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EXTENSIONS OF THEORY OF REGULAR AND WEAK
REGULAR SPLITTINGS TO SINGULAR MATRICES

LITISMITA JENA1

Communicated by V. Bolotnikov

Abstract. Matrix splittings are useful in finding a solution of linear systems
of equations, iteratively. In this note, we present some more convergence and
comparison results for recently introduced matrix splittings called index-proper
regular and index-proper weak regular splittings. We then apply to theory of
double index-proper splittings.

1. Introduction and preliminaries

The need to solve linear systems of algebraic equations arises in many math-
ematical models. The most common methods used to solve such systems are
iterative methods. A large class of iterative methods for solving Ax = b, where
A ∈ Rn×n, x ∈ Rn and b ∈ Rn, can be formulated by using matrix splittings.
A matrix splitting is an expression of a given matrix as a sum or difference of
matrices. Historically, the idea of matrix splittings has its origin in the regular
splitting theory. This technique was devised by Varga, [15]. Thereafter, the the-
ory of splittings have been extended and studied by many authors for nonsingular,
singular and rectangular matrices (see [1, 4, 6, 7, 9, 12, 15, 16] and the references
cited therein). The goal of this paper is to study convergence and comparison
results for recently introduced matrix splittings called index-proper regular and
index-proper weak regular splittings for real square singular matrices using the
theory of Drazin inverse.
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Throughout, all our matrices are real square unless otherwise stated. The
index of A is the least nonnegative integer k such that rank(Ak+1)=rank(Ak),
and we denote it by ind(A). We declare that here onwards the symbol k always
represents the index of the respective matrix. The Drazin inverse of a matrix A
is the unique solution AD satisfying the equations: Ak = AkADA, AD = ADAAD

and AAD = ADA, where k is the index of A. We next recall the definition of an
index-proper splitting. A splitting A = U − V is called an index-proper splitting
of A if R(Uk) = R(Ak) and N(Uk) = N(Ak), where R(A) and N(A) denote the
range and the kernel of A, respectively, and k is the index of A; see [6]. It reduces
to an index splitting if ind(U) = 1; see [16]. When k = 1, then an index-proper
splitting becomes a proper splitting; cf. [4]. The asymptotic behaviors of the
iterative sequences (obtained by using the index-proper splitting A = U − V ):

xi+1 = UDV xi + UDb, i = 0, 1, 2, . . .

and

Y j+1 = UDV Y j + UD, j = 0, 1, 2, . . .

are governed by ρ(UDV ), where ρ(A) is the spectral radius of the matrix A. For
an index-proper splitting, ρ(UDV ) < 1 if and only if the above schemes converge
to ADb and AD, respectively. More on index-proper splitting can be found in the
recent articles [6, 7]. In this note, we add a few more new results to theory of
index-proper regular and weak regular splittings which are introduced in [1].

The organization of this paper is as follows. In Section 2, we present con-
vergence and comparison theorems for index-proper regular and weak regular
splittings. In Section 3, we introduce the notion of double index-proper regular
and weak regular splittings for real n × n singular matrices. Convergence and
comparison results for double index-proper regular and weak regular splitting are
also discussed in the same section.

Before proceeding further, let us recall a few results which are to be used in
further discussions. The first six results deal with non-negative matrices.

Theorem 1.1. ([15, Theorem 2.20]) Let A ≥ 0. Then
(i) A has a nonnegative real eigenvalue equal to its spectral radius.
(ii) There exists a nonnegative eigenvector for its spectral radius.

Theorem 1.2. ([15, Theorem 2.21])
Let A ≥ B ≥ 0. Then ρ(A) ≥ ρ(B).

Theorem 1.3. ([15, Theorem 3.16])
Let X ≥ 0. Then ρ(X) < 1 if and only if (I − X)−1 exists and (I − X)−1 =
∞∑

k=0

Xk ≥ 0.

Theorem 1.4. ([11, Corollary 3.2])
If B ≥ 0 and x ≥ 0 is such that Bx− αx ≥ 0, then α ≤ ρ(B).
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Theorem 1.5. ([14, Lemma 2.2])

Let X =

(
B C
I O

)
≥ 0 and ρ(B + C) < 1. Then ρ(X) < 1.

Let us denote the nonnegative orthants of Rn by Rn
+, and the set of all interior

points of Rn
+ by int(Rn

+). Next result uses these notation.

Theorem 1.6. ([8, Theorem 25.4])
Suppose that C ≤ B, B−1 exists, and B−1 ≥ 0. Then C−1 exists and C−1 ≥ 0 if
and only if CRn

+∩ int(Rn
+) 6= ∅.

Next four results show a few properties of an index-proper splitting.

Theorem 1.7. ([6, Theorem 3.2])
Let A = U − V be an index-proper splitting. Then
(a) AAD = UUD = UDU = ADA;
(b) I − UDV is invertible;
(c) AD = (I − UDV )−1UD.

Since A = U − V is an index-proper splitting, so is U = A + V . Hence, we
have the following results.

Theorem 1.8. ([7, Theorem 1.6])
Let A = U − V be an index-proper splitting. Then
(a) I + ADV and I + V AD are invertible;
(b) AD = (I + ADV )UD = UD(I + V AD);
(c) UD = (I + ADV )−1AD = AD(I + V AD)−1;
(d) UDV AD = ADV UD;
(e) UDV ADV = ADV UDV ;
(f) V UDV AD = V ADV UD.

Remark 1.9. Let A = U − V be an index-proper splitting. Then the matrices
UDV and ADV (or V UD and V AD) have the same eigenvectors.

Lemma 1.10. ([7, Lemma 1.8])
Let A = U −V be an index-proper splitting. Let µi, 1 ≤ i ≤ s and λj, 1 ≤ j ≤ s
be the eigenvalues of the matrices UDV (V UD) and ADV (V AD), respectively.

Then for every i, there exists j such that µi =
λj

1+λj
and for every j, there exists

i such that λj = µi

1−µi
.

2. Index-proper regular and weak regular splittings

We begin with the definition of an index-proper regular and weak regular split-
ting.

Definition 2.1. ([6, Definition 4.13], [1, Definition 3.1])
A splitting A = U − V of A ∈ Rn×n is called an index-proper regular splitting
(or also called a D-regular splitting) if it is an index-proper splitting such that
UD ≥ 0 and V ≥ 0.
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Definition 2.2. ([1, Definition 3.5])
A splitting of the form A = U − V of A ∈ Rn×n is called an index-proper weak
regular splitting if it is an index-proper splitting such that UD ≥ 0 and UDV ≥ 0.

We next present one example of a matrix splitting which is an index-proper
weak regular but not an index-proper regular.

Example 2.3. Let A =

 0 1 1
0 2 0
0 2 0

. Then ind(A) = 2. Taking U =

 0 0 3
0 3 0
0 3 0


and V =

 0 −1 2
0 1 0
0 1 0

 , we have ind(U) = 2 and R(U2) =


 1

1
1

 = R(A2).

Hence A is an index-proper splitting. Here UD = (1/27)U2 =

 0 1/3 0
0 1/3 0
0 1/3 0

 ≥

0 and UDV =

 0 1/3 0
0 1/3 0
0 1/3 0

 ≥ 0. Hence, the splitting A = U − V is index-

proper weak regular splitting and not index-proper regular splitting as V � 0.

We now recall a convergence theorem for an index-proper regular splitting.

Theorem 2.4. ([1, Theorem 3.2])
Let A = U−V be an index-proper regular splitting. If AD ≥ 0, then ρ(UDV ) < 1.

The converse of the above result is also true, and was stated in [1, Theorem 3.4].
For an index-proper weak regular splitting, we have the following convergence
theorem.

Theorem 2.5. ([1, Theorem 3.8])
Let A = U − V be an index-proper weak regular splitting. If ρ(UDV ) < 1, then
AD ≥ 0.

We next present a new proof to [1, Theorem 3.7].

Theorem 2.6. ([1, Theorem 3.7])
Let A = U − V be an index-proper weak regular splitting with N(Ak) ⊆ N(V ).
If AD ≥ 0, then ρ(UDV ) < 1.

Proof. Suppose that AD ≥ 0. Let C = UDV . Then C ≥ 0. Also, CUDU =
UDV UDU = UDV = C as V UDU = V , which follows from the condition
N(Ak) ⊆ N(V ). Set Bm = (I + C + C2 + C3 + · · · + Cm)UD for any pos-
itive integer m. Then Bm ≥ 0 and Bm ≤ Bm+1, since C ≥ 0. Then by
(c) of Theorem 1.7, we have UD = (I − C)AD. Using UD = (I − C)AD in
Bm = (I + C + C2 + C3 + · · ·+ Cm)UD, we have Bm = (I − Cm+1)AD. Then it
follows from Bm = (I − Cm+1)AD that Bm ≤ AD since C ≥ 0, AD ≥ 0. Hence,
the sequence {Bm} is a monotonically increasing sequence, which is bounded
above. Hence, the sequence {Bm} is convergent with respect to any matrix norm
|| · ||. Also, Bm+1U − BmU = Cm+1UDU = CmCUDU = CmC = Cm+1 since
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N(Ak) ⊆ N(V ) gives V UDU = V . Hence, ||Bm+1U − BmU || = ||Cm+1|| ≤
||Bm+1−Bm||||U ||. We conclude that Cm+1 converges to the zero matrix. It then
follows that ρ(UDV ) < 1. �

The following Lemma will be used to prove Theorem 2.9.

Lemma 2.7. ([6, Lemma 4.1]) The system Ax = b has a solution if AADb = b.
In that case, the general solution is given by x = ADb + z for some z ∈ N(A).

Before presenting the next theorems, we would like to recall the notion of Drazin
monotonicity: an extension of inverse positive matrices to the singular case. A ∈
Rn×n is said to be Drazin monotone if AD ≥ 0. For invertible matrices A, Drazin
monotonicity reduces to monotonicity. A real square matrix A is called monotone
if A is inverse positive. The book by Collatz [5] has details of how monotone
matrices arise naturally in the study of finite difference approximation methods
for certain elliptic partial differential equations. The problem of characterizing
monotone matrices has been extensively dealt with in the literature.
Pye [13] showed the following equivalence for the matrices having nonnegative
Drazin inverse (i.e. AD ≥ 0).

Theorem 2.8. ([13, Theorem 1]) AD ≥ 0 if and only if Ax ∈ Rn
++N(Ak) and x ∈

R(Ak) imply x ≥ 0.

A new characterization of Drazin monotone matrices is shown next.

Theorem 2.9. Consider the following statements.
(a) AD ≥ 0.
(b) Ax ∈ Rn

+ + N(Ak) and x ∈ R(Ak) ⇒ x ≥ 0.
(c) Rn

+ ⊆ ARn
+ + N(Ak).

(d) There exist x0 ∈ Rn
+ and z0 ∈ N(Ak) such that Ax0 + z0 ∈ int(Rn

+). Then we
have (a) ⇔ (b) ⇒ (c) ⇒ (d).
Suppose that A has an index-proper regular splitting such that R(V ) ⊆ R(Ak).
Then each of the above is equivalent to the following:
(e) ρ(UDV ) = ρ(V UD) < 1.

Proof. (a) ⇔ (b): By Theorem 2.8.
(b) ⇒ (c): Let p ∈ Rn

+ and q = ADp. Then q ∈ R(Ak) and by Lemma 2.7,
p = Aq + r, r ∈ N(A) ⊆ N(Ak) so that Aq = p − r ∈ Rn

+ + N(Ak). Therefore
q ∈ Rn

+ by (b) . Hence p ∈ ARn
+ + N(Ak).

(c) ⇒ (d): Let u0 ∈ int(Rn
+). Then there exist x0 ∈ Rn

+ and z0 ∈ N(Ak) such
that u0 = Ax0 + z0. Thus Ax0 + z0 ∈ int(Rn

+).
(d) ⇒ (e): The fact R(V ) ⊆ R(Ak) implies A = U − V = U − UDUV =
U(I −UDV ). Since A has an index-proper regular splitting, i.e., UD ≥ 0, V ≥ 0,

R(Uk) = R(Ak) and N(Uk) = N(Ak), we have UDV ≥ 0. Then V T UDT ≥ 0.

Therefore I − V T UDT ≤ I. Set C = I − V T UDT
and B = I. Then C ≤ B,

B−1 exists and B−1 ≥ 0. We show that there exists a vector w0 ∈ Rn
+ such

that Cw0 ∈ int(Rn
+) is nonzero. It would then follow from Theorem 1.6 that

C−1 exists and C−1 ≥ 0. The fact AD ≥ 0 implies AT D ≥ 0. The implications

(a) ⇔ (b) ⇒ (c) ⇒ (d) are also true for AT D ≥ 0. Hence, the corresponding
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(dT ) implies that there exist x0 ∈ Rn
+ and z0 ∈ N(AkT

) such that AT x0 + z0 ∈
int(Rn

+). Set w0 = UT x0 + z0. Then w0 = (AT +V T )x0 + z0 = AT x0 + z0 +V T x0.
Since V T ≥ 0 and x0 ∈ Rn

+, we have V T x0 ∈ Rn
+. Thus w0 ∈ Rn

+. Further,

Cw0 = (I − V T UDT
)w0 = (I − V T UDT

)(UT x0 + z0) = (I − V T UDT
)UT x0 +

(I − V T UDT
)z0 = AT x0 + z0 ∈ int(Rn

+). Here we have used the fact that z0 ∈
N(AkT

) = N(UkT
) = N(UDT

). Hence (I − V T UDT
)−1 = C−1 ≥ 0. By Theorem

1.3, it now follows that ρ(UDV ) = ρ(V T UDT
) < 1.

(e) ⇒ (a): The proof is same as the converse part of the proof of [1, Theorem
3.4]. �

We next present a convergence result for an index-proper regular splitting under
a sufficient condition ADU ≥ 0. The sketch of the proof is similar to [12, Lemma
3.4] which is for proper nonnegative splittings of rectangular matrices.

Theorem 2.10. Let A = U−V be an index-proper regular splitting and ADU ≥
0. Then ρ(UDV ) = ρ(ADU)−1

ρ(ADU)
< 1.

Proof. Since UD ≥ 0, V ≥ 0 imply UDV ≥ 0, by (ii) of Theorem 1.1, there
exists a nonnegative vector x (x 6= 0) such that UDV x = ρ(UDV )x. Then
x ∈ R(UD) = R(Uk) = R(Ak). Therefore UDUx = x. However AD = (I −
UDV )−1UD, by Theorem 1.7 (c). Hence ADU = (I − UDV )−1UDU . Then
ADUx = (I − UDV )−1UDUx = (I − UDV )−1x = 1

1−ρ(UDV )
x which implies

1
1−ρ(UDV )

≥ 0 and is an eigenvalue of ADU . Hence 0 ≤ 1
1−ρ(UDV )

≤ ρ(ADU), i.e.,

ρ(UDV ) ≤ ρ(ADU)−1
ρ(ADU)

. Similarly, ADU ≥ 0 guaranties the existence of a nonneg-

ative vector y (y 6= 0) such that ADUy = ρ(ADU)y. Then y ∈ R(Ak) = R(Uk)
implies y = UDUy. Hence (I − UDV )−1y = (I − UDV )−1UDUy = ADUy =

ρ(ADU)y. Thus 1
ρ(ADU)

y = y − UDV y, i.e., UDV y = ρ(ADU)−1
ρ(ADU)

y which yields

ρ(UDV ) ≥ ρ(ADU)−1
ρ(ADU)

. Therefore ρ(UDV ) = ρ(ADU)−1
ρ(ADU)

< 1. �

We remark that Theorems 2.9 and 2.10 are also true for index-proper weak
regular splittings.

Comparison theorems between the spectral radii of matrices are useful for
choosing a better splitting between two given splittings. An accepted rule for
preferring one iteration scheme to another is to choose the scheme having the
smaller spectral radius of the respective iteration matrix. Many authors such
as Jena and Mishra [6], Jena and Pani [7], Jena et al. [9] and Mishra [12], etc.
have introduced various comparison results for different matrix splittings. Here
we take index-proper regular and weak regular splittings for our analysis.

First we present two comparison results for index-proper regular splittings.
The proofs are analogous to proofs of [9, Theorems 3.2 & 3.3]. Hence, we omit
the proofs.

Theorem 2.11. Let A = U1−V1 = U2−V2 be two index-proper regular splittings.
If AD ≥ 0 and V1 ≤ V2, then ρ(UD

1 V1) ≤ ρ(UD
2 V2) < 1.

dT means the corresponding result Theorem 2.9(d) when A is replaced by AT .



EXTENSIONS OF THEORY OF REGULAR AND WEAK REGULAR SPLITTINGS 417

The two conditions AD ≥ 0 and V1 ≤ V2 in the above theorem can be merged,
and is shown next.

Remark 2.12. Let A = U1−V1 = U2−V2 be two index-proper regular splittings.
If ADV1 ≤ ADV2, then ρ(UD

1 V1) ≤ ρ(UD
2 V2) < 1.

Theorem 2.13. Let A = U1−V1 = U2−V2 be two index-proper regular splittings.
If AD ≥ 0 and UD

1 ≥ UD
2 , then ρ(UD

1 V1) ≤ ρ(UD
2 V2) < 1.

Next two comparison results are obtained for two index-proper regular split-
tings.

Theorem 2.14. Let A = U1−V1 = U2−V2 be two index-proper regular splittings.
If 0 ≤ ADU1 ≤ ADU2, then

ρ(UD
1 V1) ≤ ρ(UD

2 V2) < 1.

Proof. By Theorem 2.10, we have ρ(UD
i Vi) = ρ(ADUi)−1

ρ(ADUi)
< 1 for i = 1, 2. Again,

the condition ADU1 ≤ ADU2 and Theorem 1.2 together yield ρ(ADU1) ≤ ρ(ADU2).
Let λi be the eigenvalues of ADUi for i = 1, 2. Since λi−1

λi
is a strictly increas-

ing function for λi > 0, we have ρ(ADU2)−1
ρ(ADU2)

≥ ρ(ADU1)−1
ρ(ADU1)

. Therefore ρ(UD
1 V1) ≤

ρ(UD
2 V2) < 1. �

Theorem 2.15. Let A = U1−V1 = U2−V2 be two index-proper regular splittings
of A with AD ≥ 0. If V2U

D
2 ≥ UD

1 V1, then

ρ(V1U
D
1 ) ≤ ρ(V2U

D
2 ) < 1.

Proof. We have ρ(UD
i Vi) = ρ(ViU

D
i ) < 1 for i = 1, 2 by Theorems 2.4. Also,

we have (I + ADV1)
−1AD = UD

1 and UD
2 = AD(I + V2A

D)−1 by Theorem 1.8.
Now V2U

D
2 ≥ UD

1 V1 implies V2A
D(I + V2A

D)−1 ≥ (I + ADV1)
−1ADV1. Then pre-

multiplying both the sides by I + ADV1 and post-multiplying them by I + V2A
D,

as I + ADV1 ≥ 0 and I + V2A
D ≥ 0, we obtain V2A

D ≥ ADV1. Then, by
Theorem 1.2, we get ρ(V2A

D) = ρ(ADV2) ≥ ρ(ADV1). Since λ
λ+1

is a strictly

increasing function for λ ≥ 0, and ρ(V2A
D) = ρ(ADV2) ≥ ρ(ADV1), then we have

ρ(ADV2)
1+ρ(ADV2)

≥ ρ(ADV1)
1+ρ(ADV1)

. Therefore ρ(UD
1 V1) ≤ ρ(UD

2 V2) < 1. �

3. Double index-proper regular and weak regular splittings

Motivated by the idea of Jena et al. [9] we now introduce the double index-
proper splitting A = P − R − S of A to Ax = b which leads to the following
iterative scheme spanned by three iterates:

xi+1 = PDRxi + PDSxi−1 + PDb, i = 1, 2, . . . . (1)

Then (
xi+1

xi

)
=

(
PDR PDS

I 0

) (
xi

xi−1

)
+

(
PDb

0

)
,

Let yi+1 =

(
xi+1

xi

)
, yi =

(
xi

xi−1

)
, W =

(
PDR PDS

I 0

)
and d =

(
PDb

0

)
. Then

we have
yi+1 = Wyi + d, i = 1, 2, . . . . (2)
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The iteration scheme (2) is convergent if ρ(W ) < 1, and then A = P − R − S is
called a convergent double splitting.

We next introduce definitions of double index-proper regular and weak regular
splittings.

Definition 3.1. A double splitting A = P − R − S of A is called double index-
proper regular splitting if R(Ak) = R(P k), N(Ak) = N(P k), PD ≥ 0, R ≥ 0 and
S ≥ 0.

Definition 3.2. A double splitting A = P − R − S of A is called double index-
proper weak regular splitting if R(Ak) = R(P k), N(Ak) = N(P k), PD ≥ 0,
PDR ≥ 0 and PDS ≥ 0.

The above definitions reduce to index-proper regular and weak regular split-
tings by setting P = U and R + S = V . A convergence result which relates
convergence of single and double splitting is shown next.

Theorem 3.3. Let AD ≥ 0 and A = P −R−S is a double index-proper regular
splitting (or double index-proper weak regular splitting), then ρ(W ) < 1.

Proof. Since A = P −R−S is a double proper regular splitting (or double proper

weak regular splitting) of A, so for both the cases W =

(
PDR PDS

I 0

)
≥ 0.

Setting U = P and V = R + S, A = U − V is an index-proper regular splitting
(or an index-proper weak regular splitting) of A. By Theorem 2.4, we then have
ρ(PD(R+S)) = ρ(UDV ) < 1. By Theorem 1.5, it now follows that ρ(W ) < 1. �

Comparison of the spectral radii of the iteration matrices are necessary to
study the convergence rate of two different systems of linear equations by iterative
methods. The scheme with the smaller spectral radius will converge faster. We
next discuss the above issue and the Drazin inverse analog of [9, Theorem 3.7].

Theorem 3.4. Let A1 and A2 be two square matrices with N(Ak
1) = N(Ak

2),
where k = ind(A1) = ind(A2). Suppose that A1 = P1 − R1 − S1 and A2 =
P2 − R2 − S2 are double index-proper weak regular splittings such that AD

1 ≥ 0
and AD

2 ≥ 0. If PD
1 A1 ≥ PD

2 A2 and PD
1 R1 ≥ PD

2 R2, then ρ(W1) ≤ ρ(W2) < 1,

where W1 =

(
PD

1 R1 PD
1 S1

I 0

)
and W2 =

(
PD

2 R2 PD
2 S2

I 0

)
.

Proof. By Theorem 3.3, we have ρ(Wi) < 1 for i = 1, 2. If ρ(W1) = 0, then our
claim holds trivially. Suppose that ρ(W1) 6= 0. Since A1 and A2 possess double
index-proper weak regular splitting, we have W1 ≥ 0 and W2 ≥ 0. Now, applying

Theorem 1.1 (ii) to W1, we have W1x = ρ(W1)x, where x =

(
x1

x2

)
≥ 0, i.e.,

PD
1 R1x1 + PD

1 S1x2 = ρ(W1)x1,

x1 = ρ(W1)x2.

Now N(Ak
1) = N(Ak

2) implies R(Ak
1
T
) = R(Ak

2
T
) which yields R(P k

1
T
) = R(P k

2
T
)

gives R(P k
1 ) = R(P k

2 ) by taking transpose on both the sides. Then PD
1 P1 =
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PR(P k
1 ),N(P k

1 ) = PR(P k
2 ),N(P k

2 ) = PD
2 P2. The conditions PD

1 R1 ≥ PD
2 R2 and 0 <

ρ(W1) < 1 imply (PD
2 R2 − PD

1 R1)x1 ≥ 1
ρ(W1)

(PD
2 R2 − PD

1 R1)x1. Therefore

W2x− ρ(W1)x =

(
PD

2 R2x1 + PD
2 S2x2 − ρ(W1)x1

x1 − ρ(W1)x2

)
=

(
PD

2 R2x1 + PD
2 S2x2 − PD

1 R1x1 − PD
1 S1x2

0

)
=

(
(PD

2 R2 − PD
1 R1)x1 − 1

ρ(W1)
(PD

1 S1 − PD
2 S2)x1

0

)
≥

(
1

ρ(W1)
(PD

2 R2 − PD
1 R1)x1 − 1

ρ(W1)
(PD

1 S1 − PD
2 S2)x1

0

)
=

(
1

ρ(W1)
[PD

2 (R2 + S2)− PD
1 (R1 + S1)]x1

0

)
=

(
1

ρ(W1)
[PD

2 (P2 − A2)− PD
1 (P1 − A1)]x1

0

)
=

(
1

ρ(W1)
(PD

1 A1 − PD
2 A2)x1

0

)
.

Condition PD
1 A1 ≥ PD

2 A2 now yields that W2x ≥ ρ(W1)x. Thus, by Theorem
1.4, we have ρ(W1) ≤ ρ(W2) < 1. �

The next two examples show that the converse of Theorem 3.4 is not necessarily
true.

Example 3.5. Let A1 =

 0 0 1
0 1 0
0 1 0

 and A2 =

 0 1 1
0 2 0
0 2 0

. Here k = 2,

N(A2
1) = N(A2

2), AD
1 ≥ 0 and AD

2 ≥ 0.

Set P1 =

 0 0 2
0 2 0
0 2 0

, R1 =

 0 0 1
0 1 0
0 1 0

 and S1 =

 0 0 0
0 0 0
0 0 0

. Again,

P2 =

 0 0 3
0 3 0
0 3 0

, R2 =

 0 −1 0
0 0 0
0 0 0

 and S2 =

 0 0 2
0 1 0
0 1 0

. Here A1 =

P1 − R1 − S1 and A2 = P2 − R2 − S2 are two double index-proper weak regular
splittings with 0.5000 = ρ(W1) ≤ ρ(W2) = 0.5774 < 1. Here PD

1 A1 � PD
2 A2,

but PD
1 R1 ≥ PD

2 R2, where PD
1 =

 0 1/2 0
0 1/2 0
0 1/2 0

, PD
1 R1 =

 0 1/2 0
0 1/2 0
0 1/2 0

,
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PD
1 A1 =

 0 1/2 0
0 1/2 0
0 1/2 0

, PD
2 =

 0 1/3 0
0 1/3 0
0 1/3 0

, PD
2 A2 =

 0 2/3 0
0 2/3 0
0 2/3 0

,

PD
2 R2 =

 0 0 0
0 0 0
0 0 0

.

Example 3.6. Let A1 =

 0 0 2
0 2 0
0 4 0

 and A2 =

 0 0 1
0 1 0
0 2 0

. Here k =

2, N(A2
1) = N(A2

2), AD
1 ≥ 0 and AD

2 ≥ 0. Set P1 =

 0 0 3
0 3 0
0 6 0

, R1 = 0 0 0
0 1 0
0 2 0

 and S1 =

 0 0 1
0 0 0
0 0 0

. Then PD
1 =

 0 2/3 0
0 1/3 0
0 2/3 0

, PD
1 R1 = 0 2/3 0

0 1/3 0
0 2/3 0

, PD
1 A1 =

 0 4/3 0
0 2/3 0
0 4/3 0

. Again for P2 =

 0 0 2
0 2 0
0 4 0

, R2 = 0 0 1
0 1 0
0 1 0

 and S2 =

 0 0 0
0 0 0
0 1 0

 we get PD
2 =

 0 1 0
0 1/2 0
0 1 0

,PD
2 A2 = 0 1 0

0 1/2 0
0 1 0

, PD
2 R2 =

 0 1 0
0 1/2 0
0 1 0

. Hence A1 = P1 − R1 − S1 and A2 =

P2 − R2 − S2 are two double index-proper weak regular splittings with 0.3333 =
ρ(W1) ≤ ρ(W2) = 0.5000 < 1 and here PD

1 A1 ≥ PD
2 A2, but PD

1 R1 � PD
2 R2.

Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double index-proper weak

regular splitting of A. Then, we have W1 =

(
PD

1 R1 PD
1 S1

I 0

)
≥ 0 and W2 =(

PD
2 R2 PD

2 S2

I 0

)
≥ 0. A comparison theorem for a single system of equations

whose coefficient matrix A has two different double index-proper weak regular
splitting is presented next.

Theorem 3.7. Let AD ≥ 0 and A = P1−R1−S1 = P2−R2−S2 be two double
index-proper regular splittings. Suppose that P1 ≤ P2. Then ρ(W1) ≤ ρ(W2) < 1.

Proof. Since AD ≥ 0 and the double splittings are index-proper regular, by The-
orem 3.3, ρ(Wi) < 1 for i = 1, 2. Using the given condition P1 ≤ P2, we have
A+R1+S1 ≤ A+R2+S2, i.e., R2+S2 ≥ R1+S1 ≥ 0. Since the double splittings
become single splittings by taking Ui = Pi, Vi = Ri + Si for i = 1, 2. Hence, by
using Theorem 2.11, we have ρ(PD

1 (R1 + S1)) = ρ(UD
1 V1) ≤ ρ(PD

2 (R2 + S2)) =
ρ(UD

2 V2) < 1. Then by Theorem 1.5, it follows that ρ(W1) ≤ ρ(W2). �

A supportive example of above Theorem 3.7 is discussed below.
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Example 3.8. Let A =

 0 0 2
0 2 0
0 2 0

. Setting P1 =

 0 0 3
0 3 0
0 3 0

, R1 = 0 0 1
0 1 0
0 1 1

, S1 =

 0 0 0
0 0 0
0 0 −1

, P2 =

 0 0 4
0 4 0
0 4 0

, R2 =

 0 0 1
0 1 0
0 1 0


and S2 =

 0 0 1
0 1 0
0 1 0

. We get R(A2) = R(P 2
1 ) = R(P 2

2 ) =


 1

1
1

. Hence,

the splitting A = P1−R1−S1 = P2−R2−S2 are two double index-proper weak
regular splittings of index 2. Thus, we have P1 ≤ P2 with ρ(W1) ≤ ρ(W2) < 1.

A corollary of the above theorem with 0 ≤ S1 ≤ S2 is as follows.

Corollary 3.9. Let AD ≥ 0 and A = P1 − R1 − S1 = P2 − R2 − S2 be two
double index-proper regular splittings. Suppose that R1 ≤ R2 and S1 ≤ S2.
Then ρ(W1) ≤ ρ(W2) < 1.

Proof. The conditions R1 ≤ R2 and S1 ≤ S2 together gives 0 ≤ R1+S1 ≤ R2+S2,
which was obtained by component wise addition of 0 ≤ R1 ≤ R2 and 0 ≤ S1 ≤ S2.
Then by Theorems 1.5 and 2.11, we have ρ(W1) ≤ ρ(W2) < 1. �

Another comparison result is obtained below.

Theorem 3.10. Let AD ≥ 0 and A = P1−R1−S1 = P2−R2−S2 be two double
index-proper regular splittings. Suppose that PD

1 R2 − PD
1 R1 ≥ PD

1 S1 − PD
1 S2.

Then ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.

Proof. The double splitting A = P1 − R1 − S1 is convergent, i.e., ρ(W1) < 1, by
Theorem 3.3 as AD ≥ 0. Since it is given that PD

1 R2 − PD
1 R1 ≥ PD

1 S1 − PD
1 S2

from which we obtain PD
1 (R2 + S2) ≥ PD

1 (R1 + S1). Again, as we know that the
double splittings become single splittings by taking Ui = Pi and Vi = Ri + Si

for i = 1, 2, we have UD
1 V2 ≥ UD

1 V1. As the given splitting is index-proper,
then by applying the property UD = (I + ADV )−1AD to UD

1 V2 ≥ UD
1 V1, we

have (I + ADV1)
−1ADV2 ≥ (I + ADV1)

−1ADV1. This implies ADV2 ≥ ADV1. By
Remark 2.12, we have ρ(UD

1 V1) ≤ ρ(UD
2 V2). Letting Vi = Ri + Si and Ui = Pi for

i = 1, 2, we get ρ(UD
1 V1) = ρ(PD

1 (R1 + S1)) ≤ ρ(PD
2 (R2 + S2)) = ρ(UD

2 V2) < 1.
Thus, by Theorem 1.5, we have ρ(W1) ≤ ρ(W2) < 1. �

The above result also holds for double index-proper weak regular splittings
with Ri + Si ≥ 0 for i = 1, 2. Next example supports the above result.

Example 3.11. Taking A =

 0 0 2
0 2 0
0 2 0

 with P1, P2, R1, R2 and S1, S2 as

in Example 3.8. Then PD
1 R2 − PD

1 R1 =

 0 0 0
0 0 0
0 0 0

 and PD
1 S1 − PD

1 S2 =



422 L. JENA 0 −1/3 0
0 −1/3 0
0 −1/3 0

. So PD
1 R2 − PD

1 R1 ≥ PD
1 S1 − PD

1 S2. Then 0.3333 = ρ(W1) ≤

ρ(W2) = 0.6404 < 1.
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