On Beurling's theorem

By Hiroshi Tanaka*)

Introduction

Let R, R' be hyperbolic Riemann surfaces and ϕ be an analytic mapping of R into R'. Let K_0 be a closed disk in R and let $R_0 = R - K_0$. Let C be the Kuramochi capacity on $R_0 \cup A_N$ and A_1 be the set of all minimal Kuramochi boundary points of R. For a metrizable compactification R'^* of R', we denote by $\mathcal{I}(\phi)$ the set of all points in Δ_1 at which ϕ has a fine limit in R'^* . There are two typical extensions of Beurling's theorem [1] to analytic mappings of a Riemann surface to another one, i.e., Z. Kuramochi's [5, 6, 7] and C. Constantinescu and A. Cornea's theorems [3, 4]. The former result states that if ϕ is an almost finitely sheeted mapping and R'^* is H.D. separative, then $\widetilde{C}(\Delta_1 - \mathscr{L}(\phi)) = 0$. The latter one states that if ϕ is a Dirichlet mapping and R'^* is a quotient space of the Royden compactification of R', then $\widetilde{C}(\Delta_1 - \mathscr{T}(\phi)) = 0$. The present author [9] proved that these two results are independent. In this paper we shall give an another extension of Beurling's theorem such that it contains the above two results: If ϕ is a Dirichlet mapping and R'^* is H.D. separative, then Beurling's theorem is valid.

Notation and terminology

Let R be a hyperbolic Riemann surface. For a subset A of R, we denote by ∂A and A^i the (relative) boundary and the interior of A respectively. We call a closed or open subset A of R is regular if ∂A is non-empty and consists of at most a countable number of analytic arcs clustering nowhere in R. We fix a closed disk K_0 in R once for all and let $R_0 = R - K_0$.

1. Function spaces and compactifications (cf. [4]).

We denote by BC=BC(R) the space of all bounded continuous (real-valued) functions on R. Let BCW=BCW(R) be (resp. BCD=BCD(R)) the family of all bounded continuous Wiener functions (resp. bounded continuous Dirichlet functions) on R. It is known ([4]) that both BCW and BCD are vector sublattices of BC with respect to the maximum and minimum opera-

^{*)} 田中博

tions and that $BCD \subset BCW$. Let $D^{\infty} = D^{\infty}(R)$ be the family of all C^{∞} -functions in BCD.

We refer to [4] for the definitions and properties of Q-compactification R_Q^* of R, the Kuramochi compactification R_N^* , the Royden compactification R_D^* , the Wiener compactification R_W^* . For a subset A of R, we denote by \bar{A}^Q the closure of A in R_Q^* (Q=N, D, or W). Let R_1^* and R_2^* be two compactifications of R. If there exists a continuous mapping π of R_1^* onto R_2^* whose restriction to R is the identity and $\pi^{-1}(R)=R$, then we shall say that π is a cononical mapping of R_1^* onto R_2^* and that R_2^* is a quotient space of R_1^* . We note that R_N^* is a quotient space of R_D^* and R_D^* is a quotient space of R_W^* ([4]).

2. Dirichlet principle and capacitary potentials

We follow C. Constantinescu and A. Cornea [4] for the definition and properties of Dirichlet functions and the operation $f o f^F$. For a Dirichlet function f and an open set G in R, we denote by $||f|| = ||f||_G$ the Dirichlet norm of f on G. Let G be a regular open set in R with $G \neq R$ in the rest of this section. Let F be a regular closed set in R such that $\overline{F}^D \cap \overline{R-G}^D = \emptyset$. Then there is a function f in BCD such that f=0 on R-F and f=0 on f=0. Since $f^{(R-G)\cup F}(z)$ does not depend on the choice of such an f, it is denoted by $\omega(\partial F, z, G-F)$ in f=0 and by $f^{\mathfrak{G}}_{F}(z)$ in f=0. Let $f^{\mathfrak{G}}_{F}(z)$ in f=0. Let $f^{\mathfrak{G}}_{F}(z)$ and $f^{\mathfrak{G}}_{F}(z)$ in f=0. Then $f^{\mathfrak{G}}_{F}(z)$ converges locally uniformly and in Dirichlet norm to a harmonic function on f=0 as f=0. The limit function is denoted by $f^{\mathfrak{G}}_{F}(z)$, f=0 in f=0. The limit function is denoted by f=0.

Let E be a closed subset of Δ_N and F be a regular closed set in R such that $\overline{F}^D \cap \overline{R-G}^D = \emptyset$. We set $E_n = \{z \in R \; ; \; d(z,E) \leq 1/n\}$ where d is a metric on R_N^* . For each n, we can find a regular closed set F_n in R such that

$$(*) E_{n+1} \subset F_n \subset E_n - \partial E_n.$$

The function $\omega(\{F_n \cap F\}, z, G)$ is denoted by $\omega(E \cap B(F), z, G)$ in [7]. For a closed subset A of Δ_D , we consider ([8, 9]) the following function:

$$\widetilde{\omega}(A) = \widetilde{\omega}_a(A) = \inf \begin{cases} s(a) \, ; & \text{full-superharmonic}^{1)} \geq 0 \text{ on } R_0, \ s \geq 1 \text{ on} \\ U \cap R_0 \text{ for some neighborhood } U \text{ of } A \text{ in } R_D^* \end{cases} (a \in R_0).$$

Then $a \to \widetilde{\omega}_a(A)$ is harmonic on R_0 and vanishes on ∂K_0 . Furthermore $\|\widetilde{\omega}(A)\| < \infty$. The capacity C(A) (with respect to K_0) is defined ([8, 9]) by

¹⁾ This is called voll-superharmonisch in [4].

$$C(A) = \frac{1}{2\pi} \int_{\partial K_0} \frac{\partial \widetilde{w}(A)}{\partial \nu} ds = \frac{1}{2\pi} \|\widetilde{w}(A)\|^2.$$

We denote by \widetilde{C} the Kuramochi capacity (with respect to K_0) on $R_0 \cup \mathcal{L}_N$ ([4]). Let π be the canonical mapping of R_D^* onto R_N^* and X be a closed subset of \mathcal{L}_N . Then $C(\pi^{-1}(X)) = \widetilde{C}(X)$.

Lemma 1. Let E be a closed subset of Δ_N and F be a regular closed set in R. Then $\omega(E \cap B(F), z, R_0) = \widetilde{\omega}_z(\pi^{-1}(E) \cap \overline{F}^D)$.

PROOF. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of regular closed sets in R which satisfies (*). Since $\lim_{n\to\infty} 1_{\widehat{F_n\cap F}} = \widetilde{\omega}(\bigcap_{n=1}^{\infty} \overline{F_n\cap F^D})$ by Corollary 1 to Lemma 11 in [8] and $\bigcap_{n=1}^{\infty} \overline{F_n\cap F^D} = \pi^{-1}(E)\cap \overline{F}^D$, we obtain that

$$\omega(E \cap B(F), z, R_0) = \omega\left(\{F_n \cap F\}, z, R_0\right) = \lim_{n \to \infty} 1_{\widetilde{F_n \cap F}}(z)$$

$$= \widetilde{\omega}_z\left(\bigcap_{n=1}^{\infty} \overline{F_n \cap F^D}\right) = \widetilde{\omega}_z(\pi^{-1}(E) \cap \overline{F}^D).$$

PROPOSITION 1. Let K be a closed subset of Δ_D . Then C(K)=0 if and only if there exist a sequence $\{F_n\}_{n=1}^{\infty}$ of regular closed sets in R and a function f in BCD(R) such that

- (a) \overline{F}_n^D is a neighborhood of K in R_D^* ,
- (b) $\overline{R} \overline{F}_n^D \cap \overline{F}_{n+1}^D = \emptyset$ $(n = 1, 2, \dots),$
- (c) $\bigcap_{n=1}^{\infty} F_n = \emptyset,$
- (d) f(z)=0 for $z \in \partial F_{2k-1}$ and =1 for $z \in \partial F_{2k}$ $(k=1,2,\cdots)$.

PROOF. The proof of "if" part: Suppose there exist a sequence $\{F_n\}_{n=1}^{\infty}$ and a function f in BCD(R) which satisfy (a)-(d). We may assume that $F_1 \cap K_0 = \emptyset$. We set

$$g_{2k-1} = \left\{ egin{array}{ll} 0 & ext{on } R - F_{2k-1}^i \ f & ext{on } F_{2k-1}^i - F_{2k} \ 1 & ext{on } F_{2k} \end{array}
ight. \qquad g_{2k} = \left\{ egin{array}{ll} 0 & ext{on } R - F_{2k}^i \ 1 - f & ext{on } F_{2k}^i - F_{2k+1} \ 1 & ext{on } F_{2k+1} \end{array}
ight.$$

 $(k=1,2,\cdots)$. Then $g_n \in BCD(R)$ for each n. Since $g_n=0$ on K_0 and =1 on F_{n+1} , by the aid of Satz 15.3, (g), in [4], we have $\|1_{\widetilde{F}_n}\| \leq \|g_n\|$ for each n. Since $\|g_{n+1}\| \leq \|f\|_{F_{n-F_{n+1}}^{\delta}}$, we obtain that $\|1_{\widetilde{F}_{n+1}}\| \leq \|f\|_{F_{n-F_{n+1}}^{\delta}}$ for each n. Since $\|\widetilde{w}(K)\| \leq \|1_{\widetilde{F}_{n+1}}\|$ by Lemma 9 in [9], we have $\|\widetilde{w}(K)\| \leq \|1_{\widetilde{F}_{n+1}}\| \leq \|f\|_{F_{n-F_{n+1}}^{\delta}}$ for each n. Hence we obtain that

$$0 \le n \|\widetilde{w}(K)\|^2 \le \sum_{k=1}^n \|f\|_{F_k^{j_k} - F_{k+1}}^2 \le \|f\|_{R - F_{n+1}^{j_k}}^2 \le \|f\|^2 < \infty$$

 $(n=1, 2, \cdots)$. By letting $n \to \infty$, we obtain that $\tilde{\alpha}(K) = 0$ and C(K) = 0. The "only if" part follows from a discussion similar to that in the proof of Theorem 2 in [9].

3. Dirichlet mappings

Let R and R' be hyperbolic Riemann surfaces and ϕ be an analytic mapping of R into R'. For any $a' \in R'$, let $n_{\phi}(a')$ be the number of points in $\phi^{-1}(a')$ counting its multiplicity. If $\sup_{a' \in R'} n_{\phi}(a') < +\infty$, then ϕ is said to be finitely sheeted.

DEFINITION 1 ([4]). ϕ is said to be a *Dirichlet mapping* if there exists a continuous extension of ϕ from R_D^* to $R_D^{\prime*}$. In this case we denote by ϕ the continuous extension of ϕ again.

DEFINITION 2 ([5, 7]). ϕ is said to be an almost finitely sheeted mapping if it satisfies the following two conditions:

- (a) There exists a compact set K' in R' such that $\sup_{a' \in R' K'} n_{\phi}(a') < \infty$.
- (b) For each $a' \in R'$, there exists a neighborhood U(a') of a' mapped onto a disk in a complex plane by a local parameter at a' such that the covering surface lying over U(a') by ϕ has a finite total area measured with respect to the local parameter.

THEOREM 1. If ϕ is a Dirichlet mapping and K' is a compact subset of the Royden boundary Δ'_D of R', then C'(K')=0 implies $C(\phi^{-1}(K'))=0$, where C' is the capacity on Δ'_D with respect to $K'_0=\phi(K_0)$.

PROOF. Let K' be a compact subset of Δ'_D with C'(K')=0. Then it follows from Proposition 1 that there exist a decreasing sequence $\{F'_n\}_{n=1}^{\infty}$ of regular closed sets in R' and a function f' in BCD(R') which satisfy (a)–(d) in Proposition 1. Since ϕ is a Dirichlet mapping, $f' \circ \phi$ can be continuously extended over R_D^* . Then it follows from the definition of R_D^* that there is a function g in BCD(R) such that $|f' \circ \phi - g| < 1/3$ on R. We set $f=3 \min(\max(g, 1/3), 2/3)-1$. Then $f \in BCD(R)$. If we set $F_n = \phi^{-1}(F'_n) \cap R$ $(n=1, 2, \cdots)$, then f and $\{F_n\}_{n=1}^{\infty}$ satisfy (a)–(d) in Proposition 1 for $K=\phi^{-1}(K')$. Thus $C(\phi^{-1}(K'))=0$.

Theorem 2. ϕ is an almost finitely sheeted mapping if and only if $\xi' \in D^{\infty}(R')$ implies $\xi' \circ \phi \in D^{\infty}(R)$.

PROOF. Suppose ϕ is almost finitely sheeted. Then there is a compact set K' in R' and a positive constant t such that $n_{\phi}(a') \leq t$ for all $a' \in R' - K'$. Let ξ' be any function in $D^{\infty}(R')$. Then we see that $\|\xi' \circ \phi\|_{\phi^{-1}(R'-K')}^2 \leq t \|\xi'\|_{R'-K'}^2$. On the other hand, since K' is compact, there exists a finite

family of open disks $\{U(a_i')\}_{i=1}^n$ in R' such that each $U(a_i')$ satisfies (b) in Definition 2 and $\bigcup_{i=1}^n U(a_i') \supset K'$. Since

$$\iint_{\phi^{-1}(U(a_i'))} |\phi'|^2 dx dy < \infty \qquad (i=1,2,\cdots,n),$$

for the above ξ' , we have

$$\begin{split} \|\xi' \circ \phi\|_{\phi^{-1}(U(a_i'))}^2 &= \iint_{\phi^{-1}(U(a_i'))} |\operatorname{grad} \xi'|^2 |\phi'|^2 dx dy \\ &\leq \max_{U(a_i')} |\operatorname{grad} \xi'|^2 \iint_{\phi^{-1}(U(a_i'))} |\phi'|^2 dx dy < \infty \end{split}$$

 $(i=1, 2, \dots, n)$. Thus we have

$$\|\xi' \circ \phi\|_{\phi^{-1}(K')}^2 \leq \sum_{i=1}^n \|\xi' \circ \phi\|_{\phi^{-1}(U(a_i'))}^2 < \infty$$
.

Hence $\xi' \circ \phi \in D^{\infty}(R)$.

Conversely suppose $\xi' \in D^{\infty}(R')$ implies $\xi' \circ \phi \in D^{\infty}(R)$. For any relatively compact open disk U in R', there exists a function ξ' in $D^{\infty}(R')$ such that $\inf_{\sigma} |\operatorname{grad} \xi'| > 0$ where $\operatorname{grad} \xi'$ is calculated with respect to a local parameter on U. Then we have

$$0 \leq \inf_{U} |\operatorname{grad} \xi'|^2 \iint_{\phi^{-1}(U)} |\phi'|^2 dx dy \leq \|\xi' \circ \phi\|_{\phi^{-1}(U)}^2$$

$$\leq \|\xi' \circ \phi\|_{\mathcal{R}}^2 < \infty.$$

Hence we have

$$0 \leq \iint_{\phi^{-1}(\mathcal{D})} |\phi'|^2 dx dy \leq \frac{\|\xi' \circ \phi\|^2}{\inf_{\mathcal{D}} |\operatorname{grad} \xi'|^2} < \infty.$$

Thus ϕ satisfies (b) in Definition 2. Next suppose $\sup_{a' \in R'-K'} n_{\phi}(a') = +\infty$ for any compact set K' in R'. Then there exists a sequence $\{a'_n\}_{n=1}^{\infty}$ of points in R' tending to the ideal boundary of R' such that $n_{\phi}(a'_n) \geq 2^n$ and $\phi^{-1}(a'_n)$ contains at least distinct 2^n points. There exists a family of mutually disjoint neighborhoods $\{V(a'_n)\}_{n=1}^{\infty}$. For each n, there are 2^n distinct points $\{a_n^i\}_{i=1}^{2^n}$ in $\phi^{-1}(a'_n)$ and neighborhoods $U(a'_n)$ of a'_n and $U(a_n^i)$ $(i=1,2,\cdots,2^n)$ such that $U(a'_n) \subset V(a'_n)$ and each $U(a_n^i)$ is conformally equivalent to $U(a'_n)$ by ϕ . For each n, we can find $\xi'_n \in D^{\infty}(R')$ such that $0 \leq \xi'_n \leq 1$ on R', $\xi'_n = 0$ on $R' - U(a'_n)$ and $\|\xi'_n\|^2 = 1/2^n$. If we set $\xi' = \sum_{n=1}^{\infty} \xi'_n$, then $\xi' \in D^{\infty}(R')$. Since

 $\|\xi' \circ \phi\|_{U(a_n^{\ell})}^2 = \|\xi'\|_{U(a_n^{\ell})}^2 = 1/2^n, \text{ we have } \|\xi' \circ \phi\|^2 \ge \|\xi' \circ \phi\|_{\phi^{-1}(U(a_n^{\ell}))}^2 \ge \sum_{\ell=1}^{2^n} \|\xi' \circ \phi\|_{U(a_n^{\ell})}^2 = 2^n. \text{ Hence we have } \|\xi' \circ \phi\| = \infty, \text{ which is a contradiction. This completes the proof.}$

COROLLARY 1. ϕ is finitely sheeted if and only if $\xi' \in BCD(R')$ implies $\xi' \circ \phi \in BCD(R)$.

PROOF. The "only if" part is obvious. We shall prove the "if" part. Since $\xi' \in D^{\infty}(R')$ implies $\xi' \circ \phi \in D^{\infty}(R)$, it follows from Theorem 2 that ϕ is almost finitely sheeted. Hence there is a compact set K'_0 in R' such that $\sup_{a' \in R' - K'_0} n_{\phi}(a') < \infty$. Suppose $\sup_{a' \in K'} n_{\phi}(a') = +\infty$ for some compact set K' in R'. Then there exists a sequence $\{a'_n\}_{n=1}^{\infty}$ of points in R' such that a'_n tends to a point a'_0 in K' as $n \to \infty$ and $n_{\phi}(a'_n) \ge 2^n$ for each n. Let $\{U(a'_n)\}_{n=1}^{\infty}$ and $\{U(a^{\phi}_n); (i=1,2,\cdots,2^n; n=1,2,\cdots)\}$ as in the proof of Theorem 1. For each n, we can find $\xi'_n \in BCD(R')$ such that $0 \le \xi'_n \le 1/n$ on R', $\xi'_n = 0$ on $R' - U(a'_n)$, $\|\xi'_n\| = 1/2^n$. We set $\xi' = \sum_{n=1}^{\infty} \xi'_n$. Since $\sum_{n=1}^{\infty} \xi'_n$ converges to ξ' uniformly on R' as $m \to \infty$ and is a Cauchy sequence in Dirichlet norm, it can be seen that $\xi' \in BCD(R')$. Since $\|\xi' \circ \phi\|_{\phi^{-1}(U(a'_n))}^2 \ge \sum_{i=1}^{2^n} \|\xi' \circ \phi\|_{U(a'_n)}^2 = 1$ $(n=1,2,\cdots)$, we have $\|\xi' \circ \phi\| = \infty$, which is a contradiction. Therefore we complete the proof.

COROLLARY 2. If ϕ is an almost finitely sheeted mapping, then it is a Dirichlet mapping.

4. Suclass W_{HD} of BCW

DEFINITION 3. A function f in BC(R) is said to be H.D. separative if $C(\{\overline{f \leq \alpha}\}^D \cap \{\overline{f \geq \beta}\}^D) = 0$ for any α and β (inf $f < \alpha < \beta < \sup f$).

We denote by $W_{HD} = W_{HD}(R)$ the family of all bounded continuous H.D. separative functions on R. By the proof of Theorem 5 in [9], we see that W_{HD} is a vector sublattice of BC with respect to the maximum and minimum operations and that W_{HD} contains BCD. Furthermore W_{HD} is closed with respect to the sup norm.

We refer to [8, 9] for the definition of H.D. separative compactifications. It follows from the Corollary to Proposition 8 in [9] that $f \in BC$ is H.D. separative if and only if $R_{(f)}^*$ is H.D. separative.

PROPSOITION 2. (a) $BCD \subset W_{HD} \subset BCW$. These inclusion relations are both strict.

(b) Let f be any function in W_{HD} and ξ be any point in Δ_D with $C(\{\xi\})>0$. Then $\lim f(z)$ exists.

- (c) A compactification R^* of R is H.D. separative if and only if there is a non-empty subfamily Q of W_{HD} such that $R^* = R_Q^*$.
- (d) Let R^* be H.D. separative. Then $\{f | R; f \in C(R^*)\} \subset W_{HD}$, where f | R is the restriction of f to R.

PROOF. By Theorem 7 and examples 1, 2, and 3 in [9] (see Diagram 1 in [9]), we have (a). The proof of (b) follows immediately from the definition of H.D. separativeness. By the aid of Theorem 5 in [9], we have (c) and (d).

Lemma 2. If ϕ is a Dirichlet mapping, then

$$\{f \circ \phi : f \in W_{{\scriptscriptstyle H}{\scriptscriptstyle D}}(R')\} \subset W_{{\scriptscriptstyle H}{\scriptscriptstyle D}}(R)$$
 .

PROOF. Let f be any non-constant function in $W_{HD}(R')$. For any α and β (inf $f < \alpha < \beta < \sup f$), let $A = \{z \in R \; ; \; (f \circ \phi)(z) \leq \alpha \}$, $B = \{z \in R \; ; \; (f \circ \phi)(z) \geq \beta \}$, $A' = \{z' \in R' \; ; \; f(z') \leq \alpha \}$ and $B' = \{z' \in R' \; ; \; f(z') \geq \beta \}$. Then $A = \phi^{-1}(A')$ and $B = \phi^{-1}(B')$. Since ϕ is a Dirichlet mapping, $\overline{A}^D = \overline{\phi^{-1}(A')}^D \subset \phi^{-1}(\overline{A'}^D)$ and $\overline{B}^D = \overline{\phi^{-1}(B')}^D \subset \phi^{-1}(\overline{B'}^D)$. Hence we have $\overline{A}^D \cap \overline{B}^D \subset \phi^{-1}(\overline{A'}^D \cap \overline{B'}^D)$. Since $f \in W_{HD}(R')$, $C(\overline{A'}^D \cap \overline{B'}^D) = 0$. Thus it follows from Theorem 1 that $0 \leq C(\overline{A}^D \cap \overline{B}^D) \leq C(\phi^{-1}(\overline{A'}^D \cap \overline{B'}^D)) = 0$. Hence $f \circ \phi \in W_{HD}(R)$.

5. Beurlings, theorem

For each $b \in \mathcal{A}_1(\subset \mathcal{A}_N)$, let $\mathscr{G}_b = \{G \; ; \; G \; \text{is open in } R \; \text{and } R - G \; \text{is thin at } b\}^2$. Let X be a compact Hausdorff space and ϕ be a continuous mapping of R into X. For any $b \in \mathcal{A}_1$, we set $\phi^{\vee}(b) = \bigcap_{G \in \mathscr{G}_b} \overline{\phi(G)}$, where $\overline{\phi(G)}$ is the closure of $\phi(G)$ in X. It is known ([4]) that $\phi^{\vee}(b)$ is a single point or a continuum. Let $\mathscr{F}(\phi) = \{b \in \mathcal{A}_1; \phi^{\vee}(b) \text{ is a single point}\}$. Then it is known ([4]) that $\mathscr{F}(\phi)$ is a Borel set. In this section we shall denote by π the canonical mapping of R_D^* onto R_N^* .

LEMMA 3 ([7; Lemma 4]). Let G be a regular open set in R with $G \neq R$ and E be a closed subset of Δ_N with $\widetilde{C}(E) > 0$. If there is a closed subset A of Δ_D such that $A \cap \overline{R - G}^D = \emptyset$ and $C(\pi^{-1}(E) \cap A) > 0$, then there is $b \in E \cap \Delta_1$ with $G \in \mathcal{G}_b$.

PROOF. By assumption, we can find a regular closed set F in R such that $\overline{F}^{D} \cap \overline{R} - \overline{G}^{D} = \emptyset$ and \overline{F}^{D} is a neighborhood of A in R_{D}^{*} . Then we have $C(\pi^{-1}(E) \cap \overline{F}^{D}) \geq C(\pi^{-1}(E) \cap A) > 0$. Let $\{F_{n}\}_{n=1}^{\infty}$ be a sequence for E which

²⁾ This is denoted by $\widetilde{\mathscr{G}}_b$ in [4] (p. 221).

satisfies (*). Since $\lim_{n\to\infty} 1_{\widetilde{F_n\cap F}} = \widetilde{\omega}(\pi^{-1}(E)\cap \overline{F}^D)$ by Lemma 1, we have $\lim_{n\to\infty} 1_{\widetilde{F_n\cap F}} > 0$. It follows from Lemma 7 in [9] that $\lim_{n\to\infty} 1_{\widetilde{F_n\cap F}}^{\sigma} \neq 0$. Hence $\omega(E\cap B(F), z, G) = \omega(\{F_n\cap F\}, z, G) = \lim_{n\to\infty} 1_{\widetilde{F_n\cap F}}^{\sigma} \neq 0$. By Lemma 4 in [7], we obtain the conclusion of this lemma.

By a modification of the proof of Theorem 1 in [7], we have Proposition 3. If f is a function in $W_{HD}(R)$, then $\widetilde{C}(\Delta_1 - \mathscr{L}(f)) = 0$.

PROOF. We may assume that $\inf f=0$ and $\sup f=1$. For any r>0 and s (0 < s < 1), let $D(s, r) = \{z \in R; |f(z) - s| < r\}$. It is known ([3, 5, 7]) that $\Delta_1 - \mathscr{I}(f) = \bigcup_{n=1}^{\infty} \bigcap_{i=0}^{\infty} \{b \in \Delta_1; D(i/2^n, 2/n) \notin \mathscr{G}_b\}$. Suppose $\widetilde{C}(\Delta_1 - \mathscr{I}(f)) > 0$. Then there exist n_0 and a compact subset E of $\bigcap_{i=0}^{2^{n_0}} \{b \in \Delta_1; D(i/2^{n_0}; 2/n_0) \notin \mathscr{G}_b\}$ such that $\widetilde{C}(E) > 0$. Let r and r' be real numbers such that $1/n_0 < r < r' < 2/n_0$. For each i, we can find a regular closed sets F_i and F_i' in R such that $D(i/2^{n_0}, 1/n_0) \subset F_i \subset D(i/2^{n_0}, r) \subset D(i/2^{n_0}, r') \subset R - F_i' \subset D(i/2^{n_0}, 2/n_0)$. Since $\overline{F_i^*} \cap \overline{F_i'^*} = \emptyset$ ($\overline{F_i^*}$ and $\overline{F_i'}$ are closures of F_i and F_i' in $R_{i,1}^*$ respectively) and $R_{i,1}^*$ is H.D. separative, it follows from Theorem 2 in [8] that $C(\overline{F_i^p} \cap \overline{F_i'^p}) = 0$. Since $\bigcup_{i=0}^{2^{n_0}} D(i/2^{n_0}, 1/n_0) = R$ and $D(i/2^{n_0}, 1/n_0) \subset F_i$ for each i, $\bigcup_{i=0}^{2^{n_0}} F_i^{i-p} = R$. Hence there is i_0 such that $C(\pi^{-1}(E) \cap \overline{F_{i_0}^p}) > 0$. Since $C(\overline{F_{i_0}^p} \cap \overline{F_{i_0}^{i-p}}) = 0$, for any ε $(0 < \varepsilon < C(\pi^{-1}(E) \cap \overline{F_{i_0}^p}))$, we can find a relatively open subset α of Δ_D such that α is a neighborhood of $\overline{F_{i_0}^p} \cap \overline{F_{i_0}^{i-p}}$ in Δ_D and $C(\alpha) < \varepsilon$. Then $(\overline{F_{i_0}^p} - \overline{F_{i_0}^{i-p}}) = \emptyset$ and

$$\varepsilon\!<\!C(\pi^{-1}(E)\cap\overline{F}_{i_0}^{\scriptscriptstyle D})\!\leqq\!C(\pi^{-1}(E)\cap(\overline{F}_{i_0}^{\scriptscriptstyle D}\!-\!\alpha))\!+\!C(\alpha)\,.$$

Hence we have $C(\pi^{-1}(E) \cap (\overline{F_{i_0}}^D - \alpha)) > 0$. Thus, by Lemma 3, there exists $b \in E \cap \mathcal{A}_1$ with $R - F'_{i_0} \in \mathcal{G}_b$. This shows that $D(i_0/2^{n_0}, 2/n_0) \in \mathcal{G}_b$. This is a contradiction. Therefore $\widetilde{C}(\mathcal{A}_1 - \mathcal{F}(f)) = 0$.

COROLLARY ([3, 4]). If f is a function in BCD(R), then $\widetilde{C}(\Delta_1 - \mathscr{F}(f)) = 0$. Theorem 3. If ϕ is a Dirichlet mapping of R into R' and R'* is a metrizable H.D. separative compactification of R', then $\widetilde{C}(\Delta_1 - \mathscr{F}(\phi)) = 0$.

PROOF. Since $C(R'^*)$ is separable with respect to the sup norm, there exists a dense countable subset A of $C(R'^*)$ in $C(R'^*)$. We set $Q = \{f | R' ; f \in A\}$ where f | R' is the restriction of f to R'. Then $R'^* = R'_Q^*$ and $Q \subset W_{HD}(R')$ by (d) in Proposition 2. Since $\Delta_1 - \mathscr{F}(\phi) \subset \bigcup_{f \in Q} (\Delta_1 - \mathscr{F}(f \circ \phi))$ and $\widetilde{C}(\Delta_1 - \mathscr{F}(f \circ \phi)) = 0$ for any $f \in Q$ by Lemma 2 and the above proposition, we have $\widetilde{C}(\Delta_1 - \mathscr{F}(\phi)) \leq \sum_{f \in Q} \widetilde{C}(\Delta_1 - \mathscr{F}(f \circ \phi)) = 0$.

Since any almost finitely sheeted mapping is a Dirichlet mapping (Corollary 2 to Theorem 1) and any quotient space of the Royden compactification is H.D. separative (Theorem 3 in [8]), we have the following corollaries:

COROLLARY 1 (Z. Kuramochi [5, 6, 7]). If ϕ is an almost finitely sheeted mapping and R'^* is a metrizable H.D. separative compactification, then $\widetilde{C}(\Delta_1 - \mathscr{F}(\phi)) = 0$.

COROLLARY 2 (C. Constantinescu and A. Cornea [3, 4]). If ϕ is a Dirichlet mapping and R'^* is a quotient space of R'^* , then $\hat{C}(\Delta_1 - \mathcal{I}(\phi)) = 0$.

Department of Mathematics, Hokkaido University

References

- [1] A. BEURLING: Ensembles exceptionelles, Acta Math., 72 (1939), 1-13.
- [2] G. CHOQUET: Theorey of capacities, Ann. Inst. Fourier, 3 (1951), 99-263.
- [3] C. CONSTANTINESCU and A. CORNEA: Le théorème de Beurling et la frontière de Kuramochi, C. R. Acad. Sci. Paris, 254 (1962), 1732-1734.
- [4] C. CONSTANTINESCU and A. CORNEA: *Ideale Ränder Riemannscher Flächen*, Springer-Verlag, 1963.
- [5] Z. KURAMOCHI: On the behaviour of analytic functions on the ideal boundary, I-IV, Proc. Japan Acad., 38 (1962), 150-155, 188-193.
- [6] Z. KURAMOCHI: Correction to the paper "On the behaviour of analytic functions", ibid., 39 (1963), 27–32.
- [7] Z. KURAMOCHI: On Beurling's and Fatou's theorems, Lecture notes in mathematics, 58, Springer-Verlag, (1968).
- [8] H. TANAKA: On Kuramochi's function-theoretic separative metrics on hyperbolic Riemann surfaces, J. Sci. Hirochima Univ., Ser. A-I, 32 (1968), 309-330.
- [9] H. TANAKA: On function-theoretic separative conditions on compactifications of hyperbolic Riemann surfaces, Hiroshima Math. J., 2 (1972), 33-65.

(Received August 21, 1972)