
On Beurling’s theorem

By Hiroshi TANAKA*)

Introduction

Let R, R’ be hyperbolic Riemann surfaces and \phi be an analytic mapping
of R into R’. Let K_{0} be a closed disk in R and let R_{0}=R-K_{0} . Let \acute{C} be
the Kuramochi capacity on R_{0}\cup\Delta_{N} and \Delta_{1} be the set of all minimal Kura-
mochi boundary points of R. For a metrizable compactification R^{\prime*} of R’,
we denote by \mathscr{F}(\phi) the set of all points in \Delta_{1} at which \phi has a fine limit
in R^{\prime*} . There are two typical extensions of Beurling’s theorem [1] to
analytic mappings of a Riemann surface to another one, i . e. , Z. Kuramochi’s
[5, 6, 7] and C. Constantinescu and A. Cornea’s theorems [3, 4] . The former
result states that if \phi is an almost finitely sheeted mapping and R^{\prime*} is
H. D. separative, then \tilde{C}(\Delta_{1}-\mathscr{F}(\phi))=0 . The latter one states that if \phi is a
Dirichlet mapping and R^{\prime*} is a quotient space of the Royden compacti-
fication of R’, then \overline{C}(\Delta_{1}-^{\Gamma j}(\phi))=0 . The present author [9] proved that
these two results are independent. In this paper we shall give an another
extension of Beurling’s theorem such that it contains the above two results:
If \phi is a Dirichlet mapping and R^{\prime*} is H. D. separative, then Beurling’s
theorem is valid.

Notation and terminology
Let R be a hyperbolic Riemann surface. For a subset A of R, we

denote by \partial A and A^{i} the (relative) boundary and the interior of A respec-
tively. We call a closed or open subset A of R is regular if \partial A is non-
empty and consists of at most a countable number of analytic arcs clustering
nowhere in R. We fix a closed disk K_{0} in R once for all and let R_{0}=

R-K_{0} .

1. Function spaces and compactifications (cf. [4]).

We denote by BC=BC(R) the space of all bounded continuous (real-
valued) functions on R. Let BCW=BCW(R) be (resp. BCD=BCD(R)) the
family of all bounded continuous Wiener functions (resp. bounded continuous
Dirichlet functions) on R. It is known ([4]) that both BCW and BCD are
vector sublattices of BC with respect to the maximum and minimum opera-
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tions and that BCD\subset BCW. Let D^{\infty}=D^{\infty}(R) be the family of all C^{\infty}-

functions in BCD.
We refer to [4] for the definitions and properties of Q-compactification

R_{Q}^{*} of R, the Kuramochi compactification R_{N}^{*} , the Royden compactification
R_{D}^{*} , the Wiener compactification R_{W}^{*} . For a subset A of R, we denote by
\overline{A}^{Q} the closure of A in R_{Q}^{*} (Q=N, D, or W). Let R_{1}^{*} and R_{\Delta}^{*} be two
compactifications of R. If there exists a continuous mapping \pi of R_{1}^{*} onto
R_{2}^{*} whose restriction to R is the identity and \pi^{-1}(R)=R, then we shall say
that \pi is a cononical mapping of R_{1}^{*} onto R_{arrow}^{\star_{1}} and that R_{2}^{*} is a quotient
space of R_{1}^{*} . We note that R_{N}^{*} is a quotient space of R_{D}^{*} and R_{D}^{\star}

. is a
quotient space of R_{W}^{*}([4]) .

2. Dirichlet principle and capacitary potentials

We follow C. Constantinescu and A. Cornea [4] for the definition and
properties of Dirichlet functions and the operation farrow f^{F}. For a Dirichlet
function f and an open set G in R, we denote by ||f||=||f||_{G} the Dirichlet
norm of f on G. Let G be a regular open set in R with G\neq R in the
rest of this section. Let F be a reg^{v}u1ar closed set in R such that \overline{F}^{D}\cap\overline{R-G}^{D}

=\emptyset . Then there is a function f in BCD such that f=0 on R–F and =1
on F. Since f^{(R-G)\cup F}(z) does not depend on the choice of such an f, it is
denoted by \omega(\partial F, z, G-- F) in [5, 7] and by 1_{\tilde{F}}^{G}(z) in [9]. Let \{F_{n}\}_{n=1}^{\infty} be a

decreasing sequence of regular closed sets in R such that \bigcap_{n=1}F_{n}=(J’ and
\overline{F}_{1}^{D}\cap\overline{R-G}^{D}=\emptyset . Then \omega(\partial F_{n}, z, G-F_{n})=1_{\tilde{F}n}^{G}(z) converges locally uniformly
and in Dirichlet norm to a harmonic function on G as narrow\infty . The limit
function is denoted by \omega(\{F_{n}\}, z, G) in [5, 7] .

Let E be a closed subset of \Delta_{N} and F be a regular closed set in R such
that \overline{F}^{D}\cap\overline{R-G}^{D}=\emptyset . We set E_{n}=\{z\in R;d(z, E)\leqq 1/n\} where d is a metric
on R_{N}^{*} . For each n, we can find a regular closed set F_{n} in R such that
(^{*}) E_{n+1}\subset F_{n}\subset E_{n}-\partial E_{n}t

The function \omega(\{F_{n}\cap F\}, z, G) is denoted by \omega(E\cap B(F), z, G) in [7].
For a closed subset A of \Delta_{D} , we consider ([8, 9]) the following function:

\tilde{\omega}(A)=\tilde{\omega}_{a}(A)=\inf\{_{U\cap R_{0}forsomeneighborhoodUofAinR_{D}^{*}}^{s(a),fu11-\sup erharmonic^{1)}\geqq 0onR_{0},s\geqq 1on}.\}(a\in R_{0}) .

Then aarrow\tilde{a}_{a}(A) is harmonic on R_{0} and vanishes on \partial K_{0} . Furthermore
||\tilde{\omega}(A)||<\infty . The capacity C(A) (with respect to K_{0}) is defined ([8, 9]) by

1) This is called voll-superharmonisch in [4].
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C(A)= \frac{1}{2\pi}\int_{\partial\lambda_{0}^{-}}\frac{\partial\tilde{cv}(A)}{\partial\nu}ds=\frac{1}{2\pi}||\tilde{\omega}(A)||^{2} .

We denote by \tilde{C} the Kuramochi capacity (with respect to K_{0}) on R_{0}\cup\Delta_{N}

([4]). Let \pi be the canonical mapping of R_{D}^{k}
. onto R_{N}^{*} and X be a closed

subset of \Delta_{N} . Then C(\pi^{-1}(X))=\overline{C}(X) .
LEMMA 1. Let E be a closed subset of \Delta_{N} and F be a regular closed

set in R. Then \omega(E\cap B(F), z, R_{0})=\tilde{\omega}_{z}(\pi^{-1}(E)\cap\overline{F^{1D}}) .
PROOF. Let \{F_{n}\}_{n=1}^{\infty} be a sequence of regular closed sets in R which

satisfies (^{*}) . Since \lim_{narrow\infty}1_{\overline{F_{n}\cap J}}.=\tilde{\omega}(\bigcap_{n=1}\overline{F_{n}\cap F^{D}}) by Corollary 1 to Lemma 11 in

[8] and \bigcap_{n=1}\overline{F_{n}\cap F^{D}}=\pi^{-1}(E)\cap\overline{F}^{D} , we obtain that

\omega(E\cap B(F), z, R_{0})=\omega(\{F_{n}\cap F\}, z, R_{0})= \lim_{narrow\infty}1_{\acute{F}_{n}\overline{\cap F}}(z)

= \tilde{c\iota^{\backslash }}_{z}(\bigcap_{n=1}^{\infty}\overline{F_{n}\cap F}^{D})=\tilde{\omega}_{z}(\pi^{-1}(E)\cap\overline{F}^{D})t

PROPOSITION 1. Let K be a closed subset of \Delta_{D} . Then C(K)=0 if
and only if there exist a sequence \{F_{n}\}_{n=1}^{\infty} of regular closed sets in R and
a function f in BCD(R) such that

(a) \overline{F}_{n}^{D} is a neighborhood of K in R_{D}^{*} ,

(b) \overline{R-F_{n}^{i^{D}}}\cap\overline{F}_{n+1}^{D}=\ell J (n=1,2, \cdots) ,

(c) \bigcap_{n=1}F_{n}=\emptyset ,

(d) f(z)=0 for z\in\partial F_{2k-1} and =1 for z\in\partial F_{2k} (k=1,2, \cdots) .
PROOF. The proof of “if” part: Suppose there exist a sequence \{F_{n}\}_{n=1}^{\infty}

and a function f in BCD(R) which satisfy (a)-(d). We may assume that
F_{1}\cap K_{0}=-\emptyset . We set

’ 0 on R-F_{2k-1}^{i}

q_{2k-1}= f on F_{2k-1}^{i}-F_{2k} .
1 on F_{2k}

q_{2k}=\{

0 on R-F_{2k}^{i}

1-f on F_{2k}^{i}-F_{2k+1}

1 on F_{2k+1}

(k=1,2, \cdots) . Then q_{n}\in BCD(R) for each n. Since q_{n}--0 on K_{0} and =1 on
F_{n+1} , by the aid of Satz 15. 3, (g), in [4], we have ||1_{\tilde{F}_{n}}||\leqq||q_{n}|| for each n.
Since ||q_{n+1}||\leqq||f||_{F_{n}^{i}-F_{n+1}}, we (obtain that ||1_{\tilde{F}_{n+1}}||\leqq||f||_{F_{n^{-17}n+1}^{J}}; for each n.
Since ||\tilde{a,|}(K)||\leqq||1_{\tilde{F}_{n+}}‘|| by Lemma 9 in [9], we have ||\tilde{\omega}(K)||\leqq||1_{\tilde{F}_{n+}}‘ ||\leqq

||f||_{J_{n}^{i}-F_{n+1}} for each n . Hence we obtain that

0 \leqq n||\tilde{\omega^{\backslash }}(K)||^{2}\leqq\sum_{k=1}^{n}||f||_{F_{\acute{\acute{k}}}-F_{k+1}}^{2}\leqq||f||_{R-J_{n+1}^{i}}^{2}\leqq||f||^{2}<\infty
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(n=1,2, \cdots) . By letting narrow\infty , we obtain that \acute{c}\check{\iota}(K)=0 and C(K)=0.
The “only if” part follows from a discussion similar to that in the

proof of Theorem 2 in [9].

3. Dirichlet mappings

Let R and R’ be hyperbolic Riemann surfaces and \phi be an analytic
mapping of R into R’. For any a’\in R’ , let n_{\phi}(a’) be the number of points
in \phi^{-1}(a’) counting its multiplicity. If

a ,\sup_{\in R},
n_{\phi}(a’)<+\infty , then \phi is said to be

finitely sheeted.
DEFINITION 1 ([4]). \phi is said to be a Dirichlet mapping if there exists

a continuous extension of \phi from R_{D}^{*} to R_{D}^{\prime*} . In this case we denote by
\phi the continuous extension of \phi again.

DEFINITION 2 ([5, 7]). \phi is said to be an almost fifinitely sheeted mapping
if it satisfies the following two conditions:

(a) There exists a compact set K’ in R’ such that ,\sup_{a\iota^{\underline{r}}R-R},,,n_{\phi}(a’)<\infty .
(b) For each a’\in R’ , there exists a neighborhood U(a’) of a’ mapped

onto a disk in a complex plane by a local parameter at a’ such that the
covering surface lying over U(a’) by \phi has a finite total area measured with
respect to the local parameter.

THEOREM 1. If \phi is a Dirichlet mapping and K’ is a compact subset
of the Royden boundary \Delta_{D}’ of R’, then C’(K’)=0 implies C(\phi^{-1}(K’))=0 ,
\tau vhere C’ is the capacity on \Delta_{D}’ with respect to K_{0}=\phi(K_{0}) .

PROOF. Let K’ be a compact subset of \Delta_{D}’ with C’(K’)=0. Then it
follows from Proposition 1 that there exist a decreasing sequence \{F_{n}’\}_{n=1}^{\infty} of
regular closed sets in R’ and a function f’ in BCD(R’) which satisfy (a)-
(d) in Proposition 1. Since \phi is a Dirichlet mapping, f’\circ\phi can be continu-
ously extended over R_{D}^{*} . Then it follows from the definition of R_{D}^{*} that
there is a function q in BCD(R) such that |f’\circ\phi-q|<1/3 on R. We set
f=3 min ( \max(q, 1/3), 2/3)–1. Then f\in BCD(R) . If we set F_{n}=\phi^{-1}(F_{n}’)\cap R

(n=1,2, \cdots), then f and \{F_{n}\}_{n=1}^{\infty} satisfy (a)-(d) in Proposition 1 for K=\phi^{-1}(K’) .
Thus C(\phi^{-1}(K’))=0 .

THEOREM 2. \phi is an almost fifinitely sheeted mapping if and only if
\xi’\in D^{\infty}(R’) implies \xi’\circ\phi\in D^{\infty}(R) .

PROOF. Suppose \phi is almost finitely sheeted. Then there is a compact
set K’ in R’ and a positive constant t such that n_{\phi}(a’)\leqq t for all a’\in R’-K’ .
Let \xi’ be any function in D^{\infty}(R’) . Then we see that ||\xi^{\prime_{\circ}}\phi||_{\phi^{-1}(R’-K’)}^{2}\leqq

t||\xi’||_{R-K}^{2},, . On the other hand, since K’ is compact, there exists a finite
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family of open disks \{U(a_{i}’)\}_{i=1}^{n} in R’ such that each U(a_{i}’) satisfies (b) in

Definition 2 and \bigcup_{i=1}^{n}U(a_{i}’)\supset K’ . Since

\int\int_{\delta^{-1}(U(a_{i}’))}|\phi’|^{2}dxdy<\infty (i=1,2, \cdots, n) ,

for the above \xi’ , we have

|| \xi’\circ\phi||_{\psi^{-1}(U(a_{i}’))}^{2}=\int\int_{\phi^{-1}(U(a_{i}’))}|grad\xi’|^{2}|\phi’|^{2}dxdy

\leqq\max_{U(a_{i})},|
grad \xi’|^{2}\int\int_{\phi^{-1}(U(a_{i}))},|\phi’|^{2}dxdy<\infty

(i=1,2, \cdots, n) . Thus we have

|| \xi’\circ\phi||_{\delta^{-1}(K’)}^{2}\leqq\sum_{i=1}^{n}||\xi’\circ\phi||_{\psi^{-1}(U(a_{i}’))}^{2}<\infty

Hence \xi’\circ\phi\in D^{\infty}(R) .
Conversely suppose \xi’\in D^{\infty}(R’) implies \xi’\circ\phi\in D^{\infty}(R) . For any relatively

compact open disk U in R’, there exists a function \xi’ in D^{\infty}(R’) such that
\inf_{U}|grad\xi’|>0 where grad \xi’ is calculated with respect to a local parameter

on U. Then we have

0 \leqq\inf_{U}| grad \xi’|^{2}\int\int_{\phi^{-1}(U)}|\phi’|^{2}dxdy\leqq||\xi^{\prime_{q}}\phi||_{\phi^{-1}(U)}^{2}

\leqq||\xi’\circ\phi||_{R}^{2}<\infty

Hence we have

0 \leqq\int\int_{\phi^{-1}(U)}|\phi’|^{2}dxdy\leqq\frac{||\xi’\circ\phi||^{2}}{\inf_{U}|grad\xi’|^{2}}<\infty

Thus \phi satisfies (b) in I)efinition 2. Next suppose \sup_{a’\in R-K},,n_{\phi}(a’)=+\infty for
any compact set K’ in R’. Then there exists a sequence \{a_{n}’\}_{n=1}^{\infty} of points
in R’ tending to the ideal boundary of R’ such that n_{\phi}(a_{n}’)\geqq 2^{n} and \phi^{-1}(a_{n}’)

contains at least distinct 2^{n} points. There exists a family of mutually dis-
joint neighborhoods \{V(a_{n}’)\}_{n=1}^{\infty} . For each n, there are 2^{n} distinct points
\{a_{n}^{i}\}_{i=1}^{2^{n}} in \phi^{-1}(a_{n}’) and neighborhoods U(a_{n}’) of a_{n}’ and tf(a_{n}^{i})(i=1,2, \cdots, 2^{n})

such that U(a_{n}’)\subset V(a_{n}’) and each U(a_{n}^{i}) is conformally equivalent to U(a_{n}’)

by \phi . For each n, we can find \xi_{n}’\in D^{\infty}(R’) such that 0\leqq\xi_{n}’\leqq 1 on R’, \xi_{n}’=0

on R’-U(a_{n}’) and ||\xi_{n}’||^{2}=1/2^{n} . If we set \xi’=\sum_{n=1}^{\infty}\xi_{n}’ , then \xi’\in D^{\infty}(R’) . Since
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||\xi’\circ\phi||^{2}=||U(a_{n}^{i})\xi’||_{\sigma(\prime\iota_{n}’)}^{2}=1/2^{n}, we have||\xi’\circ\phi||^{2}\geqq||\xi’\circ\phi||_{\psi^{-1}(U(a_{n}’))}^{2}\geqq\sum_{i=1}^{2^{n}}||\xi’\circ\phi||^{2}=U(a_{n}^{i})

2^{n} . Hence we have ||\xi’\circ\phi||=\infty , which is a contradiction. This completes
the proof.

COROLLARY 1. \phi is fifinitely sheeted if and only if \xi’\in BCD(R’) implies
\xi’\circ\phi\in BCD(R) .

PROOF. The “only if” part is obvious. We shall prove the “if” part.
Since \xi’\in D^{\infty}(R’) implies \xi’\circ\phi\in D^{\infty}(R), it follows from Theorem 2 that \phi is
almost finitely sheeted. Hence there is a compact set K_{0}’ in R’ such that
\sup_{a’\in R-K_{0}},’ n_{\phi}(a’)<\infty

. Suppose ,\sup_{a\epsilon K},
n_{\phi}(a’)=+\infty for some compact set K’ in

R’. Then there exists a sequence \{a_{n}’\}_{n=1}^{\infty} of points in R’ such that a_{\acute{n}} tends
to a point a_{0} in K’ as narrow\infty and n_{\phi}(a_{n}’)\geqq 2^{n} for each n. Let \{U(a_{n}’)\}_{n=1}^{\infty} and
\{U(a_{n}^{i});(i=1,2, \cdots, 2^{n} ; n=1,2, \cdots)\} as in the proof of Theorem 1. For each
n, we can find \xi_{n}’\in BCD(R’) such that 0\leqq\xi_{n}’\leqq 1/nm on R’, \xi_{n}’=0 on R’-U(a_{n}’),
||\xi_{n}’||=1/2^{n} . We set \xi’=\sum_{n=1}^{\infty}\xi_{n}’ . Since \sum_{n=1}\xi_{n}’ converges to \xi’ uniformly on R’

as marrow\infty and is a Cauchy sequence in Dirichlet norm, it can be seen that
\xi’\in BCD(R’) . Since || \xi’\circ\phi||_{\psi^{-1}(U(a_{n}))}^{2},\geqq\sum_{i=1}^{2^{7\prime}}||\xi’\circ\phi||^{2}U(a_{n}^{i})=1(n=1,2, \cdots) , we have
||\xi’\circ\phi||=\infty , which is a contradiction. Therefore we complete the proof.

COROLLARY 2. If \phi is an almost fifinitely sheeted mapping, then it is
a Dirichlet mapping.

4. Suclass W_{HD} of BCW
DEFINITION 3. A function f in BC(R) is said to be H. D. separative

if C(\{\underline{\overline{f\leq\alpha\}}}^{D}\cap\overline{\{f\geqq\beta}\}^{D})=0 for any \alpha and \beta (inf f< \alpha<\beta<\sup f).
We denote by W_{HD}=W_{HD}^{\gamma}(R) the family of all bounded continuous

H. D. separative functions on R. By the proof of Theorem 5 in [9], we
see that W_{HD} is a vector sublattice of BC with respect to the maximum
and minimum operations and that W_{HD} contains BCD. Furthermore W_{HD}

is closed with respect to the sup norm.
We refer to [8, 9] for the definition of H. D. separative compactifications.

It follows from the Corollary to Proposition 8 in [9] that f\in BC is H.D.
separative if and only if R_{\{f\}}^{*} is H. D. separative.

PROPSOITION 2. (a) BCD\subset W_{HD}\subset BCW. These inclusion relations are
both strict.

(b) Let f be any function in W_{HD} and \xi be any point in \Delta_{D} with
C(\{\xi\})>0 . Then \lim_{xarrow\xi}f(z) exists.
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(c) A compactifification R^{*} of R is H. D. separative if and only if there
is a non-empty subfamily Q of W_{HD} such that R^{*}=R_{Q}^{*} .

(d) Let R^{*} be H. D. separative. Then \{f|R;f\in C(R^{*})\}\subset W_{HD} , where
f|R is the restriction off to R.

PROOF. By Theorem 7 and examples 1, 2, and 3 in [9] (see Diagram
1 in [9] ), we have (a). The proof of (b) follows immediately from the
definition of H. D. separativeness. By the aid of Theorem 5 in [9], we have
(c) and (d).

LEMMA 2. If \phi is a Dirichlet mapping, then

\{f\circ\phi;f\in W_{HD}(R’)\}\subset W_{HD}(R) .

PROOF. Let f be any non-constant function in W_{HD}(R’) . For any \alpha and
\beta (inf f< \alpha<\beta<\sup f), let A=\{z\in R;(f\circ\phi)(z)\leqq\alpha\} , B=\{z\in R;(f\circ\phi)(z)\geqq\beta\} ,
A’=\{z’\in R’ ; f(z’)\leqq\alpha\} and B’=\{z’\in R’ ; f(z’)\geqq\beta\} . Then A=\phi^{-1}(A’) and B=
\phi^{-1}(B’) . Since \phi is a Dirichlet mapping, \overline{A}^{D}=\overline{\phi^{-1}(A’)}^{D}\subset\phi^{-1}(\overline{A^{\prime D}}) and \overline{B}^{D}=

\overline{\phi^{-1}(B’)}^{D}\subset\phi^{-1}(\overline{B^{\prime D}}) . Hence we have \overline{A}^{D}\cap\overline{B}^{D}\subset\phi^{-1}(\overline{A^{\prime D}}\cap\overline{B^{\prime D}}) . Since f\in

W_{HD}(R’) , C(\overline{A^{\prime D}}\cap\overline{B^{\prime D}})=0 . Thus it follows from Theorem 1 that 0\leqq

C(\overline{A}^{D}\cap\overline{B}^{D})\leqq C(\phi^{-1}\overline{(A^{\prime D}}\cap\overline{B^{\prime D}}))=0 . Hence f\circ\phi\in W_{HD}(R) .

5. Beurlings‘ theorem

For each b\in\Delta_{1}(\subset\Delta_{N}) , let \mathscr{L}_{b}=\{G;G is open in R and R–G is thin at
b\}^{2)} . Let X be a compact Hausdorff space and \phi be a continuous mapping

of R into X. For any b\in\Delta_{1} , we set \phi^{\vee}(b)=\cap\overline{\phi(G}), where \overline{\phi(G}) is the closure
G\in e_{b}

of \phi(G) in X. It is known ([4]) that \phi^{\vee}(b) is a single point or a continuum.
Let \mathscr{F}(\phi)= {b\in\Delta_{1} ; \phi^{\vee}(b) is a single point}. Then it is known ([4]) that \mathscr{F}’(\phi)

is a Borel set. In this section we shall denote by \pi the canonical mapping
of R_{D}^{*} onto R_{N}^{*} .

LEMMA3
([7,Lemma_{b}

4]).
G\neq RandEbea.closedsu

Let G be a regular open set in R with
set of \Delta_{N} with \tilde{C}(E)>0 . If there is a closed

subset A of \Delta_{D} such that A\cap\overline{R-G}^{D}=t,y and C(\pi^{-1}(E)\cap A)>0 , then there is
b\in E\cap\Delta_{1} with G\in \mathscr{L}_{b} .

PROOF. By assumption, we can find a regular closed set F in R such
that \overline{F^{D}}\cap\overline{R-G^{D}}=\emptyset and \overline{F^{D}} is a neighborhood of A in R_{D}^{*} . Then we have
C(\pi^{arrow 1}(E)\cap\overline{F^{D}})\geqq C(\pi^{-1}(E)\cap A)>0 . Let \{F_{n}\}_{n=1}^{\infty} be a sequence for E which

2) This is denoted by .q_{f}^{\tilde{p}}-b in [4] (p. 221).
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satisfies (^{*}) . Since \lim_{narrow\infty}1_{\overline{F_{n}\cap F}}=\tilde{a}(\pi^{-1}(E)\cap\overline{F}^{D}) by Lemma 1, we have
\lim_{narrow\infty}1_{\overline{F_{n}\cap t}^{7}}>0 . It follows from Lemma 7 in [9] that \lim_{narrow\infty}1_{F_{n}\overline{\cap F}}^{G}\not\equiv 0 . Hence
\omega(E\cap B(F), z, G)=\omega(\{F_{n}\cap F\}, z, G)=\lim_{narrow\infty}1\frac{G}{F_{n}(\dot{|}}F\not\equiv 0 . By Lemma 4 in [7], we
obtain the conclusion of this lemma.

By a modification of the proof of Theorem 1 in [7], we have
PROPOSITION 3. Iff is a function in W_{HD}(R) , then \overline{C}(\Delta_{1}-\mathscr{F}(f))=0 .
PROOF. We may assume that inf f=0 and sup f=1. For any r>0

and s(0<s<1), let D(s, r)=\{z\in R;|f(z)-s|<r\} . It is known ([3, 5, 7]) that
\infty 2^{n}

\Delta_{1}-\mathscr{F}(f)=\bigcup_{n=1}\bigcap_{i=0}\{b\in\Delta_{1} ; ^{D}(i/2^{n}, 2/n)\not\in \mathscr{L}_{b}\} . Suppose \tilde{C}(\Delta_{1}-\mathscr{F}(f))>0 . Then

there exist n_{0} and a compact subset E of \bigcap_{i=0}^{2^{n}0}\{b\in\Delta_{1} ; D(i/2^{n_{0 }}; 2/n_{0})\not\in \mathscr{L}_{b}\} such
that \overline{C}(E)>0 . Let r and r’ be real numbers such that 1/n_{0}<r<r’<2/n_{0} .
For each i , we can find a regular closed sets F_{i} and F_{i}’ in R such that
D(i/2^{n_{0}},1/n_{0})\subset F_{i}\subset D(i/2^{n_{0}}, r)\subset D(i/2^{n_{0}}, r’)\subset R-F_{i}’\subset D(i/2^{n_{0}},2/n_{0}) . Since
\overline{F_{i}^{*}}\cap F_{i}^{\overline{\prime}_{Y^{\mathfrak{l}}\backslash }}=\emptyset\overline{(F_{i}}^{*} and \overline{F_{i}^{\prime*}} are closures of F_{i} and F_{i}’ in R_{\{fl}^{*} respectively) and
R_{\langle f\}}^{*} is H. D. separative, it follows from Theorem 2 in [8] that C(\overline{F_{i}^{D}2^{n}}0\cap\overline{F_{i}^{\prime D}})

=0 . Snce \bigcup_{i=0}^{2^{n}0}D(i/2^{n_{0}},1/n_{0})=R and D(i/2^{n_{0}},1/n_{0})\subset F_{i} for each i, \bigcup_{i=0}F_{i}=R .

Hence there is i_{0} such that C(\pi^{-1}(E)\cap\overline{F_{i_{0}}^{D}})>0 . Since C(\overline{F_{i_{0}}^{D}}\cap\overline{F_{i_{0}}^{\prime D}})=0, for
any \epsilon(0<\epsilon<C(\pi^{-1}(E)\cap\overline{F_{i_{\mathcal{O}}}^{D}})) , we can find a relatively open subset \alpha of \Delta_{D}

such that \alpha is a neighborhood of \overline{F_{i_{0}}}^{D}\cap\overline{F_{i_{0}}^{lD}} in \Delta_{D} and C(\alpha)<\epsilon . Then \overline{(F_{i_{0}}^{D}}-

\alpha)\cap\overline{F_{i_{0}}^{\prime D}}=\emptyset and
\epsilon<C(\pi^{-1}(E)\cap\overline{F_{i_{0}}}^{D})\leqq C(\pi^{-1}(E)\cap(\overline{F_{i_{0}}}^{D}-\alpha))+C(\alpha) .

Hence we have C(\pi^{-1}(E)\cap(\overline{F_{i_{0}}}^{D}-\alpha))>0 . Thus, by Lemma 3, there exists
b\in E\cap\Delta_{1} with R-F_{i_{0}}’\in \mathscr{C}_{b} . This shows that D(i_{0}/2^{n_{0}},2/n_{0})\in \mathscr{C}_{b} . This is a
contradiction. Therefore \tilde{C}(\Delta_{1}-\mathscr{F}(f))=0 .

COROLLARY ([3, 4]). Iff is a function in BCD(R), then \overline{C}(\Delta_{1}-\swarrow^{U}\overline{j}(f))=0.
THEOREM 3. If \phi is a Dirichlet mapping of R into R’ and R^{\prime*} is a

metrizable H. D. separative compactifification of R’, then \overline{C}(\Delta_{1}-\mathscr{F}_{r}(\phi))=0 .
PROOF. Since C(R^{\prime*}) is separable with respect to the sup norm, there

exists a dense countable subset A of C(R^{\prime*}) in C(R^{\prime*}) . We set Q=\{f|R’ ;
f\in A\} where f|R’ is the restriction of f to R’. Then R^{\prime*}=R_{Q}^{\prime*} and Q\subset

W_{HD}(R’) by (d) in Proposition 2. Since \Delta_{1}-\mathscr{F}(\phi)\subset\bigcup_{f\epsilon Q}(\Delta_{1}-\mathscr{F}(f\circ\phi)) and \overline{C}(\Delta_{1}

-\mathscr{F}(f\circ\phi))=0 for any f\in Q by Lemma 2 and the above proposition, we
have \overline{C}(\Delta_{1}-\mathscr{F}(\phi))\leqq\sum_{f\in Q}\overline{C}(\Delta_{1}-\mathscr{F}(f\circ\phi))=0 .
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Since any almost finitely sheeted mappng is a Dirichlet mapping (Corol-
lary 2 to Theorem 1) and any quotient space of the Royden compactification
is H. D. separative (Theorem 3 in [8]), we have the following corollaries:

COROLLARY 1 (Z. Kuramochi [5, 6, 7]). If \phi is an almost fifinitely
sheeted mapping and R^{\prime*} is a metrizable H. D. separative compactifification,
then \overline{C}(\Delta_{1}-\mathscr{F}(\phi))=0 .

COROLLARY 2 (C. Constantinescu and A. Cornea [3, 4]). If \phi is a
Dirichlet mapping and R^{\prime*} is a quotient space of R^{\prime*} , then \hat{C}(\Delta_{1}-\mathscr{F}(\phi))=0 .
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