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On the Existence of bounded Analytic Functions
in a lacunary End of a Riemann surface.

Zenjiro KURAMOCHI
(Received March 17, 1986)

If a domain G in a Riemann surface R has a compact relative boundary
9G, we call G an end. Let G be an end of a Riemann surface €0,.
Suppose G has a boundary component p. The maximal number of linearly
independent H. P. s (positive harmonic functions) vanishing on 9G is
called the H-dim of . Let F be a closed set in G such that G—F is
connected. Let G'(z,z): zG—F be a Green function of G—F. If

lim G'(z, 2,) >0, we say F is irregular at p. If there exists a sequence {T,!

z2—p
such that I',, consitst of a finite number of analytic curves separating p from
oG and

lim Min G'(z, 2,) >0,

] z€r,

we say F' is completely irregular at p. Further if every I',, consists of an
analytic curve, we say F is completely thin at p. Evidently if G is a
punctured disk : {0< |z| <1}, F is completely thin at z=0 if and only if F is
irregular at z=0.

We proved

THeoREM” 1. Let G be an end of a Riemann surface €0, with a
boundary component v of H-dim=oo. If F is completely thin at v,

G—F&0,;.

For Riemann surfaces €0 , analogous theorems? are discussed before.
For examples.

There exists a Riemann surface RE O, with the following properties :

1) R has no singular boundary points with respect to Martin’s topology.

2) There exists a boundary point p which is a singular point of second
kind with respect to N-Martin’s topology such that

GDp implies GEO, ,,

N
where G 2p means G s a fine neighbourhood of p with respect to the
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N-Martin’s topology.

PROBLEM.  Does there exist an end G of a Riemann surface €0, with a
boundary component v of H-dim=1 such that

K
G—F>p implies G—F €0,p

for any closed set F in G ?
K
where G—F>p means that G—F is a fine neighbourhood of p relative to

Martin’s topology W over G and p is uniquely determined minimal point of
G over Y with respect to M.

Now this problem is open. In this paper we shall discuss a boundary
component of special type. For latter use we note some remarks.

ReEMARK 1. Let G be an end of R€0, and let 4(G) be the set of
boundary components of G. Let U;(z): i=1, 2,..... , o be an HB (a
bounded harmonic function) in G+G. Then it is known, U;(z) is an
HBD (a bounded and Dirichlet-bounded harmonic function) in G and there
exists a sequence of curves {I',} in G, consisting of a finite number of
analytic curves such that I"',,— 4(G) as n—oo, ', separates 4(G) from oG

and
Ji

RemARK 2. Let G(z, z,) be a Green function of G of R€0, with a
boundary component p of H-dim=1. Then by Re&O, G(z z)

<Max G(z, z,) on G': z,EG— G for any subend G’ of G, whence G(z, z,) is

z€0G’

%U,(z)’ds—»() as nooo: i=1, 2, ... i,

an HBD in G’ and by Remark 1 j;Ggan- G(z, 20)ds=2xn. Let {p;} be a

sequence such that p,—p and G(z, p,)—an HP. U(z). Then f %U (z)ds

G

zlilm fac% G(z, p) ds =2z. Since p is of H-dim=1, for any other
sequence {¢;}, lim G(z, ¢;) is also U(z). Hence lim G(z, p.) exists for

any sequence {p;} with p—p. Put G(z, »=lim G(z, p,). Then any HP
function in G vanishing on G is a multiple of G(z, b).

REMARK 3. As for Martin’s topology. Let R be a Riemann surface &
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O,. Let U(z) be an SPH (a positive superharmonic function) in R. Let F
be a closed set in R. We denote by U.(z) the least SPH larger than U (z)
on F. Suppose Martin’s topology M is defined on R=R+ 4 (4 is the

boundary of R relative to M). For a point pER, U,(z) is defined as

lim U, (z), where v, is a neighbourhood of p relative tol)t. Let 4, be the
set of minimal boundary points. Let pER+ 4, and K (z, p) be the kernel
of p. If

Kp(z, <K p),
we say F is thin at p(or CF is a fine neighbourhood of p) and we denote by
CF g p. Then it is easily seen that F is thin at p if and only if,

o(Kp(z, p))=0.

K
In fact, suppose CF=p. Then K (z, p)> K(z, p). Assume ,(K.(z, p))

>0, then ,(Kz(z, p))=aK (z, p): a<l. K(z, p) is an HP and K.(z, p)—
aK(z p) is an SPH and =(1—a) K (z, p) on 8F. By the definition of
Kp(z, p) Kp(z, p)—aK (z, p)=(1—a)Kz(z, p). This implies aK.(z, p)=
aK (z, p). Hence a=0 and ,(K,(z, p))=0. Conversely clearly ,(K.(z, p))
=0 implies CF5p,

Let 4, , be the set of point ¢ in 4 such that

Iim G(z, z)=6>0.

m
zZ—q

We call 4;,= U 4;, the set of irregular points.
>0

If an HP U (z) satisfies following conditions:
1) U(z) is a singular function.
2) There exists a const. @ not depending on M such that

DMin(M, U(z)))£Ma : M <co.

We call U(z) a G. G.(a generalized Green function). Then we proved?.
There exists a positive mass ¢ such that

U= [ Kz p)dup).
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REMARK 4. Let U(z) be an HP in G. Let F be a closed set. We
denote the greatest HP in G— F which is not larger than U (z) and vanishing

G
on F'(except a set of capacity zero) by GIF[ U(z)]. Let V(z) bean HP in
G—F vanishing on F(except a set of capacity zero). We denote by

G
GEF[ V(z)] the least HP in G which is not smaller than V' (z). Then
G G G
it E[V()]<oo, I [E[V&]]=V().?
G-—F G—-F G-F

REMARK 5.  Apply the results of the Remark 4 to an end G of R€O,
with a boundary component p of H-dim=1. Let F be a closed set. Let
G(z, 20) and G'(z, z,) be Green functions of G and G— F respectively. We
suppose Martin’s topologies M and M’ are defined on G and G—F. Since p
is of H-dim=1, there exists only one minimal point p(relative toM) over b
and K (z, p) is a multiple of G(z, ). Then we have

ProposiTiON 1. F is irrvegular at v if and only if F is thin at p. If
G—ng, G(z, p)—Gr(z, p):(jF [G(z, v)] is minimal and there exists an
W -minimal point q over v. Hence let {p;} be a sequence in G—F such that
p—vY and G'(z, p)— an HP. U(z). Then U(z) is a multiple of

I [6GGwl.

G—-F

2. Further if F is completely irvegular at b, theve exists no other M’
-points except q over V. Hence any singular function in G'=G—F is a

G
multiple of GI . [G(z, V)], especially K'(z, q) is also its multiple.

Proof of 1). Suppose F is irregular at b, then there exists a sequence
{p:} tending to p such that G.(z, p.) and G'(z, p,) tend to an SPH V (z) in
G and to an HP. G(z) in G’ respectively and G'(p;, z,) =¢>0, whence
G(z)>0. Evidently V(2)=G(z, p) on F. By definition

Gr(z, »=V(2).

G(z, P —Gp(z, 26z P)— V(z):lizm(G(z, p)—Gp(z, p)=

lim G'(z, p)=G(z). Hence

K
G—F>p.
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K
Next suppose G—F>p. Let {R,} be an exhaustion of R, where G is an

end of R. Put F,=FNR,. Then G, (z, 1)1 Gp(z, D<G(z, p) as m—oo,
Since F, is compact, G(z, p)—Gg (2, pD=Gu(z, p;): p.G—F,, where
Gn(z, p;) is a Green function of G—F,, and

DMin(M, Gn(z, p)))=2axM : M <oo.

By the lower semicontinuity of Dirichlet integrals, by letting 7—oo and then
m—co, D(Min(M, (G(z, »)— Gr(z, W))=2zM. Evidently G(z, p)—G.(z2, p)
is a singular function in G'andisa G. G. in G". By Remark 3 0< G(z, p)—
Gr(z, V) :fAIK’(z, q)du(q), where K'(z, q) isthe kernel of ¢ with respect to
N,

Let I be the set of irregular point of F in G. Then I is of capacty zero.
Since G(z, p) —Gg(z, V) <o in G, x must be =0 on I. Hence ¢ must lie over

n’

4 7 (p) =N"boundary points over p. i. e. there exists a point ¢ in 4, with
reapect to9’ and there exists a sequence {¢;} in G’ such that lim G'(q;, 20)>0.

q—q
Hence F is irregular at p.

G
By definition G(z, p)— Gp(z, P)éGIF [G(z,»]. Put Gun:=GNR,;.

Let U, »:(2) be the solution of the Dirichlet problem H ' in G,..—F,
with boundary value ¢ =G(z, 1) on F,,=0 elsewhere. Then U, ,.:(z)
Gr,(z, ) asi—oo and G, (2, V) 1 Gp(z, ») as n—oo. Let V. (z)=H F:
¥v=G(z,p) on 8G,,;—F=0 elsewhere. Then V,..;(z2) | I._.[G(z V)] as
n+i—co. Now

Gz, )= Upnei(2) 2 Vi i(2).
Let —co and then n—co. Then G(z, p)—Gp(z, p)g[[cép(z, p)]. Thus
G(z, v)—Gp(z, p):(jF [G(z, v)]. The minimality of G(z, v) implies the
minimality of (j . [G(z, b)] in G". Hence the mass ¢ must be a point mass
on the uniquely determined point ¢ in 4" over p. Let U (z):ﬁlm G'(z, po).
Then U(2)<G(z 1) and GEEF [U/(z)]<oco. Hence U(z):z[éw@]}

< Z,[(;(z, »] and U(z) is a multiple of G?F[G(z, w1,

2) By the definition, there exists a sequence of curves {I',} separating b
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from oG and Min G'(z, zo)>¢>0. Let ¢ bedt-minimal point over p. Then

zel,
g is M’-accessible. There exists a curve A Wt-tending to ¢ and intersecting I',
at g,.

, Gz q0) _G' (2, q,)_G(2 qn) ,
K<Z’q”>“G’(zo,qn>§ N — , K'(z, @)

G and E (K )] <.
) G-F

=lim K'(z, g,) =

Hence K'(z, ) =I[E[K'(z, q)]]é—(ly—G?F[G(z, p] and K'(z,q) is a

G
multiple of GI F[G(z, p]. Hence theree exists only one 9t-minimal point ¢
over Y.

PrOBLEM.  Under the condition : v is of H-dim=1 and F 1s irrvegular

at p (without completely irregularity), can we conclude that theve exists only
only one W'-minimal point over p?

C-type boundary component. Concentrated rings®.
Let Q={0<|z|<1} be a punctured disk in the z-plane. Let R ={r exp(—
2a)< |z|<7r expa)}: a>0 be aring. Let S;; be a sector such that

Sy={j—Dp:<arg z=j B} : fi=2n/2"":
i=1,2,3,..., 27, i=1,23,..., %.

i e. S, Sais Sz, Sa1, Sse, Si3, Ssa, S4,1,
Let L,; be a half line such that

L.={arg z:(j—1+%),8i}: J=1 208,200 =123, ., i,

Let s; » and s, be slits such that, by putting y:%, sin=1{7 expQa—+ (2i—
0

Dy)< |z| <7 exp(—2a+2iy), arg z=ky}. su=1{7 expQLa—2iy))<|z|=7
expla—(2i—1y), arg z=ky}. k=1, 2, 3, 4,..., (2*my), i=1,2,3,..., %
and 7=2=/(2*Xm,). For an i, identify edges of s; and si. in S;; lying
symmetrically with respect to L;: j=1, 2, 3,..., 2°"". Such operation is
performed for i=1, 2, 3,..., 4. Then we have a generalized ring . We
see for any & >0, we can find 4, and m,” such that

Os of U(z) on {|z|=p}<e: 7 exp (—STa)épér exp (3%)
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for any HB function U(z) with |U(z)|<1 in %', where Os means the
oscillation of U(z). Let {e,} be a sequence. We denote such i’ by
N'(7, a, €,) and call it a concentrated ring with deviation e,. Let Q={0<
|z|<1}), a> 4a>0 and r,—=exp (—una). Construct a concentrated ring
N (7., a, &,) from a ring R,={r, exp (—2a)<|z|<7, exp Ca)}, n=1,
2, 3,... and make the part Q—>R, remain as original. Then G=Q-
SR+ DN (7, @, €,) is an end G of a Riemann surface €0,. Since every
N (7., a, €,) contains an ordinay ring with module 2«, G has a boundary
component p of H-dim=1 by M. Heins’s® theorem. In the following we
denote by z a point in G also. Then evidently G(z, v)=—log |z|. We call

such boundary component p a C-type component defined by

N, (exp(—na), a, €,) . a>4a.
THEOREM. Let V be a C-type boundary component of G defined by
No(rn, @, en) : rn=exp(—mna), where lim &,=0 and lim(n/log &,)=0. Let

F be a closed set in G such that G—F is connected, F be irregular at v and
F be so slightly distributed somewhere as there exists a subsequece {n'} of {n}
such that F satisfies the condition A :

Min (Max (W (F, z, R,)) <e,:

PInSEp=ph lzl=p
3a

7 3 V{4
P = 7,€XD (Tal P’ w=7,€XD (—T),

wheve W (F, z, Ry is an H. M. (a harmonic wmeasure) of F wrelative to
No(7n, @, €2). Then for any subdend G’ of G we have

G'—F&0,;.

Proor. Assume G'—F€&0,;. Then there exists an AB(a bounded
analytic function) w=/f(z) in G,—F with |f(2)|£1, where G,={[z|<p<
1} G’. From the condition A there exists a sequence of dividing cutsI",, =
{z|=7y}: p ' w=r,<p’, on which W(F, z, R,)<e,, where {n’} is a
subsequence of {n}. ClearlyI',,NF=¢. ', divides G, into two parts. We
denote by wv,(v) the part containing T',,: m">n". Then {v,(b)} is a
determining sequence of p. For the simplicity put G=G, and G'=G,—F.
We remark. Let U(z) be an HB in X,(7,, a, &,,) — F such that |U(2) |<1.
Let U'(z)=H)": g=U(z) on @R, (7,, @, &,). Then

|U@)—U'(z) | £ W(F, z, ).
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Hence Os of U(s) onT,<0s of U'(z) onT,+2 Max W (F, z, €,)

z&€ln
<3e, e

Let G(z, z,) and G'(z, z,) : 2,&G’ be Green functions of G and G’ respec-
tively. Let n, be a number such that v, () CG and z,€ v, (p). Since G is an
end of a Riemann surface €0,, by the maximum principle

G (z,20) <M= Max G'(z 2): z€(G'Nv, (V).

2 E0Vn,(p)

Hence by (1)
Os of G'(z,2) onT,<3 e, M: n'>mn+1.

Sinc F is irregular at b, there exists a const. 6 >0 such that lim G'(z, z,) >

z—p

2¢. Let N,=Min G'(z, z,). Then

FASY A
G'(z, z0)<Max G'(z, z0) <N,+3Me, : z€v,(p), n'=Zn,+1.
z€ln

Now since ¢,—0, there exists a number », such that Nn/>376 cn'>mn, 1.e

I',=ov,(0HCCGE={zeG":G'(z, 2)>8}: n'>mnm.
and F is completely thin at p and by the proposition, any HP function in
G
G'=G—F vanishing on aG+ F is a multiple of G™(z, p):GIF[G(z, m]:
G(z, p)=—log |z|+log p. We show
lim f(z) exists.

zZ—)P
zeEG?

Let G¥(w, g) be a Green function of |w|<1. Then G*(f(z1), f(2))=
G'(z,, z,). Assume there exist sequences {pi} and {pz} such that

lim f(pi) =w,=w,=1lim f(p2). Then G*(f(2), f(p))=GCG'(g pr) : 1=1, 2.
Choose subsequence {pi.} of {pi} suchthat G'(z, p',)—an HP. Ui(z) :i=1,
2. By the proposition 1. U¥(z)=a; G*(z, ) : a;>0 by p,EG’. Then

00> SupMin(G¥(w, wy), G w, w,))=Min (ai, a:)) G™(z, »)>0.
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This is a contradiction. Now {pi} is an arbitrary sequence in G°. Hence

lim f(z) exists.
zngp"

In the following we suppose lim f(z2)=0, |[f(z)|=<1. We can find a
zZ—)p
zeG?

closed set F'DF without disturbing the condition 4 such that f(z)+0 on
oF’, f(z) is analytic on 9F’ and every point of 9F’ is regular. We can
suppose from the first f(z) and F satisfy the above conditions. Similarly
we can suppose also f(z)+0 on 8G. Now

log -ﬁ: S+ GG p)+ V(D) : 266

where S(z) is a non negative singular function, p; is a zero point of f(z) and
V (z) is a non negative quasibounded harmonic function. By the assumption
of F, zero points of f(z) has no accumulating point in G— F+ 3G+ oF
and V(z2)=H¢ : g=—log |f(z)| on 0F+8G. Since G is an end of a
Riemann surface €0,, such HS is uniquely determined and V (z)=—Ilog
| f(2)| on 8G+3F, though g is not bounded, by the existence of SPH. —log
| f(2) | and by the regularity of 8F. Hence S(z)=0 on 8G+ 9F and by the
proposition S(z)=b G™*(z, p) : c0o>b=0. For any two points z and ¢ in G’

log ‘m =Gf(2), f(@)=G'(z @). (2

Now there exists a sequence {p,} in G’ such that p,—p and G'(z, p,)—an
HP. U(z). Then f(p.)—0. By p,EG’° and by proposition U(z)=

G
a G*(z,0): G*(z, p):G{F G(z,1). a”>0 and &’ depends only on {p,}.

Putting p,=¢ and then n—oco. Then by 2) —log [f(2)|=a G™*(z, V).
Clearly G™*(z, p) is singular, hence

S(z)=bG™*(z, »): b=a>\0. @)

Let T(2)=% Gz p)+ V(2) and 7, Mmsé )> 2€T,. Assume 7=Iim

7.>0. Then we have at once T'(2)=#% S(z) by S(z2)=S,.(2) in G'—v, (p)
This is a contradiction. Hence =0 and there exists a number #, and a
point z’,, on " ,= 9w, (p) such that

T, —S(z ) L =,
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G
Now G™(z, p):GIF[G(z, p]<—log |z|+log p<—log |z|. By 7, =

Y exp(—‘%)zexp(—na—%% we have by —log [/ (2", IéB—ZbG'*(zy, P

0>log lf(z',,r)lg%)(—n'a—%’): n=mn,. 4

Re f(z2) and Im f(z) are HB.s in R,(7,, a, &,)—F. Then by (1)
If(2>—f(2,n> I <6£n’: 4 EF%

This means that the image f (9v,(p)) of 9v,(p) is contained in a circle C,=
{lw—f(z)|<6e,}. Put C*={|w—t|<p}:1>|t|+p, [t]|>p>0. Let
W (C¥ w) bethe H M of C¥withrespectto {|w|<1}. Then we have by
a brief computation

W (C® 0)<2 log |¢]/log p : 1t|<%.

Hence by (4) the value of H. M of f(8v,(p)) withrespectto |w|<1atw=
0 =-3b(n a+§2—r)/log be,,=1(n).

By the assumption lim #’/log &, =0, for given ¢ we can find a number m (1)
such that /( n’,,,(i))<—217. Hence we can find a subsequence {n;} of {n'}

satisfying / (n§)<%. In the sequel we attend to only this subsequence.

Then

; W (f (9v,,(1)), 0)<oco.

This measns §=3> f(0v,(p)) is irregular at w=0. Suppose Martin’

topology I¥ is defined over |w|<1. Then K (w, 0)=C log %: CG“w, 0)

: C is a const. Let v,=/{ lwl<%}. Then {vn,} 1s equivalent to {v,,(0)}

s 0,(0)={w M*dist(w, O)<—31—}, where ) “dist means the distance of WM™
Hence by the Remark 3
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lim , (G%(w, 0))=0. (5)
Compare G*(f(z), 0) and S(z). Since f(z)—0 as z—p in &, there exists
a number n(m) for any given number m such that
F(0v,, (M) Cvn: nizn(m). (6

Let 9,=f"'(f(dv,,(»). Then 7, Dy, (»). Since G*(f(z), 0)=S(z)=
bG™*(z, ) on ¥, and f(G—F) is contained in |w|<1, we have by D
f (@) =f(0v,(») and by 3)

Gy(f(2), ) zbG3, (2 1) 2bG7,, (2 0).

Since v,.(p) is a determining sequence, G73,,, (z, »=G"(z, p) in G—v,().
Hence G¥(f (2), 0)=2bG™(z, p)> 0. Also by (6)

n(GE(f(2),0)2bG73,, (2, ) =0bG"(z, p)>0. .
Let m—oo. Then by (5) G™*(z »)=0. This is a contradiction. Hence
G,_FEOAB

for any subend G’ of G.
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