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A curve of genus 5 having 24 Weierstrass points of weight 5

Takao Kato
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Abstract. In this paper, we shall prove that if an irreducible curve X of genus 5 over

C has 24 Weierstrass points of weight 5, then it has exactly three bielliptic involutions.
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1. Introduction

Let X be a non-hyperelliptic curve of genus g ≥ 5 over C. X is called
bielliptic if X is a two-sheeted covering of an elliptic curve E. Then, there
exists an automorphism σ of X, called a bielliptic involution, such that
X/〈σ〉 is equivalent to E. By the Riemann-Hurwitz relation, it is easy to see
that there exist 2g−2 fixed points of σ. For a fixed point P of σ, by the pull-
back of meromorphic functions on E, it is shown that 2k (k = 2, 3, 4, . . . ) are
Weierstrass non-gaps at P . More precisely there are two types Weierstrass
gap sequences for fixed points of bielliptic involutions. For convenience, we
list up them by their order sequences (of holomorphic differentials), instead
of the gap sequences (cf. [3, Proposition 1.2]):

Type Ig : {0, 1, 2, 4, . . . , 2j, . . . , 2g − 6, 2g − 4},
Type IIg : {0, 1, 2, 4, . . . , 2j, . . . , 2g − 6, 2g − 2}.

If g ≥ 6, by the Castelnuovo-Severi inequality (cf. [1]), there exists at most
one bielliptic involution. Thus, the sum of the number of points of Type Ig
and Type IIg is 2g−2 as far as it is positive. Moreover, Park [8] and Ballico
- Del Centina [3] proved the existence of a bielliptic curve of genus g which
has exactly s Weierstrass points of Type IIg for 0 ≤ s ≤ 2g − 2, s 6= 2g − 3.
On the other hand, in case g = 5, bielliptic involutions are not unique. For
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k = 1, 2, 3, 5, there exists a curve of genus 5 which has exactly k bielliptic
involutions. In particular, curves of genus 5 with 5 bielliptic involutions,
called the Humbert curves, have 40 Weierstrass points of Type I5. For the
maximal number of points of Type II5, there exists a curve having 3 bielliptic
involutions all of whose fixed points are 24 Weierstrass points of Type II5.

Conversely, if g ≥ 8, then the existence of a Weierstrass point P ∈ X

of Type Ig or Type IIg implies the existence of a bielliptic involution of X

and P is a fixed point of the bielliptic involution. For g ≥ 11 or g = 8, it
was proved by Kato [6], while one knows that the same proof can be applied
for g ≥ 8. Even in case g = 7, the existence of a Weierstrass point P ∈ X

of Type Ig implies the same result as above. These are also proved by the
genus formula of plane curves with singular points using [4, part 8.4, Lemma
6 and Theorem 8].

On the other hand, for g ≤ 7 this result does not hold any more, i.e.
there exists a point P ∈ X such that non-gaps at P begin with 4, 6 but |6P |
is a simple net (cf. Coppens [5, Corollary 21]). For g = 5, as mentioned
above, there exists a curve having 3 bielliptic involutions all of whose fixed
points are 24 Weierstrass points of Type II5. The purpose of this paper is to
prove that the converse holds, i.e. if X of genus 5 has 24 Weierstrass points
of Type II5, then there exist three bielliptic involutions of X (cf. Theorem
2).

2. Analysis of Weierstrass points of weight 5

In this section, we shall give a criterion of a curve X to have a bielliptic
involution. We denote D1 ≡ D2 if two divisors D1 and D2 are equivalent.

Theorem 1 Let X be a curve of genus 5. Assume Pi (i = 1, 2, 3, 4) are
Weierstrass points of Type II5 on X, i.e. the gap sequence of Pi is {1, 2, 3,

5, 9}. If 4P1 ≡ 4P2 ≡ 4P3 ≡ 4P4, then Pi (i = 1, 2, 3, 4) are fixed points of
a bielliptic involution of X.

Proof. It is obvious that |6Pi| is a base point free net. If |6Pi| is composite,
since |4Pi| is a base point free pencil, there exists a two-sheeted covering
π′ : X → X ′. Since 2, 3 are non-gaps at π′(Pi), while 1 is a gap, X ′ is an
elliptic curve. Hence, we have the desired result. Thus, assume L = |6P1| is
a base point free simple net, i.e. contrary to the conclusion. Let Y be the
plane model of degree 6 induced by L and π : X → Y be the morphism.
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Then, p1 = π(P1) ∈ Y is a singular point of multiplicity 2 with the 6-fold
tangent line l. Thus, we have a defining equation of Y so that

f(x, y) =
∑

i+j≤6

aijx
iyj = 0,

a00 = a10 = a01 = a11 = a02 = · · · = a05 = 0, (2.1)

a20 6= 0, a06 6= 0.

p1 corresponds to (x, y) = (0, 0). Moreover, we may assume a20 = 1 and we
shall show that a12 = 0, later (see the equation (2.5)).

It is well known that a holomorphic differential on Y is given by
(h(x, y)dx)/(fy(x, y)), where h(x, y) is a special adjoint polynomial of
f(x, y), a suitable polynomial of degree at most deg f − 3 = 3. To see
the behavior of h(x, y) at a singular point of Y , we shall estimate the order
µ of the pole of dx/(fy(x, y)) at p1.

By the projection $ : Y → P1; (x, y) 7→ x, we consider Y as a 6-sheeted
covering of the Riemann sphere. By the assumption the point x = 0, which
corresponds to P1, is a total ramification point of this covering. Hence,
we may take a local parameter t at P1 such that x = x(t) = t6. Let
y = y(t) = tλ(β0 + β1t + · · · ), for some βj (j = 0, 1, . . . ), β0 6= 0, at P1. It
follows that xiyj = βj

0t
6i+λj + o(t6i+λj). Note that by (2), we have

6i + λj ≥





6λ, if i = 0,

6 + 2λ, if i = 1,

12, if i ≥ 2.

(2.2)

Assume λ = 1. Then, 6i + λj ≥ 6 and equality holds only if (i, j) =
(0, 6), whence f(x(t), y(t)) = β6

0a06t
6 + · · · ≡ 0 which contradicts a06 6= 0.

Assume λ ≥ 4. Then, 6i + λj ≥ 12 and equality holds only if (i, j) =
(2, 0), f(x(t), y(t)) = a20t

12 + · · · which is a contradiction. Assume λ = 3.
Then f(x(t), y(t)) = (a20 + β2

0a12)t12 + · · · , whence a20 + β2
0a12 = 0. This

implies that a12 6= 0 and fy(x(t), y(t)) = 2a12β0t
9 + · · · . Since dx = 6t5dt,

dx/(fy(x, y)) has a pole of order 4 at t = 0. On the other hand h(x, y)
cannot have a zero of order 4 at t = 0. This is a contradiction. Hence,
λ = 2.

Letting s = t(β0+β1t+ · · · )1/2 (taking some branch, of course), we have
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a local parameter s at P1 such that x = x(s) = s6(1+α1s+α2s
2 + · · · ) and

y = y(s) = s2. Using the local parameter s, we denote

f(x(s), y(s)) =
∞∑

n=0

Ansn ≡ 0 (2.3)

fy(x(s), y(s)) =
∞∑

n=0

Bnsn. (2.4)

Of course, An = 0 for all n. By (2), we have

A10 = α4a10 + α2a11 + a12 + a05 = 0, whence a12 = 0. (2.5)

Thus, by x2 = s12(1+2α1s+(α2
1 +2α2)s2 +2(α1α2 +α3)s3 + · · · ), we have

A12 = α6a10 + a20 + α4a11 + α2a12 + a13 + a06 = 0,

A13 = α7a10 + 2α1a20 + α5a11 + α3a12 + α1a13 = 0.

Hence,

a20 + a13 + a06 = 0, (2.6)

2α1a20 + α1a13 = 0. (2.7)

Let τ be the order of the zero of fy(x(s), y(s)) at s = 0. It is obvious that
τ = µ + 5. Note that fy(x, y) =

∑
aijjx

iyj−1 and xiyj−1 = s6i+2j−2 + · · · .
If 6i + 2j − 2 ≤ 9, then i = 0, 0 ≤ j ≤ 5 or i = 1, 0 ≤ j ≤ 2, whence by
(2) and a12 = 0, we have B0 = · · · = B9 = 0. Hence, τ ≥ 10 i.e. µ ≥ 5.
However, since xiyj = s6i+2j + · · · , if µ = 5, then h(x, y) contains terms
a + by + cy2 = a + bs2 + cs4, i.e. µ ≤ 4. Hence, we have µ ≥ 6, i.e. τ ≥ 11.
On the other hand, since the degree of a canonical divisor is 2g − 2 and
deg h ≤ 3, we have 2g − 2 + µ ≤ 3 · 6 = 18, whence µ ≤ 20− 2g ≤ 10. By a
straightforward computation, we have

B10 = 3a13 + 6a06 = 0, (2.8)

B11 = 3α1a13, (2.9)

B12 = 3α2a13 + a21 + 4a14, (2.10)
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B13 = 3α3a13 + 2α1a21 + 4α1a14. (2.11)

By a20 = 1, (2.6) and (2.8), we have a13 = −2, a06 = 1. Hence, µ = 6 if
and only if α1 6= 0. If α1 = 0, then, h(x, y) = x − y3 + · · · = α1s

7 + o(s7).
Hence, µ 6= 7. By (2.11), µ = 8 if and only if α1 = 0 and α3 6= 0. Similarly,
we have µ 6= 9 and µ = 10 if and only if α1 = α3 = 0 and α5 6= 0.

In case µ = 6, there are two singular points q1, q2 (including the case q2

is infinitely near to q1) of multiplicity 2 beside p1. Let l be the line joining
q1 and q2. Then lx2dx/(fy(x, y)) has a zero of order 8 (resp. 6) at p1 if
p1 ∈ l (resp. p1 6∈ l). Since the order sequence at P1 is {0, 1, 2, 4, 8}, we
obatin that p1, q1, q2 are collinear and we may assume l is defined by y = 0.

In case µ = 8, there is one singular point q1 of multiplicity 2 beside p1.
Let l be the line joining p1 and q1. Then lx2dx/(fy(x, y)) has a zero of order
6 at p1, whence this case does not occur.

In case µ = 10, there is no singular point beside p1 and x3dx/(fy(x, y))
has a zero of order 8 at p1. Of course, this case is a special case of the case
µ = 6 so that q1, q2 are infinitly near points of p1.

Applying a birational transformation ξ = y/x, η = 1/x to f(x, y), we
have

a20η
4 + (a21ξ + a30)η3 + (a13ξ

3 + a22ξ
2 + a31ξ + a40)η2

+ (a14ξ
4 + a23ξ

3 + a32ξ
2 + a41ξ + a50)η

+ (a06ξ
6 + a15ξ

5 + a24ξ
4 + a33ξ

3 + a42ξ
2 + a51ξ + a60) = 0.

As usual, replacing η by η − (a21ξ + a30)/4, we have

F (ξ, η) = a20η
4 + (a13ξ

3 + a22ξ
2 + a31ξ + a40)η2

+ (a14ξ
4 + a23ξ

3 + a32ξ
2 + a41ξ + a50)η

+ (a06ξ
6 + a15ξ

5 + a24ξ
4 + a33ξ

3 + a42ξ
2 + a51ξ + a60) = 0,

i.e. we may assume a21 = a30 = 0.

Case µ = 6 and q1, q2 lie on the line ξ = 0. Let l1 be the line
containing p1, q1, q2. Since η = ∞ at p1, l1 is given by ξ = c for a constant
c. Replacing ξ by ξ − c, we may assume q1 and q2 lie on the line ξ = 0.
Let q1 (resp. q2) be given by (ξ, η) = (0, β) (resp. (0, γ)). First, we assume
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β 6= γ. Since q1 and q2 are singular points of multiplicity 2, F (0, η) has
zeros of order 2 at η = β and η = γ. Hence, noting a20 = 1, we have
F (0, η) = (η − β)2(η − γ)2. Therefore, γ = −β and a50 = 0. Moreover we
have Fξ(0,±β) = 0, whence a41 = 0, too. The case β = γ = 0 is a special
case of the above case. Thus, (ξ, η) = (0, 0) is a singular point of multiplicity
2 with the 4-fold tangent line ξ = 0. Hence, we have a41 = a50 = 0 (Of
course, we have a60 = a51 = a40 = 0, but it is not a matter in our discussion).

Let p2 = π(P2) be given by (ξ, η) = (β2, γ2). By the assumption, since
4P1 ≡ 4P2, F (β2, η) has a zero of order 4 at η = γ2, whence γ2 = 0 and the
coefficients of ηj (j = 0, 1, 2) are zero, in particular, a14β

4
2 +a23β

3
2 +a32β

2
2 =

0. In the same reason, we have a14β
4
3 + a23β

3
3 + a32β

2
3 = a14β

4
4 + a23β

3
4 +

a32β
2
4 = 0, where pi = π(Pi) (i = 3, 4) are given by (ξ, η) = (βi, 0). Since

β2, β3, β4 are mutually distinct non-zero numbers, we have a14 = a23 =
a32 = 0. Thus

F (ξ, η) = η4 + (a13ξ
3 + · · ·+ a40)η2 + (a06ξ

6 + · · ·+ a60),

whence there exists an automorpism (ξ, η) 7→ (ξ,−η) of Y. Hence, |6P1| is
composite which contradicts the assumption. Thus there exists a bielliptic
involution of X and Pi (i = 1, 2, 3, 4) are its fixed points.

Case µ = 10. Since α1 = α3 = 0，α5 6= 0, by computation we have

x2 = s12 + 2α2s
14 + (α2

2 + 2α4)s16 + 2α5s
17

+ (2α2α4 + 2α6)s18 + (2α2α5 + 2α7)s19 + · · · . (2.12)

Since

A14 = −2α2 + 2α2 + a14 + a21 = 0 and a21 = 0,

we have a14 = 0. By

A19 = −2α7 + 2α2α5 + 2α7 + (a14 + 2a21)α5 = 2α2α5 = 0

and α5 6= 0 we have α2 = 0. Thus, we have

A18 = − 2α6 + 2α2α4 + 2α6 + (a14 + 2a21)α4

+ a21α
2
2 + (a15 + 2a22)α2 + a23 + a30 = a23 = 0.



Curve of genus 5 having 24 Weierstrass points 171

Namely, in F (ξ, η) the coefficient of η is a32ξ
2 + a41ξ + a50. Thus, by the

same discussion as in the case µ = 6, we have a contradiction.
This completes the proof. ¤

3. Main Theorem

In this section, we shall give the main theorem of this paper mentioned
in Section 1.

Theorem 2 Let X be a curve of genus 5 having 24 Weierstrass points
P1, . . . , P24 whose gap sequences are {1, 2, 3, 5, 9}, respectively. Then, X has
exactly 3 bielliptic involutions σi (i = 1, 2, 3) and each of Pj (j = 1, . . . , 24)
is a fixed point of some σi.

To prove this theorem, we shall give a quick review of a sequence of
Exercises in [2, VI, F] and its corollaries.

Let Γ be the locus of quadrics of rank ≤ 4 in P4 containing the canonical
model of X. Since X is neither hyperelliptic nor trigonal, by [2, VI, F3–12],
we have the following fact:

Lemma 3.1

i) Γ is a plane quintic which has at most ordinary nodes as its singular
points.

ii) These nodes correspond to half canonical pencils on X.
iii) There exists a correspondence from W 1

4 (X) to Γ.
iv) There exists a line component l of Γ if and only if there exists a two-

sheeted covering X → E, where E is an elliptic curve, i.e. a bielliptic
covering. In this case, l corresponds to the pull-back of the g1

2’s on E.

By this fact, we have:

Corollary 3.2

i) If X has no bielliptic involution, then there are at most 7 half canonical
pencils on X.

ii) If X has at most 2 bielliptic involutions, then there are at most 8 half
canonical pencils on X.

Proof. For i), since there is no bielliptic involution of X, there is no line
component of Γ. If Γ is irreducible of degree 5, then there are at most 6
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nodes on Γ. In case Γ has 2 irreducible components Γ2 and Γ3 of degree
2 and 3, respectively, then there are 6 common points of Γ2 and Γ3 (they
should be nodes on Γ) and at most one singular point of Γ3. Thus there are
at most 7 half canonical pencils on X. For ii), assume there is exactly one
bielliptic involution of X. Then, beside one line component l1 of Γ, there is
one irreducible component Γ4 of degree 4 or there are 2 irreducible conics
Γ2 and Γ′2. Thus, there are at most 8 nodes on Γ. In case there are exactly
2 bielliptic involutions on X, Γ consists of 2 line componets l1, l2 and one
irreducible cubic Γ3. Thus, there are at most 8 nodes on Γ. ¤

Corollary 3.3 Assume X has a bielliptic involution σ and l is a line
component of Γ which corresponds to σ. Let P be a Weierstrass point of
Type II5 on X. Then |4P | corresponds to a point on l if and only if P is a
fixed point of σ.

Proof. It is obvious by Lemma 3.1 iii). ¤

Proof of Theorem 2. First note that all the |4Pi| (i = 1, . . . 24) are half
canonical pencils and that 4Pi ≡ 4Pj is equivalent to |4Pi| = |4Pj |.

Assume there exists no bielliptic involution of X. Then, all the |6Pi|
(i = 1, . . . 24) are simple nets. Hence, by Theorem 1, each 4Pi is equivalent
to at most two 4Pj ’s. Therefore, there are at least 24/3 = 8 different |4Pi|’s,
i.e. at least 8 half canonical pencils on X. On the other hand, by Corollary
3.2, there are at most 7 half canonical pencils on X. This is a contradiction.
Thus, there exists at least one bielliptic involution σ1 of X.

Assume X has exactly one bielliptic involution σ1. Then, σ1 has exactly
8 fixed points among Pi’s, say P1, . . . , P8. Since Pi (i = 9, . . . , 24) are not
fixed by σ1, again by Theorem 1, each 4Pi is equivalent to at most two 4Pj ’s.
Therefore, there are at least 6 different |4Pi|’s among i = 9, . . . 24. Let l1
be the corresponding line component of Γ corresponding to σ1. Then, by
Corollary 3.3 and its proof, |4Pi| (i = 9, . . . , 24) correspond to nodes outside
l1, but by Corollary 3.2, there are at most 4 such nodes. A contradiction.

Assume X has exactly two bielliptic involutions σ1, σ2 and Pi (i =
17, . . . , 24) are not fixed by these involutions. Then, by a similar argument
as above, there are at least 3 different |4Pi|’s among i = 17, . . . 24, while
there is at most one node outside the lines l1, l2 corresponding to σ1, σ2.
Thus, there exist exactly three bielliptic involutions of X. This completes
the proof. ¤



Curve of genus 5 having 24 Weierstrass points 173

Remark It is shown in [7] that a curve X having 24 Weierstrass points
with three bielliptic involution has to be equivalent to the curve defined by
y4 = x2(x4−1). It is equivalent to the Wiman curve given in [10] which has
the automorphism group of order 192, the maximal order among curves of
genus 5.

Acknowledgement The author thanks the referee for several corrections.
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