of the previous paragraph with n ¼ n0, the sequence s

is admissible of type AN with respect to Dn0 ¼ D�1, hence with respect to D as

well. This completes the proof. r

By virtue of the above result, our remaining task is finally to prove Lemma

6.14 for n ¼ n0 by assuming Lemma 6.14 for 0a n < n0 and Lemma 6.15

for 0a n < n0 (in particular, with no assumptions when n0 ¼ 0). Put M 0 :¼
fs1; . . . ; smg. In the proof, we may assume without loss of generality that the

sequence s1; . . . ; sm (denoted here by s 0) which is admissible with respect to D 0 is

tight (hence we have J ð0Þ ¼ M 0 when n0 ¼ 0). Now by Lemma 6.8, the claim of

Lemma 6.14 holds for the case that N ¼ 1 and on0 is a wide transformation.

From now, we consider the other case that either Nb 2 or on0 is a narrow
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transformation. Assume contrary that the claim of Lemma 6.14 does not hold.

Then, by Lemma 6.8, Lemma 6.9 and the properties of the tight sequence s 0 in

Definition 6.10 (when Nb 2) or Definition 6.11 (when N ¼ 1), it follows that

the possibilities for the on0 is as follows (up to symmetry):

Case (I): on0 is a narrow transformation, K ðn0Þ is of type A2 or type I2ðmÞ with

m odd, and we have sh A K ðn0Þ V ½yðn0Þ� for some index 1a ha m; hence

tðn0Þ B M 0, K ðn0Þ ¼ fsh; tðn0Þg and the action of on0 exchanges the two

elements of K ðn0Þ.

Case (II): Nb 2, on0 is a wide transformation, K ðn0Þ is of type ANþ2, and tðn0Þ is

adjacent to slðn0Þ and the unique element s 0 of ½yðn0Þ�VK ðn0Þ; hence the

action of on0 maps the elements slðn0Þ, slðn0Þþ1, slðn0Þþ2; . . . ; srðn0Þ and s 0

to s 0, tðn0Þ, slðn0Þ; . . . ; srðn0Þ�2 and srðn0Þ, respectively. Moreover,

tðn0Þ B M 0, and

Case (II-1): s 0 ¼ sj0 for an index rðn0Þþ 2a j0am with j01m ðmod 2Þ;
Case (II-2): lðn0Þb 3 and s 0 B fslðn0Þ�2; slðn0Þ�1; . . . ; smg;
Case (II-3): lðn0Þb 3 and s 0 ¼ slðn0Þ�2.

In particular, by the tightness of s 0, the conditions in the above four cases cannot

be satisfied when n0 ¼ 0. Hence the claim holds when n0 ¼ 0. From now, we

suppose that n0 > 0.

For each of the four cases, we determine an element s A ½yðn0Þ�VM 0 and an

element t A Sn½yðn0Þ� in the following manner: s ¼ sh and t ¼ tðn0Þ in Case (I);

s ¼ sj0 and t ¼ tðn0Þ in Case (II-1); s ¼ slðn0Þ�2 and t ¼ slðn0Þ�1 in Case (II-2); and

s ¼ slðn0Þ�2 and t ¼ tðn0Þ in Case (II-3). Note that s and t are adjacent by the

definition. Since s 0 is tight, there exists an index 0a h0 a n0 � 1 with s A J ðh0Þ;

let h0 be the largest index with this property. By the definition of h0, oh0 is

a wide transformation and J ðh0þ1Þ 0 J ðh0Þ. Let r denote the element of J ðh0þ1Þ

with oh0 � s ¼ r. Then we have r A ½yðh0Þ� by the property of oh0 and the choice

of s.

Let D :¼ o 0
n 0�1 � � �o 0

1o
0
0 denote the simplification of

ðon0�1 � � �oh0þ2oh0þ1Þ�1 ¼ ðoh0þ1Þ�1ðoh0þ2Þ�1 � � � ðon0�1Þ�1

(see Section 5.1 for the terminology), and let u be the element of W expressed

by the product D. Here we present the following lemma:

Lemma 6.17. In this setting, the support of each transformation in D does not

contain t and is apart from s.
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Proof. We prove by induction on 0a n 0 a n0 � 1 that the support K 0 of

o 0
n 0 does not contain t and is apart from s. Let ðonÞ�1 be the term in

ðoh0þ1Þ�1ðoh0þ2Þ�1 � � � ðon0�1Þ�1 corresponding to the term o 0
n 0 in the simplifi-

cation D. First, by the definition of simplification and the property of narrow

transformations specified in Definition 6.10 (when Nb 2) or Definition 6.11

(when N ¼ 1), K 0 is apart from ½yðn 0ÞðDÞ�VM 0 ¼ ½yðnþ1Þ�VM 0 (see Lemma 5.5

for the equality) if o 0
n 0 (or equivalently, on) is a narrow transformation. Now we

have s A ½yðn0Þ� ¼ ½yð0ÞðDÞ� and s A M 0 by the definition, therefore the induction

hypothesis implies that s A ½yðn 0ÞðDÞ�VM 0. Hence K 0 is apart from s if o 0
n 0 is a

narrow transformation. This also implies that t B K 0 if o 0
n 0 is a narrow trans-

formation, since t is adjacent to s.

From now, we consider the other case that o 0
n 0 (or equivalently, on) is a

wide transformation. Recall that s A ½yðn 0ÞðDÞ� as mentioned above. Then, by the

property of wide transformation on specified in Definition 6.10 (when Nb 2)

or Definition 6.11 (when N ¼ 1) and the definition of simplification, it follows

that s A J ðn 0þ1ÞðDÞ provided K 0 is not apart from s. On the other hand, by the

definition of h0, we have s B J ð jÞ for any h0 þ 1a ja n0. This implies that K 0

should be apart from s; therefore we have t B K 0, since t is adjacent to s. Hence

the proof of Lemma 6.17 is concluded. r

Now, in all the cases except Case (II-2), the following property holds:

Lemma 6.18. In Cases (I), (II-1) and (II-3), there exists a root b A P½yðh0Þ� in

which the coe‰cient of as is zero and the coe‰cient of at ¼ atðn0Þ is non-zero.

Proof. First, Lemma 5.5 implies that u �PJ ðn0Þ ¼ PJ ðh0þ1Þ and ½y 0� ¼ ½yðh0þ1Þ�
where y 0 :¼ yðn

0ÞðDÞ. Put r 0 :¼ u�1 � r A J ðn0Þ. Then by Lemma 6.17 and Lemma

5.7, we have u A Yz 0; z, where z and z 0 are elements of S ðLÞ obtained from

yð0ÞðDÞ ¼ yðn0Þ and y 0 by replacing the element s with r 0 and r, respectively. Now

by the property of the wide transformation oh0 , it follows that yðh0Þ is obtained

from yðh0þ1Þ by replacing s with r; hence we have ½z 0� ¼ ½yðh0Þ�.
We show that there exists a root b 0 A P½z� in which the coe‰cient of as is

zero and the coe‰cient of atðn0Þ is non-zero. In Case (I), tðn0Þ is apart from both

½yðn0Þ�nfsg and J ðn0Þ, while we have ½z�J ð½yðn0Þ�nfsgÞU J ðn0Þ by the definition;

hence b 0 :¼ atðn0Þ satisfies the required condition. In Case (II-1), we have r ¼
slðh0þ1Þ by the property of oh0 , therefore r 0 ¼ slðn0Þ by the property of wide

transformations in D (see Definition 6.10(6)). Put b 0 :¼ atðn0Þ þ aslðn0Þ þ aslðn0Þþ1
A

PK ðn0Þ;fr 0g (note that Nb 2 and K ðn0Þ is of type ANþ2). Now K ðn0Þ is apart from
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½yðn0Þ�nfsg ¼ ½z�nfr 0g, therefore we have b 0 A P½z� and b 0 satisfies the required

condition. Moreover, in Case (II-3), we have r ¼ srðh0þ1Þ by the property of

oh0 , therefore r 0 ¼ srðn0Þ by the property of wide transformations in D (see

Definition 6.10(6)). Now, since Nb 2 and K ðn0Þ is of type ANþ2, tðn0Þ is not

adjacent to r 0, while K ðn0Þ is apart from ½yðn0Þ�nfsg ¼ ½z�nfr 0g. Hence b 0 :¼ atðn0Þ

satisfies the required condition.

By Lemma 6.17, the action of u does not change the coe‰cients of as and at.

Hence by the result of the previous paragraph, the root b :¼ u � b 0 A P½z 0� ¼ P½yðh0Þ�

satisfies the required condition, concluding the proof of Lemma 6.18. r

Since t B J ðh0Þ and t is adjacent to s, the root b A P½yðh0Þ� given by Lemma 6.18

does not belong to PJ ðh0Þ and is not orthogonal to as. However, since s A J ðh0Þ,

this contradicts the fact that PJ ðh0Þ is an irreducible component of P½yðh0Þ� (see

Definition 6.10(1) when Nb 2, or Definition 6.11(1) when N ¼ 1). Hence we

have derived a contradiction in the three cases in Lemma 6.18.

From now, we consider the remaining case, i.e., Case (II-2). In this case, the

following property holds:

Lemma 6.19. In this setting, the support of each transformation in D does not

contain tðn0Þ and is apart from s 0.

Proof. For each 0a ia n0 � h0 � 1, let Di denote the semi-standard de-

composition of an element defined by

Di ¼ o 00
i � � �o 00

1o
00
0 :¼ ðon0�iÞ�1 � � � ðon0�1Þ�1ðon0Þ

�1:

For each 0a ia n0 � h0 � 1, let si denote the sequence s 0, tðn0Þ, slðn0Þ,

slðn0Þþ1; . . . ; srðiÞ, where rðiÞ denotes the largest index slðn0Þ a rðiÞa m with

srðiÞ A 6 iþ1

j¼0
J ð jÞðDiÞ (¼ 6n0þ1

j¼n0�i
J ð jÞ). We prove the following properties by

induction on 1a ia n0 � h0 � 1: The sequence si is admissible with respect to

Di; we have s 0 A ½yðiþ1ÞðDiÞ�; and we have either ½yðiþ1ÞðDiÞ� ¼ ½yðiÞðDiÞ� and

J ðiþ1ÞðDiÞ ¼ J ðiÞðDiÞ, or the support K 00 ¼ K ðiÞðDiÞ of o 00
i is apart from s 0.

Note that, by the properties of on0 and s 0, we have s 0 A ½yðn0Þ� ¼ ½yð1ÞðD0Þ�, and
the sequence s0 (which is s 0, tðn0Þ, slðn0Þ; . . . ; srðn0Þ) is admissible with respect to

D0.

By the induction hypothesis and Lemma 6.14 for n ¼ i applied to the se-

quence si�1 and the pair Di and Di�1 (note that ia n0 � h0 � 1a n0 � 1), it
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follows that the possibilities of o 00
i ¼ ðon0�iÞ�1 are as listed in Lemma 6.14. Now

if o 00
i is a narrow transformation, then as in Case 1 of Lemma 6.14, we have

either ½yðiþ1ÞðDiÞ� ¼ ½yðiÞðDiÞ�, or K 00 is apart from s 0 (note that s 0 A ½yðiÞðDiÞ�
by the induction hypothesis, while s 0 A J ð0ÞðDiÞ ¼ J ðn0þ1Þ). On the other hand,

suppose that o 00
i ¼ ðon0�iÞ�1 is a wide transformation. Then, by the property

of s 0, the support K 00 of the wide transformation on0�i is contained in M 0,

therefore s 0 B K 00. This implies that K 00 is apart from s 0, since we have s 0 A

½yðiÞðDiÞ� by the induction hypothesis. Moreover, in any case of o 00
i , we have

s 0 A ½yðiþ1ÞðDiÞ� by the above-mentioned fact s 0 A ½yðiÞðDiÞ� and the above ar-

gument. On the other hand, the sequence s in Lemma 6.15 corresponding to

the current case is equal to si, therefore si is admissible with respect to Di by

Lemma 6.15 for n ¼ i (note again that ia n0 � 1). Hence the claim of the

previous paragraph holds.

By the above result, the simplification D ¼ o 0
n 0�1 � � �o 0

0 of o 00
n0�h0�1 � � �o 00

2o
00
1

satisfies the following conditions: For each 0a n 0 a n0 � 1, we have s 0 A ½yðn 0ÞðDÞ�,
and the support of o 0

n 0 is apart from s 0. Since tðn0Þ is adjacent to s 0, this implies

that the support of each o 0
n 0 does not contain tðn0Þ. Hence the proof of Lemma

6.19 is concluded. r

By Lemma 6.19, we have s 0 A ½yðn 0ÞðDÞ� ¼ ½yðh0þ1Þ�, therefore the set K ðh0Þ

of type ANþ2 consisting of slðn0Þ�2, slðn0Þ�1; . . . ; srðn0Þ is apart from s 0. On the

other hand, since slðn0Þ�2 A ½yðn0Þ�, the set K ðn0Þ of type ANþ2 is apart from s 0.

From now, by using these properties, we construct a root b 0 A P½yðn0Þ�nPJ ðn0Þ

which is not orthogonal to aslðn0Þþ1
A PJ ðn0Þ (note that Nb 2), in the following five

steps.

Step 1. Note that the set K ðn0Þ is apart from ½yðn0Þ�nK ðn0Þ. Put zð0Þ :¼ yðn0Þ.

Then we have u1 :¼ wtðn0Þ

zð0Þ
¼ s 0tðn0Þ A Yzð1Þ; zð0Þ , where zð1Þ A S ðLÞ is obtained from

zð0Þ by replacing s 0 with tðn0Þ. Similarly, we have u2 :¼ w
slðn0Þ

zð1Þ
¼ tðn0Þslðn0Þ A Yzð2Þ; zð1Þ ,

where zð2Þ A S ðLÞ is obtained from zð1Þ by replacing tðn0Þ with slðn0Þ. Now, since

b0 :¼ aslðn0Þ and b 0
0 :¼ aslðn0Þþ1

are non-orthogonal elements of PJ ðn0Þ JP½zð0Þ�, the

roots b2 :¼ u2u1 � b0 ¼ as 0 and b 0
2 :¼ u2u1 � b 0

0 ¼ atðn0Þ þ aslðn0Þ þ aslðn0Þþ1
are non-

orthogonal elements of P½zð2Þ�.

Step 2. By the construction, zð2Þ is obtained from yðn0Þ by replacing s 0 with

slðn0Þ. On the other hand, we have J ðn0Þ ¼ J ðh0þ1Þ and u � slðn0Þ ¼ slðn0Þ by the

property of wide transformations in D. Now by Lemma 5.7, we have u3 :¼
u A Yzð3Þ; zð2Þ , where zð3Þ A S ðLÞ is obtained from yðn

0ÞðDÞ by replacing s 0 with

slðn0Þ. Note that ½zð3Þ� ¼ ð½yðn 0ÞðDÞ�nfs 0gÞU fslðn0Þg ¼ ð½yðh0þ1Þ�nfs 0gÞU fslðn0Þg. Put
b3 :¼ u3 � b2 and b 0

3 :¼ u3 � b 0
2. Then we have b3; b

0
3 A P½zð3Þ� and hb3; b

0
3i0 0.
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Moreover, by Lemma 6.17 and Lemma 6.19, u3 fixes as 0 , hence b3 ¼ as 0 ; and the

action of u3 does not change the coe‰cients of as 0 , atðn0Þ , as and at, hence the

coe‰cients of these four simple roots in b 0
3 are 0, 1, 0 and 0, respectively. This

also implies that the coe‰cient of aslðn0Þ in b 0
3 is non-zero, since tðn0Þ is adjacent to

slðn0Þ A ½zð3Þ�.
Step 3. Note that the set K ðh0Þ is apart from ½yðh0þ1Þ�nK ðh0Þ, hence from

½zð3Þ�nK ðh0Þ. Then we have u4 :¼ wt
zð3Þ

¼ tslðn0Þst A Yzð4Þ; zð3Þ , where zð4Þ A S ðLÞ is

obtained from zð3Þ by exchanging slðn0Þ and s. Now we have b4 :¼ u4 � b3 ¼
as 0 A P½zð4Þ�, b 0

4 :¼ u4 � b 0
3 A P½zð4Þ� and hb4; b

0
4i0 0. Moreover, by the property of

coe‰cients in b 0
3 mentioned in Step 2 and the fact that t is adjacent to slðn0Þ

and s, it follows that the coe‰cient of as in b 0
4 is non-zero.

Step 4. Since ½zð4Þ� ¼ ½zð3Þ�, there exists an element zð5Þ A S ðLÞ satisfying

that ½zð5Þ� ¼ ½zð2Þ� and u5 :¼ u�1 A Yzð5Þ; zð4Þ . We have b5 :¼ u5 � b4 A P½zð5Þ�, b 0
5 :¼

u5 � b 0
4 A P½zð5Þ� and hb5; b

0
5i0 0. Now by Lemma 6.17 and Lemma 6.19, u5 fixes

as 0 , hence b5 ¼ as 0 ; and the action of u5 does not change the coe‰cient of as,

hence the coe‰cient of as in b 0
5 is non-zero.

Step 5. Put u6 :¼ u�1
2 and u7 :¼ u�1

1 . Since ½zð5Þ� ¼ ½zð2Þ� as above, there exists

an element zð7Þ A S ðLÞ satisfying that ½zð7Þ� ¼ ½zð0Þ� ¼ ½yðn0Þ� and u7u6 A Yzð7Þ; zð5Þ .

Now we have b7 :¼ u7u6 � b5 ¼ as 0 , since b5 ¼ b2. On the other hand, put

b 0
7 :¼ u7u6 � b 0

5. Then we have b 0
7 A P½zð7Þ� ¼ P½yðn0Þ� and hb7; b

0
7i0 0. Moreover,

since u7u6 A WSnfsg, the coe‰cient of as in b 0
7 is the same as the coe‰cient of as

in b 0
5, which is non-zero as mentioned in Step 4.

Hence we have constructed a root b 0 ¼ b 0
7 satisfying the above condition.

However, this contradicts the fact that PJ ðn0Þ is an irreducible component of

P½yðn0Þ� (see Definition 6.10(1)).

Summarizing, we have derived a contradiction in any of the four cases, Case

(I)–Case (II-3), therefore Lemma 6.14 for n ¼ n0 holds. Hence our claim has

been proven in the case PJ; IVJ JFI ? .

This completes the proof of Theorem 4.1.

7. A Counterexample for the General Case

In this section, we present an example which shows that our main theorem,

Theorem 4.1, will not generally hold when the assumption on the A>1-freeness

of I JS is removed.

We consider a Coxeter system ðW ;SÞ of rank 7 with Coxeter graph G in

Figure 5, where the vertex labelled by an integer i corresponds to a generator

si A S. Put I ¼ fs4; s5g which is of type A2 (hence is not A>1-free).
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To determine the simple system PI of W?I , Proposition 3.3(3) implies that

each element of PI is written as u � gðy; sÞ, where y A S ðLÞ, u A YxI ;y, s A Sn½y�,
½y�@s is of finite type, jðy; sÞ ¼ y, and gðy; sÞ is the unique element of ðF?½y�

½y�U fsgÞ
þ

as in Proposition 3.2. In this case, the element u�1 A Yy;xI admits a decomposition

as in Proposition 3.3(2). In particular, such an element y can be obtained from

xI by applying a finite number of operations of the form z 7! jðz; tÞ with an

appropriate element t A S. Table 16 gives a list of all the element y A S ðLÞ

obtained in this way. In the second and the fourth columns of the table, we

abbreviate each si (1a ia 7) to i for simplicity. This table shows, for each y, all

the elements t A Sn½y� satisfying that ½y�@t is of finite type and jðy; tÞ0 y, as well

as the corresponding element jðy; tÞ A S ðLÞ (more precisely, the subset ½jðy; tÞ�
of S). Now the list of the y in the table is closed by the operations y 7! jðy; tÞ,
while it involves the starting point xI (No. I in Table 16), therefore the list indeed

includes a complete list of the possible y.

On the other hand, Table 16 also includes some elements of ðF?½y�Þþ for each

possible y A S ðLÞ. In the third column of the table, we abbreviate a root
P7

i¼1 ciasi
to ½c1c2 j c3c4c5 j c6c7�. Moreover, a line is drawn under the coe‰cient ci of asi if si

belongs to ½y�. Now for each y, each root g A ðF?½y�Þþ and each t appearing in

the table, the root wt
y � g A ðF?½jðy; tÞ�Þþ also appears in the row corresponding

to the element jðy; tÞ A S ðlÞ. Moreover, for each y in the table, if an element

s A Sn½y� satisfies that ½y�@s is of finite type and jðy; sÞ ¼ y, then the corre-

sponding root gðy; sÞ always appears in the row corresponding to the y. By these

properties, the above-mentioned characterization of the elements of PI and the

decompositions of elements of YxI ;y given by Proposition 3.3(2), it follows that all

the elements of PI indeed appear in the list. Hence we have PI ¼ fas1 ; as2g (see

the row I in Table 16), therefore both elements of PI satisfy that the corre-

sponding reflection belongs to W?I
fin .

Moreover, we consider the following sequence of operations:

Figure 5: Coxeter graph G and subset I JS for the counterexample; here the two duplicated circles

correspond to I ¼ fs4; s5g
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xI :¼ ðs4; s5Þ !
3 ðs3; s4Þ !

1 ðs1; s3Þ !
2 ðs3; s2Þ !

4 ðs4; s3Þ

!5 ðs5; s4Þ !
6 ðs6; s5Þ !

7 ðs5; s7Þ !
4 ðs4; s5Þ ¼ xI ;

where we write z !i z 0 to signify the operation z 7! z 0 ¼ jðz; siÞ. Then a direct

calculation shows that the element w of YI defined by the product of the elements

wt
z corresponding to the above operations satisfies that w � as1 ¼ as2 . Hence the

conclusion of Theorem 4.1 does not hold in this case where the assumption on

the A>1-freeness of I is not satisfied.
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