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LINEAR MAPPINGS APPROXIMATELY PRESERVING
ORTHOGONALITY IN REAL NORMED SPACES

PAWE L WÓJCIK∗

Communicated by K. Jarosz

Abstract. In a normed space we introduce an exact and approximate orthog-
onality relation. We consider classes of linear mappings approximately preserv-
ing this kind of orthogonality. We show that, in particular, the property that
a linear mapping approximately preserves the B-orthogonality is equivalent to
that it approximately preserves the ρ, ρ+-orthogonality (although these orthog-
onalities need not be equivalent). Moreover, we show that every approximately
orthogonality preserving linear mapping is necessarily a scalar multiple of an
almost isometry.

1. Introduction

In a normed space, one can define various orthogonality relations and one can
consider linear mappings preserving this relations. For example, for the Birkhoff–
James orthogonality :

x⊥By :⇔ ∀λ∈K ‖x‖ 6 ‖x + λy‖.
it was proved that a linear mapping preserving this orthogonality must be a
scalar multiple of an isometry (see [10], [3]). Similar problem has been analyzed
for ρ±, ρ-orthogonality in [6],[13] (this notions will be defined in the present sec-
tion). The paper [5] contains the result about the isosceles orthogonality. In this
paper, we give some characterization of linear mappings approximately preserving
orthogonality in real normed spaces.
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From this moment, throughout this paper, all normed spaces are assumed to
be over reals and at least two-dimensional. Let (X, ‖ · ‖) be a real normed space.
We define two mappings ρ′+, ρ′− : X ×X → R:

ρ′±(x, y) := lim
t→0±

‖x + ty‖2 − ‖x‖2

2t
= ‖x‖ · lim

t→0±

‖x + ty‖ − ‖x‖
t

.

This mappings are called norm derivatives. Now, we recall their useful properties
(the proofs can be found in [1] and [8]):

(nd1) ∀x,y∈X ∀α∈R ρ′±(x, αx + y) = α‖x‖2 + ρ′±(x, y);
(nd2) ∀x,y∈X ∀α>0 ρ′±(αx, y) = αρ′±(x, y) = ρ′±(x, αy);
(nd2’) ∀x,y∈X ∀α<0 ρ′±(αx, y) = αρ′∓(x, y) = ρ′±(x, αy);
(nd3) ∀x∈X ρ′±(x, x) = ‖x‖2;
(nd4) ∀x,y∈X |ρ′±(x, y)| 6 ‖x‖·‖y‖.

Moreover, the mappings ρ′+, ρ′− are continuous with respect to the second variable,
but not necessarily with respect to the first one. We have also

∀x,y∈X ρ′±(x, y) = lim
t→0

ρ′±(x + ty, y). (1.1)

The following mapping ρ′ : X ×X → R was introduced by Miličić [11]:

ρ′(x, y) :=
1

2

(
ρ′+(x, y) + ρ′−(x, y)

)
(1.2)

and is called an M-semi inner product (briefly M-s.i.p.). From the above prop-
erties of the mappings ρ′+, ρ′− we get:

(Msip1) ∀x,y∈X ∀α∈R ρ′(x, αx + y) = α‖x‖2 + ρ′(x, y);
(Msip2) ∀x,y∈X ∀α∈R ρ′(αx, y) = αρ′(x, y) = ρ′(x, αy);
(Msip3) ∀x∈X ρ′(x, x) = ‖x‖2;
(Msip4) ∀x,y∈X |ρ′(x, y)| 6 ‖x‖·‖y‖.

Moreover, we have

∀x,y∈X ρ′(x, y) = lim
t→0

ρ′(x + ty, y). (1.3)

We introduce ρ+-orthogonality and ρ−-orthogonality :

x⊥ρ+y :⇔ ρ′+(x, y) = 0, x⊥ρ−y :⇔ ρ′−(x, y) = 0,

and ρ-orthogonality

x⊥ρy :⇔ ρ′(x, y) = 0.

Note, that ⊥ρ+ ,⊥ρ− ,⊥ρ ⊂ ⊥B. If (X, 〈·|·〉) is an inner product space, then
〈y|x〉 = ρ′+(x, y) = ρ′−(x, y) = ρ′(x, y) for arbitrary x, y ∈ X. Hence we have
⊥ = ⊥ρ+ = ⊥ρ− = ⊥ρ = ⊥B.

In an inner product space an approximate orthogonality (ε-orthogonality, with
ε ∈ [0, 1)) of vectors x and y is naturally defined by:

x⊥ε y :⇔ | 〈x|y〉 | 6 ε‖x‖·‖y‖.
For an approximate Birkhoff orthogonality, we will follow the definition from [4]:

x⊥ε
By :⇔ ∀λ ∈ R : ‖x‖2 6 ‖x + λy‖2 + 2ε‖x‖· ‖λy‖.

The notions of an approximate ρ± and ρ-orthogonality were defined in [6] as
follows.
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x⊥ε
ρ+

y :⇔ |ρ′+(x, y)| 6 ε‖x‖·‖y‖;
x⊥ε

ρ−y :⇔ |ρ′−(x, y)| 6 ε‖x‖·‖y‖;
x⊥ε

ρy :⇔ |ρ′(x, y)| 6 ε‖x‖·‖y‖.
It is easy to see that x⊥ε

ρ+
y ⇒ −x⊥ε

ρ−y and x⊥ε
ρ−y ⇒ −x⊥ε

ρ+
y. Moreover, if

x⊥ε
ρ+

y and x⊥ε
ρ−y, then x⊥ε

ρy. Obviously, if the norm in X comes from an inner
product, then ⊥ε

ρ+
= ⊥ε

ρ− = ⊥ε
ρ = ⊥ε and for ε = 0 all the above approximate

orthogonalities coincide with the related exact orthogonalities.
The next result (cf. [7]) establishes the connection between ρ′± and ⊥ε

B.

Theorem 1.1. [7, Theorem 3.1] Let X be a real normed space and let ε ∈ [0, 1).
Then, for arbitrary x, y ∈ X and α ∈ R we have:

x⊥ε
By ⇔ ρ′−(x, y)− ε‖x‖·‖y‖ 6 0 6 ρ′+(x, y) + ε‖x‖·‖y‖. (1.4)

2. Linear mappings preserving certain kinds of orthogonality

Let X, Y be real normed spaces. We say that a linear mapping h : X → Y
preserves ρ+-orthogonality (ρ−-orthogonality), if ∀x,y∈X x⊥ρ+y ⇒ hx⊥ρ+hy,(
∀x,y∈X x⊥ρ−y ⇒ hx⊥ρ−hy

)
. Similarly, a linear mapping f : X → Y preserves

ρ-orthogonality if it satisfies:

∀x,y∈X x⊥ρy ⇒ fx⊥ρfy.

The following result was proved in [6] and [13].

Theorem 2.1. [6],[13] Let X, Y be real normed spaces, f : X → Y a nonzero,
linear mapping. Then, the following conditions are equivalent:

(a) f preserves ρ+-orthogonality;
(b) f preserves ρ−-orthogonality;
(c) f preserves ρ-orthogonality;
(d) ‖fx‖ = ‖f‖·‖x‖, x ∈ X;
(e) ρ′+(fx, fy) = ‖f‖2 ·ρ′+(x, y), x, y ∈ X;
(f) ρ′−(fx, fy) = ‖f‖2 ·ρ′−(x, y), x, y ∈ X;
(g) ρ′(fx, fy) = ‖f‖2 ·ρ′(x, y), x, y ∈ X.

In the paper [6, Theorem 5] it was proved that (a),(b),(d),(e),(f),(g) are mu-
tually equivalent and each of them implies (c). The lacking link was given in
[13, Theorems 4.2, 4.3]. Thus in particular, linear mappings preserving ρ+, ρ−, ρ-
orthogonality are similarities.

3. Linear mappings approximately preserving certain kinds of
orthogonality

The class of linear mappings preserving orthogonality can be enlarged by admit-
ting those mappings which only approximately preserve this relation. For inner
product spaces U,W one can consider linear mappings f : U → W satisfying: for
all x, y ∈ U , x⊥y ⇒ fx⊥ε fy.

Let X,Y be real normed spaces. As for B-orthogonality, one can consider the
class of linear mappings f : X → Y satisfying the following condition:

∀x,y∈X x⊥By ⇒ fx⊥ε
Bfy. (3.1)
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Similar classes of mappings can be considered for other orthogonality relations.
The natural problem is: to describe such a class of approximately orthogonality
preserving mappings.

As for ρ-orthogonality, one can consider the classes of linear mappings f : X →
Y satisfying one of the following conditions:

∀x,y∈X x⊥ρy ⇒ fx⊥ε
ρfy; (3.2)

∀x,y∈X x⊥ρ+y ⇒ fx⊥ε
ρ+

fy; (3.3)

∀x,y∈X x⊥ρ−y ⇒ fx⊥ε
ρ−fy. (3.4)

The latter two are equivalent. Indeed, suppose that f approximately preserves
ρ+-orthogonality and let x⊥ρ−y. Thus −x⊥ρ+y, hence −fx⊥ε

ρ+
fy and finally

fx⊥ε
ρ−fy, i.e., f approximately preserves ρ−-orthogonality. The proof of the

reverse is the same. We have proved

Theorem 3.1. Let X, Y be real normed spaces and let f : X → Y be linear
mapping. Then, the following condition are equivalent:

(a) f satisfies (3.3); (b) f satisfies (3.4).

Let us quote a result from [7].

Theorem 3.2. [7, Theorem 5.1]. Let X, Y be real normed spaces and let f : X →
Y be linear and satisfy (3.3) or (3.4). Then f satisfies (3.1).

We will extend this result in the 5th section.

4. Some properties of the norm

A normed space (X, ‖ · ‖) is said to be smooth at the point xo ∈ X \ {0}, if
there is a unique x∗ ∈ X∗ such that x∗(xo) = ‖xo‖ and ‖x∗‖ = 1. It is known
that X is smooth at the point xo ∈ X \ {0} if and only if ρ′−(xo, y) = ρ′+(xo, y)
for arbitrary y ∈ X (see [1], [8]). Now, we consider a set

Dsm(X) := {x ∈ X : X is smooth at x} ∪ {0}.
The following result (see [1] p. 24 and also [2], [9]) shows that the set Dsm(X) is
very large.

Theorem 4.1. Let (X, ‖ · ‖) be a finite-dimensional real normed space. Then
there exists a set F ⊂ X of Lebesgue measure zero such that for all x in X \ F
and y in X we have ρ′+(x, y) = ρ′−(x, y), and X \ F is dense in X.

In this paper, the set S ⊂ X is called star-shaped, if ∀x∈S∀α∈R : αx ∈ S. The
following lemma collects the properties of the set Dsm(X).

Lemma 4.2. Let (X, ‖·‖) be a finite-dimensional real normed space. Then the set
Dsm(X) is dense and star-shaped. Moreover, X \Dsm(X) is the set of Lebesgue
measure zero.
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Proof. Applying Theorem 4.1 we get X \ F ⊂ Dsm(X), thus Dsm(X) is dense
(since X \ F is dense). Next, it is clear that Dsm(X) is star-shaped, because xo

is a point of smoothness iff xo is a point of smoothness.
Moreover, we have X \Dsm(X) ⊂ F (since X \ F ⊂ Dsm(X)). Since F is the

set of Lebesgue measure zero, we conclude that X \ Dsm(X) is also the set of
Lebesgue measure zero. �

5. Main results

In this section, we give a characterization of linear mappings approximately
preserving orthogonality in real normed spaces. Fix x∗ ∈ X∗ and a ∈ R. The
set M := {x ∈ X : x∗(x) = a} will be called a hyperplane. Let us quote a lemma
from [13].

Lemma 5.1. [13, Lemma 4.1] Let D ⊂ X be a dense, star-shaped subset and let
M be a hyperplane such that 0 /∈ M . Then M ∩D = M .

Turnšek & Moǰskerc [12, Theorem 3.5, Remark 3.1] proved the following result.

Theorem 5.2. [12] Let X, Y be real normed spaces, ε ∈
[
0, 1

8

)
and T : X → Y a

linear mapping satisfying x⊥By ⇒ Tx⊥ε
BTy. Then

∀x∈X (1− 8ε)‖T‖·‖x‖ 6 ‖Tx‖ 6 ‖T‖·‖x‖.

We will prove that any linear mapping which approximately preserves ρ-orthogon
-ality, also approximately preserves ρ+-orthogonality.

Theorem 5.3. Let X, Y be real normed spaces and let f : X → Y be linear and
satisfy (3.2). Then f satisfies (3.3).

Proof. For the proof of (3.2) ⇒ (3.3) consider the two cases. First, assume
that dim X = dim Y = 2. Let x, y ∈ X, x 6= 0. Applying (Msip1) we get

x⊥ρ

(
−ρ′(x,y)

‖x‖2 x + y
)
. By (3.2) we have fx⊥ε

ρ

(
−ρ′(x,y)

‖x‖2 fx + fy
)

and hence∣∣∣ρ′(fx,−ρ′(x,y)
‖x‖2 fx+fy

)∣∣∣6ε‖fx‖ ·
∥∥∥−ρ′(x,y)

‖x‖2 fx+fy
∥∥∥. Applying again (Msip1) we

are able to derive

∀y∈X∀x∈X\{0}

∣∣∣∣ρ′(fx, fy)−‖fx‖2

‖x‖2
ρ′(x, y)

∣∣∣∣6ε

∥∥∥∥−ρ′(x, y)

‖x‖2
fx+fy

∥∥∥∥·‖fx‖. (5.1)

Next, we show that f is injective. Let k ∈ ker f \ {0}. If x ∈ X \ {0}, then∣∣∣ρ′(fx, fk)− ‖fx‖2
‖x‖2 ρ′(x, k)

∣∣∣ 6 ε
∥∥∥−ρ′(x,k)

‖x‖2 fx + fk
∥∥∥·‖fx‖,

Therefore
∣∣∣‖fx‖2
‖x‖2 ρ′(x, k)

∣∣∣ 6 ε
∣∣∣‖fx‖2
‖x‖2 ρ′(x, k)

∣∣∣, and hence ρ′(x, k) = 0.

This shows ∀x/∈ker f x⊥ρk. We recall that ⊥ρ ⊂ ⊥B holds. Therefore, the latter
condition becomes

∀x/∈ker f x⊥Bk. (5.2)

Since dim X = dim Y = 2 and f 6= 0, dim ker f 6 1 implies that X\ker f is dense.
Thus we can find a sequence (xn)n=1,2,... such that xn /∈ ker f and lim

n→∞
xn = k. By
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(5.2) we have xn⊥Bk for n ∈ N. By continuity of the norm we get k⊥Bk, so k = 0.
We proved that f is injective, so f must be surjective, since dim X = dim Y = 2.

We define the set S := Dsm(X) ∩ f−1 (Dsm(Y )). It is easy to verify that S
is dense and star-shaped. Indeed, the mappings f, f−1 are linear. Thus the sets
Dsm(X), f−1 (Dsm(Y )) are star-shaped, so S is also star-shaped. Applying Theo-
rem 4.2 we obtain that X\Dsm(X) is the set of Lebesgue measure zero. Moreover,
the mappings f, f−1 are continuous, so f is a diffeomorphism. Therefore, it is
easy to verify that X \ f−1(Dsm(Y )) is the set of Lebesgue measure zero because
f(Y \Dsm(Y )) = X \ f−1(Dsm(Y )). Next, we have

X \ S =X \ (Dsm(X) ∩ f−1 (Dsm(Y ))) = (X \Dsm(X)) ∪ (X \ f−1(Dsm(Y ))),

so we obtain that X \S is also the set of Lebesgue measure zero. Thus S is dense
and star-shaped.

Let a, b ∈ X be linearly independent. Define x∗ ∈ X∗ by x∗(αa + βb) := α.
Then M := {z ∈ X : x∗(x) = 1} = {a + tb : t ∈ R} is a hyperplane and 0 /∈ M .
We have proved that S is dense and star-shaped. Applying Lemma 5.1 we get

M ∩ S = M. (5.3)

Using (5.3) we are able to find a sequence a + tnb∈S such that lim
n→∞

a+tnb = a,

i.e., lim
n→∞

tn = 0. By (5.1) we have∣∣∣ρ′ (f(a + tnb), fb)− ‖f(a+tnb)‖2
‖a+tnb‖2 ρ′(a + tnb, b)

∣∣∣ 6

6 ε
∥∥∥−ρ′(a+tnb,b)

‖a+tnb‖2 f(a + tnb) + fb
∥∥∥·‖f(a + tnb)‖.

It follows from a + tnb ∈ S that a + tnb ∈ Dsm(X) and f(a + tnb) ∈ Dsm(Y ).
Hence ρ′(a + tnb, · ) = ρ′+(a + tnb, ·) and ρ′(f(a + tnb), · ) = ρ′+(f(a + tnb), · ).
Now the above inequality becomes∣∣∣ρ′+ (f(a + tnb), fb)− ‖f(a+tnb)‖2

‖a+tnb‖2 ρ′+(a + tnb, b)
∣∣∣ 6

6 ε
∥∥∥−ρ′+(a+tnb,b)

‖a+tnb‖2 f(a + tnb) + fb
∥∥∥·‖f(a + tnb)‖.

Applying (1.1) we get
∣∣∣ρ′+(fa, fb)− ‖fa‖2

‖a‖2 ρ′+(a, b)
∣∣∣ 6 ε

∥∥∥−ρ′+(a,b)

‖a‖2 fa+fb
∥∥∥·‖fa‖. We

arrived at the following statement:(
a,b are linearly
independent

)
⇒

∣∣∣∣ρ′+(fa, fb)−‖fa‖2

‖a‖2
ρ′+(a, b)

∣∣∣∣6ε

∥∥∥∥−ρ′+(a, b)

‖a‖2
fa+fb

∥∥∥∥·‖fa‖. (5.4)

We show that f approximately preserves ρ+-orthogonality. Let x, y ∈ X be
such that x⊥ρ+y (we may assume x 6= 0 and y 6= 0, otherwise (3.3) holds trivially).
Thus ρ′+(x, y) = 0. It follows that x, y must be linearly independent. From (5.4)
we have |ρ′+(fx, fy)| 6 ε‖fx‖·‖fy‖, whence fx⊥ε

ρ+
fy.

Now, let us prove the general case. Suppose dim X > 2, dim Y > 2. We
assume that x, y ∈ X \{0} and x⊥ρ+y. Clearly x, y are linearly independent. We
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define f̃ : Span{x, y} → W by f̃ := f |Span{x,y}, and W ⊂ Y is a two-dimensional

subspace such that f̃ (Span{x, y}) ⊂ W . By the first part, f̃ approximately

preserves ρ+-orthogonality. We get f̃x⊥ε
ρ+

f̃y, and hence fx⊥ε
ρ+

fy. �

We will prove that any linear mapping which approximately preserves B-
orthogonality, also approximately preserves ρ-orthogonality.

Theorem 5.4. Let X,Y be real normed spaces and let f : X → Y be linear and
satisfy (3.1). Then f satisfies (3.2).

Proof. For the proof of (3.1) ⇒ (3.2) consider the two cases. First, assume that
dim X = dim Y = 2. We define the set S := Dsm(X)∩f−1 (Dsm(Y )). Let y ∈ X,

x ∈ S, x 6= 0. Applying (Msip1) we get x⊥ρ

(
−ρ′(x,y)

‖x‖2 x + y
)
. We recall that

⊥ρ ⊂ ⊥B holds. Therefore, the latter condition becomes x⊥B

(
−ρ′(x,y)

‖x‖2 x + y
)
.

By (3.1) we have fx⊥ε
B

(
−ρ′(x,y)

‖x‖2 fx + fy
)
. Applying Theorem 1.1 we get

ρ′−

(
fx,−ρ′(x, y)

‖x‖2
fx+fy

)
− ε‖fx‖·

∥∥∥∥−ρ′(x, y)

‖x‖2
fx+fy

∥∥∥∥ 6 0 6

6 ρ′+

(
fx,−ρ′(x, y)

‖x‖2
fx+fy

)
+ ε‖fx‖·

∥∥∥∥−ρ′(x, y)

‖x‖2
fx+fy

∥∥∥∥ .

Since x ∈ S, we have fx ∈ Dsm(Y ). Thus ρ′−(fx, ·) = ρ′(fx, ·) = ρ′+(fx, ·). Now,
we can put ρ′ in place of ρ′+ and ρ′−. Now the above inequalities become

∀y∈X∀x∈S\{0}

∣∣∣∣ρ′(fx,−ρ′(x, y)

‖x‖2
fx+fy

)∣∣∣∣6ε

∥∥∥∥−ρ′(x, y)

‖x‖2
fx+fy

∥∥∥∥·‖fx‖. (5.5)

Let a, b ∈ X be linearly independent. Define x∗ ∈ X∗ by x∗(αa + βb) := α.
Then M := {z ∈ X : x∗(x) = 1} = {a + tb : t ∈ R} is a hyperplane and 0 /∈ M .
To finish the proof we argue as in the last part of the previous one. In the suitable
part we consider (1.3) instead of (1.1). Now the inequality (5.5) becomes(

a,b are linearly
independent

)
⇒

∣∣∣∣ρ′(fa, fb)−‖fa‖2

‖a‖2
ρ′(a, b)

∣∣∣∣6ε

∥∥∥∥−ρ′(a, b)

‖a‖2
fa+fb

∥∥∥∥·‖fa‖. (5.6)

Now, we can use (5.6). In a similar way as in the proof of Theorem 5.3 we obtain
∀x,y∈X x⊥ρy ⇒ fx⊥ε

ρfy. The case dim X > 2, dim Y > 2 is clear. �

Finally, from Theorems 5.2, 3.1, 3.2, 5.3 and 5.4, we obtain the following
characterization of linear mappings approximately preserving the orthogonality
relations.

Theorem 5.5. Let X, Y be real normed spaces, f : X → Y a nonzero, linear
mapping. Then, the following conditions are equivalent:

(1) f approximately preserves ρ+-orthogonality;
(2) f approximately preserves ρ−-orthogonality;
(3) f approximately preserves ρ-orthogonality;
(4) f approximately preserves B-orthogonality.
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Moreover, each of the above conditions implies

(5) ∀x∈X (1− 8ε)‖f‖·‖x‖ 6 ‖fx‖ 6 ‖f‖·‖x‖.

Note that, in particular, the property that a linear mapping approximately pre-
serves the B-orthogonality is equivalent to that it approximately preserves the
ρ+-orthogonality. Although ⊥ε

B and ⊥ε
ρ need not be equivalent unless we assume

the smoothness of the norm (see [7, Theorems 3.3, 3.4]). Thus in particular, every
linear mapping approximately preserving ρ-orthogonality is necessarily a scalar
multiple of an almost isometry.
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