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ABSTRACT. We show a Kalton-Weis type theorem for the general case of
noncommuting operators. More precisely, we consider sums of two possibly
noncommuting linear operators defined in a Banach space such that one of
the operators admits a bounded H°°-calculus, the resolvent of the other one
satisfies some weaker boundedness condition and the commutator of their re-
solvents has certain decay behavior with respect to the spectral parameters.
Under this consideration, we show that the sum is closed and that after a
sufficiently large positive shift it becomes invertible and moreover sectorial.
As an application we recover a classical result on the existence, uniqueness,
and maximal LP-regularity for solutions of the abstract linear nonautonomous
parabolic problem.

1. INTRODUCTION

Let E be a complex Banach space, let A : D(A) — E and B : D(B) — E be two
closed possibly noncommuting linear operators in £. We consider the question
of whether the sum A+ B with domain D(A + B) = D(A) ND(B) is also closed.
Furthermore, we ask under which assumptions the sum becomes invertible. The
last is related to the existence, uniqueness, and maximal regularity for solutions
of the following abstract linear equation, namely,

(A+B)x=y, yekE.
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We distinguish between two cases according to whether the operators commute or
not, where by commuting we mean resolvent commuting (see, e.g., [1, (I11.4.9.1)]).

For a quick review on the above two problems, we start with the classical result
of Da Prato and Grisvard [4]. They showed that the sum of two sectorial operators
is closable and the closure is invertible if the strong parabolicity condition on
their sectoriality angles is fulfilled. In the noncommuting case they required the
commutation condition [4, (6.5)].

If we restrict to the commuting case, then we mention two classical results
that further provide closedness. By employing the underlying properties of UMD
Banach spaces, Dore and Venni in [6] showed that the sum of two operators
that have bounded imaginary powers is closed and invertible, provided that the
strong parabolicity condition on their power angles is satisfied. Next, Kalton and
Weis in [8] treated the problem as a special case of operator valued holomorphic
functional calculus. Without assumption on the geometry of the Banach space,
they showed that if one of the operators admits a bounded H *°-calculus, the other
one is R-sectorial (or even U-sectorial) and the strong parabolicity condition on
the corresponding angles is fulfilled, then the sum is closed and invertible.

For the general case of noncommuting operators we mention the following two
remarkable generalizations. First, Monniaux and Priiss in [10] showed that the
Dore—Venni theorem can be extended to the noncommuting case if furthermore
the Labbas—Terreni condition [10, (2.6)] is satisfied. Then, Priiss and Simonett,
extended the Kalton—Weis theorem to the general case of noncommuting oper-
ators provided that either the Da Prato-Grisvard condition [12, (3.1)] or the
Labbas—Terreni condition [12, (3.2)] is satisfied.

In the present paper we give an answer to the problems of closedness and in-
vertibility of the sum of two operators simultaneously (Theorem 3.3). We extend
the Kalton—-Weis theorem to the case of possibly noncommuting operators under
certain decay condition on the commutator of the two resolvents with respect
to the spectral parameters (Condition 2.12). Moreover, we find one more com-
mutation condition that is stronger than the above one but it does not imply
the Da Prato-Grisvard condition or the Labbas-Terreni condition (see Remark
2.14). In addition, instead of asking for one of the summands to be R-sectorial we
introduce a weaker boundedness condition, which is a boundedness property for
the resolvent based on Bochner-norm estimates over an arbitrary measure space
(Definition 2.6).

As an application of our main theorem, we recover a well-known result on the
existence, uniqueness, and maximal LP-regularity for solutions of the abstract lin-
ear nonautonomous parabolic problem in UMD spaces (Theorem 4.2). We treat
the problem by constructing the inverse of the sum of the time derivative and
the nonautomomous term. The benefit of our approach is that the above inverse
is explicitly expressed by using Neumann series in terms of the pointwise freez-
ing of the nonautonomous operator. As a consequence, the mapping properties
of the inverse can be easily controlled in terms of the data in our construction.
Therefore, maximal LP-regularity space estimates for the solutions can be ob-
tained, which are useful example for showing existence of long time solutions for
quasilinear parabolic problems (see, e.g., [15, Theorem 4.6]).
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2. NOTATION AND PRELIMINARIES

Denote by p and o the resolvent and the spectrum of a linear operator, respec-
tively. We start with the basic notion of a sectorial operator.

Definition 2.1. Let E be a complex Banach space, and let 6 € [0, 7). Let P, (6),
k > 1, be the class of all closed densely defined linear operators A in E such that

So = {1 € CllargA| < 0} U{0} C p(—A) and (1 + ADIA+ X lew) < &

for all A € Sp. The elements in P(0) = U,>1P.(0) are called (invertible) sectorial
operators of angle 6. If A € P(0), then any x such that A € P,(0) is called
sectorial bound of A and the constant inf{x|A € P.(0)} depends on A and .

If A € P.(0), then a sectoriality area extension argument (see, e.g., the Ap-
pendix of [13] or [1, (II1.4.7.11)]) implies that
1+ |2
2K

o= {/\GC||)\—Z|§

zE€Sy

b ca(-4)

and
L+ ADNA+N " em <26+1 VA E Q.

Therefore, whenever A € P(6) we can assume that 6 > 0 (see, e.g., [1, (I111.4.6.4)]
and [1, (II1.4.6.5)]). For any p > 0 and 0 € (0, 7), let the positively oriented path

To={re®ecClr>ptu{pe®ecClo<¢<2r—0}U{re™™ cC|r>p},

where we denote I'g g simply by I'y. We can define holomorphic functional calculus
for sectorial operators by using the Dunford integral formula. Then, the following
basic property can be satisfied.

Definition 2.2. Let F be a complex Banach space, let § € (0,7), ¢ € [0,0),
and let A € P(0). Let H3°(¢) be the space of all bounded holomorphic functions
f: C\Sy — C such that

Al \7
VI E " |A|2) for any A€ C\S,,
with some ¢ > 0 and n > 0 depending on f. Any f € H§°(¢) defines an element
f(=A) € L(E) by
1
—A)=— A (A+ Nt
FA) =5 [ S+

We say that the operator A admits a bounded H*-calculus of angle ¢, and we
denote by A € H>™(¢), if

1f(=Dlle) < Cagp sup [f(A)| forany f € Hg"(¢),

)\GC\S¢

with some constant Cy 4 > 0 that is called H*°-bound of A and depends only on
A and ¢.
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Let A: D(A) — E be a linear operator in a complex Banach space E such that
AePO)NH>®(p), 0 < ¢ <60 < m. Denote by A* : D(A*) — E* the adjoint of A
defined in the continuous dual space E* of E. Then, A* € P(0)NH>(¢) provided
that D(A*) is dense in E*, which will be always assumed in what follows. This is
[5, Proposition 1.3 (v)] and [5, Proposition 2.11 (v)]. We recall next a boundedness
property of operators having bounded H*°-functional calculus, which will be of
particular importance in our estimates later on. Let D = {z € C||z| < 1} be the
closed unit disk in C, and let N = {1,2,...}.

Lemma 2.3. Let E be a complex Banach space, let A € H>®(p) and let f €

-----

ar € D for each k, we have that
1Y arf(—t275 A) ey < Caoy
k=0

for some constant Cs 45 > 0 depending only on the H*-bound of A, ¢, and f.

Proof. This is [8, Lemma 4.1]. O

A typical example of the functional calculus for a sectorial operator A € P ()
are the complex powers. For Re(z) < 0 they are defined by

A= [ CarAt ), (2.1)
271 Too

where p > 0 is sufficiently small. The above family together with A° = I is a
strongly continuous holomorphic semigroup on E (see, e.g., [1, Theorem I11.4.6.2
| and [1, Theorem I11.4.6.5]). Note that by a sectoriality area extension argument,
we can replace I', 5 in (2.1) by —d + I'p with ¢ > 0 sufficiently small. Moreover,
each operator A%, Re(z) < 0, is injection and the complex powers for positive real
part are defined by (A4%)~!. The imaginary powers are defined as the closure of a
variation of formula (2.1). We refer to [1, Section I11.4.6] for a detailed description.
Next, we recall the following elementary decay property of the resolvent of a
sectorial operator.

Lemma 2.4. Let E be a complex Banach space, let p € (0,1), k > 1, 6 € (0,7),
and let A € P.(0) . Then, for any ¢ € [0,0) and any n € [0,1 — p), we have that

_ 7
|AP(A+ 2) Yoy < T o z € Sy,

for some constant v > 0 depending on k, 8, p, ¢, and 7.
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Proof. For any z € Sy, by Cauchy theorem we have that

AP(A 42yt = A/ (=N A+ N)"H A+ 2)"1dA
—6+Ty

T 2mi

_ LA/ CN (A4 2 = (44 21
—54T

271 z— A
_ %A /_MG (;A_)p; (A+X\)"tdx — ﬁA(A 4o /_Me (;A_)p;d)\
= QLM . <;A_)p; (A+ A= N)(A+ )" 1dr
_ 1 SV S ACN"E 4 a1

211 J_sir, 22— A 21 ) _s4r, A2
1 A(=N)Pt
= —/ <—>(A—|—)\)71d)\,
27 ) _s4r, A—Z
for some fixed & > 0 sufficiently small due to a sectoriality area extension argu-
ment. Therefore, we obtain

1 z\n
PAP(A+2) = — (’\—)z)\”“’*I(A — ),
2 Js_p, 1+ %
and the estimate follows by this formula. U

Next we focus on families of bounded operators and introduce a boundedness
property with respect to orthonormal sets on an arbitrary measure space.

Notation 2.5. Denote by S = (0, %, 1) an arbitrary finite measure space and
by &, = {e1,...,en}t, n € N, a finite sequence of vectors in L>(2;C,du) with
lerl|Le@can < 1, k € {1,...,n}, such that all vectors in &, are orthonormal
in L*(Q; C,du). Furthermore, let E be a complex Banach space and denote by
X, = {x1,...,x,} a finite sequence of vectors in E. Also, if F C L(E) is a
family of bounded operators on E, denote by T, = {T\,...,T,} a finite sequence
of vectors in F. Finally, denote by L*(Y; E,du) the Bochner space.

Definition 2.6. Let E be a complex Banach space, and let F C L(E) be a
family of bounded operators on E. According to the previous notation, F is
called orthonormally bounded with respect to the measure space S if for any triple
T = (n,X,,T,) there exists some &, that depends on 7, such that
| Z exTize| 2pan < Crs(sup || Z axT| E)
k=1 ak€D Gy

for some constant Cr s > 1 which is called orthonormal bound or ON -bound and
depends only on F and S. If for some family F there exists some finite measure
space S such that F is orthonormally bounded with respect to S, then we say
that F is orthonormally bounded or ON -bounded.

In our estimates we will actually require a boundedness condition weaker than
the ON-boundedness, which is described in the following lemma.
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Lemma 2.7. Let E be a complex Banach space, and let F C L(E) be ON-
bounded with ON-bound equal to Cr s with respect to some measure space S =
(Q,2,n). Then, for any xq,...,x, € E, x},...,2} € E*, and Ty,...,T, € F,
n € N, we have that

E*)7

n n n
> (Teww, ai)| < Crs(sup ||Y - arelle) (sup || beal
1 ap€D =1 breD 1

where Cr s = Crs(Vol())z.

Proof. By Cauchy—-Schwarz inequality, we have that

k=1 € =1 J=1
< /IIZ@E%HEHZ%‘%
Q =1 j=1

pdp

n 1 n ., 1
< ([ IS eitialidn)* ([ 13 e )’
€ = Qo
for certain vectors ey, ..., e, in L>(€2; C,du) with ||ex||z@ican < 1, 1 <k < n,
such that ey, ..., e, are orthonormal in L?(€2; C, du). Then, the estimate follows.

0J

By restricting to the case of resolvents of operators, we can generalize the
notion of sectoriality as follows.

Definition 2.8. Let E be a complex Banach space, let § € [0,7), and let A €
P(0). We say that A is ON-sectorial of angle 6, and denote by A € ON(6), if
the family {\(A + A\)7'| X € Sp\{0}} is ON-bounded. In this case, we call the
ON-bound as ON -sectorial bound.

Similarly to the sectoriality, the ON-sectoriality of an operator is preserved

under appropriate shifts and the resulting O N-sectorial bound remains uniformly
bounded.

Lemma 2.9. Let A : D(A) — E be ON-sectorial of angle 6 € (0, 7) with ON -
sectorial bound Cyup. If w € [0,min{f,m — 6}), then for any ¢ € S, A+ c is

ON -sectorial of angle 6 with ON -sectorial bound < Siﬁgfw).
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Proof. Let S = (2,3, ) be a finite measure space subject to the O N-sectoriality
of A. For any A1,..., A\, € Sp\{0} and xy,...,2, € E, n € N, we have that

| Z exM(A + ¢+ M) al| L2 0,00
k=1

n )\k
= ) (A M)t 20
| ;ek(c‘i‘ k) (A+c+ ) o /\kSCkHL (%E,dp)

< Cygsup || E Ly k| &,
ap€D =1 C+ k

for some vectors ey, . .., e, in L>(2; C, dp) with ||eg|| Lo ican < 1,k € {1,...,n},
such that ey, ..., e, are orthonormal in L?*(Q; C, du). The result now follows by

the estimate I

A
< .
e c+)\’ ~ sin(f + w)

AeSp\{0}

O

Next we consider the case of O N-boundedness where the vectors involving the
estimate are taken from a fixed orthonormal set.

Definition 2.10. Let E be a complex Banach space, let F C L(F) be a family of
bounded operators in E, let S = (€2, 3, ) be a finite measure space, and let £ =
{er}ren be a fixed orthonormal set in L?(Q; C, du) such that e, € L®(Q;C, dp)
with ||ex| Lo (@ic,au) < 1foreach k € N. Let X, = {x1,...,2,} be a finite sequence
of vectors in E, and let 7, = {T1,...,T,} be a finite sequence of vectors in F,
n € N. We say that F is £-bounded if for any triple 7 = (n, X, 7,,) there exists
a finite sequence ay,...,a, € D that depends on 7, such that

| Z ex Thr| L2 mdn < Crell Z arerTi|| L2(0:5,dp)
k=1 k=1
for some constant C'r ¢ > 1 which is called £-bound and depends only on F and
&. Furthermore, an operator A € P(0) in E is called &€-sectorial of angle 6, and
we denote by A € £(6), if the family {A(A+ X"t X € Sp\{0}} is E-bounded. In
this case, we call the £-bound as &-sectorial bound.

A special example of an £-sectorial operator is any R-sectorial operator; that
is, a sectorial operator A such that the family {A(A + X\)7' |\ € Sp\{0}} is
Rademacher bounded (see Definition 4.1). Due to a property of the Rademacher
functions, namely, the Kahane’s contraction principle (see, e.g., [9, Proposition
2.5]), in this case the numbers a in the above definition can be taken equal to
one.

Furthermore, in [14, Theorem 2.8], it has been shown that if a sectorial opera-
tor A defined in a UMD (unconditionality of martingale differences property)
space has bounded imaginary powers with power angle ¢ < 7 (see [I, Sec-
tion II1.4.7] for definition), then for any 6 € (¢ — m,m — ¢) the family Fy =
{(I+re*®A)" r e [1,1,k € NU{0}} is E-bounded with respect to the
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orthonormal set & = {e*'/v/2m}renuqoy in L?(0,27). This together with [14,
Theorem 2.6] showed, for example, that the sum of two resolvent commuting op-
erators in a UM D space such that one admits a bounded H>-calculus and the
other one has bounded imaginary powers is closed and invertible, provided that
the standard parabolic condition between the corresponding angles is satisfied.

The class of £-sectorial operators behaves nicely in relatively small perturba-
tions as we can see by the following.

Proposition 2.11. Let E be a complex Banach space, and let A € E(0) with
sectorial bound equal M, and E-sectorial bound equal Cag. Let also B be a linear

operator in E such that D(A) C D(B), and
1 1 }
14+Cap’ 1+M"
Then A+ B € £(0) and the E-sectorial bound of A+ B is < Cap/(1 — (1 +
Cao)llBA™ | eee))-

Proof. Clearly, the family {A(A + X\)7' |\ € Sp\{0}} is also E-bounded with &-
bound < 14 Cyy. Moreover, Sy C p(—(A+ B)), and the resolvent of A + B is
given by the following absolutely converged Neumann series

IBA™ |2 < min{

(A+B+N1t=A+N"1 3 (—D)*BA+N)H* Xe S,

By using successively the £-boundedness of A(A + A\)~! together with the com-
pactness of D we obtain the result. O

Let E be a complex Banach space, and let A € L(D(A), E) with 0 ¢ o(A).
In this situation, instead of using the graph norm, for simplicity we equip D(A)
with ||A - ||g. By denoting with [-,-] the commutation operation, we introduce
next our basic commutation condition between two sectorial operators.

Condition 2.12. Let A : D(A) — E, B : D(B) — E be linear operators in a
complex Banach space E such that A € P(04), B € P(0p), and

Sop > = (B+p)~" € L(D(A))

is a well-defined Lebesque measurable map. Assume that there exist some con-
stants C' > 0 and a;, B; > 0, j € {1,2,3}, such that
C

AN B lecon < GTrmmya ] e Qo) € SoaxSan,

where
(I)Xlzifl:E, (Xl+51>2, 061>O,ﬁ1>0.
(11> XQIE;}/Q:D(A), 042—|—ﬁ2>1, 04220, 52>O.
(111) X3 = Y:fg = D(A), (%} —f—ﬁg > 2, a3 > O, ﬂg > 0.

Note that the above condition implies density of D(A) N D(B) in E, since by
9, Proposition 9.4] for any * € E we have that (0B + 1) '(6A+1)'z — =
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strongly as 6 — +0. Moreover, in view for example of the following formally
written equalities
[(A+X)"(B+ )™ (2.2)
— (AN B+ ) A BB BB + ) B ATAT(A £ A)

Al(A+ N (B+p)1A™ (2.3)

— A(A+ N NB ) A BIB U BB 4 ) BAT (A )
for certain v,n,v,£ € (0,1), by Lemma 2.4 we see that Condition 2.12 is fulfilled
when the commutator [A, B] is of lower order, for example, this can happen in

the case of differential operators.

Let us now consider one further condition that turns out to be stronger than
Condition 2.12.

Condition 2.13. Let A: D(A) — E and B : D(B) — E be linear operators in
a complex Banach space E such that A € P(04), B € P(0p) and

Sop D = (B+p)~" € L(D(A))

is a well-defined Lebesque measurable map. Assume that there exist some con-
stants C' > 0 and oy, B1, 82 > 0, as > 0 with aq + 1 > 2 and as + B > 1, such
that for all (A, ) € Sp, x Sg, we have

C
(14 A1) (1 + |ul?)

A+ 0B+ ) e <

and

C
(T4 [AJe2) (X + |ul?2)

1A+ 0B + )™ Allleoay <

In view of the identity
A+ (B+u) = A+ (B+p) L AA+ N, (2.4)
where (A, 1) € Sy, % Sp,, we obtain the following.

Remark 2.14. Condition 2.13 implies Condition 2.12. However, Condition 2.13
does not imply the Da Prato-Grisvard condition [12, (3.1)] or the Labbas-Terreni
condition [12, (3.2)]. Moreover, condition [12, (3.1)] or condition [12, (3.2)] im-
plies the case (i) of Condition 2.12, which is an underlying commutation condition
that appears in [10] and [12], as well as in our calculations. By (2.4), condition
[12, (3.1)] also implies the case (ii) of Condition 2.12. Finally, from (2.4) we see
that the cases (ii) and (iii) of Condition 2.12 are of similar flexibility.

We recall next the Da Prato and Grisvard formula for the inverse of the closure
of the sum of two resolvent commuting sectorial operators.

Notation 2.15. Let E be a complex Banach space, and let A and B be linear
operators in E such that A € P(04) and B € P(0p) with 04 + 0 > w. Let
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Y € [0,m —max{6a,05}), c € Sy, and let the bounded operators K., L. € L(E)
defined by

1

K= — | (A—2)"YB.+2) "z
27T7/ FQB
and
1
L.=— (Be + 2) 1 (A — 2)dz,
2777/ F9B

where B, = B + c. By a sectoriality area extension argument we can replace the
path 'y, in the above formulas by I'pp, or by £6 + Ly, _., for sufficiently small
p,0,e > 0.

Remark 2.16. In the definition of K, if we keep 5 fixed and replace B by a family
of operators B(§) € P(0p), £ € =, indexed by a set =, such that the sectorial
bounds of B(¢) are uniformly bounded in £ € =, then we can still replace Iy, by
', 9, for some fixed p > 0 independent of &.

We recall the following mapping property of the operator K..

Lemma 2.17. Let E be a complex Banach space, and let A and B be linear
operators in E such that A € P(04) and B € P(0p) with 04+ 0p > w. Then, the
operator K, maps D(B) to D(A).

Proof. If w € C with Re(w) < 0, then

KCBw B QLT('Z Fop—c (A a Z)_l <2L7m /6+F93 (_)\)w(BC * Z)_l(B + )\)_ld)\)dz
= % F@BS(A —2)!
x (o (A" = ¢ — 2) M(Bot+2) = (B + N)"1)dN)d2

2mi 64Ty,

B (271@')2 /F /_5+F (NN == 2) (A= 2) (B + 2) " 'dAdz

- (27;‘)2 /M /F (=N (A == 2) (A = 2) (B +A)Hdad),

0p—¢

where we have used Fubini’s theorem. By Cauchy’s theorem the first term on the
right hand side of the above equation is zero. Therefore,

KB = - (=A"(A+c—A) 1B+ \) A (2.5)

2m —6+T,,

Since the integral
/ (“A)"A(A+c— N (B + )\)dA
—5+4Ty,,

converges absolutely, by (2.5), we have that K.B" maps F to D(A). O



592 N. ROIDOS

Finally, we recall the following commutation formula.

Lemma 2.18. Let E be a complex Banach space, and let A and B be linear
operators in E with A € P(04). Then, for any f € H§*(p), ¢ € [0,04), and any
A € p(—B) # 0, we have that

[F(=A), (B+ 1)1 = Qs (),

where

QN = — [ F@(A+2) " (B+ N dz € £(E).

2m Jr or

Proof. Proof follows directly by the integral formula for the functional calculus

3. THE SUM OF NONCOMMUTING OPERATORS

In this section we consider sums of possibly noncommuting operators satisfying
Condition 2.12 and show closedness and invertibility. Firstly, we perturb the Da
Prato and Grisvard formula from the left in order to construct an unbounded left
inverse of the sum. Then, we do similar perturbation from the right and construct
an approximation of the right inverse. Finally, by employing the extra properties
of the boundedness of the H*°-calculus and the O N-sectoriality we show that the
above two constructions give the inverse of the sum. We start by applying certain
fractional powers to the Da Prato and Grisvard formula as follows.

Proposition 3.1. Let E be a complex Banach space, and let A and B be linear
operators in E such that A € P(04) and B € P(0p) with 04 + 0 > w. If
Condition 2.12 is satisfied, then the operator K. maps the range Ran(A + B.) to
D(A) and there exists some P. € L(E) such that

AK.(A+B.)= I+ P.)A in DA+ B).
Furthermore, || Pe||z(gy — 0 when |c| = oo.

Proof. Let w € C with Re(w) < 0. We have

w o 1 w — -1
AR, = o [ A (Bt
= YA+ N A~ 2) NN (B. ~1d
2mi /pe 2mi /5+F9 AT 2 )( +2)
= U4 2) (A= 2)
P / } / o ()
(A—l—)\ )(Be+2)"'dz
_ / / WAt 2) " (A — 2)"Y (B, + =)~ LdAd
27” Pop 6+F9A

_(2m')2/5+F /F (=N (A+2) A+ N) (B +2) ' dzd),

p
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where at the last step we have used Fubini’s theorem. By Cauchy’s theorem, the
first term on the right hand side of the above equation is zero. Therefore

1
AYK, = —/ (=N)"“(A+N)"HB. — Nt
211 —64Ty,
Hence, if € (0,1) by Cauchy’s theorem we obtain
1
AK, = — / A A = N)"HB. + Nt (3.1)
2mi Ty,
If 2 € D(A+ B), then we estimate
1
AK(A+B)r = — A A = N Bo(B. + \)tad)
271 To,,
1
+— A(Be+ M) TTA(A — N)lad)
2mi Ty,
1
+5— AT(A =AY (B + \) 7 Azd
Lo,
1
= — AT0(A = N)tad)
211 Top
—i_ MTA = N)"YB. 4+ ) tadA
2m Ty,
1
+— AY(Be + X\)tzdA
2mi Ty,
1
+—— M(B.+ X)7HA = X)) tzdA
2mi Lo,
1
+T AT[(A = N7 (B + A) 7Y Azd)
™ Top
1
= A - — / M(A = XN (B + M) 7 HadA
2mi To,,
1
+5— A(A =N (B + \)THAzdA.
o,

By taking the limit in the above equation as # — 0, since A=Y — I strongly,
by the dominated convergence theorem we obtain
1

KA+ Bz = z— 7 AM(A =X (B, + A Had
™

+L (A= X)) (B + \) 7 Azd), (3.2)

271

Tog

Tog

where we have employed Condition 2.12 for the existence of the dominant and
for the absolute convergence of the above integrals.
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Since by Condition 2.12 the integrals

J

converge absolutely, (3.2) implies that K.(A + B.) maps D(A + B) to D(A) and

MIA =N (B, +MN)zd)  and / A[(A= N1 (B, + N Azd)

op p

AK (A+ Bz = (I- i M[(A =N (B, + M)A dA
T FGB
1
+— A[(A= XN (B + \)dN) Az (3.3)
2mi To,

for all x € D(A + B).
Furthermore, by Condition 2.12, the norm of

1

P=—— M[(A =X (B, + A) A dA
271 F9B
1
+— A[(A =N (B, + M) 7d) € L(E) (3.4)
2mi Ty,
becomes arbitrary small by taking |c| sufficiently large. O

Similarly, we can build an approximation of the right inverse of the sum by ap-
plying the Da Prato and Grisvard formula to certain fractional powers as follows.

Proposition 3.2. Let E be a compler Banach space, and let A and B be linear
operators in E such that A € P(04) and B € P(0p) with 04 + 0 > ©. If
Condition 2.12 is satisfied, then the operator L. maps D(A) to D(A + B) and
there exists some T, € L(E) such that

(A+B.)L.=1+T, in D(A).
Furthermore, ||T,||zz) — 0 when |c| — oo.

Proof. We need an analogue of formula (3.3). If w € C with Re(w) < 0, then

LAt = o[ e [ A= A ) )

2w J syt o 21

1
- a - (Bc + Z>_1
27 —54Ty,

x(i, (NN +2) " ((A=2)"" = (A+ M) HdN)dz

2mi 5+F9

_ / / WA+ 2) (B + )1 (A — 2)~LdAdz
27” 5+To, 5+r9A

/ / YN+ 2) N Be + 2)THA + X)) Hdzd),
27T7’ 5+F9 5+FQB
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where we have used Fubini’s theorem. By Cauchy’s theorem the first term on the
right hand side of the above equation is zero. Therefore,

LAY = = (=\)"“(B. — \) M A+ N)"ta. (3.5)

27TZ —5+F9A

Let € € (0,1). Since the integral

/ (=A)"Be(B. — A) M A+ A) A

oA
converges absolutely, by (3.5), we have that L.A~% maps E to D(B), and

BL A" = —— [ (cA)(Be— A+ N)(Bo— N) (A + Nl

2w Jr 04

=~ L oyt )i

21 Jr 04

B = N (A )

2m Jr ”

oA L[ BT A ) (3.6)

21 F9A

Moreover, by Condition 2.12, the integrals

/ (=N TPAA+ X)) (B. — N)HdA

and

[N a7 (B - 2
T,
converge absolutely. Hence, by (3.5), we find that L.A~? maps E to D(A), and

ALA = [ (O AL =N A+ N (B = ) ld

2m Jr 04

N ANA N (B )Y

271 Ty,
1
= — | (=N"A+ (B, - Nt

21 Jr 04

oA A N (B N (3.7)

21 FOA

Therefore, by (3.6) and (3.7), we obtain

(A4 BILA™ = A4 [ ()[4 )7 (B~ N
Al A 0L (B — A) Y,

21 FGA



596 N. ROIDOS

Hence, if x € D(A), then we find that

(A+ B)La - z+ % (A [(A+ N, (B, — A)~1]A%2d)
L[ 0 AlA £ ) (B = A A%d

21 Jr 04

By the Dunford integral formula for the complex powers and the dominated
convergence theorem we have that A%z = A°“'Ax — 2z when § — 0, for any
x € D(A). Thus, by taking the pointwise limit in the above equation and by the
dominated convergence theorem, we obtain that

(A+B)La = (I- % A+ N (Be = A)YdA
_QLM, AA+ N (B — N YJdN)z

for all x € D(A), where we have used Condition 2.12 for the existence of the
dominant and for the absolute convergence of the last integrals in the operator
norm.

Finally, by Condition 2.12, the norm of
1

T.=—=— [ A(A+XN""(B.—A)"dA
g BRGNS
1
—s— A[(A+ X" (B — A\ HdX € L(E) (3.8)
2mi ro,
becomes arbitrary small by taking |c| large enough. OJ

We are now in the position to impose further assumptions to our operators and
make the above constructed perturbations to serve as a left and a right inverse of
the sum. The main task is to show that the left inverse approximation given by
Proposition 3.1 becomes a bounded operator. We manage this by decomposing
dyadically the integral representation of the unbounded part and then using the
consequences of the ON-boundedness and the boundedness of the H*-calculus.

Theorem 3.3. Let E be a complex Banach space, and let A and B be linear
operators in E such that A € H>(04) and B € ON(0p) with 64 + 6 > w. If
Condition 2.12 is satisfied, then A+ B is closed and there exists a constant co > 0
such that 0(A+B+cg) € Sr—min{oa,05}- Furthermore, for anyw € [0, min{f4,65})
we have that A+ B + ¢y € P(w).

Proof. Let ¢ € [0,m — max{64,0p}), c € Sy, and let Y4 = 04 — e with € > 0
sufficiently small. Since the integral

/ A PA(A = NN (B, + M) tdA
—FwA
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converges absolutely when 6 € (0,1); by (3.1) we have that A=K, maps E to
D(A), and

1
AAT'K, = — A PAA = N)7Y(B, + \)7tdx
27TZ _FIZJ
A
1
- — A (B. 4+ \)7tdA
2mi Ty,
1
+— M7(A = N)"HB. + ) tax
2mi Ty,
1
= — MTA = N B+ N7l
271 Ty,

Therefore, by replacing 6 with 6+ ¢, with the further restriction 0, ¢ € (0, 1) such
that 6 + ¢ < 1, and then applying A? to the above equation, we find that

AATPK, = Uy + Gy (3.9)
with
1
Up= — A=) A9 (A — X)"H(B, 4+ X\) A

2mi —Ty,ND
and

1

Gy = — AT A9(A — N)Y(B, 4 X)),

2mi ) r, )

where we have used Lemma 2.4 for the absolute convergence of the above integral.
For any m € N define

Li(n—1pa)(2—(0+¢ 2m
Gi _ ¢ ( ;)(. (0+9)) / Ad’(A B Teii(w—wA))—l
i 1

(= pa)(2—(0+4)) T /
2

o A¢(A + Te:FW)A)—l(BC _ TeﬂFiwA)—lrl—(Gw)dr
v

+i(r—pa)(2—(0+¢)) ™1 2 ,
= - . / AP(A + t2beFiva) !
1

271

k=0
x (B, — t2k€¥iw,4)—1t1—(9+¢)2k(2—(9+¢))dt
eti(a—m)(0+¢) (2 dt
= — WE(t)— 3.10
| Wi (3.10)
where
m—1
Wri (t) — A¢(A 4 tzk‘ejFiwA)*l(Bc _ tzk‘ejFiwA)*1t2*(9+¢)2k(2*(9+¢>))6¥i2¢A,

iy

0
and take any x € E, x* € E*.
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We proceed now as in [8] in order to obtain uniform estimates for the above

operator families. More precisely we have

+

(W (B)z, 7))

m—1

_ | <t1 (9+d>)2k(1 (6+9)) :Fz (A¢<A—|—t2k ?WA) )%(Bc _ tzkeii@m)fl

k=0

1=(+0)
><t2ke$“/’f“xt - 2k(

~(0+9)) FiA ((A")?(A* + t2ke$w“‘)*l)%x*)|,
where p, ¢ > 1 such that % + % = 1. Denote

flfj( ) =1 Fo= TS 5 hi(zt_12 ",
where

() = ((—w)*(—w+ ™)) e HE(0a—=2). j € {pa.

(W (t)z, 2%)]|

m—1

= | (i (—A)(B. — t2keTa) ke T Ay [ (—A")a")|
k=0
m—1

< | ) (B — t2FeTa)y ke WA £ (— A, fi (= AY)a")]
k=0

m—1
+| Z<Qf2fp (c — t2keTaypokeFiay, f,fq(—A*)x*H.

k=0

Due to Lemma 2.9, B, belongs again to ON(0p) and its O N-sectorial bound is
uniformly bounded in c. Hence, by Lemma 2.7 we obtain

(W (), 27)
m—1
< Co(sup IIZakfkp A)zllg) (sup || Y bifify (=A%)2" || 2-)
arp€D breD k=0
m—1
+C’ sup arQ + (¢ — t2keTWa)okeTiva,
o 13 0y | ke s )

m—1
(sup || Zbkfkq —A%)z"

breD

B, (3.11)

for some constant Cjy > 0 that depends only on the O N-sectorial bound of B.
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Concerning the family of bounded operators Qf;t (c — t2FeTFiWa)okeTiva by
P

Condition 2.12 we estimate

1@ (c— 12" eT VA2 e TVA| £

C / 2k fi(2)]
< — - z
= 2r oy, (L 2 + [e — t2ke¥ioa]?)

ki i—1o—k(2
< Trivt | 2=t rdz.
2m o, (14 |2[*1)(1 4 |c — t2keTiWa|Pr)|zt =127k — eFials

By changing variables and taking appropriate values for p and ¢, the last integral
in the above inequality converges absolutely, and it is uniformly bounded in ¢
and 6 by 22=*1=BUk for each k. More precisely, by possibly increasing C' we can
assume that a; < 2, and then, by taking p close to 1 and ¢ close to 0 when a; < 1
and p, ¢ both close to 1 when «; > 1, we have that

||Qf;t’p(0 — 2k eFiayokeTia | by < )21 Fk

for some constant C independent of ¢, § and k. Therefore, (3.11) and Lemma
2.3 imply that

(W (D)2, 27)] < Collzp]l2|

with some constant Cy independent of m, ¢t and 6. Hence, by (3.10) we have

E*,

C
G zlle < Z—;Hﬂ?HE,
and by taking the limit as m — oo we obtain
C
1Goz||s < fllxllE' (3.12)

Clearly,
|Usz|| e < Cs|||E, (3.13)

for some constant C5 independent of . Therefore, (3.9), (3.12), and (3.13) imply
that

lAA™ Kez||p < Callzll s,

with some constant C independent of §. By Lemma 2.17, if y € D(B), we have
that K.y € D(A). Hence,

A AK ylle < Callylle,
and by taking the limit as 6 — 0 we obtain
[AKyllE < Callylle- (3.14)

By the closedness of A and a density argument we conclude that K, maps E to
D(A) and AK,. € L(E).
By taking |c| sufficiently large, from Propositions 3.1 and 3.2, we have that

AT+ P)"AK.(A+B.) =1 in D(A+ B) (3.15)
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and
(A+ B,)L.=1+1T, in D(A). (3.16)
By combining the above equations we find that
AN I+ P)"AK(I+T,)=L. in D(A). (3.17)

Due to the boundedness of AK,. the above formula also holds in E. Therefore,
we conclude that L. maps F to D(A) and AL. € L(E). Then, by (3.16); that is,
by

B.L.=1+T.—AL. in D(A),
the closedness of B and a density argument, we also deduce that L. maps E to
D(B) and B.L. € L(E). The right inverse of A+ B, then follows by (3.16) and
the invertibility of I + T.. Hence, (3.16) and (3.17) can be improved to

(A+B.)L.=1+T. in E
and
A Y I +P)'AK, (I +T.)=L. in E.

By the invertibility of I 4+ T, the last equation implies that the left inverse of
A + B, which is given by (3.15), maps to D(A + B), and therefore closedness
follows.

Concerning the sectoriality of A + B + ¢, for sufficiently large ¢y > 0, we first
note that by Proposition 3.2 the norm ||(I 4+ T..) || z(x) is uniformly bounded in
c when |c| € ¢y, 00). By changing z = (1+ |c|)p in the integral formula for L. we
find that

czﬁ (Bt (L Je)) A = (L fel)) ™ (L + [el)dp
= ﬁ g (B +c+ (14 [e)p) (A= L+ [e))~ (1 + |cl)dp,

P.OB
for some sufficiently small p > 0 independent of ¢. By standard sectoriality we
estimate

1ol (3.18)
1 / KAKB

2r(L+|cl) Jr,,, (A4 leD=" + e+ [e))= + u)((1 + le[) =1 + [ul)

where k4 and kp are sectorial bounds for A and B, respectively. If ¢ = ¢¢ + v,

v € Sy, then the above absolutely convergent integral is uniformly bounded in v.
Therefore by

dp,

(A+B) ' =L(I+T,)™" (3.19)

we conclude that o(A+B+cy) € Smax{o,05} and for any ¢ € [0, 7 —max{04,05})
we have that A+ B + ¢o € P(¢).

Now if w € [0,min{f4,05}) and s € S, we have that B + s € P(f5) when
Op < 5 and B+ s € P(r — w) when 0 > 5. Due to this observation we can
replace B in the previous case by B + s and ¢ by ¢y > 0 sufficiently large; so that
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(A+ B+ cy+s) !t € LIE,D(A) N D(B)) exists and is given by (3.19) with ¢
replaced by ¢y +s. The uniform boundedness in s € S,, of ||(1 +Tp45) ' 2(r) and
(14[5]) || Leg+s|| 2y follows, respectively, by (3.8) and (3.18) (by possibly replacing
0p with m — w). Therefore, by (3.19) with ¢ replaced by ¢y + s we deduce that
(L+ [sD[(A+ B +co+ ) lzp is also uniformly bounded in s € S,,. O

By following the proof of the above theorem we make the following observation.

Lemma 3.4. Suppose that in the assumptions of Theorem 5.5 we keep O fized
and replace B by a family of operators B(§) € ON(0p), & € Z, indezed by a set
=, such that A and B(§) are resolvent commuting for each . Then,

() the shift ¢y can be chosen to be equal to zero for each & € Z.

(ii) if the sectorial bound and the ON -sectorial bound of B(&) are uniformly
bounded in & € =, then the sectorial bound of A+ B(§) € P(0) can be
chosen to be uniformly bounded in & € =. Furthermore, the L(E)-norm
of B(&)(A+ B(&) +v)™ ! is uniformly bounded in (¢,v) € = x [0, 00).

Proof. In the proof of Theorem 3.3, ¢y was taken large enough in order to make
sufficiently small the £(F)-norms of the operators P. and T, from Propositions
3.1 and 3.2, respectively. Since A and B(§) are resolvent commuting for each &,
by [1, I11.4.9.1 (ii)], (3.4), and (3.8), we clearly have that P. = T, = 0. Therefore,
we can take ¢y = 0 for all £ (see also [4, Theorem 3.7]).

Furthermore, only the sectorial bounds of the two summands contribute to
the estimate (3.18), where p can now be chosen to be fixed due to Remark 2.16.
Hence, the sectorial bound of A + B(&) can be chosen to be uniformly bounded
in ¢ € Z. Finally, the £(E)-norm of B(£)(A + B(§) + v)~! can be estimated by
the sectorial bound of A + B(£) and the £(E)-norm of A(A+ B(§) +v)~!. By
(3.14), v does not contribute to the estimate of the last norm and & contributes
only by the sectorial and the ON-sectorial bound of B(&). Here we have noted
that the operator @ from Lemma 2.18 is zero in our case. Thus, the £(E)-norm
of B(§)(A+ B(&) +v)~! is uniformly bounded in (¢,v) € 2 x [0, 00). O

4. AN APPLICATION TO THE ABSTRACT LINEAR NONAUTONOMOUS
PARABOLIC PROBLEM

In this section, we apply the previous result on the closedness and invertibility
for the sum of two closed operators in order to recover a classical result on the
existence, uniqueness, and maximal LP-regularity for solutions of the abstract
linear nonautonomous parabolic equation. We will require the natural extensions
of our operators from the original space to the Bochner space to be O N-sectorial.
Therefore, we restrict to an ideal subclass of £-sectorial operators, namely, to the
R-sectorial operators.

Definition 4.1. Let F be a complex Banach space, let € [0,7), and let {ex }ren
be the sequence of the Rademacher functions. Denote by R, (), k > 1, the class
of all operators A € P(f) in E such that for any choice of A\i,..., A\, € Sp\{0}
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and z1,...,x, € E, n € N, we have
n n
” Z exAn(A + /\k)_lkaLz(O,l;E) < “H Z EkkaLQ(OJ;E)'
k=1 k=1

The elements in R(0) = Ux>1R.(0) are called R-sectorial operators of angle 6.
The constant inf{x | A € R ( )} is called R-sectorial bound of A and depends on
A and 6.

Let T'> 0, E; S Ey be a densely and continuously injected complex Banach
couple, and let A(t) € C([0,T]; L(E1, Eo)) be a continuous family of linear opera-
tors which is assumed to be local in the ¢ variable in the sense that [A(t), ¢(t)] = 0
for any ¢ € C*°([0,T]; R). Consider the Cauchy problem

u'(t)+ A)u(t) = gt), te(0,T], (4.1)
u(0) = 0, (4.2)

where g € LP(0,T; Ey) for some p € (1,00). We will combine Theorem 3.3 with
a freezing-of-coefficients type argument (see, e.g., [5, Theorem 5.7]) in order to
show well-posedness for the above problem. Hence, in the case of UMD spaces
we wish to recover [11, Theorem 2.5] or equivalently [3, Theorem 2.7] for the case
of continuously dependent over the nonautonomous parameter family A(t). For
a different approach to the problem we also refer to [2].

Theorem 4.2. Assume that Ey is UMD and that there exists some 0 > T such
that, for each t € [0,T], A(t) is R-sectorial of angle 6. Then, the problem (4.1)-
(4.2) is well-posed; that is, for any g € LP(0,T'; Ey) there exists a unique solution
ue WhP(0,T; Ey) N LP(0,T; Ey) that depends continuously on g.
Proof. Let the Banach spaces X, = L?(0,T; Ey), X; = L?(0,T; E1), and
Xy = {u € W'(0,T; Ep) | u(0) = 0}.

Consider the operators A and B in X, defined by

A u(t) = (Au)(t) = A(t)u(t) with D(A) = Xy
and

B :u(t) = du(t) =4/ (t) with D(B) = X,.

For any fixed £ € [0,T1], the operator A(§) : F; — Ej is R-sectorial of angle 6.
Furthermore, the sectorial bound and the R-sectorial bound of A(£) can be chosen
to be uniformly bounded in & € [0, 7. This is easy to see by the continuity of A(-).
For convenience, for example, for the R-sectorial bound we argue by contradiction
as follows. For each &, let C¢ be the R-sectorial bound of A(&). Let {&}ren be
a sequence in [0, 7] such that C¢, — oo when & — co. By p0381bly passing to a
subsequence we may assume that & — f as k — oo for certain { € [0,T]. Let
e > 0 be sufficiently small such that ¢ € [€ —e,&+e] (with [€ — e, € + ] replaced
by [0,€ + ] when £ = 0 and similarly when £ = T') implies that

1 1 1

JAE) — A ez o) < —— min{ 7
BB o AE) N empy L1+ Ce 1+ M

2
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where Mg is a sectorial bound for A(g) Then, due to Proposition 2.11 for such ¢
the operator A(t) is R-sectorial and its R-sectorial bound is uniformly bounded
by 2C¢, which gives us a contradiction. Therefore, each extension of A(£) to an
operator from X; to Xy given by (A(§)u)(t) = A(§)u(t), which we denote again
by A(§), is also R-sectorial of angle 6 and its sectorial and R-sectorial bounds
can be chosen to be uniformly bounded in &.

Since Ey is UMD by [7, Theorem 8.5.8] the operator B admits a bounded H>-
calculus of angle w for any w < Z. For any £ € [0,T] the operators A(£) and

2
B are resolvent commuting and hence by Theorem 3.3, for each £ there exists a

co(€) > 0 such that A(&) + B + (&) with D(A(E) + B+ ¢(€)) = X1 N Xy in X
is closed and belongs to the class P(0). Furthermore, by Lemma 3.4 each ¢((§)
can be chosen to be equal to zero and the £(Xj)-norm of A(£)(A(§) + B +c¢)™!
is uniformly bounded in (&,¢) € [0,T] x [0, c0).

Take t1,...,t, € [0,7], n € N, v > 0 and let {x;}icf1,..n} be a collection
of smooth non-negative functions on R bounded by one such that y; = 1 in
[t; —r,t; + 7] and x; = 0 outside of [t; — 2r,t; + 2r] for each i. Let {t;}icq1,..n}
and {sz‘}ie{l ,,,,, ny be two further collections of smooth non-negative functions on
R such that x; = 1 on supp(¢;) and ¥; = 1 on supp(¢;) for each i. Choose
{t1,...,tn}, n, and 7 in such a way that {¢;}icq1,. ) is a partition of unity in
[0,T7. By the argument in the previous paragraph, each A(¢;) + B belongs to
P(0).

For each i € {1,...,n}, let

Ai = xi(A+ B) + (1 = xa)(A(ti) + B) = A(ti) + B + x:(A — A(t:))

with D(A;) = X; N X,y in Xy, By taking r sufficiently small and n large enough,
from the continuity of A(+) and the uniform boundedness in (&, ¢) € [0, 7] x [0, 00)

of the £(Xy)-norm of A(£)(A(£) + B+ ¢)~!, we can achieve A; € P(0) for each
1. More precisely, we have that

[e.9]

A+ = (At) + B+ (v —A)(At)+B+e) ), >0,

(4.3)

provided that ||x;(A(t;) — A)(A(t;) + B+ ¢) | z(xy) < 3. Here we have used the
fact that the norm ||A™(§)]£(xo,x,) is uniformly bounded in ¢ € [0, 77 due to the
continuity of A(-).

Take v € X; N X5 and g € X,. By multiplying

(A+B+cu=g
with ¢; we get
(A+ B+ c)pu= ¢ig+ [A+ B+ c,¢ilu = ¢ig + du,

where we have used the fact that the commutator [A + B + ¢, ¢;] acts in X; N X,
by multiplication with ¢}. By applying the inverse of A; + ¢ we obtain

giw = (A; + ) (dig + dju),
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and therefore
diu = ;(A; + C)_1(¢i9 + du).
By summing up we find that

w=Y (A + o) gig + Y vi(Ai + o) (4.4)
=1 =1

Due to the sectoriality of A;, the £(X; N X3)-norm of (A4; + ¢)™! decays like
¢! when ¢ — oo. Furthermore, multiplication by ¢} induces a bounded map in
X1 N X,. Hence, by taking c sufficiently large, from (4.4) we obtain a left inverse
L of A+ B + c that belongs to £(Xy, X1 N X3) and is expressed by

L= (1= wa v o7) (L wa+as). (45)
i=1 i=1
Moreover, from (4.4) we estimate

(A+ B+c¢)L = (A—l—B—i-C)Zwi(Ai+C)71(¢i+¢;’[/)
i=1

= Y i(A+ B+ o) (A +0) e+ HL)

i=1

+Y [A+ B+, dil(Ai + o) (¢ + ¢iL)

i=1
= > b+ Y UL+ Y WA+ )T (i + ¢L). (4.6)
i=1 i=1 =1

Note that >  ¢;¢; = 1 and > ;¢ = 0. Also, by the sectoriality of A;,
the £(Xo)-norm of (A; + ¢)~! tends to zero as ¢ — oo. Therefore, by possibly
increasing ¢, (4.6) provides us a right inverse of A + B + ¢ which belongs to
L(Xo, X1NX3). The result now follows by replacing u(¢) in (4.1) with e“v(¢). O
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