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SPECTRAL PROPERTIES OF k-QUASI-∗-A(n) OPERATORS

SALAH MECHERI1 AND FEI ZUO2∗

Communicated by J. I. Fujii

Abstract. In this paper, we prove the following assertions: (1) If T is a k-
quasi-∗-A(n) operator, then T is polaroid. (2) If T is a k-quasi-∗-A(n) operator,
then the spectrum σ is continuous. (3) If T or T ∗ is a k-quasi-∗-A(n) operator,
then Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )). (4) If T ∗ is a
k-quasi-∗-A(n) operator, then generalized a-Weyl’s theorem holds for f(T ) for
every f ∈ H(σ(T )). Finally, the finiteness of a quasi-∗-A(n) operator is also
studied.

1. Introduction

Let H be an infinite dimensional separable Hilbert space, denote B(H) the
algebra of all bounded linear operators on H. If T ∈ B(H), write N(T ) and
R(T ) for the null space and range space of T , respectively; σ(T ), σa(T ), σp(T )
and π(T ) for the spectrum of T , the approximate point spectrum of T , the point
spectrum of T and the set of poles of the resolvent of T . Let p = p(T ) be the
ascent of T ; i.e., the smallest nonnegative integer p such that N(T p) = N(T p+1),
if such an integer does not exist, then we put p(T ) = ∞. Analogously, let
q = q(T ) be the descent of T ; i.e., the smallest nonnegative integer q such that
R(T q) = R(T q+1), and if such an integer does not exist, then we put q(T ) = ∞.

As natural extensions of hyponormal operators, some operator classes have
been introduced in recent years. Let n, k be positive integers and T ∈ B(H).

(1) An operator T is said to be quasi-∗-A if T ∗|T 2|T ≥ T ∗|T ∗|2T.
(2) An operator T is said to be k-quasi-∗-A if T ∗k|T 2|T k ≥ T ∗k|T ∗|2T k.

(3) An operator T is said to be ∗-A(n) if |T 1+n|
2

1+n ≥ |T ∗|2.
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(4) An operator T is said to be quasi-∗-A(n) if T ∗|T 1+n|
2

1+n T ≥ T ∗|T ∗|2T.

(5) An operator T is said to be k-quasi-∗-A(n) if T ∗k|T 1+n|
2

1+n T k ≥ T ∗k|T ∗|2T k.
Shen, Zuo and Yang[23] introduced quasi-∗-A operators. As an extension of

quasi-∗-A operators, Mecheri[17] introduced k-quasi-∗-A operators. Recently,
Zuo and Shen[26] introduced k-quasi-∗-A(n) operators which are generalization
of k-quasi-∗-A operators.

By definition, ∗-A(n) ⇒ quasi-∗-A(n) ⇒ k-quasi-∗-A(n).
Let K = ⊕+∞

n=1Hn, where Hn
∼= H. For given positive operators A and B on

H, define the operator TA,B on K as follows:

TA,B =



0 0 0 0 0 0 · · ·
A 0 0 0 0 0 · · ·
0 A 0 0 0 0 · · ·
0 0 B 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
...

...
...

...
...

...
. . .


.

By straightforward computations, the following assertions hold:

i). TA,B belongs to ∗-A(n) if and only if B2 ≥ A2 and (AB2nA)
1

n+1 ≥ A2.
ii). TA,B belongs to 2-quasi-∗-A(n) if and only if A2B2A2 ≥ A6.
Now we provide an operator which is 2-quasi-∗-A(n) but not ∗-A(n) operator

as follows.

Example 1.1. A non-∗-A(n) and 2-quasi-∗-A(n) operator.
Take A and B as

A =

(
1 0
0 0

)
B =

(
1 1
1 1

)
.

Then

B2 − A2 =

(
1 2
2 2

)
� 0.

Thus TA,B is a non-∗-A(n) operator.
On the other hand, we have

A2(B2 − A2)A2 =

(
1 0
0 0

) (
1 2
2 2

) (
1 0
0 0

)
=

(
1 0
0 0

)
≥ 0.

Hence TA,B is a 2-quasi-∗-A(n) operator.

2. Some properties of k-quasi-∗-A(n) operators

To study non-normal operator T , it is important to know that T has the single
valued extension property(abbrev. SVEP). T has SVEP, if for every open set U
of C, the only analytic solution f : U → H of the equation (T − λ)f(λ) = 0 for
all λ ∈ U is the zero function on U. For T ∈ B(H) and x ∈ H, the set ρT (x),
called the local resolvent set of T at x, is defined to consist of all λ0 ∈ C such that
there exists an analytic function f(z) defined in a neighborhood of λ0, with values
in H, which satisfies (T − λ)f(λ) = x. We define the complement of ρT (x) by
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σT (x), called the local spectrum of T at x, and define the local spectral subspaces
HT (F ) := {x ∈ F : σT (x) ⊆ F} for each set F ⊆ C.

Let iso σ(T ) denote the set of all isolated points of σ(T ). The operator T is
called isoloid if iso σ(T ) ⊂ σp(T ) and polaroid if iso σ(T ) ⊂ π(T ). In general, if
T is polaroid then it is isoloid. However, the converse is not true.

For every T ∈ B(H), σ is a compact subset of C. The function σ viewed as a
function from each T into its spectrum σ(T ), equipped with the Hausdorff metric,
is well known to be upper semi-continuous, but fails to be continuous in general.
Conway and Morrel[10] have carried out a detailed study of spectral continuity
in B(H). Recently, the continuity of spectrum was considered when restricted to
certain subsets of the entire manifold of Toeplitz operators[14]. And this result
has been extended to p-hyponormal operators[15], to (p, k)-quasihyponormal, M -
hyponormal, ∗-paranormal and paranormal operators[12]. In the following, we
extend this result to k-quasi-∗-A(n) operators.

Before we state our main theorem, we need several preliminary results.

Lemma 2.1. [26] i). If T is a k-quasi-∗-A(n) operator, then T has the following
matrix representation:

T =

(
T1 T2

0 T3

)
where T1 is ∗-A(n) on R(T k) and T k

3 = 0. Furthermore, σ(T ) = σ(T1) ∪ {0}.
ii). If T is a k-quasi-∗-A(n) operator and λ 6= 0, then Tx = λx implies

T ∗x = λx.

Lemma 2.2. [22] i). If T is a ∗-A(n) operator, then T has SVEP.
ii). If T is a ∗-A(n) operator, then T is simply polaroid.

Theorem 2.3. If T is a k-quasi-∗-A(n) operator, then T has SVEP.

Proof. If the range of T k is dense, then T is a ∗-A(n) operator. Hence T has
SVEP by Lemma 2.2. Thus we can assume that the range of T k is not dense. By
Lemma 2.1, we have

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k).

Assume (T − z)f(z) = 0. Put f(z) = f1(z) ⊕ f2(z) on H = R(T k) ⊕ N(T ∗k).
Then we can write(

T1 − z T2

0 T3 − z

) (
f1(z)
f2(z)

)
=

(
(T1 − z)f1(z) + T2f2(z)

(T3 − z)f2(z)

)
= 0.

Since T3 is nilpotent, T3 has SVEP. Hence f2(z) = 0. Then (T1 − z)f1(z) = 0.
Since T1 is a ∗-A(n) operator, T1 has SVEP by Lemma 2.2. Hence f1(z) = 0.
Consequently, T has SVEP. �

Theorem 2.4. If T is a k-quasi-∗-A(n) operator and ||Tm|| = ||T ||m for some
positive integer m ≥ k, then T is normaloid.
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Proof. If T is a k-quasi-∗-A(n) operator, then T ∗k|T 1+n|
2

1+n T k ≥ T ∗k|T ∗|2T k. We
have ||T 1+n+kx|| ‖ T kx ‖n≥ ||T ∗T kx||1+n for every x ∈ H. Since m ≥ k, and
hence

||T 1+n+mx|| ‖ Tmx ‖n≥ ||T ∗Tmx||1+n

for every x ∈ H, which implies that

||T 1+n+m|| ‖ Tm ‖n≥ ||T ∗Tm||1+n.

Then, by the above inequality and ||Tm|| = ||T ||m

||T ||(m−1)(1+n)||T 1+n+m|| ‖ T ‖mn≥ ||T ∗(m−1)||1+n||T 1+n+m|| ‖ Tm ‖n

≥ ||T ∗(m−1)||1+n||T ∗Tm||1+n ≥ ||T ∗mTm||1+n = ||Tm||2(1+n) = ||T ||2m(1+n),

and therefore
||T 1+n+m|| = ||T ||1+n+m.

Thus, by induction, ||T (1+n)j+m|| = ||T ||(1+n)j+m for every j ≥ 1. This yields

a subsequence {T nj} of {T n}, say T nj = T (1+n)j+m, such that limj ||T nj ||
1

nj =

limj(||T ||nj)
1

nj = ||T ||. Since {||T n|| 1n} is a convergent sequence that converges
to the spectral radius of T , and since it has a subsequence that converges to ||T ||,
it follows that r(T ) = ||T ||, where r(T ) is the spectral radius of T . Hence T is
normaloid. �

Corollary 2.5. If T is a quasi-∗-A(n) operator, then T is normaloid.

Corollary 2.6. If T is a ∗-A(n) operator, then T is normaloid.

Proposition 2.7. If T is a k-quasi-∗-A(n) operator and σ(T ) = {0}, then T k+1 =
0.

Proof. If the range of T k is dense, then T is a ∗-A(n) operator, which leads to
that T is normaloid, hence T = 0. If the range of T k is not dense, then

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k)

where T1 is a ∗-A(n) operator, T k
3 = 0 and σ(T ) = σ(T1)∪ {0} by Lemma 2.1. If

σ(T1) = {0}, then T1 = 0. Thus

T k+1 =

(
0 T2

0 T3

)k+1

=

(
0 T2T

k
3

0 T k+1
3

)
= 0.

�

Theorem 2.8. If T is a k-quasi-∗-A(n) operator and λ is a non-zero isolated
point of σ(T ), then λ is a simple pole of the resolvent of T . Furthermore, T is
polaroid.

Proof. If λ 6= 0, assume that R(T k) is dense. Then T is ∗-A(n) and λ is a simple
pole of the resolvent of T by Lemma 2.2. So we may assume that T k does not
have dense range. Then by Lemma 2.1 the operator T can be decomposed as
follows:

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k),
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where T1 is a ∗-A(n) operator on R(T k). Now if λ is a non-zero isolated point of
σ(T ), then λ ∈ iso σ(T1) because σ(T ) = σ(T1) ∪ {0}. Therefore λ is a simple
pole of the resolvent of T1 and the ∗-A(n) operator T1 can be written as follows:

T1 =

(
T11 0
0 T12

)
on R(T k) = N(T1 − λ)⊕R(T1 − λ),

where σ(T11) = {λ}. Therefore

T − λ =

 0 0 T21

0 T12 − λ T22

0 0 T3 − λ

 =

(
0 D
0 F

)

on H = N(T1 − λ)⊕R(T1 − λ)⊕N(T ∗k),

where

F =

(
T12 − λ T22

0 T3 − λ

)
.

Now, we claim that F is an invertible operator on R(T1 − λ) ⊕ N(T ∗k). First
we verify that T12 − λ is invertible. If not, then λ will be an isolated point in
σ(T12). Since T12 is ∗-A(n), λ is an eigenvalue of T12 and thus T12x = λx for

some non-zero vector x in R(T1 − λ). On the other hand, T1x = T12x implying
x is in N(T1− λ). Hence x must be a zero vector. This contradiction shows that
T12−λ is invertible. Since T3−λ is also invertible, it follows that F is invertible.
It is easy to show that p(T − λ) = q(T − λ) = 1. Hence λ is a simple pole of the
resolvent of T .

If λ = 0, by Theorem 2.3 T has SVEP. Define the quasinilpotent part H0(T −
λ) = {x ∈ H : lim

n→∞
‖(T − λ)nx‖ 1

n = 0}, H0(T −λ) = HT ({λ}) [1, Theorem 2.20],

then H0(T − λ) is closed and σ(T |H0(T−λ)) ⊆ {λ} by [16, proposition 1.2.19].
Let S = T |H0(T−λ). Then S is a k-quasi-∗-A(n) operator. Since σ(S) = {0},
Sk+1 = 0 by Proposition 2.7, and H0(T ) ⊆ N(T k+1). Hence in either case
H0(T ) = N(T k+1). Consequently, T is polaroid. �

Corollary 2.9. If T is a k-quasi-∗-A(n) operator, then T is isoloid.

In the following, we prove that the spectrum σ is continuous on the set of
k-quasi-∗-A(n) operators, the key lemma due to Berberian[4].

Lemma 2.10. [4] Let H be a complex Hilbert space. Then there exists a Hilbert
space K such that H ⊂ K and a map ϕ : B(H) → B(K) such that

i). ϕ is a faithful ∗-representation of the algebra B(H) on K;
ii). ϕ(A) ≥ 0 for any A ≥ 0 in B(H);
iii). σa(T ) = σa(ϕ(T )) = σp(ϕ(T )) for any T ∈ B(H).

Theorem 2.11. The spectrum σ is continuous on the set of k-quasi-∗-A(n) op-
erators.

Proof. Suppose T is a k-quasi-∗-A(n) operator. Let ϕ : B(H) → B(K) be
Berberian’s faithful ϕ-representation of Lemma 2.10. In the following, we shall
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show that ϕ(T ) is also a k-quasi-∗-A(n) operator. In fact, since T is a k-quasi-∗-
A(n) operator, by Lemma 2.10, we have

(ϕ(T ))∗k(|(ϕ(T ))1+n|
2

1+n − |(ϕ(T ))∗|2)(ϕ(T ))k

= ϕ(T ∗k(|T 1+n|
2

1+n − |T ∗|2)T k)

≥ 0.

Hence we have that its Berberian extension ϕ(T ) is also a k-quasi-∗-A(n) operator,
By Lemma 2.1 and Proposition 2.7 we have that T belongs to the set C(i) (see
definition in [12]). So we have that the spectrum σ is continuous on the set of
k-quasi-∗-A(n) by [12, Theorem 1.1]. This completes the proof. �

3. Weyl type theorems

An operator T is called Fredholm if R(T ) is closed, α(T ) = dim N(T ) < ∞
and β(T ) = dim H/R(T ) < ∞. Moreover if i(T ) = α(T ) − β(T ) = 0, then T
is called Weyl. The essential spectrum σe(T ) and the Weyl spectrum σW (T ) are
defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm}
and

σW (T ) = {λ ∈ C : T − λ is not Weyl},
respectively. It is known that σe(T ) ⊂ σW (T ) ⊂ σe(T )∪acc σ(T ) where we write
acc K for the set of all accumulation points of K ⊂ C.

Let
π00(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λ) < ∞}.

We say that Weyl’s theorem holds for T if

σ(T ) \ σW (T ) = π00(T ).

The operator T is called Browder if it is Fredholm of finite ascent and descent.
The Browder spectrum of T is given by σb(T ) = {λ ∈ C : T − λ is not Browder}.
We say that Browder’s theorem holds for T if

σW (T ) = σb(T ).

More generally, Berkani investigated B-Fredholm theory as follows (see [5, 6, 7]).
An operator T is called B-Fredholm if there exists n ∈ N such that R(T n) is
closed and the induced operator

T[n] : R(T n) 3 x → Tx ∈ R(T n)

is Fredholm, i.e., R(T[n]) = R(T n+1) is closed, α(T[n]) = dim N(T[n]) < ∞ and
β(T[n]) = dim R(T n)/R(T[n]) < ∞. Similarly, a B-Fredholm operator T is called
B-Weyl if i(T[n]) = 0. The following result is due to Berkani and Sarih [7].

Proposition 3.1. Let T ∈ B(H).
i).If R(T n) is closed and T[n] is Fredholm, then R(Tm) is closed and T[m] is

Fredholm for every m ≥ n. Moreover, i(T[m]) = i(T[n])(= i(T )).
ii).An operator T is B-Fredholm (B-Weyl) if and only if there exist T -invariant

subspaces M and N such that T = T |M⊕ T |N where T |M is Fredholm (Weyl)
and T |N is nilpotent.
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The B-Weyl spectrum σBW (T ) is defined by

σBW (T ) = {λ ∈ C : T − λ is not B−Weyl} ⊂ σW (T ).

We say that generalized Weyl’s theorem holds for T if

σ(T ) \ σBW (T ) = E(T )

where E(T ) denotes the set of all isolated points of the spectrum which are
eigenvalues (no restriction on multiplicity). Note that, if the generalized Weyl’s
theorem holds for T , then so does Weyl’s theorem [6]. Recently Berkani and
Arroud showed that if T is hyponormal, then generalized Weyl’s theorem holds
for T in [5].

We define T ∈ SF−+ (H) if R(T ) is closed, α(T ) < ∞ and i(T ) ≤ 0. Let πa
00(T )

denote the set of all isolated points λ of σa(T ) with 0 < α(T − λ) < ∞. Let
σSF−+

(T ) = {λ ∈ C : T −λ 6∈ SF−+ (H)} ⊂ σW (T ). We say that a-Weyl’s theorem

holds for T if

σa(T ) \ σSF−+
(T ) = πa

00(T ).

Rakočević [20, Corollary 2.5] proved that if a-Weyl’s theorem holds for T , then
Weyl’s theorem holds for T .

We define T ∈ SBF−+ (H) if there exists a positive integer n such that R(T n)
is closed, T[n] : R(T n) 3 x → Tx ∈ R(T n) is upper semi-Fredholm (i.e., R(T[n]) =
R(T n+1) is closed, dim N(T[n]) = dim N(T )∩R(T n) < ∞) and 0 ≥ i(T[n])(= i(T ))
[7]. We define σSBF−+

(T ) = {λ ∈ C : T − λ 6∈ SBF−+ (T )} ⊂ σSF−+
(H). Let Ea(T )

denote the set of all isolated points λ of σa(T ) with 0 < α(T − λ). We say that
generalized a-Weyl’s theorem holds for T if

σa(T ) \ σSBF−+
(T ) = Ea(T ).

An operator T ∈ B(H) satisfies a-Browder’s theorem if σea(T ) = σab(T ) (where
σab(T ) = {σa(T +K) : TK = KT and K is a compact operator}) and T satisfies
generalized a-Browder’s theorem if σSBF−+

(T ) = σa(T ) \ πa(T ).

It’s known from [6, 11, 13, 21] that if T ∈ B(H) then we have
generalized a-Weyl’s theorem ⇒ a-Weyl’s theorem ⇒ Weyl’s theorem;
generalized a-Weyl’s theorem⇒ generalized a-Browder’s theorem⇒ Browder’s the-
orem.

Weyl[24] discovered that Weyl’s theorem holds for hermitian operators, which
has been extended from hermitian operators to hyponormal operators[9], to an-
alytically class A operators by Cao[8], and to quasi-∗-A operators[27]. In this
paper, we extend it to k-quasi-∗-A(n) operators.

In the following theorem, H(σ(T )) denotes the space of functions analytic in
an open neighborhood of σ(T ).

Theorem 3.2. Let T or T ∗ be a k-quasi-∗-A(n) operator. Then Weyl’s theorem
holds for f(T ), where f ∈ H(σ(T )).

Proof. From [2, Theorem 2.11], we have that T is polaroid if and only if T ∗ is
polaroid. We use the fact that if T is polaroid and T or T ∗ has SVEP then both
T and T ∗satisfy Weyl’s theorem, which can be seen in [2, Theorem 3.3]. Suppose
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that T or T ∗ is a k-quasi-∗-A(n) operator. By Theorem 2.3 and Theorem 2.8 we
have that T satisfies Weyl’s theorem. Now we show that Weyl’s theorem holds
for f(T ). Since T is polaroid and has SVEP, then f(T ) is polaroid by [2, Lemma
3.11] and has SVEP by [1, Theorem 2.40], consequently, Weyl’s theorem holds
for f(T ). �

Corollary 3.3. Let T or T ∗ be a k-quasi-∗-A(n) operator. If F is an operator
commuting with T and F n has a finite rank for some n ∈ N, then Weyl’s theorem
holds for f(T ) + F for each f ∈ H(σ(T )).

Proof. Suppose T or T ∗ is a k-quasi-∗-A(n) operator. By Theorem 2.8 and Theo-
rem 3.2, we have that T is isoloid and Weyl’s theorem holds for f(T ). Notice that
T is isoloid then f(T ) is isoloid. The result stems from [19, Theorem 2.4]. �

If a Banach space operator T has SVEP (everywhere), then T and T ∗ satisfy
Browder’s (equivalently, generalized Browder’s) theorem and a-Browder’s (equiv-
alently, generalized a-Browder’s) theorem. A sufficient condition for an operator
T satisfying Browder’s (generalized Browder’s) theorem to satisfy Weyl’s (resp.,
generalized Weyl’s) theorem is that T is polaroid. Observe that if T ∈ B(H)

has SVEP, then σ(T ) = σa(T ∗). Hence, if T has SVEP and is polaroid, then
T ∗ satisfies generalized a-Weyl’s (so also, a-Weyl’s) theorem [2, Theorem 2.14,
Theorem 2.6].

Theorem 3.4. Let T ∈ B(H).
i). If T ∗ is a k-quasi-∗-A(n) operator, then generalized a-Weyl’s theorem holds

for T .
ii). If T is a k-quasi-∗-A(n) operator, then generalized a-Weyl’s theorem holds

for T ∗.

Proof. i) It is well known that T is polaroid if and only if T ∗ is polaroid [2,
Theorem 2.11]. Now since a k-quasi-∗-A(n) operator is polaroid and has SVEP,
[2, Theorem 3.10] gives us the result of the theorem. For ii) we can also apply [2,
Theorem 3.10]. �

Since the polaroid condition entails E(T ) = π(T ) and the SVEP for T entails
that generalized Browder’s theorem holds for T [3, Theorem 3.2], i.e. σBW (T ) =
σD(T ), where σD(T ) denotes the Drazin spectrum. Therefore, E(T ) = π(T ) =
σ(T ) \ σD(T ) = σ(T ) \ σBW (T ). Thus we have the following Corollary.

Corollary 3.5. If T is k-quasi-∗-A(n), then also T satisfies generalized Weyl’s
theorem.

Remark 3.6. 1. Recall [2] that if T is polaroid, then T satisfies generalized Weyl’s
theorem (resp. generalized a-Weyl’s) theorem if and only if T satisfies Weyl’s
theorem (resp. a-Weyl’s theorem). Hence if T is a k-quasi-∗-A(n) operator, the
above equivalences hold.

2. Let f(z) be an analytic function on σ(T ). If T is polaroid, then f(T ) is also
polaroid[2].

i). If T ∗ is k-quasi-∗-A(n), then f(T ) satisfies generalized a-Weyl’s theorem.
Indeed, since T ∗ is polaroid, the result holds by [2, Theorem 3.12]
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ii). If T is k-quasi-∗-A(n), then f(T ∗) satisfies generalized a-Weyl’s theorem.
Indeed, since T is polaroid, the result holds by [2, Theorem 3.12].

Theorem 3.7. Let T be a k-quasi-∗-A(n) operator. If S is an operator quasi-
similar to T , then a-Browder’s theorem holds for f(S) for each f ∈ H(σ(S)).

Proof. Since T is a k-quasi-∗-A(n) operator, T has SVEP. Let U be any open set
and f : U → H be any analytic function such that (S−λ)f(λ) = 0 for all λ ∈ U .
Since S is an operator quasi-similar to T , there exists an injective operator A
with dense range such that AS = TA. Thus A(S − λ) = (T − λ)A for all λ ∈ U .
If (S − λ)f(λ) = 0 for all λ ∈ U , then A(S − λ)f(λ) = (T − λ)Af(λ) = 0 for all
λ ∈ U . But T has SVEP; hence Af(λ) = 0 for all λ ∈ U . Since A is injective,
f(λ) = 0 for all λ ∈ U . Therefore S has SVEP. Then it follows from [1] that
σab(f(S)) = f(σab(S)) = f(σea(S)) = σea(f(S)). Hence a-Browder’s theorem
holds for f(S). �

4. Finite operators

Let A, B ∈ B(H). We define the generalized derivation δA,B : B(H) 7→ B(H)
by δA,B(X) = AX−XB, we note δA,A = δA. If the inequality ||T−(AX−XA)|| ≥
||T || holds for all X ∈ B(H) and for all T ∈ N(δA), then we say that the range
of δA is orthogonal to the kernel of δA in the sense of Birkhoff. The operator
A ∈ B(H) is said to be finite [25] if ||I − (AX − XA)|| ≥ 1 for all X ∈ B(H),
where I is the identity operator. Williams [25] has shown that the class of finite
operators contains every normal, hyponormal operators. In [18], Williams results
are generalized to a more classes of operators containing the classes of normal
and hyponormal operators.

Let A ∈ B(H), the approximate reduced spectrum of A, σar(A), is the set of
scalars λ for which there exists a normed sequence {xn} in H satisfying

(A− λI)xn → 0, (A− λI)∗xn → 0.

In this section we present some new classes of finite operators. Recall that an
operator A ∈ B(H) is said to be spectraloid if ω(A) = r(A), where ω(A) is the
numerical radius of A.

Lemma 4.1. [18] Let A ∈ B(H). Then ∂W (A) ∩ σ(A) ⊂ σar(A), where W (A)
is the numerical range of the operator A.

Lemma 4.2. [18] If σar(A) 6= φ, then A is finite.

Theorem 4.3. Let A ∈ B(H) be spectraloid. Then A is finite.

Proof. Since A is spectraloid, we have ω(A) = r(A). Then there exists λ ∈
σ(A) ⊂ W (A) such that |λ| = ω(A). Thus λ ∈ ∂W (A). This implies that
∂W (A) ∩ σ(A) 6= ∅. Now by applying Lemma 4.2, we get the result. �

Corollary 4.4. Let A ∈ B(H). If A is a quasi-∗-A(n) operator, then A is finite.

Proof. Since A is a quasi-∗-A(n) operator, it is normaloid and so is spectraloid,
it suffices to apply Theorem 4.3. �
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Corollary 4.5. The following operators are finite:
i). class ∗- A operators. ii). quasi-∗-A operators.
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