Hokkaido Mathematical Journal Vol. 8 (1979) p. 228-238

On a transfer theorem for Schur multipliers
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1. Introduction.

In this paper we shall give an alternative proof of the following theorem

proved by D. F. Holt [3].

Tueorem* (Holt).

Let P be a Sylow p-subgroup of a finite group G, and suppose that
P has nilpotency class at most p/2. Then the Sylow p-subgroups of the
Schur multipliers of G and Ng(P) are isomorphic.

We shall prove this theorem by using the method of cohomological G-
functors.

Maps and functors will be written on the right in their arguments,
with the corresponding convention for writing composites.

Let G be a finite group and k& a commutative ring with identity element.

DErFINITION 1.

A G-functor over k is defined to be a quadruple
A=(a,r,p,0),

where a, 7, p, ¢ are families of the following kind :

a=(a(H)) gives, for each subgroup H of G (notation H<G), a finitely
generated k-module a(H).

t=(t%) and p=(p%y) give, for each pair (H, K) of subgroups of G such
that H<K, the respective k-homomorphisms

i a(H)—a(K) and p%y: a(K)—a(H).

o=(c%) gives, for each pair (H, g) where H is a subgroup of G and ¢
an element in G, the k-homomorphism

o: a(H)—a(H’).

These families of k-modules and k-homomorphisms must satisfy the following
Axioms for G-functors. (In these axioms, D, H, K, L are any sub-
groups of G'; g, ¢’ are any elements in G.)
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i’ =loun, it =14 if HKK<L;

PHHZ locans PKHPHD:PKD if K> HZD;

0=1luan if heH, 6405 =0%";

THKU%’:U%THgKg, ,OKH@%:O'%PKQHQ;

(Mackey axiom) If H<L, K<L and I' is a transversal of the
(H, K)-double cosets in L, then

N TN N N~
o A0 oo
N N S S

L. L __ g HY K
TH Pk — ZUHP HINKTHINK -
gerl’

The images by the k-homomorphisms X, o%r and 6% are simply written
as follows ;

arg¥=a* for a in a(H), fp¥y=py for B in a(K) and asy=a’ for « in
a(H), respectively.

A G-functor A is naturally considered to be an H-functor for any sub-

group H of G. We denote such an H-functor by A,g.

DEFINITION 2.

A G-functor A=(a,t, p, 0) is called cohomological if it satisfies the fol-
lowing axiom (C):

(©) ¥ H<K<G, then
PKHTHK = IKI HI Lok -
For examples of G-functors, see and [8].

DEFINITION 3.

Let A=(a,r, p, 6) be a cohomological G-functor and let .S be a subgroup
of G, @ an element in a(S), and X a subgroup of G. Then a triple
(S, a, X) is called a singularity in G for A provided

(a) a0,

(b) asny»=0 for every proper subgroup Y of X (notation Y< X) and

every element u in G.

The subgroup .S is called the singular subgroup of the singularity. If
the singular subgroup S is a proper subgroup of G, then the singularity is
called proper.

Now we can state a transfer theorem for cohomological G-functors on
which our proof of Theorem* depends.

THEOREM 1.
Let P be a Sylow p-subgroup of a finite group G and A=(a,r, 0, G)

a cohomological G-functor over a commutative ring k. Assume that the
ring k is uniquely divisible by |G : P| and P has no proper singularity in
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P for Ap. Then
Im p% =Im p¥p, where N = Ng(P).
And therefore

a(G)=a(N).
Let G be a finite group, M a right G-module, and let
Xy i oore—X e e—X_j—Xp—Xy—+ - —X,
N
Z
v N
0 0

be a complete resolution of G, where each G-free module X, is a right
G-module. For each subgroup H of G, the right G-module M and the
complete resolution X4 of G are also a right H-module and a complete
resolution of H, respectively.

Let (H, K) be a pair of subgroups of G such that H<K.

If 4 is a transversal of the H-left cosets in K, then for each element
f in Hompy(X,, M), we can define an element f* in Homg(X,, M) by

(o) f* =2 (xg) fg~*  for xzin X,.

g€d

The map f—f% is a cochain morphism Hompg(X,, M)—Homg(X,, M) and
this morphism induces a homomorphism

corgx: H"(H, M)— H"(K, M) .

This homomorphism is called the corestriction from H to K.

Every element f in Homg(X,, M) is also an element in Hompg(X,, M).
If an element f in Homg(X,, M) is viewed as an element in Hompg(X,, M),
we write this element fi The map f—fx is a cochain morphism
Homy(X,, M)— Homg(X,, M) and this morphism induces a homomorphism

resg z: H"(K, M)— H"(H, M) .

This homomorphism is called the restriction from K to H.
For each pair (H,g) of a subgroup H of G and an element ¢ in G
and for each element f in Hompy(X,, M), we can define an element f‘ in

Hompz(X,, M) by
(x) f =(xg™Y) fu for z in X,.

The map f—f° is a cochain morhism Hompg(X,, M)—— Homps(X,, M)
and this morphism induces a homomorphism
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congy: H"(H, M)— H"(H’, M).

This homomorphism is called the conjugation by g.

These three homomorphisms of cohomology groups have the following
properties. (In what follows D, H, K, L are any subgroups of G and ¢, ¢
are any elements in G.)

(a) corgu=lgnam, corggcorg=cory, if HSK<L,;

(b) resgm=lwnamm, resguresyp=resgp if K>H>D;

(¢) conp=lynumy if hE€ H, conyconys=con¥ ;

(d) corgxconf=cony corys xs, reSx yCONY=CON% resgs yo ;

(e) If HLL, K<L and I' is a transversal of the (H, K)-double cosets

in L, then

COTy z T€S; g = ), CONY TeSys ging COTyInk x ;
gel’

(f) If H<K, then
TeSg g COT gy x — K: H‘]-H"(K,M) .

Note that the axioms for the cohomological G-functors are abstracted
from these properties.

Let M(G) denote the Schur multiplier H%G, C*) of a finite group G.
For each subgroup H of G, put a(H)=9,(M(H),), where M(H), is the
Sylow p-subgroup of M(H) and 2,(M(H),) is the subgroup of M(H), ge-
nerated by the elements of order p. Then a(H) is a finite dimensional
F,-module. For each pair (H, K) of subgroups of G such that H<K, let
% and p%y be cory xiaay and resg max), respectively. For each pair (H, ¢)
of a subgroup H of G and an element g in G, we define ¢f;,=con,m.
Then A=(a,z,p,0) is a cohomological G-functor over F,. We call this
functor the multiplier functor (with respect to a prime p).

If a Sylow p-subgroup P of G has no proper singularity in P for the
multiplier functor, then by we have

2,(M(G)) = 2,(M(N6(P)) ).
Hence by Tate’s theorem it follows that
M(G),~ M(Ny(P)), .
We shall establish Theorem* (Holt) by proving the following [Theorem 2.

THEOREM 2.
Let P be a p-group of nilpotency class at most p/2. Then P has no
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proper singularity in P for the multiplier functor.
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2. A transfer theorem for cohomological G-functors.

In this section we shall prove [Theorem 1l.
Let G be a finite group and let A=(a, 7, p,6) be a cohomological G-
functor over a commutative ring k.

LEmMma 1.

Let H be a subgroup of G such that the ring k is uniquely divisible
by |G : H|. Then the k-homomorphism p°y: a(G)—a(H) is a monomorph-
ism and the k-homomorphism ¢ : a(H)—a(G) is an epimorphism.

Moreover

a(H)=1Im p%;@P Ker z4%.

Proor. The composition homomorphism p%y75%: a(G)—a(G) is equal
to |G: H|lye and this is an automorphism of a(G) since the ring % is
uniquely divisible by |G': H|. The lemma easily follows from this fact.

LeEMMA 2.

Let (S,a, X) be a singularity in G for A. Then the following hold.

(1) For every elements g, h in G, a triple (S°, a?, X*) is also a singularity
in G for A.

(2)  There exists an element g in G such that X'<S.

(3) If the ring k is uniquely divisible by |S: H| for a subgroup H
of S, then (H,ay, X) is also a singularity in G for A.

(4) If a subgroup R of G contains S, then (R, a®, X) s also a singularity
in G for A.

(5) If a subgroup L of G contains S, then there exists an element ¢
in G such that (S,a, X°) is a singularity in L for Al;.

(6) If a subgroup L of G contains X, then (SN L, a%snr, X) is a sin-
gularity in L for A|p for some element ¢ in G. If moreover G=LS, then
(SN L, asn, X) ts a singularity in L for A;.

Proor. (1). This follows immediately from Definition 3
(2). Let I" be a transversal of the (S, X)-double cosets in G, then by Mackey

axiom
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afy= ) (srnx)%.
gel

Thus there exists an element ¢ in G such that ag xv#0 since a%x+#0. If
SNX°<X’ then by we have agyx¢=0, a contradiction. So
X'<S.

(3). Since A is a cohomological G-functor, we have
(az®)x = ()%
= 'S HICKGX
#0.

For every proper subgroup Y of X and every element u in G, we have

(aH)HmY“ = (asnY“)Hnyu

=0.

Thus (H, ag, X) is a singularity in G for A.

(4). Tt is clear that (a®)€x=£0.

Let Y be a proper subgroup of X and « an element in G. If I is a trans-
versal of the (S, RN Y*)-double cosets in R, then by Mackey axiom

U
aPfpaye = gp(agsganY“)RnY

=2 <(aSnRg_lnY“g_l>g>

gel

=0.

Thus (R, af, X) is a singularity in G for A.

(5). Since (a")x=a%+#0, there exists an element ¢ in G such that a’;,xs#0
by Mackey axiom. Then again by Mackey axiom there exists an element
s in § such that agyzsnxes#0. Thus by we have X< L and
hence afys#0. It is clear that agn,»=0 for every proper subgroup Z of
X’ and every element » in L. Thus (S, a, X°) is a singularity in L for Al;.
(6). Since (a%)y=a’x+#0, there exists an element ¢ in G such that (a%y ;)%
#0 by Mackey axiom. For every proper subgroup Y of X and every element

RNYY

u in L, we have

(a%s9n1)s9nznr® = A¥9nLnpe
= (asn znrho)

=0.

Thus (SN L, a9z, X) is a singularity in L for A,z. When G=LS, we can
take g=1 so that (SN L, asnz, X) is a singularity in L for A,;. The lemma
is proved.
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The following lemma gives us a technique for proving [Theorem 1.

LEmMma 3.

Let H be a subgroup of G such that the ring k is uniquely divisible
by |G: H|, R a subgroup of H, and let B be a k-submodule of a(R). As-

sume that
Im p% < B<Im p%3.

Then the following hold.

(1) There exists an element « in a(H) such that a#0, a®=0, and
0+ar< B.

(2) Let X be a subgroup of R such that ax#0 and aynyv=0 for every
proper subgroup Y of X and every element u in G. Then there exists an
element ¢ in G— H such that

(a) (HNH’, a®gme—aunms, X) ts a singularity in H for Ag; and

(b) (RN H’, a®zaws —arnms, X) ts a singularity in R for Az

Proor. (1). By Lemma 1 it follows that
a(H)=1Im p’;z@P Ker z5%.
Thus we have
Im p% =Im p% D (Ker 747 o7& .
Hence by our assumption on B it follows that
BN (Ker %) pr # 0.

Namely there exists an element @ in a(H) such that a#0, a®=0, and
O+ar= B as required.
(2). Let I" be a transversal of the (H, H)-double cosets in G. Then

é (agHﬂHg - aHﬂHg)HX

g
= (Z aanH9H>X_ ( ZaHanH>X

ger ger’

=a—|G: H|ay
+0.

Thus there exists an element ¢ in G— H such that
(W unms —amnm)x# 0.

By our assumption on the subgroup X we have

(aanHS’ _a'Han)HannYu =0
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for every proper subgroup Y of X and every element » in H. Thus

(HN H’, o*ygngs—agngs, X) is a singularity in H for A,z

By Lemma 2 (6) there exists an element A in H such that

(RN (HN H", (%upme — aunms)"ro@nmst, X) is a singularity in R for Az
Since RN (Hﬂ Hg)h:Rﬂ H’" and (agHmHg_a’Han>hRﬂ(Han)h':aghRﬂth — RrnH,
we have that (RN H’, a’rnps—agrnme, X) is a singularity in R for Az by
replacing ¢ with ¢g~*A if necessary. The lemma is proved.

ReEMARrRk. Let G, H, R, and a be as in Lemma 3. Assume that for
every subgroup Q of R and every element ¢ in G, there exist a subgroup
T of R and an element A in H such that HNQ’<T" Then a subgroup
X of minimal order of R such that ay#0 satisfies the assumption of
3 (2). Because for a proper subgroup Y of X and an element ¢ in G, there
exist a subgroup 7" of R and an element A in H such that HN Y’'<T™
Hence HN Y <T<R. Since he H and aca(H), we have agnys =amnyor—.
Thus by the minimality of the order of X it follows that ayqys =0 .

THEOREM 1.

Let P be a Sylow p-subgroup of a finite group G and A=(a,z, p, o)
a cohomological G-functor over a commutative ring k. Assume that the
ring k is uniquely divisible by |G :P| and P has no proper singularity in
P for Ap. Then

Im p% =1Im p¥p, where N = Ng(P).
And therefore
a(G) = a(N).

Proor. Suppose that Im p%<Im p"p. Then by there exists
an element « in a(N) such that a0, a=0, and ap#0. Take a subgroup
X of minimal order of P such that ay#0. Then again by there
exists an element ¢ in G—N such that (PN N’, a%pnys—apqys, X) is a sin-
gularity in P for Ajp. Then we have PN N’=P by our assumption on P,
Hence it must hold that P=P°, a contradiction. Thus we have

Im p% =Im p"p.

The homomorphism %y gives an isomorphism of a(G) to a(N) since pfy

and p"p are monomorphisms and %= %y p"p. is proved.
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3. The proof of Theorem 2.
In this section we shall prove and Theorem*.

THEOREM 2.

Let P be a p-group of nilpotency class at most p/2. Then P has no
proper singularity in P for the multiplier functor.

ProOF. Suppose P has a proper singulaity (S, @, X) in P for the multi-
plier functior. By Lemma 2 we may assume that the singular subgroup .S
is a maximal subgroup of P and X is contained in S.

Let 1 R F P 1

be a free presentation of P and let Fg be the complete inverse image of S
in F. The commutator subgroup [Fs, R] of Fg and R is normal in F since
S is normal in P. Thus we have two extensions

1—-R—F—P—1 and 1—R—F;—S—1,

where bars denote images modulo [Fs, R]. The latter extension is a central
extension of S of free type. It is well known that D=RN F} is the torsion
subgroup of R and D=~M(S). There exists a subgroup J of R such
that R=JxD as R is finitely generated. Thus we have a central extension

of .S
1 Z—K—S—1,

where Z=R/J~D and K=Fg/J. In the Hochschild - Serre exact sequence
1— Hom (S, C*)— Hom (K, C*)— Hom (Z, C*)— M(S)

associated to this central extension of S, the transgression map
t : Hom (Z, C*)— M(\S)

is an isomorphism. For the proof of this fact, see §1, §3 or Kap.
V §23 or Ch. 2 §7, §9. Hence there exists a unique element ¢ in
2,(Hom (Z, C*)) such that

a=(g)t.

The factor group P/S acts on Z and therefore on Hom (Z, C*). On
the other hand P/S acts on M(S). These operations by P/S are commuta-
tive with the transgression #. Let u be an element in P—S. Then by
Mackey axiom

P p=1
J— (/3
o xy= Za X
i=0
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Therefore
p—1 i -1 i
(Zo+)e="Ta' 0.
Let ¢= pilqsui then the order of ¢ is p. Let I be the kernel of ¢, then

it follows that ﬂI“ <Ker ¢. On the other hand we have [Z, u] <Ker¢.

Suppose I=1%, then I=Ker ¢ so that [Z,u]<I. Thus ¢=¢* and hence

¢=pp=0, a contradiction. Therefore I#I“. Hence if we put L:ﬂlul,
1=0

then the factor group Z/L is an elementary abelian p-group of order p? that
has a basis on which # acts regularly. Let T be the semidirect product of
Z by P. Since L is normalized by P, the semidirect product 7" involves
the wreath product Z, wr Z, so that the nilpotency class of T is at least p.

On the other hand as in Lemma 7 it follows that the nilpotency
class of T is less than p by using the assumption that P has nilpotency

class at most p/2. Thus we have a contradiction. is proved.
Proor of Theorem* (Holt). and imply that if

a Sylow p-subgroup P of G is of nilpotency class at most p/2, then
<91<M(G)p>)resG,P:<Ql<M(N)p>>resN,P, where N = Ng(P).
Since M(P)=Im resq »@ Ker corp g we have
(M(N),) resyr = (M(G),) resq,r D (M(N),) res,p N Ker corpg) .
Hence by the first equation it follows that
<M(N)p> resy pN Ker corp g =0
so that
(M(G),) rese,» = (MI(N)y) resw,r

As in the proof of resq, v, gives an isomorphism of M(G),
to M(N),.

REMARK. As we have seen in the proof of [Theorem 2, if a p-group
P has a proper singularity in P for the multiplier functor, then P has a
maximal subgroup S whose Schur multiplier M(S) has a factor group iso-
morphic to an elementary abelian p-group of order p?. Therefore a p-group
which has no such maximal subgroup has no proper singularity. For exam-
ple a 2-group of miximal class has no proper singularity. However it is
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still open to determine a necessary and sufficient condition for a p-group
to have no proper singularity for the multiplier functor.
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