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ON A JENSEN-MERCER OPERATOR INEQUALITY
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ABSTRACT. A general formulation of the Jensen—Mercer operator inequality
for operator convex functions, continuous fields of operators and unital fields
of positive linear mappings is given. As consequences, a global upper bound
for Jensen’s operator functional and some properties of the quasi-arithmetic
operator means and quasi-arithmetic operator means of Mercer’s type are ob-
tained.

1. INTRODUCTION

Inspired by Mercer’s variant of Jensen’s inequality [7]
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for a convex function f : [a,b] — R, real numbers xy, ..., z, € [a,b] and positive
real numbers wy, ..., w,, where W,, = > " | w;, the following variant of Jensen’s
operator inequality for a convex function f € C ([m, M]), selfadjoint operators
Ay, ..., A, € B(H) with spectra in [m, M| and positive linear maps @4, ..., &y €
P [B(H),B(K)] with 3% | ®; (1) = 1 was proved in 7]
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Moreover, in the same paper the following series of inequalities was proved
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We assume that H and K are Hilbert spaces, B(H) and B (K) are C*-algebras
of all bounded operators on the appropriate Hilbert spaces, P [B(H),B(K)] is
the set of all positive linear mappings from B (H) to B (K) and C ([m, M]) is the
set of all real valued continuous functions defined on an interval [m, M].

Inequality (1.1) is called the Jensen—Mercer operator inequality and its refine-
ment for an operator convex function f € C'([m, M]) is also given in [0]
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or, more precisely, the following series of inequalities was proved
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In this paper we give a general form of these results for continuous fields of
operators and unital fields of positive linear mappings, and some applications.

In Section 2 we give a general form of the Jensen—Mercer operator inequality for
convex functions and its refinement for operator convex functions. In Section 3 we
give a global upper bound for Jensen’s operator functional and some properties
of the quasi-arithmetic operator means and quasi-arithmetic operator means of
Mercer’s type. The obtained global upper bound for Jensen’s operator functional
is analogous to that for Jensen’s functional in the real discrete case, given in [J]
and [1].
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2. MAIN RESULT

Let T be a locally compact Hausdorff space, and let A be a C*-algebra of
operators on a Hilbert space H. We say that a field (x;),., of operators in A
is continuous if the function ¢ — x; is norm continuous on 7'. If in addition pu
is a Radon measure on 7" and the function ¢ — |[|z;] is integrable, then we can
form the Bochner integral [,z du (t), which is the unique element in A such that
¢ ([pxedu(t)) = [ () du(t) for every linear functional ¢ in the norm dual
A* cf. [2].

Let (¢¢),cp be a field of positive linear mappings ¢, : A — B from A to another
C*-algebra B of operators on a Hilbert space K. We say that such a field is
continuous if the function ¢ — ¢, (x) is continuous for every = € A. If in addition
the C*-algebras are unital and ¢, (1) is integrable with integral 1, we say that

(¢¢);ep is unital.
The following general form of Jensen’s operator inequality was proved in [3].

Theorem A. Let f: I — R be an operator convex function defined on an interval
I, and let A and B be unital C*-algebras. If (¢¢),cp 95 an unital field of positive
linear mappings ¢, : A — B defined on a locally compact Hausdorff space T with
a bounded Radon measure p, then the inequality

f(LﬁM%ﬁm@Of§A¢Mf@mdM@ 2.1)

holds for every bounded continuous field (x;),., of self-adjoint elements in A with
spectra contained in I.

Note here that inequality (2.1) holds for the class of operator convex functions
which is a proper subclass of the class of convex function. However, our general
form of the Jensen—Mercer operator inequality holds for the larger class of all
convex functions.

Theorem 2.1. Let f € C ([m, M]) be an operator convex function, and let A and
B be unital C*-algebras. If (¢y),cr 95 an unital field of positive linear mappings
o : A — B defined on a locally compact Hausdorff space T with a bounded Radon
measure 4, then
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holds for every bounded continuous field (z¢),.p of self-adjoint elements in A with
spectra contained in [m, M|. Moreover, the series of inequalities

(1= [ on@oau)

< / 60 (fF ((m+ M) 1 — 2,)) du (t) (2.3)
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holds. If f € C([m,M]) is operator concave, then the inequalities in (2.2) and
(2.3) are reversed.

Proof. Since f is continuous and operator convex, the same is also true for the
function g : [m, M] — R defined by ¢g(z) = f(m+ M — z). From Theorem A
for function g follows the first inequality in (2.2) and (2.3). Since f is operator
convex it is also convex. Thus, the inequality

f(2) <

Z—m M — 2z

= (M) + () (24)

holds for every z € [m, M]. Using functional calculus and taking z = x;, from

(2.4) follows

xy —ml M1 -z,
3 M T )

Applying the unital positive linear mappings ¢, and integrating, we obtain

f(z) <

/¢t (1)) dp (¢ fT¢t xjtwd/ifn) mlf(M)—i—Ml_{\qui(:;)dﬂ(t)f
(2.5)

Using inequality (2.5) for function g, and then for function f we obtain
[ 60 (n+ 31 =) an
= [ oo @nane
M- fM PEIIO), ) Jy 61 ORI

M1 [y 0 () du (1) Jy 1 () dp (1) = m1
_ T f (M) + Y f(m)

= (P + g1 - IO ) o0 dn® Zmd
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The last statement follows immediately from the fact that if f is operator concave
then — f is operator convex. O

Remark 2.2. If f € C([m, M]) is convex, then it can be shown that the general
form of the Jensen—Mercer operator inequality

f (<m+M>1— [ ot <t>) < (Fm)+ £ N1 [ 07 @) an(o).

(2.6)
and the series of inequalities
Fm+an1- [ o@an)

- M—m M—m
< (f (m) + £ (M) 1~ / o (f (22)) dpa ()

also hold. If f € C ([m, M]) is concave, then the inequalities in (2.6) and (2.7)
are reversed.

3. APPLICATIONS

From Theorem A we have

O</¢t (a4)) dpe (¢ (/qbtxtdu )

which we can consider as the global (not depending on (¢;),., and (2),.) lower
bound zero for Jensen’s operator functional

J(f, <¢t>teT7(mt teT = /¢t () dp (2 (/ G () dps (t )

defined for an operator convex function f, an unital field of positive linear map-
pings (¢),cr and a bounded continuous field (x),., as in Theorem A. Using our
results from Theorem 2.1 we can get an upper global bound for Jensen’s operator
functional. In case f is an operator concave function, zero is the upper bound for
Jensen’s operator functional and from Theorem 2.1 we can get its lower bound.

Theorem 3.1. Let f € C ([m, M]) be an operator convez function, and let A and
B be unital C*-algebras. Let (¢;),.p be an unital field of positive linear mappings
¢+ A — B defined on a locally compact Hausdorff space T with a bounded Radon
measure ji and let (x;),.p be a bounded continuous field of self-adjoint elements
in A with spectra contained in [m, M]. Then

T (e @) < (f (m) + £ (M >>1—2f( <m+M>1) (3.1)

If f is operator concave, then the inequality in (3.1) is reversed.
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Proof. From Theorem 2.1 we have

[ ot du® <)+ £ )1 1 (<m+M> 1= [ o <t>) .

Since f is operator conves, 2
3 (301 [oteian) + 37 ( [ o auc)
> £ (5 e an1 [aedu)] +5 [awiamo)
:f(%(m+M)1>.
Hence,
(a1 [o@an®) s ([ o@ano) =2 (Gm+an1).
(3.3)

Now, combining inequalities (3.2) and (3.3) we have

foremeas ([

m)+ f(M))1

—¢%W+M1—/@%ML>#%/@%dMO}
< () + £ ()1 =21 (G m+ A1),

The last statement follows immediately from the fact that if f is operator concave
then — f is operator convex. 0

For the discrete case we can conclude the following.

Corollary 3.2. Let Ay, ..., A € B(H) be selfadjoint operators with spectra in
[m, M| for some scalars m < M and ®q,..., 0, € P [B(H),B(K)| positive linear
maps with Z?Zl ®; (1) =1. If f € C ([m, M]) is operator convex on [m, M], then

Te(f A, ®) < (f (m) + F (M ))1—2f(1(m+M>1) (3.4)
where A = (Aq, ..., Ag), ® = (Dy, ..., ) and
Ti (f, A, ®) = Zcb f(Zcbj(Aj)>.

If f is operator concave, then the inequality in (3.4) is reversed.
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Remark 3.3. It is interesting that analogous result in the real discrete case is
proved in [3], although it follows from the series of inequalities given in [4] (see
also [1]). In the real case one can also obtain that

M — 2
M —m

Z—m
su M) +
m<ZEM{M—mf( )

Fom = ()}

is another upper bound for Jensen’s functional which is better than

m—l—M)

f (m) + £ (M) - f(

(see for example |1, Lemma 2.5]), but the second one is simpler.

Using our results from Theorem 2.1 and Theorem 3.1 we can also get some
properties of the quasi-arithmetic operator means and quasi-arithmetic operator
means of Mercer’s type defined for a strictly monotone function ¢ € C ([m, M]),
an unital field of positive linear mappings (¢;),., and a bounded continuous field
(7¢),e7, Tespectively as

M, (@er rer) =7 ([ o1 a0 dm)

—~

¥, (@ (0ier) =7 (o 0m) + 0001 [ on(o@)du))

Theorem 3.4. Let ¢, € C ([m, M]) be two strictly monotone functions.

(i) If either v o ™' is operator convex and ¥~"' is operator increasing, or
1 ot is operator concave and Y1 is operator decreasing, then

M@( (¢) teT xt)teT)

-1 (/ o ((voe™) ((p(m) + ¢ (M) 1— () dp (t))

-1 90 fT ¢t ) :u( )
<v™( @(M)—w(m) v
fT (o (z))du(t) —p(m)1
B )
< M, ((¢t)teT ) (wt)teT) . (3.5)

(i) If either v op™! is operator concave and =1 is operator increasing, or 1o
o~ 1 is operator conver and ! is operator decreasing, then the inequalities
n (3.5) are reversed.
Proof. Suppose that 1) o ¢! is operator convex. If in Theorem 2.1 we let f =

Yo' and replace x;, m and M with o (x;), v (m) and ¢ (M) respectively, then
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we obtain

o (o7 (e + o1 [ i)

/¢t(ow <<<>+ww@n—¢mw»muw

o)1= [, 60 (s >ﬁu Jo 1 (o (e du (6) — o (m) 1
w@ﬂ— v+ MM)@()

< (@ (m) + 1—/¢t () dpe (8). (3.6)

If 1) o ! is operator concave then we get reversed inequalities in (3.6).

If ¢~ ! is operator increasing, then (3.6) implies (3.5). If ¢»~! is operator decreas-
ing, then the reverse of (3.6) implies (3.5). Analogously, we get the reverse of
(3.5) in the cases when ¢ op~! is operator convex and 1)~! is operator decreasing,
or 1 o ¢~ ! is operator concave and ¢~! is operator increasing Il

Theorem 3.5. Let p, ¢ € C ([m, M]) be two strictly monotone functions.

(i) If either o is operator concave and @~ is operator increasing or @ is

operator convex and ¢~ ' is operator decreasing, and either 1) is operator
convex and 1~ is operator increasing or 1 is operator concave and )"
18 operator decreasing, then

Mso ((¢t)teT ) (xt)teT)
<o (Ml fffi:; dp (1) (M)Jrfmt(x;\);_un?—ml(p(m))
s@*(T@w«m+Mn—m»w@0

< M, (<¢ >teT ) (xt)teT) (3.7)

<o ([t ion s an1-m)anen)

cort (M0 | O m)
< My ((th)teT ) (xt)teT)

where

T (G0 @er) 1= (m+ M) 1= [ 00 @) a0,

(ii) If either ¢ is operator conver and o~ is operator increasing or ¢ is op-
erator concave and @~ is operator decreasing, and either 1 is operator
concave and ™' is operator increasing or 1 is operator conver and 1"
is operator decreasing, then the inequalities in (3.7) are reversed.
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Proof. Suppose that ¢ is operator concave and ¢! is operator increasing, and )
is operator convex and 1! is operator increasing. By Theorem 2.1, we have

¢ (meani- [ o@ian)

2/@% (m+ M)1 —2,))dp (t)

>M1—fT¢t xy) dp (t) oM ngbt du (t) —ml
- M—-—m M m

> (p(m 1—/@ (2)) dp (t

Since ¢! is operator increasing, it follows that

M, ¢t teT > xt)teT)

(Ml—ngbt xy) dp (t) Jp &1 () dpe () —m1

)
(/gzﬁt (20) m+M)1—xt))du(t)>

Y
M (925 t€T7<$t)teT)

| A

IN

Also, by Theorem 2.1, we have
o (mrani- o)
T

SL@@HWKW+MH—Q»M@)

- Ml—f]\TId)i(:;)du(t)MM N fT¢t(xt)du(t)—m1¢

)
g@umeMMnl—ﬁ¢m¢@mdu@

Since 1! is operator increasing, it follows that

M, ¢t et ( xt)tET)
(/(bt xy) m—l—M)l—xt))du(t))
(Ml—chﬁt xy) dp () +fT<bt(a:t)d t) —ml

| /\

(M

< Mw ((¢t)teT ) ($t)teT)

Hence, we have inequalities (3.7). In remaining cases the proof is analogous. O
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Theorem 3.6. Let o, € C ([m, M]) be two strictly monotone functions. If
o @~ is operator convex, then

(& (Mw (<¢t)t€T ) (xt)teT)) — Y (Mso (((bt)teT ) (xt)teT» (3.8)

< ((wop™) m)+ (wop ) (N)1-2 (o) (Jm+ 1),

If 1 o =1 is operator concave, then the inequality in (3.8) is reversed.

Proof. In Theorem 3.1 we let f =1 o p~! and replace x; with ¢ (z;). O
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