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ON QUASI-EINSTEIN SPACETIMES

By
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†, Dae Won Yoon and Shyamal Kumar Hui

Abstract. The notion of quasi-Einstein manifolds arose during the

study of exact solutions of the Einstein field equations as well as

during considerations of quasi-umbilical hypersurfaces. For instance,

the Robertson-Walker spacetimes are quasi-Einstein manifolds. The

object of the present paper is to study quasi-Einstein spacetimes.

Some basic geometric properties of such a spacetime are obtained.

The applications of quasi-Einstein spacetimes in general relativity and

cosmology are investigated. Finally, the existence of such spacetimes

are ensured by several interesting examples.

1. Introduction

It is well known that a connected Riemannian manifold ðMn; gÞ ðn > 2Þ is

Einstein if its Ricci tensor S of type (0, 2) is of the form

S ¼ ag;

where a is a constant, which turns into

S ¼ r

n
g;

r being the scalar curvature (constant) of the manifold.

The notion of quasi-Einstein manifolds arose during the study of exact solu-

tions of the Einstein field equations as well as during considerations of quasi-

umbilical hypersurfaces. For instance, the Robertson-Walker spacetimes are

quasi-Einstein manifolds. Let ðMn; gÞ, nb 3 be a semi-Riemannian manifold. Let
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US ¼ x A M : S0 r
n
g at x

� �
. The manifold ðMn; gÞ is said to be a quasi-Einstein

manifold ([3], [5], [6], [7], [8], [9]) if on US HM, we have

S � ag ¼ bAnA;ð1:1Þ

where A is an 1-form on US and a, b are some functions on US. It is clear that

the 1-form A, as well as the function b is non-zero at every point of US. An

n-dimensional manifold of this kind is denoted by ðQEÞn. The scalars a, b are

known as the associated scalars. From the above definition it follows that every

Einstein manifold is quasi-Einstein. In particular, every Ricci flat manifold (e.g.

the Schwarzschild spacetime) is quasi-Einstein.

An n-dimensional Lorentzian manifold M is a smooth connected para-

compact Hausdor¤ manifold with a Lorentzian metric g, that is, M admits a

smooth symmetric tensor field g of type (0, 2) such that for each point p A M,

the tensor gp : TpM � TpM ! R is a non-degenerate inner product of signature

ðþ;þ;þ; . . . ;þ;�Þ, where TpM denotes the tangent vector space of M at p and

R is the real number space. A non-zero vector v A TpM is said to be timelike

(resp. non-spacelike, null, spacelike) if it satisfies gpðv; vÞ < 0 (resp.a 0, ¼ 0, > 0)

([2], [18]).

Recently Shaikh et. al. [24] studied the Lorentzian quasi-Einstein manifolds

(briefly, ðLQEÞn) and obtained its several properties with the existence and found

its applications to the general relativity and cosmology. A Lorentzian quasi-

Einstein manifold is a ðQEÞn with the generator r as the unit timelike vector field

such that gðr; rÞ ¼ �1. A spacetime is a connected 4-dimensional Lorentzian

manifold, and a quasi-Einstein spacetime is a connected ðLQEÞ4.
The present paper deals with a study of quasi-Einstein spacetimes. In general

relativity the matter content of the spacetime is described by the energy mo-

mentum tensor T which is to be determined from physical considerations dealing

with the distribution of matter and energy. Since the matter content of the

universe is assumed to behave like a perfect fluid in the standard cosmological

models, the physical motivation for studying Lorentzian manifolds is the as-

sumption that a gravitational field may be e¤ectively modeled by some Lor-

entzian metric defined on a suitable four dimensional manifold M. The Einstein

equations are fundamental in the construction of cosmological models which

imply that the matter determines the geometry of the spacetime and conversely

the motion of matter is determined by the metric tensor of the space which is

non-flat.

The physical motivation for studying various types of spacetime models in

cosmology is to obtain the information of di¤erent phases in the evolution of the
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universe, which may be classified into three phases, namely, the initial phase, the

intermediate phase and the final phase. The initial phase is just after the Big Bang

when the e¤ects of both viscosity and heat flux were quite pronounced. The

intermediate phase is that when the e¤ect of viscosity was no longer significant

but the heat flux was till not negligible. The final phase, which extends to the

present state of the universe when both the e¤ects of viscosity and heat flux have

become negligible and the matter content of the universe may be assumed to be

perfect fluid. The study of ðLQEÞn is important because such spacetime represents

the third phase in the evolution of the universe. Consequently, the investigations

of quasi-Einstein manifolds helps us to have a deeper understanding of the global

character of the universe including the topology, because the nature of the

singularities can be defined from a di¤erential geometric stand point.

It is well known that a locally symmetric manifold is Ricci parallel and the

converse holds for dimension three. By the decomposition of the covariant

derivative ‘S of the Ricci tensor S of type (0, 2), A. Gray [11] introduced two

important classes A, B, which lie between the class of Ricci-parallel manifolds

and the manifolds of constant scalar curvature, namely (i) the class A is the class

of manifolds whose Ricci tensor is cyclic parallel and (ii) the class B is the class

of manifolds whose Ricci tensor is of Codazzi type. In the present paper both the

classes of quasi-Einstein spacetimes are classified.

Section 2 of the paper is devoted to the study of quasi-Einstein spacetime

with cyclic parallel Ricci tensor. In a quasi-Einstein spacetime with cyclic parallel

Ricci tensor, the scalar curvature is always constant. In a quasi-Einstein space-

time with constant scalar curvature, the associated scalars a and b are not

necessarily constants. However, if a and b are constants then such a spacetime

is of constant scalar curvature. It is proved that a quasi-Einstein spacetime with

cyclic parallel Ricci tensor, the associated scalars are constants. Also it is shown

that in a quasi-Einstein spacetime with cyclic parallel Ricci tensor, the energy-

momentum tensor is cyclic parallel. In a quasi-Einstein spacetime with cyclic

parallel Ricci tensor the nature of the generator r is determined and proved that

it is a Killing vector field.

Section 3 deals with perfect fluid quasi-Einstein spacetimes with the generator

r of the spacetime as the flow vector field of the fluid and proved that such a

spacetime can not contain pure matter.

Section 4 is concerned with the study of perfect fluid quasi-Einstein space-

times with Codazzi type energy-momentum tensor. It is proved that in a quasi-

Einstein spacetime, the energy-momentum tensor is of Codazzi type if and only

if the Ricci tensor is of Codazzi type. Again, it is shown that if the energy-
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momentum tensor of a perfect fluid quasi-Einstein spacetime is of Codazzi type

then both the energy density and isotropic pressure of the spacetimes are constant

over a hypersurface orthogonal to the flow vector field. Again it is shown that

if the energy-momentum tensor of a perfect fluid quasi-Einstein spacetime is of

Codazzi type, then the possible local cosmological structure of such a spacetime

are of Petrov type I, D or O. It is proved that if a perfect fluid quasi-Einstein

spacetime with Codazzi type energy-momentum tensor admits a conformal

Killing vector field, then such a spacetime is either conformally flat or of Petrov

type N.

Section 5 deals with conformally flat quasi-Einstein spacetimes and proved

that such a spacetime is infinitesimally spatially isotropic relative to the unit

timelike vector field r. Finally the last section deals with some non trivial

examples of quasi-Einstein spacetimes.

2. Quasi-Einstein Spacetimes with Cyclic Parallel Ricci Tensor

Let us consider a quasi-Einstein spacetime with cyclic parallel Ricci tensor.

Then we have

ð‘XSÞðY ;ZÞ þ ð‘YSÞðX ;ZÞ þ ð‘ZSÞðX ;YÞ ¼ 0:ð2:1Þ

From (1.1) it follows that

r ¼ 4a� bð2:2Þ

and

Sðr; rÞ ¼ b � a:ð2:3Þ

Again from (1.1), we obtain

ð‘ZSÞðX ;YÞ ¼ daðZÞgðX ;YÞ þ dbðZÞAðXÞAðY Þð2:4Þ

þ b½ð‘ZAÞðXÞAðY Þ þ AðXÞð‘ZAÞðYÞ�:

In view of (2.4), (2.1) yields

daðX ÞgðY ;ZÞ þ dbðXÞAðYÞAðZÞ þ daðY ÞgðZ;X Þð2:5Þ

þ dbðYÞAðZÞAðXÞ þ daðZÞgðX ;Y Þ þ dbðZÞAðXÞAðYÞ

þ b½ð‘XAÞðYÞAðZÞ þ AðY Þð‘XAÞðZÞ þ ð‘YAÞðZÞAðXÞ

þ AðZÞð‘YAÞðXÞ þ ð‘ZAÞðX ÞAðY Þ þ AðXÞð‘ZAÞðY Þ� ¼ 0:
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Setting Y ¼ Z ¼ r in (2.5), we obtain

2bð‘rAÞðX Þ ¼ dbðXÞ � daðX Þ þ 2AðXÞ½daðrÞ � dbðrÞ�:ð2:6Þ

Let fei : i ¼ 1; 2; 3; 4g be an orthonormal basis of the tangent space at each point

of the spacetime. Setting Y ¼ Z ¼ ei in (2.5) and then taking summation for

1a ia 4, we get

6 daðXÞ � dbðX Þ þ 2AðXÞ dbðrÞð2:7Þ

þ 2b ð‘rAÞðXÞ þ
X4

i¼1

eið‘eiAÞðeiÞAðXÞ
" #

¼ 0;

where ei ¼ gðei; eiÞ.
Now from (2.2) we have

drðXÞ ¼ 4 daðXÞ � dbðXÞ:ð2:8Þ

In a quasi-Einstein spacetime with cyclic parallel Ricci tensor, the scalar cur-

vature r is always constant and hence

drðXÞ ¼ 0 for all X :ð2:9Þ

By virtue of (2.9) we have from (2.8) that

daðXÞ ¼ 1

4
dbðXÞ:ð2:10Þ

Using (2.10) in (2.6) we have

2bð‘rAÞðX Þ ¼ 3

4
dbðXÞ � 3

2
AðX Þ dbðrÞ:ð2:11Þ

In view of (2.10) and (2.11), (2.7) yields

2b
X4

i¼1

eið‘eiAÞðeiÞAðX Þ ¼ � 5

4
dbðX Þ � 1

2
AðXÞ dbðrÞ:ð2:12Þ

Setting X ¼ r in (2.11), we obtain

2b
X4

i¼1

eið‘eiAÞðeiÞ ¼
3

4
dbðrÞ:ð2:13Þ

Again setting X ¼ r in (2.11) we get

dbðrÞ ¼ 0:ð2:14Þ
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By virtue of (2.14), it follows from (2.11) and (2.13) that

2bð‘rAÞðXÞ ¼ 3

4
dbðX Þð2:15Þ

and

X4

i¼1

eið‘eiAÞðeiÞ ¼ 0:ð2:16Þ

Using (2.10) and (2.14)–(2.16) in (2.7) we get

dbðXÞ ¼ 0 for all Xð2:17Þ

and

daðX Þ ¼ 0 for all X ;ð2:18Þ

that is, a and b are constants. This leads to the following:

Theorem 2.1. In a quasi-Einstein spacetime with cyclic parallel Ricci tensor,

the associated scalars are constants.

The general relativity flows from Einstein’s equation which is given by

SðX ;YÞ � r

2
gðX ;Y Þ þ lgðX ;YÞ ¼ kTðX ;YÞð2:19Þ

for all vector fields X , Y , where S is the Ricci tensor of type (0, 2), r is the scalar

curvature, k is the gravitational constant, l is the cosmological constant and T is

the energy-momentum tensor of type (0, 2). The matter content of the spacetime

is described by the energy-momentum tensor T which is to be determined from

physical considerations dealing with the distribution of matter and energy. Now

from (2.19) we have

ð‘ZSÞðX ;YÞ ¼ 1

2
drðZÞgðX ;YÞ þ kð‘ZTÞðX ;YÞ:ð2:20Þ

By virtue of (2.9) we have from (2.20) that

ð‘ZSÞðX ;Y Þ ¼ kð‘ZTÞðX ;YÞð2:21Þ

and hence from (2.1) we obtain

ð‘XTÞðY ;ZÞ þ ð‘YTÞðX ;ZÞ þ ð‘ZTÞðX ;YÞ ¼ 0;ð2:22Þ
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that is, the energy-momentum tensor is cyclic parallel. Hence we can state the

following:

Theorem 2.2. In a quasi-Einstein spacetime with cyclic parallel Ricci tensor,

the energy-momentum tensor is cyclic parallel.

Again if (2.22) holds, then in view of (2.21) we obtain

ð‘XSÞðY ;ZÞ þ ð‘YSÞðX ;ZÞ þ ð‘ZSÞðX ;YÞð2:23Þ

¼ 1

2
½drðX ÞgðY ;ZÞ þ drðYÞgðZ;XÞ þ drðZÞgðX ;YÞ�:

Again in a quasi-Einstein spacetime the relation (2.8) holds. Hence if a and b are

constants, then by virtue of (2.8) we obtain from the above relation that the Ricci

tensor is cyclic parallel. Thus we can state the following:

Theorem 2.3. If in a quasi-Einstein spacetime with constant associated

scalars, the energy-momentum tensor is cyclic parallel, then the Ricci tensor is

cyclic parallel.

Next in view of (2.17) and (2.18), (2.4) implies that

ð‘XAÞðY ÞAðZÞ þ AðYÞð‘XAÞðZÞ þ ð‘YAÞðZÞAðX Þð2:24Þ

þ AðZÞð‘YAÞðX Þ þ ð‘ZAÞðXÞAðYÞ þ AðX Þð‘ZAÞðYÞ ¼ 0:

In a quasi-Einstein spacetime with cyclic parallel Ricci tensor, a and b are

constants, and hence (2.11) yields

ð‘rAÞðXÞ ¼ 0 for all X :

Setting Z ¼ r in (2.24) we obtain by virtue of above that

ð‘XAÞðYÞ þ ð‘YAÞðXÞ ¼ 0;ð2:25Þ

which yields

gðY ;‘XrÞ þ gðX ;‘YrÞ ¼ 0;ð2:26Þ

which implies that r is a Killing vector field. This leads to the following:

Theorem 2.4. In a quasi-Einstein spacetime with cyclic parallel Ricci tensor,

the generator r is a Killing vector field.
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3. Perfect Fluid Quasi-Einstein Spacetimes

We now consider that the matter distribution of a non-flat quasi-Einstein

spacetime is perfect fluid. Then the Einstein’s field equation without cosmological

constant is given by

SðX ;Y Þ � r

2
gðX ;Y Þ ¼ kTðX ;Y Þð3:1Þ

for all vector fields X , Y , where S is the Ricci tensor of type (0, 2), r is the scalar

curvature, k is the gravitational constant and T is the energy-momentum tensor

of type (0, 2).

In a perfect fluid spacetime, the energy-momentum tensor is of the following

form [18]:

TðX ;YÞ ¼ pgðX ;Y Þ þ ðsþ pÞAðX ÞAðY Þ;ð3:2Þ

where s, p are respectively the energy density, isotropic pressure and r is the unit

timelike flow vector field of the fluid such that AðXÞ ¼ gðX ; rÞ for all X .

In view of (3.2), the relation (3.1) can be written as

SðX ;Y Þ � r

2
gðX ;YÞ ¼ k½pgðX ;Y Þ þ ðsþ pÞAðX ÞAðY Þ�:ð3:3Þ

Taking a frame field and contracting (3.3) over X and Y , we get

r ¼ kðs� 3pÞ:ð3:4Þ

By virtue of (3.4), (3.3) yields

SðX ;Y Þ ¼ k ðsþ pÞAðXÞAðY Þ þ 1

2
ðs� pÞgðX ;YÞ

� �
ð3:5Þ

and hence

SðQX ;YÞ ¼ k ðsþ pÞAðQX ÞAðY Þ þ 1

2
ðs� pÞSðX ;Y Þ

� �
:ð3:6Þ

Taking contraction on (3.6) over X and Y , we obtain

kQk2 ¼ k ðsþ pÞSðr; rÞ þ 1

2
ðs� pÞr

� �
:ð3:7Þ

Using (2.3) and (3.4) in (3.7) we have

kQk2 ¼ k ðsþ pÞðb � aÞ þ 1

2
kðs� pÞðs� 3pÞ

� �
:ð3:8Þ
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Setting X ¼ Y ¼ r in (3.5) and using (2.3) we get

b � a ¼ k

2
ðsþ 3pÞ:ð3:9Þ

Since the quasi-Einstein spacetime under consideration is non-flat, we have

b � a0 0 and hence (3.9) implies that ðsþ 3pÞ0 0 and k0 0.

So by virtue of (3.9) we obtain from (3.8) that

kQk2 ¼ k2ðs2 þ 3p2Þ:ð3:10Þ

Let us suppose that the length of the Ricci operator of the perfect fluid non-flat

quasi-Einstein spacetime be 1
3 r

2, where r is the scalar curvature of the spacetime.

Then from (3.10) we have

1

3
r2 ¼ k2ðs2 þ 3p2Þ;

which yields by virtue of (3.4) that

k2ðsþ 3pÞs ¼ 0:ð3:11Þ

Since ðsþ 3pÞ0 0 and k0 0, it follows from (3.11) that s ¼ 0, which is not

possible as when the pure matter exists, s is always greater than zero. Hence the

spacetime under consideration can not contain pure matter.

Now we determine the sign of pressure in such a spacetime without pure

matter. Hence for s ¼ 0, (3.4) yields

p ¼ � r

3k
:ð3:12Þ

Again by virtue of (1.1), for s ¼ 0 the relation (3.3) yields

a� r

2

� �
gðX ;YÞ þ bAðX ÞAðYÞ ¼ kp½AðXÞAðY Þ þ gðX ;YÞ�:ð3:13Þ

Contracting (3.13) over X and Y , we get

r ¼ 1

2
ð4a� b � 3kpÞ;

and hence (3.12) reduces to

p ¼ 1

3k
ðb � 4aÞ;ð3:14Þ
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which implies that p > 0 if a < b
4 and p < 0 if a > b

4 . This leads to the fol-

lowing:

Theorem 3.1. If a perfect fluid non-flat quasi-Einstein spacetime obeys

Einstein equation without cosmological constant and the square of the length of the

Ricci operator is 1
3 r

2, then the spacetime can not contain pure matter. Also in such

a spacetime without pure matter the pressure of the fluid is positive or negative

according as a < b
4 or a > b

4 .

4. Perfect Fluid Quasi-Einstein Spacetimes with Codazzi Type Energy-

Momentum Tensor

We now consider the perfect fluid quasi-Einstein spacetime with Codazzi type

energy-momentum tensor [10]. In a perfect fluid quasi-Einstein spacetime the

energy-momentum tensor is of the form (3.2).

Since the energy-momentum tensor T is of Codazzi type [10], we have

ð‘XTÞðY ;ZÞ ¼ ð‘ZTÞðY ;X Þ:ð4:1Þ

Then from (2.20) we get

ð‘XSÞðY ;ZÞ � ð‘ZSÞðX ;YÞ � 1

2
½drðXÞgðY ;ZÞ � drðZÞgðX ;YÞ�ð4:2Þ

¼ k½ð‘XTÞðY ;ZÞ � ð‘ZTÞðX ;YÞ�:

In view of (4.1), (4.2) yields

ð‘XSÞðY ;ZÞ � ð‘ZSÞðX ;YÞ � 1

2
½drðXÞgðY ;ZÞ � drðZÞgðX ;Y Þ� ¼ 0:ð4:3Þ

Now contracting (4.3) over Y and Z we get

drðX Þ ¼ 0 for all X ;ð4:4Þ

which shows that the scalar curvature is constant.

Using (4.4) in (4.3) we obtain

ð‘XSÞðY ;ZÞ ¼ ð‘ZSÞðY ;X Þ;ð4:5Þ

that is, the Ricci tensor is of Codazzi type. Again taking contraction on (4.5) over

Y and Z, we get the relation (4.4). Then by virtue of (4.4) and (4.5), (4.2) yields

the relation (4.1). Hence we can state the following:
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Theorem 4.1 [24]. In a quasi-Einstein spacetime the energy-momentum tensor

is of Codazzi type if and only if its Ricci tensor is of Codazzi type.

Let TðX ;Y Þ ¼ gðT
�
X ;YÞ. Then from (2.19) it follows that

QX ¼ 1

2
rX þ kT

�
X � lX ;ð4:6Þ

where Q is the Ricci operator and hence (4.1) can be written as

ð‘XT
�
ÞY ¼ ð‘YT

�
ÞX :ð4:7Þ

From (3.2) we have

T
�
Y ¼ ðsþ pÞAðYÞrþ pY :ð4:8Þ

Di¤erentiating (4.8) covariantly we get

ð‘XT
�
ÞY ¼ fðXsÞ þ ðXpÞgAðY Þrþ ðsþ pÞð‘XAÞðYÞrð4:9Þ

þ ðsþ pÞAðYÞ‘Xrþ ðXpÞY :

Using (4.9) in (4.7) and then setting Y ¼ r, we obtain

�fðXsÞ þ ðXpÞgr� ðsþ rÞ‘Xrþ ðXpÞrð4:10Þ

¼ fðrsÞ þ ðrpÞgAðXÞrþ ðsþ pÞð‘rAÞðX Þrþ ðsþ pÞ‘rrþ ðrpÞX :

In a subsequent paper [24] Shaikh et. al. obtained the following:

Theorem 4.2. If the energy-momentum tensor of a perfect fluid quasi-Einstein

spacetime is of Codazzi type, then the integral curves of the flow vector field are

geodesics.

Proof. If the energy-momentum tensor is of Codazzi type then by virtue of

Theorem 4.1, the Ricci tensor is of Codazzi type and hence the relations (4.4) and

(4.5) hold. Again using (1.1) in the relation (4.4), we get

daðXÞgðY ;ZÞ þ dbðX ÞAðYÞAðZÞ þ b½ð‘XAÞðYÞAðZÞ þ AðY Þð‘XAÞðZÞ�ð4:11Þ

¼ daðZÞgðX ;YÞ þ dbðZÞAðXÞAðY Þ

þ b½ð‘ZAÞðX ÞAðY Þ þ AðXÞð‘ZAÞðY Þ�:
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Let fei : i ¼ 1; 2; 3; 4g be an orthonormal frame field at any point of the quasi-

Einstein spacetime. Setting Y ¼ Z ¼ ei in (4.11) and then taking summation for

1a ia 4, we obtain

3 daðXÞ � dbðXÞ ¼ dbðrÞAðXÞ þ b ð‘rAÞðXÞ þ AðX Þ
X4

i¼1

eið‘eiAÞðeiÞ
( )

;ð4:12Þ

where ei ¼ gðei; eiÞ. Again setting Y ¼ Z ¼ r in (4.11) we get

dbðX Þ � daðXÞ ¼ daðrÞAðX Þ � dbðrÞAðX Þ � bð‘rAÞðXÞ:ð4:13Þ

Adding (4.12) and (4.13) we have

2 daðXÞ ¼ daðrÞAðXÞ þ bAðXÞ
X4

i¼1

eið‘eiAÞðeiÞ:ð4:14Þ

Setting X ¼ r in (4.14) we get

�3 daðrÞ ¼ b
X4

i¼1

eið‘eiAÞðeiÞ:ð4:15Þ

By virtue of (4.14) and (4.15) we obtain

daðX Þ þ daðrÞAðXÞ ¼ 0:ð4:16Þ

Since in a quasi-Einstein spacetime the scalar curvature r is given by r ¼ 4a� b,

so by virtue of (4.4) we get daðXÞ ¼ 1
4 dbðX Þ, and hence (4.16) yields

dbðX Þ þ dbðrÞAðX Þ ¼ 0:ð4:17Þ

In view of (4.15), (4.16) and (4.17), we obtain from (4.12) that

ð‘rAÞðXÞ ¼ 0ð4:18Þ

for all X , which implies that

‘rr ¼ 0ð4:19Þ

and hence the integral curves of r are geodesics.

Again substituting Z by r in (4.11) and then using (4.17) and (4.18), we

obtain

bð‘XAÞðYÞ ¼ daðX ÞAðYÞ � daðrÞgðX ;Y Þ:ð4:20Þ
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From (4.16) and (4.20), it follows that

ð‘XAÞðYÞ ¼ f fgðX ;YÞ þ AðX ÞAðYÞg;ð4:21Þ

where f is a non-vanishing scalar given by

f ¼ � daðrÞ
b

¼ � dbðrÞ
4b

:

By virtue of (4.18), (4.19) and (4.21) it follows from (4.10) that

�fðXsÞ þ ðXpÞgr� ðsþ rÞ f ½X þ AðXÞr� þ ðXpÞrð4:22Þ

¼ fðrsÞ þ ðrpÞgAðX Þrþ ðrpÞX :

Taking contraction on (4.6) we have

r ¼ 4lþ kðs� 3pÞ:ð4:23Þ

Again di¤erentiating (4.23) covariantly, we have

drðX Þ ¼ kfðXsÞ � 3ðXpÞg:ð4:24Þ

Since the spacetime under consideration has Codazzi type energy-momentum

tensor, we have the relation (4.4) and hence by virtue of (4.4) we get from (4.24)

that

ðXpÞ ¼ 1

3
ðXsÞ:ð4:25Þ

Using (4.25) in (4.22) we obtain

�ðXsÞr� ðsþ rÞ f ½X þ AðX Þr� ¼ 4

3
ðrsÞAðX Þrþ 1

3
ðrsÞX :ð4:26Þ

Taking the inner product on both sides of (4.26) by Y , we get

�ðXsÞAðYÞ � ðsþ rÞ f ½gðX ;YÞ þ AðX ÞAðYÞ�ð4:27Þ

¼ 1

3
ðrsÞ½4AðX ÞAðYÞ þ gðX ;Y Þ�:

Setting Y ¼ r in (4.27) we obtain

ðXsÞ ¼ �ðrsÞAðX Þ i:e:; grad s ¼ �ðrsÞr;ð4:28Þ

and hence from (4.25) and (4.28) it follows that

ðXpÞ ¼ �ðrpÞAðXÞ i:e:; grad p ¼ �ðrpÞr:ð4:29Þ
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From (4.28) and (4.29) we may conclude that s and p are constants over a

hypersurface orthogonal. Thus we can state the following:

Theorem 4.3. If the energy-momentum tensor of a perfect fluid quasi-Einstein

spacetime is of Codazzi type, then both the energy density and isotropic pressure of

the fluid are constants over a hypersurface orthogonal to r.

Again since the integral curves of r in a quasi-Einstein spacetime with

Codazzi type energy-momentum tensor are geodesics, the Roy Choudhury

equation [20] for the fluid in a quasi-Einstein spacetime can be written as

ð‘XAÞðY Þ ¼ oðX ;YÞ þ tðX ;YÞ þ f ½gðX ;YÞ þ AðX ÞAðY Þ�;ð4:30Þ

where o is the vorticity tensor and t is the shear tensor respectively.

Comparing (4.21) and (4.30) we get

oðX ;YÞ þ tðX ;YÞ ¼ 0:ð4:31Þ

Also from (4.21) it follows that

ð‘XAÞðYÞ � ð‘YAÞðXÞ ¼ 0;ð4:32Þ

i.e.,

gð‘Xr;YÞ � gðX ;‘YrÞ ¼ 0;

which implies that curl r ¼ 0, that is, r is irrotational. Hence the vorticity of

the fluid vanishes. Therefore oðX ;YÞ ¼ 0 and consequently (4.31) implies that

tðX ;Y Þ ¼ 0. Thus we can state the following:

Theorem 4.4. In a perfect fluid quasi-Einstein spacetime with Codazzi type

energy-momentum tensor, the fluid has vanishing vorticity and vanishing shear.

According to Petrov [19] classification a spacetime can be devided into six

types denoted by I, II, III, D, N and O. Again Barnes [1] has been proved that

if a perfect fluid spacetime is shear free, vorticity free and the velocity vector field

of the fluid is hypersurface orthogonal and the energy density is constant over

a hypersurface orthogonal to the velocity vector field, then the possible local

cosmological structure of the spacetime are of Petrov type I, D or O. Since in a

perfect fluid quasi-Einstein spacetime the velocity vector field of the fluid is

always hypersurface orthogonal by virtue of Theorem 4.3. and Theorem 4.4., we

can state the following:
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Theorem 4.5. If the energy-momentum tensor of a perfect fluid quasi-Einstein

spacetime is of Codazzi type, then the possible local cosmological structure of the

spacetime are of Petrov type I, D or O.

In a spacetime, the divergence of the conformal curvature tensor ‘C’ is given

by

ðdiv CÞðX ;YÞZ ¼ 1

2

�
ð‘XSÞðY ;ZÞ � ð‘ZSÞðY ;XÞð4:33Þ

� 1

3
fdrðX ÞgðY ;ZÞ � drðZÞgðY ;XÞg

�
:

If the energy-momentum tensor is of Codazzi type then by virtue of Theorem 4.1,

the Ricci tensor is of Codazzi type and hence the relation (4.5) holds, from which

it follows that the scalar curvature r is constant. Consequently from (4.33) we

have div C ¼ 0.

Again Sharma [21] proved that if a spacetime with divergence free conformal

curvature admits a conformal Killing vector field, then the spacetime is either

conformally flat or of Petrov type N. Since a quasi-Einstein spacetime with

Codazzi type energy-momentum tensor is of divergence free conformal curvature

tensor, we can state the following:

Theorem 4.6. If a perfect fluid quasi-Einstein spacetime with Codazzi type

energy-momentum tensor admits a conformal Killing vector field, then the spacetime

is either conformally flat or of Petrov type N.

5. Conformally Flat Quasi-Einstein Spacetimes

Let the quasi-Einstein spacetime be conformally flat. Then the curvature

tensor R of type (1, 3) is of the following form:

RðX ;YÞZ ¼ 1

2
½SðY ;ZÞX � SðX ;ZÞY þ gðY ;ZÞQX � gðX ;ZÞQY �ð5:1Þ

� r

6
½gðY ;ZÞX � gðX ;ZÞY �;

where Q is the Ricci operator. From (1.1) we have

QX ¼ aX þ bAðX Þr:ð5:2Þ
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Using (1.1), (2.2) and (5.2), we can express (5.1) as follows:

RðX ;Y ÞZ ¼ 2aþ b

6
½gðY ;ZÞX � gðX ;ZÞY � þ b

6
½AðY ÞAðZÞXð5:3Þ

� AðXÞAðZÞY þ gðY ;ZÞAðXÞr� gðX ;ZÞAðYÞr�:

Let r? be the 3-dimensional distribution orthogonal to the generator r. Then

from (5.1) we have

RðX ;Y ÞZ ¼ 2aþ b

6
½gðY ;ZÞX � gðX ;ZÞY � for all X ;Y ;Z A r?ð5:4Þ

and hence

RðX ; rÞr ¼ � 2aþ b

6
X for all X A r?:ð5:5Þ

According to Karchar [12] a Lorentzian manifold is called infinitesimally spatially

isotropic relative to a timelike unit vector field r if its curvature tensor R satisfies

the relations

RðX ;YÞZ ¼ l½gðY ;ZÞX � gðX ;ZÞY � for all X ;Y ;Z A r?

and

RðX ; rÞr ¼ mX for all X A r?;

where l, m are real valued functions on the manifold. So by virtue of (5.4) and

(5.5), we can state the following:

Theorem 5.1. A conformally flat quasi-Einstein spacetime is infinitesimally

spatially isotropic relative to the unit timelike vector field r.

Again using (1.1) in (2.19) we have

a� r

2
þ l

� �
gðX ;Y Þ þ bAðXÞAðYÞ ¼ kTðX ;YÞ:ð5:6Þ

Let us assume that a and b are constants. Then r is also a constant. Also let us

assume that the generator r be a Killing vector field, that is,

ðLrgÞðX ;Y Þ ¼ 0;ð5:7Þ

where L denotes the Lie derivative with respect to r.
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Now from (5.6) we obtain

a� r

2
þ l

� �
ðLrgÞðX ;YÞ ¼ kðLrTÞðX ;Y Þ:ð5:8Þ

In view of (5.7), (5.6) yields

ðLrTÞðX ;Y Þ ¼ 0; since k0 0:ð5:9Þ

Thus we can state the following:

Theorem 5.2. In a quasi-Einstein spacetime with constant associated scalars

obeying Einstein’s equation, the generator r of the spacetime is a Killing vector

field if and only if the Lie derivative of the energy-momentum tensor with respect to

r is zero.

6. Some Examples of Quasi-Einstein Spacetimes

This section deals with several proper examples of quasi-Einstein spacetimes.

Example 6.1. In 1989 K. Matsumoto [13] introduced the notion of LP-

Sasakian manifolds. Then I. Mihai and R. Rosca [15] introduced the same notion

independently and later studied by many authors ([14], [16], [23]).

An n-dimensional di¤erentiable manifold M is said to be a LP-Sasakian

manifold ([4], [15]) if it admits an (1, 1) tensor field f, a vector field x, an 1-form

h and a Lorentzian metric g, which satisfy

hðxÞ ¼ �1;ð6:1Þ

f2X ¼ X þ hðXÞx;ð6:2Þ

gðfX ; fYÞ ¼ gðX ;YÞ þ hðXÞhðYÞ;ð6:3Þ

ðaÞ gðX ; xÞ ¼ hðXÞ; ðbÞ ‘Xx ¼ fX ;ð6:4Þ

ð‘XfÞðYÞ ¼ gðX ;Y Þxþ hðY ÞX þ 2hðXÞhðYÞx;ð6:5Þ

where ‘ denotes the operator of covariant di¤erentiation with respect to the

Lorentzian metric g. The unit timelike vector field x is called the characteristic

vector field of the manifold.

In a 4-dimensional connected LP-Sasakian manifold M 4ðf; x; h; gÞ, the fol-

lowing relations hold ([4], [16]):
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ðaÞ f � x ¼ 0; ðbÞ h � f ¼ 0;ð6:6Þ

RðX ;Y Þx ¼ hðYÞX � hðX ÞY ;ð6:7Þ

SðX ; xÞ ¼ 3hðXÞ;ð6:8Þ

where R is the curvature tensor of the manifold and S is the Ricci tensor of type

(0, 2).

We consider a conformally flat connected 4-dimensional LP-Sasakian mani-

fold ðM 4; gÞ. Since in a conformally flat connected 4-dimensional LP-Sasakian

manifold the conformal curvature tensor C vanishes, we have

RðX ;YÞZ ¼ 1

2
½gðY ;ZÞQX � gðX ;ZÞQY þ SðY ;ZÞX � SðX ;ZÞY �ð6:9Þ

� r

6
½gðY ;ZÞX � gðX ;ZÞY �;

Setting Z ¼ x in (6.9) we obtain by virtue of (6.7) and (6.8) that

hðXÞQY � hðY ÞQX ¼ 1� r

3

� �
½hðYÞX � hðXÞY �:ð6:10Þ

Replacing Y by x in (6.10) and then using (6.1) and (6.8) we get

QX ¼ r

3
� 1

� �
X þ r

3
� 4

� �
hðX Þx;

which can be written as

SðX ;YÞ ¼ agðX ;YÞ þ bhðXÞhðY Þ;

where a ¼ r
3 � 1
� �

and b ¼ r
3 � 4
� �

are scalars. Hence a conformally flat connected

4-dimensional LP-Sasakian manifold ðM 4; gÞ is a quasi-Einstein spacetime.

Example 6.2. As a generalization of LP-Sasakian manifold, recently Shaikh

[22] introduced the notion of Lorentzian concircular structure manifold and

proved its existence and also obtained several applications to the general relativity

and cosmology. In a Lorentzian manifold ðMn; gÞ a vector field P defined by

gðX ;PÞ ¼ AðXÞ

for any X A wðMÞ is said to be a concircular vector field if

ð‘XAÞðYÞ ¼ afgðX ;YÞ þ oðX ÞAðYÞg

where a is a non-zero scalar and o is a closed 1-form.
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Let Mn be a Lorentzian manifold admitting a unit timelike concircular vector

field x, called the characteristic vector field of the manifold. Then we have

gðx; xÞ ¼ �1:ð6:11Þ

Since x is a unit concircular vector field, there exists a non-zero 1-form h such

that for

gðX ; xÞ ¼ hðX Þð6:12Þ

the equation of the following form holds

ð‘XhÞðYÞ ¼ afgðX ;YÞ þ hðXÞhðYÞg ða0 0Þð6:13Þ

for all vector fields X , Y where ‘ denotes the operator of covariant di¤eren-

tiation with respect to the Lorentzian metric g and a is a non-zero scalar function

satisfies

‘Xa ¼ ðXaÞ ¼ rhðX Þ;ð6:14Þ

r being a certain scalar function.

If we put

fX ¼ 1

a
‘Xx;ð6:15Þ

then from (6.13) we have

fX ¼ X þ hðXÞx;ð6:16Þ

from which it follows that f is a symmetric (1, 1) tensor. Thus the Lorentzian

manifold Mn together with the unit timelike concircular vector field x, its as-

sociated 1-form h and (1, 1) tensor field f is said to be a Lorentzian concircular

structure manifold (briefly ðLCSÞn-manifold) [22].

Especially, if we take a ¼ 1, then we can obtain the LP-Sasakian structure of

Matsumoto [13].

In a ðLCSÞ4 manifold, the following relations hold [22]:

gðfX ; fYÞ ¼ gðX ;YÞ þ hðXÞhðYÞ;ð6:17Þ

RðX ;Y Þx ¼ ðr� a2ÞfhðYÞX � hðXÞYg;ð6:18Þ

SðX ; xÞ ¼ 3ðr� a2ÞhðXÞ for any X ;Y :ð6:19Þ

In a conformally flat ðLCSÞ4 manifold, the relation (6.9) holds. Then proceeding

similarly as in Example 5.1 we obtain by virtue of (6.17)–(6.19) that in a con-
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formally flat ðLCSÞ4 manifold, the Ricci tensor is of the form

SðY ;ZÞ ¼ ggðY ;ZÞ þ dhðYÞhðZÞ;

where g ¼ r
3 � ðr� a2Þ and d ¼ r

3 � 4ðr� a2Þ are non-vanishing scalars. Hence a

conformally flat ðLCSÞ4 is a quasi-Einstein spacetime.

Example 6.3. The Robertson-Walker spacetime is a quasi-Einstein space-

time.

Example 6.4. We define a Lorentzian metric g on a 4-dimensional real

number space R4 by the formula

ds2 ¼ ðx1Þ2ðdx1Þ2 þ sin2 x1ðdx2Þ2 þ sin2 x1ðdx3Þ2 � sin2 x1ðdx4Þ2;ð6:20Þ

0 < x1 <
p

2
:

Then the only non-vanishing components of the Christo¤el symbols and the

curvature tensor are

G1
11 ¼

1

x1
; G2

12 ¼ G3
13 ¼ G4

14 ¼ cot x1;

G1
22 ¼ � sin x1 cos x1

ðx1Þ2
¼ G1

33 ¼ �G1
44;

R1221 ¼ � x1 sin2 x1 þ sin x1 cos x1

x1
¼ R1331 ¼ �R1441;

R2332 ¼
sin2 x1 cos2 x1

ðx1Þ2
¼ �R2442 ¼ �R3443

and the components which can be obtained from these by the symmetry

properties. Using the above relations, we can find the non-vanishing components

of Ricci tensor as follows:

S11 ¼ �3 1þ cot x1

x1

� �
;

S22 ¼
1

2ðx1Þ3
½4x1 cos2 x1 � 2x1 sin2 x1 � sin 2x1� ¼ S33 ¼ �S44:

Also it can be easily found that the scalar curvature of the manifold is non-zero.

Therefore R4 with the considered metric is a Lorentzian manifold ðM 4; gÞ of non-
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vanishing scalar curvature. We shall now show that this M 4 is a quasi-Einstein

spacetime, i.e., it satisfies (1.1).

Let us now consider the associated scalars as follows:

a ¼ 4x1 cos2 x1 � 2x1 sin2 x1 � sin 2x1

2ðx1Þ3 sin2 x1
; b ¼ � 1

x1 sin2 x1
:ð6:21Þ

In terms of local coordinate system, let us consider the components of the 1-form

A as follows:

AiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x1 þ sin 2x1

p
for i ¼ 1;ð6:22Þ

¼ 0 otherwise:

In terms of local coordinate system, the defining condition (1.1) of a quasi-

Einstein spacetime can be written as

Sij ¼ agij þ bAiAj; i; j ¼ 1; 2; 3; 4:ð6:23Þ

By virtue of (6.21) and (6.22), it can be easily shown that (6.23) holds for i; j ¼
1; 2; 3; 4. Therefore, ðM 4; gÞ is quasi-Einstein spacetime. Hence we can state the

following:

Theorem 6.1. Let ðM 4; gÞ be a Lorentzian manifold endowed with the metric

given in (6.20). Then ðM 4; gÞ is a quasi-Einstein spacetime with non-vanishing

scalar curvature.
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[ 6 ] Deszcz, R., Glogowska, M., Hotloś, M. and Sentürk, Z., On certain quasi-Einstein semi-

symmetric hypersurfaces, Annales Univ. Sci. Budapest, 41 (1998), 153–166.
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