On Beurling’s theorem

By Hiroshi TANAKA™

Introduction

Let R, R' be hyperbolic Riemann surfaces and ¢ be an analytic mapping
"of R into R. Let K, be a closed disk in R and let R,=R—K,. Let C be
the Kuramochi capacity on R,U4dy and 4, be the set of all minimal Kura-
mochi boundary points of R. For a metrizable compactification R™* of R/,
we denote by .7 (¢) the set of all points in 4, at which ¢ has a fine limit
in R'*. There are two typical extensions of Beurling’s theorem to
analytic mappings of a Riemann surface to another one, i.e., Z. Kuramochi’s
[5, 6, 7] and C. Constantinescu and A. Cornea’s theorems [3, 4]. The former
result states that if ¢ is an almost finitely sheeted mapping and R'* is
H.D. separative, then C(4,— 7 (¢))=0. The latter one states that if ¢ is a
Dirichlet mapping and R'* is a quotient space of the Royden compacti-
fication of R’, then C(4,— 7 (¢))=0. The present author proved that
these two results are independent. In this paper we shall give an another
extension of Beurling’s theorem such that it contains the above two results:
If ¢ is a Dirichlet mapping and R’* is H.D. separative, then Beurling’s
theorem 1is valid.

Notation and terminology

Let R be a hyperbolic Riemann surface. For a subset A of R, we
denote by A and A®’ the (relative) boundary and the interior of A respec-
tively. We call a closed or open subset A of R is regular if dA is non-
empty and consists of at most a countable number of analytic arcs clustering
nowhere in R. We fix a closed disk K, in R once for all and let R,=
R—K,.

1. Function spaces and compactifications (cf. [4]).

We denote by BC=BC(R) the space of all bounded continuous (real-
valued) functions on R. Let BCW=BCW|(R) be (resp. BCD=BCD(R)) the
family of all bounded continuous Wiener functions (resp. bounded continuous
Dirichlet functions) on R. It is known ([4]) that both BCW and BCD are

vector sublattices of BC with respect to the maximum and minimum opera-
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tions and that BCDCBCW. Let D*=D>(R) be the family of all C>-
functions in BCD.
We refer to for the definitions and properties of Q-compactification
Rf; of R, the Kuramochi compactification R}, the Royden compactification
% the Wiener compactification R%. For a subset A of R, we denote by
A° the closure of A in R} (Q=N, D, or W). Let Rf and R} be two
compactifications of R. If there exists a continuous mapping = of R onto
R} whose restriction to R is the identity and = !(R)=R, then we shall say
that = is a cononical mapping of R} onto R* and that Ry is a quotient
space of Rf. We note that R} is a quotient space of R} and R} is a
quotient space of R} ([4]).

2. Dirichlet principle and capacitary potentials

We follow C. Constantinescu and A. Cornea for the definition and
properties of Dirichlet functions and the operation f—f*. For a Dirichlet
function f and an open set G in R, we denote by || f]|=]fll¢ the Dirichlet
norm of fon G. Let G be a regular open set in R with G#R in the
rest of this section. Let F be a regular closed set in R such that F?NR—G?
=(@. Then there is a function f in BCD such that f=0 on R—F and=1
on F. Since f# 9YF(2) does not depend on the choice of such an f, it is

denoted by w(dF, 2, G—F) in [5, 7] and by 17(2) in [9]. Let {F,,},, . be a

decreasing sequence of regular closed sets in R such that ﬂF = and

n=1

FPNR—G?=0. Then w(dF,, z, G—F,)= 174(2) converges locally uniformly
and in Dirichlet norm to a harmonic function on G as n—co. The limit
function is denoted by w({F,}, 2z, G) in [5, 7].

Let E be a closed subset of 4y and F be a regular closed set in R such
that FPNR—G?=0. We set E,={2€R; d(z, E)<1/n} where d is a metric
on RY. For each n, we can find a regular closed set F, in R such that

(*) E,. ,cF,cE,—dE,.
The function w({F,NF}, 2z, G) is denoted by w(ENB(F), 2, G) in [7]

For a closed subset A of 4,, we consider ([8, 9]) the following function:
Js ; full-superharmonic? =0 on R,, s=1 on

lUﬂ R, for some neighborhood U of A in R}

Then a—a,(A) is harmonic on R, and vanishes on 6K,. Furthermore

l@(A)||<oo. The capacity C(A) (with respect to K,) is defined ([8, 9]) by

B(A) =@ (A) }<aeRo>.

1) This is called voll-superharmonisch in [4]
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We denote by C the Kuramochi capacity (with respect to K,) on R,U4y
([4]). Let = be the canonical mapping of R} onto R} and X be a closed
subset of 4y. Then C(z '(X))=C(X).

LeMMA 1. Let E be a closed subset of 4y and F be a regular closed
set in R. Then o(ENB(F), 2, Ry)=a,(x *(E)N F?).

Proor. Let {F,},2; be a sequence of regular closed sets in R which
satisfles (*). Since lim 17w7=a(N F,NF?) by [Corollary 1 to Lemma 11 in
n—00 n=1

cy=- B ds= - faar.

[8] and ﬁFnﬂFD=7r‘1(E)ﬂFD, we obtain that
n=1

o(ENB(F), 2, Ry) = o({F.NF}, 2 Ry) = lim L= (2)

7—00

=a(NF.NF?) =@ (E)NF).

ProposITION 1. Let K be a closed subset of 4,. Then C(K)=0 if
and only if there exist a sequence {F,},2, of regular closed sets in R and
a function f in BCD(R) such that

(a)  F? is a neighborhood of K in R},

(b) R—F"NF2,=0 (n=1,2, ),

() NF.=0,

(d) }E;)=0 for z€dF,,., and =1 for z€dF,  (k=1,2,--).
ProoF. The proof of “if” part: Suppose there exist a sequence {F,},2,

and a function f in BCD(R) which satisfy (a)-(d). We may assume that
FNK,=% We set

0 on R—F},_, J 0 on R—F},
Gok-1— f on F2¢k—l_ﬁ‘2k ’ 'gzk = 1""f on F;k-:FZk+1
1 on F, l 1 on Fy.,

(k=1,2,---). Then ¢, BCD(R) for each n. Since ¢,=0 on K; and=1 on
F,.:, by the aid of Satz 15.3, (g), in [4], we have |15 ||<||g.|| for each n.
Since ||g.ull= I f1l,:_, > we iobtain that |1z, [|=|fl,._, for each =

Since [|@(K)||= |1 || by Lemma 9 in [9], we have ][w( )|]<||1F

n+1

panll =
Ill,e_, for each n. Hence we obtain that :

0 nl@KIP S T 1A, SIA e < TflP<oo
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(n=1,2,---). By letting n—>o0, we obtain that @(K)=0 and C(K)=0.
The “only if” part follows from a discussion similar to that in the

proof of in [9]

3. Dirichlet mappings

Let R and R’ be hyperbolic Riemann surfaces and ¢ be an analytic
mapping of R into R’. For any a’€R’, let n,(a’) be the number of points
in ¢7'(a’) counting its multiplicity. If sup 7,(a’)< + oo, then ¢ is said to be

a’'eR’
finitely sheeted.

DeriniTION 1 ([4]). ¢ is said to be a Dirichlet mapping if there exists
a continuous extension of ¢ from R} to R';. In this case we denote by
¢ the continuous extension of ¢ again.

DEeriNITION 2 ([5, 7]). ¢ is said to be an almost finitely sheeted mapping
if it satisfies the following two conditions:

(a) There exists a compact set K’ in R’ such that sup #7,(a’)<co.
a’'eéR' — K’

(b) For each a’eR’, there exists a neighborhood U(a’) of @' mapped
onto a disk in a complex plane by a local parameter at a’ such that the
covering surface lying over U(a’) by ¢ has a finite total area measured with
respect to the local parameter.

THEOREM 1. If ¢ is a Dirichlet mapping and K' is a compact subset
of the Royden boundary 4y, of R', then C'(K')=0 implies C(¢~(K")=0,
where C' is the capacity on 4, with respect to K;=¢(K,).

Proor. Let K' be a compact subset of 4% with C'(K’)=0. Then it
follows from [Proposition 1| that there exist a decreasing sequence {F,},>; of
regular closed sets in R’ and a function 7 in BCD(R') which satisfy (a)-
(d) in [Proposition 1. Since ¢ is a Dirichlet mapping, f’°¢ can be continu-
ously extended over R}. Then it follows from the definition of Rj} that
there is a function ¢ in BCD(R) such that |f'°¢—¢g|<1/3 on R. We set
/=3 min (max(g, 1/3), 2/3)—1. Then feBCD(R). If we set F,=¢ '(F,)NR
(n=1, 2, --+), then fand {F,},2, satisfy (a)—(d) in [Proposition 1| for K=¢*(K’).
Thus C(¢1(K'))=0.

THEOREM 2. ¢ is an almost finitely sheeted mapping if and only if
geD> (R') implies &'-pe D*(R).

PrOOF. Suppose ¢ is almost finitely sheeted. Then there is a compact
set K’ in R’ and a positive constant ¢ such that n,(@’)<¢ for all a’eR'—K'.

Let & be any function in D*(R'). Then we see that ||&'°d|i- r-zxn=
t||€'|% _-x. On the other hand, since K’ is compact, there exists a finite
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family of open disks {U(a;)},»; in R’ such that each Ula;) satisfies (b) in
and UU()DK’. Since
i=1

J‘j ’ |¢,]2dxd’y<00 (i=1927”',n)’

8~ WU (ap)

for the above &, we have
16812ty = j L_Wé» \grad &'[?|¢' | dady

< max lgrad&’]zﬂ 19" Pdxdy < oo
; 6™ W (al)

U(ai)

(¢=1,2,---,n). Thus we have

1561 n S 3318261y <0 -

Hence &'-¢cD™(R).

Conversely suppose £e€D*(R’) implies &o¢cD>(R). For any relatively
compact open disk U in R’, there exists a function & in D*(R’) such that
igf |grad &'| >0 where grad & is calculated with respect to a local parameter

on U. Then we have

0<inflgrad ¢F(| | |¢dedy=1¢glien
/4 87 (U)
< [legli < oo

Hence we have

0 SSS ]¢’lzdxdy < &g < oo,
)i - irl}f |grad &'|?
Thus ¢ satisfies (b) in Definition 2. Next suppose sup #n4(a’)= + oo for
a’eR' -K'
any compact set K’ in R’. Then there exists a sequence {a,},>; of points
in R’ tending to the ideal boundary of R’ such that 74(a,)=2" and ¢7'(a))
contains at least distinct 2* points. There exists a family of mutually dis-
joint neighborhoods {V(a,)},2,. For each n, there are 2" distinct points
{a8%, in ¢ '(a,) and neighborhoods Ul{a,) of a/ and U (a)) =1,2,---,2"
such that Ula,)c V(a,) and each U(af) is conformally equivalent to Ula,)
by ¢. For each n, we can find &,€D*(R’) such that 0<¢.,<1 on R’ §,=0

on R'—Ula,) and ||&,||>*=1/2". If we set S’=i§,{, then &'eD>(R’). Since
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1401 = 1813, =112 we bavell¢sgl2 &' gllimoing = BNl =

2. Hence we have ||£’o¢|| =00, which is a contradiction. Thls completes
the proof. ’ |

COROLLARY 1. ¢ is finitely sheeted if and only if &€ BCD(R') implies
g o¢e BCD(R).

Proor. The “only if” part is obvious. We shall prove the “if” part.
Since &€ D*(R’) implies &'°¢e D(R), it follows from that ¢ is
almost finitely sheeted. Hence there is a compact set K; in R’ such that

sup 7,(a’)<oco. Suppose sup n4(a’)=+oo for some compact set K’ in
a’eR'—K(') a’'eK’

R'. Then there exists a sequence {a,},”; of points in R’ such that a, tends
to a point a; in K' as n—oo and n,(a,)=2" for each n. Let {U(a,)},>, and
{Ula)); =1,2,---,2"; n=1,2,---)} as in the proof of [Theorem 1. For each
n, we can find EnEBCD(R’) such that 0<5n 1/n on R, £,=0 on R'—U(a,),

Il =1/2". We set &= an Since an converges to & uniformly on R’

n=1

as m—>oo and is a Cauchy sequence 1n Dirichlet norm, it can be seen that
$eBCD(R).  Since 1§20l .y, 2 5180l 5 =1 (r=1,2-), we have
|§’ || =0, which is a contradiction. Therefore we complete the proof.

COROLLARY 2. If ¢ is an almost finitely sheeted mapping, then it is
a Dirichlet mapping.

4, Suclass Wy, of BCW

DEFINITION 3. A function f in BC(R) is said to be H.D. separative
if C{fsa}’N{f=p}?)=0 for any a and B (inf fF<a<B<sup f)

We denote by Wyp=Wy,(R) the family of all bounded continuous
H.D. separative functions on R. By the proof of Theorem 5 in [9], we
see that Wy, is a vector sublattice of BC with respect to the maximum
and minimum operations and that W, contains BCD. Furthermore Wy,
is closed with respect to the sup norm.

We refer to [8, 9] for the definition of H.D. separative compactifications.
It follows from the to Proposition 8 in that fe BC is H.D.

separative if and only if R}, is H.D. separative.
y ]

PropsoITioN 2. (a) BCDC Wy, BCW. These inclusion relations are
both strict.
(b) Let f be any function in Wy, and & be any point in 4, with
C({£))>0. Then hm fl=) exists.
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(c) A compactification R* of R is H.D. separative if and only if there
is a non-empty subfamily Q of Wyp such that R*=Rj.

(d) Let R* be H.D. separative. Then {f|R; fe C(R*)}C Waup, where
FIR is the restriction of f to R.

Proor. By Theorem 7 and examples 1, 2, and 3 in [9] (see Diagram
1 in [9]), we have (a). The proof of (b) follows immediately from the
definition of H.D. separativeness. By the aid of Theorem 5 in [9], we have
(c) and (d).

LEMMA 2. If ¢ is a Dirich_let mapping, then
{f°¢ > .](‘E WED(R’)} C WHD<R) .

Proor. Let f be any non-constant function in Wy,(R’).. For any a and

8 (inf f<a<f<supf) let A=(zeR; (fod)2)Sa), B—{z€R; (f+¢)2),
A'={2’eR’; flz')<a} and B'={2'cR’; f(z')=f}. Then A=¢"'(A’) and B=
¢-1(B/). Since ¢ is a Dirichlet mapping, A” =¢1(A)’c¢Y(A™) and B?=
¢ (BY’C¢ ' (B?). Hence we have A’NB’c¢ ' (A’’NB?). Since fe
Wan(R), C(A”NB?)=0. Thus it follows from [Theorem 1 that 0=
C(A?NB?)<C(¢ ' (A?NB™)=0. Hence foge Wyp(R).

5. Beurlings, theorem

For each bed,(Cdy), let ,={G; G is open in R and R—G is thin at
by». Let X be a compact Hausdorff space and ¢ be a continuous mapping

of R into X. For any bed,, we set ¢ (b)=6 N¢(G), where ¢(G) is the closure
€Yy .

of ¢(G) in X. It is known ([4]) that ¢¥(b) is a single point or a continuum.
Let .7 (¢)={b€d;; ¢" () is a single point}. Then it is known ([4]) that Z(¢)
is a Borel set. In this section we shall denote by = the canonical mapping
of R} onto Rj%. '

LEMMA 3 ([7; Lemma 4]). Let G be a regular open set in R with
G+#R and E be a closed quyset of dy with C(E)>0. If there is a closed

subset A of 4y such that ANR—G?=0 and C(z "(E)NA)>0, then there is
beEN4, with Ge¥,. :

Proor. By assumption, we can find a regular closed set F in R such
that FPNR—G?=@ and F? is a neighborhood of A in R%. Then we have
Clz'(ENF?)=C(xE)NA)>0. Let {F,},> be a sequence for E which

2) This is denoted by 5 in [4] (p. 221).
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satisfies (*). Since limlzwz=a(x"(E)NF?) by [Lemma 1, we have

n—ro0

lim 1757>0. It follows from Lemma 7 in [9] that lim 19— %0. Hence

n—oo n—

o(ENB(F), 2, G)=w({F,NF}, 2z, G)=lim I‘LV =#0. By Lemma 4 in [7], we

7n—>00

obtain the conclusion of this lemma.
By a modification of the proof of in [7], we have
PrROPOSITION 3. If f is a function in Wyp(R), then C(d,— 7 (f))=0.
ProoF. We may assume that inf f=0 and sup f=1. For any r>0
and s (0<s< 1) let D(s, r)={z€R; | flz)—s|<r}. It is known ([3, 5, 7]) that

4,— 7 (f)= U ﬂ{bedl, D(i[2", 2|n) g <,). Suppose C(d,— #(f)>0. Then

n=1¢=0

there exist 7, and a compact subset E of ﬂ {bedl, D(E[2™; 2/n,) & ;) such

that C(E)>0. Let  and 7 be real numbers such that 1/n,<r<r'<2/n,.
For each 7, we can find a regular closed sets F, and F; in R such that
D (z/2™, 1[/n,) Cc Fyc D (i/2™, r)C D (i/2™, ') R—F;c D (¢/2™, 2[n,). Since
FyNF*=06 (F; and Fy* are closures of F, and F] in R%, respectively) and

¥ is H.D. separatlve it follows from [Theorem 2 in [8] that C( F FPNF?)
=0. Snce z'UOD(Z/Z"0 1/n)=R and D(i/2™, 1/n,)CF, for each i, UF =R.

Hence there is 7, such that C(z™(E)NF?)>0. Since C(F;{’ﬂF;f’)—O, for
any e (0<s<C(7r‘1(E)ﬂlfo’)), we can find a relatively open subset a of 4,
such that & is a neighborhood of F?NF;? in 4, and C(a)<e. Then (F?—
a)NF;?=0 and

e<CEMENF) S Ca E)NFL—a)+Cla).

Hence we have C(z Y(E)N(F—a))>0. Thus, by there exists
beEN4, with R—F;e¥,. This shows that D(i/2™, 2[n)€¥,. This is a
contradiction. Therefore C(d,— #(f))=0.

CoROLLARY ([3, 4]). If fis a function in BCD(R), then C(4,— % (f))=0.

THEOREM 3. If ¢ is a Dirichlet mapping of R into R' and R'* is a
metrizable H.D. separative compactification of R', then C(4,— % (¢))=0.

Proor. Since C(R'*) is separable with respect to the sup norm, there
exists a dense countable subset A of C(R'*) in C(R'*). We set Q={f|R’;
feA} where f|R' is the restriction of f to R’. Then R*=Ry* and Qc
Wan(R’) by (d) in Proposition 2. Since 4,— 7 (¢)C U(A Z(f-¢)) and C(4,

— % (fo¢))=0 for any feQ by m Lemma 2 and the above proposition, we
have C(AI—J(¢))<ZC(41 F(fod)=
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Since any almost finitely sheeted mappng is a Dirichlet mapping (Corol-
lary 2 to [Theorem 1)) and any quotient space of the Royden compactification
is H.D. separative in [8]), we have the following corollaries :

CoroLLARY 1 (Z. Kuramochi [5, 6, 7]). If ¢ is an almost finitely
sheeted mapping and R'* is a metrizable H.D. separative compactification,

then C(4,— 7 (¢))=0.

CoroLLARY 2 (C. Constantinescu and .A. Cornea [3,4]). If ¢ is a
Dirichlet mapping and R'* is a quotient space of R'*, then C(4,— .7 (¢))=0.

Department of Mathematics,
Hokkaido University
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