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Abstract. We consider the Birkhoff–James orthogonality in normed spaces
and classes of linear mappings exactly and approximately preserving this rela-
tion. Some related stability problems are posed.

1. Introduction

In a normed space X (over K ∈ {R, C}), with the norm not necessarily coming
from an inner product, one can consider the Birkhoff–James orthogonality (cf.
[2, 13]):

x⊥By ⇐⇒ ∀α ∈ K : ‖x + αy‖ ≥ ‖x‖.
One can also consider the semi–orthogonality coming from a semi–inner–product
in X. Namely, due to G. Lumer [17] and J.R. Giles [12] (cf. also [11]) there exists
a mapping [·|·] : X ×X → K satisfying the following properties:

(s1) [λx + µy|z] = λ [x|z] + µ [y|z] , x, y, z ∈ X, λ, µ ∈ K;
(s2) [x|λy] = λ [x|y] , x, y ∈ X, λ ∈ K;
(s3) [x|x] = ‖x‖2, x ∈ X;
(s4) | [x|y] | ≤ ‖x‖·‖y‖, x, y ∈ X.
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We will call each mapping [·|·] satisfying (s1)–(s4) a semi–inner–product (s.i.p.)
in a (normed) space X. (We assume that a s.i.p. is associated with the given norm
in X, i.e., (s3) is satisfied.) Note that there may exist infinitely many different
semi–inner–products in X. There is a unique s.i.p. in X if and only if X is smooth
(i.e., there is a unique supporting hyperplane at each point of the unit sphere S
or, equivalently, the norm is Gâteaux differentiable on S—cf. [9]). If X is an
inner product space the only s.i.p. on X is the inner-product itself ([17], Theorem
3). We say that s.i.p. is continuous iff Re [y|x + λy] → Re [y|x] as R 3 λ → 0 for
all x, y ∈ S. The continuity of s.i.p. is equivalent to the smoothness of X ([12,
Theorem 3]). For a fixed s.i.p. in X we define a related semi–orthogonality. For
x, y ∈ X

x⊥sy :⇔ [y|x] = 0.

Note that for an inner product space: ⊥B = ⊥s = ⊥.

Theorem 1.1 ([12, Theorem 2]). If X is smooth, then ⊥B = ⊥s.

2. Orthogonality preserving mappings

Koehler and Rosenthal [15] showed that a linear operator from a normed space
into itself is an isometry if and only if it preserves some semi–inner–product. This
can be slightly extended.

Theorem 2.1. Let X and Y be (real or complex) normed spaces and let f : X →
Y be a linear operator. Then f is a similarity, i.e., for some γ > 0

‖fx‖ = γ‖x‖, x ∈ X,

if and only if there exist semi–inner–products [·|·]X and [·|·]Y in X and Y , respec-
tively, such that

[fx|fy]Y = γ2 [x|y]X , x, y ∈ X. (2.1)

Moreover, if X = Y (with the same norm), then we get the assertion with the
same semi–inner–product.

Proof. The sufficiency is obvious. To prove the necessity let us assume that X
and Y are different normed spaces (at least the norms are different). Choose an
arbitrary s.i.p. [·|·]Y in Y . Then it suffices to define

[x|y]X :=
1

γ2
[fx|fy]Y , x, y ∈ X

to obtain a s.i.p. in X such that (2.1) is satisfied. If X = Y and the norm is
the same, [·|·]X = [·|·]Y is not guaranteed by the above reasoning (unless X is
smooth which yields the uniqueness of s.i.p.). In this case one can apply the proof
of Koehler and Rosenthal (with a slight modification concerning the constant
γ). �

Koldobsky [16] showed that a linear mapping from a real normed space into
itself, preserving the Birkhoff–James orthogonality must be a similarity. Blanco
and Turnšek [3] extended it to complex spaces.
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Theorem 2.2 ([3, Theorem 1.3]). Let X and Y be (real or complex) normed
spaces and let f : X → Y be a linear operator. Then f preserves the Birkhoff–
James orthogonality, i.e.,

x⊥By ⇒ fx⊥Bfy, x, y ∈ X, (2.2)

if and only if, for some γ > 0, ‖fx‖ = γ‖x‖, x ∈ X.

Taking X = Y and the identity mapping as f , we obtain:

Corollary 2.3. Let X be a vector space. Let ‖ · ‖1 and ‖ · ‖2 be two norms in
X and let ⊥B,1 and ⊥B,2 denote the corresponding Birkhoff–James orthogonality
relations. If ⊥B,1 ⊂ ⊥B,2, then ‖x‖2 = γ‖x‖1 for all x ∈ X, with some γ > 0
and, consequently, ⊥B,1 = ⊥B,2.

Blanco and Turnšek remarked also that their proof of Theorem 2.2 can be
easily adapted to the case where the Birkhoff–James orthogonality is replaced by
a semi-orthogonality. Namely, we have the following result.

Theorem 2.4 (cf. [3, Remark 3.2]). Let X and Y be (real or complex) normed
spaces and let f : X → Y be a linear operator preserving the semi-orthogonality
related to some s.i.p. [·|·]X and [·|·]Y in X and Y , respectively, i.e.,

x⊥sy ⇒ fx⊥sfy, x, y ∈ X. (2.3)

Then, for some γ > 0, ‖fx‖ = γ‖x‖, x ∈ X.

All the above results enable us to list the following collection of equivalent
conditions.

Theorem 2.5. Let X and Y be normed spaces. For a linear operator f : X → Y
the following conditions are equivalent:

(a) ∃ γ > 0 ∀x ∈ X ‖fx‖ = γ‖x‖;
(b) ∃ γ > 0 ∀x, y ∈ X [fx|fy]Y = γ2 [x|y]X ;
(c) ∃ γ > 0 ∀x, y ∈ X | [fx|fy]Y | = γ2| [x|y]X |;
(d) ∀x, y ∈ X x⊥sy ⇔ fx⊥sfy;
(e) ∀x, y ∈ X x⊥sy ⇒ fx⊥sfy;
(f) ∀x, y ∈ X x⊥By ⇒ fx⊥Bfy;
(g) ∀x, y ∈ X x⊥By ⇔ fx⊥Bfy.

The conditions (b)–(e) should be understood that they are satisfied with respect
to some semi–inner-products [·|·]X and [·|·]Y in X and Y , respectively.

Proof. (a) ⇒ (b) follows from Theorem 2.1; implications (b) ⇒ (c) ⇒ (d) ⇒
(e) are trivial; (e) ⇒ (a) from Theorem 2.4. This proves equivalency of (a)-(e).
Moreover, it is easy to show (a) ⇒ (g), (g) ⇒ (f) is trivial and (f) ⇒ (a) follows
from Theorem 2.2, which proves equivalency of (a), (f) and (g). �

Remark 2.6. Note that, in particular, the property that a linear mapping pre-
serves the Birkhof-James orthogonality is equivalent to that it preserves the semi-
orthogonality (although ⊥B and ⊥s need not be equivalent unless we assume the
smoothness of the norm).
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Remark 2.7. For the case X = Y the results are also true with the same semi-inner
product applied for arguments and values (cf. remarks in the proof of Theorem
2.1).

Taking X = Y and the identity mapping we obtain:

Corollary 2.8. Let ‖ · ‖1 and ‖ · ‖2 be two norms in a linear space X (with some
corresponding semi–inner–products [·|·]1 and [·|·]2, semi–orthogonalities ⊥s,1,⊥s,2

and the Birkhoff–James orthogonalities ⊥B,1,⊥B,2). Then the following conditions
are equivalent:

(a) ∃ γ > 0 ∀x ∈ X ‖x‖2 = γ‖x‖1;
(b) ∃ γ > 0 ∀x, y ∈ X [x|y]2 = γ2 [x|y]1;
(c) ∃ γ > 0 ∀x, y ∈ X | [x|y]2 | = γ2| [x|y]1 |;
(d) ⊥s,1 = ⊥s,2;
(e) ⊥s,1 ⊂ ⊥s,2;
(f) ⊥B,1 ⊂ ⊥B,2;
(g) ⊥B,1 = ⊥B,2.

Theorem 2.9. Let X be a normed space. Suppose that there exists an inner
product space Y and a linear mapping f from X into Y or from Y onto X such
that f preserves the Birkhoff–James orthogonality. Then X is an inner product
space (the norm in X comes from an inner product).

Proof. 1. Suppose that f : X → Y is linear and x⊥By ⇒ fx⊥fy for all
x, y ∈ X. From Theorem 2.2, there exists γ > 0 such that ‖fx‖ = γ‖x‖ for
x ∈ X. Therefore, for all x, y ∈ X

‖fx + fy‖2 + ‖fx− fy‖2 − 2‖fx‖2 − 2‖fy‖2

= γ2
(
‖x + y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

)
.

(2.4)

Since the norm in Y satisfies the parallelogram identity, so does the norm in X
whence X is an inner product. 2. Supposing that f : Y → X is linear, surjective
and x⊥y ⇒ fx⊥Bfy for all x, y ∈ Y , using again Theorem 2.2 and (2.4), we
get the assertion. �

We follow Kestelman (cf. [19]) in saying that f : X → Y preserves right-angles
iff

x− z⊥By − z ⇒ f(x)− f(z)⊥Bf(y)− f(z), x, y, z ∈ X. (2.5)

Obviously, provided f(0) = 0, it is a stronger condition than (2.3) whence a linear
solution of (2.5) has to be a similarity. However, Tissier [19] has proved that for
a real inner product space X (with dim X ≥ 2) no linearity assumption is needed
to prove that (2.5) yields similarity of f . One can ask if it is also true in normed
spaces, with the Birkhoff–James orthogonality.
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3. Approximate orthogonality and approximately orthogonality
preserving mappings

Let ε ∈ [0, 1). The natural way to define an ε-orthogonality of vectors x, y in
an inner product space is the following one:

x⊥ε y ⇔ | 〈x|y〉 | ≤ ε‖x‖ ‖y‖.
In normed spaces, the following notion of the ε-Birkhoff–James orthogonality was
introduced by Dragomir [10].

x⊥
ε

By :⇔ ∀λ ∈ K : ‖x + λy‖ ≥ (1− ε)‖x‖. (3.1)

Obviously, this relation generalizes the Birkhoff–James one. For inner product
spaces, it can be shown that x⊥

ε By ⇔ x⊥δ y with δ :=
√

(2− ε)ε (see [10,
Proposition 1]). In order to have the latter equivalence with δ = ε, one can
consider (cf. [4]) a slight modification of (3.1)

x⊥ε
Dy :⇔ ∀λ ∈ K : ‖x + λy‖ ≥

√
1− ε2‖x‖. (3.2)

Suppose that there are two equivalent norms in X, i.e.,

m‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1, x ∈ X

with some 0 < m ≤ M . Note that for x, y ∈ X such that x⊥B,1y we have

‖x + λy‖2 ≥
m

M
‖x‖2 for all λ ∈ K.

Therefore x⊥
ε B,2y with ε = 1− m

M
.

An alternative definition of the ε-Birkhoff–James orthogonality (not equivalent
to (3.2) in general) was given by the author in [4].

x⊥ε
By :⇔ ∀λ ∈ K : ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖‖λy‖. (3.3)

For a given semi–inner–product one can define the approximate semi-orthogo-
nality (ε-semi–orthogonality):

x⊥ε
sy :⇔ | [y|x] | ≤ ε‖x‖·‖y‖.

Note that for an inner product space: ⊥ε
s = ⊥ε

B = ⊥ε
D = ⊥ε . The author has

proved also the following generalization of Theorem 1.1.

Theorem 3.1 ([4, Theorem 3.3]). If X is a smooth normed space, then ⊥ε
B = ⊥ε

s.

Now, we can deal with mappings which approximately preserve the Birkhoff–
James orthogonality. For ε ∈ [0, 1), f : X → Y can be called an ε-orthogonality
preserving mapping if it satisfies

x⊥By ⇒ f(x)⊥
ε

Bf(y), x, y ∈ X

or, in an alternative sense,

x⊥By ⇒ f(x)⊥ε
Bf(y), x, y ∈ X. (3.4)

Similarly, for given semi–inner–products in X and Y , one can consider mappings
preserving approximately semi-orthogonality, i.e., satisfying:

x⊥sy ⇒ f(x)⊥ε
sf(y), x, y ∈ X. (3.5)
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Note that, in view of Theorem 3.1, for smooth spaces X and Y the conditions
(3.4) and (3.5) are equivalent.

In the realm of inner product spaces the class of linear approximately orthog-
onality preserving mappings has been characterized in [5, Theorem 2]. Recently
Turnšek [20] has made some quantitative improvements so the result finally reads
as follows.

Theorem 3.2. Let X and Y be inner product spaces and let f : X → Y be a
nontrivial linear mapping satisfying

x⊥y ⇒ fx⊥ε fy, x, y ∈ X.

Then, with γ = ‖f‖,

| 〈fx|fy〉 − γ2 〈x|y〉 | ≤ 4ε

1 + ε
‖fx‖ ‖fy‖, x, y ∈ X.

Problem 3.3. In the realm of normed spaces, characterize the classes of linear
mappings approximately preserving the Birkhoff–James orthogonality and the
semi–orthogonality.

Now, let us consider a linear mapping which is close to a linear and orthogo-
nality preserving one.

Theorem 3.4. Let X and Y be normed spaces and let f : X → Y be a linear
Birkhoff–James orthogonality preserving mapping (i.e., f satisfies (2.3)). Assume
that g : X → Y is linear and, with some ε ∈ [0, 1),

‖f − g‖ ≤ ε

2− ε
‖f‖. (3.6)

Then g is an ε-orthogonality preserving mapping in the sense of Dragomir.

Proof. Setting γ := ‖f‖ and δ := εγ
2−ε

< γ we have from (3.6):

‖fx− gx‖ ≤ δ‖x‖, x ∈ X.

Since we have from Theorem 2.2, ‖fx‖ = γ‖x‖, we get

| γ‖x‖ − ‖gx‖ | = | ‖fx‖ − ‖gx‖ | ≤ ‖fx− gx‖ ≤ δ‖x‖, x ∈ X.

Hence

(γ − δ)‖x‖ ≤ ‖gx‖ ≤ (γ + δ)‖x‖, x ∈ X

and
‖gx‖
γ + δ

≤ ‖x‖ ≤ ‖gx‖
γ − δ

, x ∈ X.

Let x⊥By. Then, for arbitrary λ ∈ K, ‖x + λy‖ ≥ ‖x‖, and thus

‖gx + λgy‖ = ‖g(x + λy)‖ ≥ (γ − δ)‖x + λy‖

≥ (γ − δ)‖x‖ ≥ γ − δ

γ + δ
‖gx‖

= (1− ε)‖gx‖.
�
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The problem arises whether the reverse is true. Namely, whether each ε-
orthogonality preserving linear mapping g can be approximated by a linear or-
thogonality preserving one. In [5] and [6] author considered this stability problem
in the realm of inner product spaces obtaining a positive answer under the as-
sumption that the domain is finite-dimensional. It has been extended to the
general case by Turnšek [20].

Theorem 3.5 ([20, Theorem 2.3], cf. also [6, Theorem 4]). Let X and Y be
Hilbert spaces and let f : X → Y be a linear mapping satisfying

x⊥y ⇒ fx⊥ε fy, x, y ∈ X. (3.7)

Then there exists a linear orthogonality preserving mapping T : X → Y such that

‖f − T‖ ≤

(
1−

√
1− ε

1 + ε

)
min{‖f‖, ‖T‖}. (3.8)

It has been also proved by Turnšek [20, Example 2.4] that the approximation
(3.8) is sharp.

Problem 3.6. Verify the stability of the orthogonality preserving property with
respect to the Birkhoff–James orthogonality and the semi–orthogonality.

For Hilbert spaces X and Y , a mapping f : X → Y satisfying

x− z⊥y − z ⇒ f(x)− f(z)⊥ε f(y)− f(z), x, y, z ∈ X (3.9)

and f(0) = 0 satisfies also (3.7). Thus using Theorem 3.5 we get that for each
linear mapping f satisfying (3.9), there exists a linear orthogonality preserving
(whence also right-angle preserving) mapping T such that the approximation
(3.8) holds.

Problem 3.7. In normed spaces consider the stability question for the Birkhoff–
James right-angle preserving property.

For inner product spaces, strong relationships has been shown between the
stability of the orthogonality preserving property and the stability of the orthog-
onality equation

〈f(x)|f(y)〉 = 〈x|y〉 .
Various kinds of stability of this equation has been studied by the author (see

[1, 7]) and by other authors ([14, 18]), also in more general settings ([8]). It seems
that the following problem can be related with previously mentioned ones.

Problem 3.8. Consider the stability of the equation

[f(x)|f(y)] = [x|y] , x, y ∈ X

with the class of approximate solutions defined by the inequality

| [f(x)|f(y)]− [x|y] | ≤ ε‖x‖p ‖y‖p, x, y ∈ X

where p ∈ R is given (in particular with p = 1).
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