On the Existence of bounded Analytic Functions in a lacunary End of a Riemann surface.

Zenjiro Kuramochi (Received March 17, 1986)

If a domain G in a Riemann surface R has a compact relative boundary ∂G , we call G an end. Let G be an end of a Riemann surface $\in O_g$. Suppose G has a boundary component \mathfrak{p} . The maximal number of linearly independent G. P. If the exists a sequence of G is called the G-dim of G-di

$$\overline{\lim}_{n} \min_{z \in \Gamma_{n}} G'(z, z_{0}) > 0,$$

we say F is completely irregular at \mathfrak{p} . Further if every Γ_n consists of an analytic curve, we say F is completely thin at \mathfrak{p} . Evidently if G is a punctured disk: $\{0 < |z| < 1\}$, F is completely thin at z = 0 if and only if F is irregular at z = 0.

We proved

THEOREM¹⁾ 1. Let G be an end of a Riemann surface $\in O_g$ with a boundary component \mathfrak{p} of H-dim= ∞ . If F is completely thin at \mathfrak{p} ,

$$G-F\in O_{AB}$$
.

For Riemann surfaces $\not\equiv O_g$ analogous theorems²⁾ are discussed before. For examples.

There exists a Riemann surface $R \in O_g$ with the following properties:

- 1) R has no singular boundary points with respect to Martin's topology.
- 2) There exists a boundary point p which is a singular point of second kind with respect to N-Martin's topology such that

$$G \stackrel{N}{\ni} p \text{ implies } G \in O_{AB}$$
,

where $G \stackrel{N}{\Rightarrow} p$ means G is a fine neighbourhood of p with respect to the

N-Martin's topology.

PROBLEM. Does there exist an end G of a Riemann surface $\in O_g$ with a boundary component \mathfrak{p} of H-dim=1 such that

$$G - F \stackrel{K}{\ni} p \text{ implies } G - F \in O_{AB}$$

for any closed set F in G?

where $G-F \stackrel{K}{\Rightarrow} p$ means that G-F is a fine neighbourhood of p relative to Martin's topology \mathfrak{M} over \overline{G} and p is uniquely determined minimal point of G over p with respect to \mathfrak{M} .

Now this problem is open. In this paper we shall discuss a boundary component of special type. For latter use we note some remarks.

REMARK 1. Let G be an end of $R \in O_g$ and let $\Delta(G)$ be the set of boundary components of G. Let $U_i(z): i=1, 2, \ldots, i_0$ be an HB (a bounded harmonic function) in $G+\partial G$. Then it is known, $U_i(z)$ is an HBD (a bounded and Dirichlet-bounded harmonic function) in G and there exists a sequence of curves $\{\Gamma_n\}$ in G, consisting of a finite number of analytic curves such that $\Gamma_n \to \Delta(G)$ as $n \to \infty$, Γ_n separates $\Delta(G)$ from ∂G and

$$\int_{\Gamma_n} \left| \frac{\partial}{\partial n} U_i(z) \right| ds \rightarrow 0 \text{ as } n \rightarrow \infty : i = 1, 2, ..., i_0.$$

REMARK 2. Let $G(z, z_0)$ be a Green function of G of $R \in O_g$ with a boundary component $\mathfrak p$ of H-dim=1. Then by $R \in O_g$, $G(z, z_0) < \max_{z \in \partial G'} G(z, z_0)$ on $G' \colon z_0 \in G - \overline{G}'$ for any subend G' of G, whence $G(z, z_0)$ is an HBD in G' and by Remark $1 \int_{\partial G} \frac{\partial}{\partial n} G(z, z_0) ds = 2\pi$. Let $\{p_i\}$ be a sequence such that $p_i \to \mathfrak p$ and $G(z, p_i) \to an$ HP. U(z). Then $\int_{\partial G} \frac{\partial}{\partial n} U(z) ds = \lim_i \int_{\partial G} \frac{\partial}{\partial n} G(z, p_i) ds = 2\pi$. Since $\mathfrak p$ is of H-dim=1, for any other sequence $\{q_i\}$, $\lim_i G(z, q_i)$ is also U(z). Hence $\lim_i G(z, p_i)$ exists for any sequence $\{p_i\}$ with $p_i \to \mathfrak p$. Put $G(z, \mathfrak p) = \lim_i G(z, p_i)$. Then any HP function in G vanishing on ∂G is a multiple of $G(z, \mathfrak p)$.

Remark 3. As for Martin's topology. Let R be a Riemann surface \in

 O_g . Let U(z) be an SPH (a positive superharmonic function) in R. Let F be a closed set in R. We denote by $U_F(z)$ the least SPH larger than U(z) on F. Suppose Martin's topology \mathfrak{M} is defined on $\overline{R}=R+\Delta$ (Δ is the boundary of R relative to \mathfrak{M}). For a point $p\in \overline{R}$, $U_p(z)$ is defined as $\lim_n U_{\overline{v}_n}(z)$, where v_n is a neighbourhood of p relative to \mathfrak{M}). Let Δ_1 be the set of minimal boundary points. Let $p\in R+\Delta_1$ and K(z,p) be the kernel of p. If

$$K_F(z, p) < K(z, p),$$

we say F is thin at p(or CF is a fine neighbourhood of p) and we denote by $CF \stackrel{K}{\Rightarrow} p$. Then it is easily seen that F is thin at p if and only if,

$$_{p}(K_{F}(z, p))=0.$$

In fact, suppose $CF \stackrel{K}{\ni} p$. Then $K(z,p) > K_F(z,p)$. Assume $_p(K_F(z,p)) > 0$, then $_p(K_F(z,p)) = aK(z,p) : a < 1$. K(z,p) is an HP and $K_F(z,p) - aK(z,p)$ is an SPH and = (1-a) K(z,p) on ∂F . By the definition of $K_F(z,p) K_F(z,p) - aK(z,p) \ge (1-a) K_F(z,p)$. This implies $aK_F(z,p) \ge aK(z,p)$. Hence a=0 and $_p(K_F(z,p)) = 0$. Conversely clearly $_p(K_F(z,p)) = 0$ implies $CF \stackrel{K}{\ni} p$.

Let $\Delta_{I, \delta}$ be the set of point q in Δ such that

$$\overline{\lim}_{\substack{\square 1\\ z \to q}} G(z, z_0) \geq \delta > 0.$$

We call $\Delta_I = \bigcup_{\delta > 0} \Delta_{I, \delta}$ the set of irregular points.

If an $H\!P\ U(z)$ satisfies following conditions:

- 1) U(z) is a singular function.
- 2) There exists a const. α not depending on M such that

$$D(\operatorname{Min}(M, U(z))) \leq M\alpha : M < \infty.$$

We call U(z) a G. G.(a generalized Green function). Then we proved³⁾. There exists a positive mass μ such that

$$U(z) = \int_{A} K(z, p) d\mu(p).$$

REMARK 4. Let U(z) be an HP in G. Let F be a closed set. We denote the greatest HP in G-F which is not larger than U(z) and vanishing on F (except a set of capacity zero) by $\prod_{G-F}^G [U(z)]$. Let V(z) be an HP in G-F vanishing on F (except a set of capacity zero). We denote by $\prod_{G-F}^G [V(z)]$ the least HP in G which is not smaller than V(z). Then

if
$$E = [V(z)] < \infty$$
, $I = [E = [V(z)] = V(z)] = V(z)$.

REMARK 5. Apply the results of the Remark 4 to an end G of $R \in O_g$ with a boundary component $\mathfrak p$ of $H\text{-}dim\!=\!1$. Let F be a closed set. Let $G(z,z_0)$ and $G'(z,z_0)$ be Green functions of G and G-F respectively. We suppose Martin's topologies $\mathfrak M$ and $\mathfrak M'$ are defined on \overline{G} and $\overline{G-F}$. Since $\mathfrak p$ is of $H\text{-}dim\!=\!1$, there exists only one minimal point $p(\text{relative to }\mathfrak M)$ over $\mathfrak p$ and K(z,p) is a multiple of $G(z,\mathfrak p)$. Then we have

PROPOSITION 1. F is irregular at \mathfrak{p} if and only if F is thin at \mathfrak{p} . If $G-F \overset{K}{\Rightarrow} \mathfrak{p}$, $G(z,\mathfrak{p}) - G_F(z,\mathfrak{p}) = \overset{G}{\overset{G}{\overset{G}{=}}} [G(z,\mathfrak{p})]$ is minimal and there exists an \mathfrak{M}' -minimal point q over \mathfrak{p} . Hence let $\{\mathfrak{p}_i\}$ be a sequence in G-F such that $\mathfrak{p}_i \to \mathfrak{p}$ and $G'(z,\mathfrak{p}_i) \to an$ HP. U(z). Then U(z) is a multiple of $\overset{G}{\overset{G}{=}} [G(z,\mathfrak{p})]$.

2. Further if F is completely irregular at \mathfrak{p} , there exists no other \mathfrak{M}' -points except q over \mathfrak{p} . Hence any singular function in G'=G-F is a multiple of $\prod_{G-F}^G [G(z,\mathfrak{p})]$, especially K'(z,q) is also its multiple.

Proof of 1). Suppose F is irregular at \mathfrak{p} , then there exists a sequence $\{p_i\}$ tending to \mathfrak{p} such that $G_F(z,p_i)$ and $G'(z,p_i)$ tend to an $SPH\ V(z)$ in G and to an HP. G(z) in G' respectively and $G'(p_i,z_0) \geq \delta > 0$, whence G(z) > 0. Evidently $V(z) = G(z,\mathfrak{p})$ on F. By definition

$$G_F(z, \mathfrak{p}) \leq V(z)$$
.

$$\begin{split} G(z,\,\mathfrak{p})-G_F(z,\,\mathfrak{p})&\geq G(z,\,\mathfrak{p})-V(z)=\lim_i(G(z,\,p_i)-G_F(z,\,p_i))=\\ \lim_i\ G'(z,\,p_i)&=G(z). \end{split}$$
 Hence

$$G-F\stackrel{\scriptscriptstyle K}{\ni}p.$$

Next suppose $G-F\stackrel{K}{\Rightarrow}p$. Let $\{R_n\}$ be an exhaustion of R, where G is an end of R. Put $F_m=F\cap \bar{R}_m$. Then $G_{F_m}(z,\,\mathfrak{p})\uparrow G_F(z,\,\mathfrak{p})\leq G(z,\,\mathfrak{p})$ as $m\to\infty$. Since F_m is compact, $G(z,\,p_i)-G_{F_m}(z,\,p_i)=G'_m(z,\,p_i):\,p_i\in G-F_m$, where $G'_m(z,\,p_i)$ is a Green function of $G-F_m$ and

$$D(\operatorname{Min}(M, G'_{m}(z, p_{i}))) = 2\pi M : M < \infty.$$

By the lower semicontinuity of Dirichlet integrals, by letting $i\to\infty$ and then $m\to\infty$, $D(\text{Min}(M,(G(z,\mathfrak{p})-G_F(z,\mathfrak{p})))\leq 2\pi M$. Evidently $G(z,\mathfrak{p})-G_F(z,\mathfrak{p})$ is a singular function in G' and is a G. G. in G'. By Remark 3 $0< G(z,\mathfrak{p})-G_F(z,\mathfrak{p})=\int_{\Delta I} K'(z,q)\,d\mu(q)$, where K'(z,q) is the kernel of q with respect to \mathfrak{M}' .

Let I be the set of irregular point of F in G. Then I is of capacty zero. Since $G(z, \mathfrak{p}) - G_F(z, \mathfrak{p}) < \infty$ in G, μ must be =0 on I. Hence μ must lie over $\Delta^{\mathfrak{m}'}(\mathfrak{p}) = \mathfrak{M}'$ -boundary points over \mathfrak{p} . i. e. there exists a point q in Δ_I with reapect to \mathfrak{M}' and there exists a sequence $\{q_i\}$ in G' such that $\overline{\lim_{q \to q}} G'(q_i, z_0) > 0$. Hence F is irregular at \mathfrak{p} .

By definition $G(z, \mathfrak{p}) - G_F(z, \mathfrak{p}) \leqq \overset{G}{\underset{G-F}{I}} [G(z, \mathfrak{p})]$. Put $G_{n+i} = G \cap R_{n+i}$. Let $U_{n,n+i}(z)$ be the solution of the Dirichlet problem $H_{\varphi}^{G_{n+i}-F_n}$ in $G_{n+i}-F_n$ with boundary value $\varphi = G(z, \mathfrak{p})$ on $F_n, = 0$ elsewhere. Then $U_{n,n+i}(z) \nearrow G_{F_n}(z, \mathfrak{p})$ as $i \to \infty$ and $G_{F_n}(z, \mathfrak{p}) \uparrow G_F(z, \mathfrak{p})$ as $n \to \infty$. Let $V_{n+i}(z) = H_{\psi}^{G_{n+i}-F}$: $\psi = G(z, \mathfrak{p})$ on $\partial G_{n+i} - F = 0$ elsewhere. Then $V_{n+i}(z) \downarrow I_{G-F}[G(z, \mathfrak{p})]$ as $n+i \to \infty$. Now

$$G(z, \mathfrak{p}) - U_{n, n+i}(z) \ge V_{n+i}(z).$$

Let $i\to\infty$ and then $n\to\infty$. Then $G(z,\mathfrak{p})-G_F(z,\mathfrak{p})\geqq I[\mathop{G}_{G-F}^G(z,\mathfrak{p})]$. Thus $G(z,\mathfrak{p})-G_F(z,\mathfrak{p})=\mathop{I}_{G-F}^G[G(z,\mathfrak{p})]$. The minimality of $G(z,\mathfrak{p})$ implies the minimality of $\mathop{I}_{G-F}^G[G(z,\mathfrak{p})]$ in G'. Hence the mass μ must be a point mass on the uniquely determined point q in $\Delta^{\mathrm{in'}}$ over \mathfrak{p} . Let $U(z)=\lim_i G'(z,p_i)$. Then $U(z)\leqq G(z,\mathfrak{p})$ and $\mathop{E}_{G-F}^G[U(z)]<\infty$. Hence $U(z)=\mathop{I}_{G'}^G[\mathop{E}_{G'}^G[U(z)]]$ $\leqq \mathop{I}_{G'}^G[G(z,\mathfrak{p})]$ and I(z) is a multiple of $\mathop{I}_{G-F}^G[G(z,\mathfrak{p})]$.

2) By the definition, there exists a sequence of curves $\{\Gamma_n\}$ separating \mathfrak{p}

from ∂G and $\min_{z \in \Gamma_n} G'(z, z_0) > \delta > 0$. Let q be \mathfrak{M}' -minimal point over \mathfrak{p} . Then q is \mathfrak{M}' -accessible. There exists a curve $\Lambda \mathfrak{M}'$ -tending to q and intersecting Γ_n at q_n .

$$K'(z, q_n) = \frac{G'(z, q_n)}{G'(z_0, q_n)} \le \frac{G'(z, q_n)}{\delta} \le \frac{G(z, q_n)}{\delta}, K'(z, q)$$

$$= \lim_{n} K'(z, q_n) \le \frac{G(z, \mathfrak{p})}{\delta} \text{ and } \mathop{E}_{G-F}^{G}[K'(z, q)] < \infty.$$

Hence $K'(z,q) = I[E[K'(z,q)]] \leq \frac{1}{\delta} \int_{G-F}^{G} [G(z,\mathfrak{p})]$ and K'(z,q) is a multiple of $\int_{G-F}^{G} [G(z,\mathfrak{p})]$. Hence theree exists only one \mathfrak{M}' -minimal point q over \mathfrak{p} .

PROBLEM. Under the condition: \mathfrak{p} is of H-dim=1 and F is irregular at \mathfrak{p} (without completely irregularity), can we conclude that there exists only only one \mathfrak{M} '-minimal point over \mathfrak{p} ?

C-type boundary component. Concentrated rings⁵⁾.

Let $\Omega = \{0 < |z| < 1\}$ be a punctured disk in the z-plane. Let $\Re = \{r \exp(-2\alpha) < |z| < r \exp(2\alpha)\}$: $\alpha > 0$ be a ring. Let S_{ij} be a sector such that

$$S_{ij} = \{j-1\} \beta_i \le \arg z \le j \beta_i\}$$
: $\beta_i = 2\pi/2^{i-1}$: $j=1, 2, 3, ..., 2^{i-1}, i=1, 2, 3, ..., i_0$.

i. e. $S_{1,1}$, $S_{2,1}$, S_{22} , S_{31} , S_{32} , S_{33} , S_{34} , $S_{4,1}$, ...

Let L_{ij} be a half line such that

$$L_{ij} = \{ \arg z = (j-1+\frac{1}{2})\beta_i \} : j=1, 2, 3, ..., 2^{i-1}, i=1, 2, 3, ..., i_0.$$

Let $s_{i,k}$ and $s'_{i,k}$ be slits such that, by putting $\gamma = \frac{\alpha}{2i_0}$, $s_{ik} = \{r \exp(2\alpha + (2i - 1)\gamma) \le |z| \le r \exp(-2\alpha + 2i\gamma)$, arg $z = k\eta\}$. $s'_{ik} = \{r \exp(2\alpha - 2i\gamma)\} \le |z| \le r \exp(2\alpha - (2i - 1)\gamma)$, arg $z = k\eta\}$. $k = 1, 2, 3, 4, \ldots$, $(2^{i_0}m_0)$, $i = 1, 2, 3, \ldots$, i_0 and $\eta = 2\pi/(2^{i_0} \times m_0)$. For an i, identify edges of s_{ik} and s'_{ik} in S_{ij} lying symmetrically with respect to L_{ij} : $j = 1, 2, 3, \ldots, 2^{i-1}$. Such operation is performed for $i = 1, 2, 3, \ldots, i_0$. Then we have a generalized ring \Re' . We see for any $\varepsilon > 0$, we can find i_0 and m_0^{5} such that

Os of
$$U(z)$$
 on $\{|z|=\rho\}<\epsilon: r \exp(-\frac{3\alpha}{4}) \le \rho \le r \exp(\frac{3\alpha}{4})$

for any HB function U(z) with $|U(z)| \le 1$ in \Re' , where Os means the oscillation of U(z). Let $\{\varepsilon_n\}$ be a sequence. We denote such \Re' by $\Re'(r, \alpha, \varepsilon_n)$ and call it a concentrated ring with deviation ε_n . Let $\Omega = \{0 < 1\}$ |z|<1, $a>4\alpha>0$ and $r_n=\exp(-na)$. Construct a concentrated ring $\Re'(r_n, \alpha, \varepsilon_n)$ from a ring $\Re_n = \{r_n \exp(-2\alpha) < |z| < r_n \exp(2\alpha)\}, n = 1$, 2, 3,... and make the part $\Omega - \sum \Re_n$ remain as original. Then $G = \Omega \sum \Re_n + \sum \Re'(r_n, \alpha, \varepsilon_n)$ is an end G of a Riemann surface $\in O_g$. Since every $\Re'(r_n, \alpha, \varepsilon_n)$ contains an ordinary ring with module 2α , G has a boundary component \mathfrak{p} of H-dim=1 by M. Heins's⁶⁾ theorem. In the following we denote by z a point in G also. Then evidently $G(z, \mathfrak{p}) = -\log |z|$. We call such boundary component \mathfrak{p} a C-type component defined by

$$\Re'_n(\exp(-na), \alpha, \varepsilon_n): a > 4\alpha$$
.

Let y be a C-type boundary component of G defined by $\Re'_n(r_n, \alpha, \varepsilon n)$: $r_n = \exp(-na)$, where $\lim \varepsilon_n = 0$ and $\lim (n/\log \varepsilon_n) = 0$. Let F be a closed set in G such that G-F is connected, F be irregular at $\mathfrak p$ and F be so slightly distributed somewhere as there exists a subsequece $\{n'\}$ of $\{n\}$ such that F satisfies the condition A:

$$\min_{\rho''_{n} \leq \rho \leq \rho'_{n}} \left(\max_{|z|=\rho} \left(W(F, z, \Re'_{n'}) \right) < \varepsilon_{n'} : \\ \rho'_{n'} = r_{n} \exp\left(\frac{3\alpha}{4} \right), \quad \rho''_{n'} = r_{n} \exp\left(-\frac{3\alpha}{4} \right),$$

where $W(F, z, \Re'_n)$ is an H. M. (a harmonic measure) of F relative to $\Re'_n(r_n, \alpha, \varepsilon_n)$. Then for any subdend G' of G we have

$$G'-F\in O_{AB}$$
.

Assume $G'-F \notin O_{AB}$. Then there exists an AB (a bounded Proof. analytic function) w = f(z) in $G_{\rho} - F$ with $|f(z)| \le 1$, where $G_{\rho} = \{|z| < \rho < 1\}$ 1) $\subset G'$. From the condition A there exists a sequence of dividing cuts $\Gamma_{n'}$ = $\{|z|=r'_{n'}\}: \rho''_{n'} \leq r'_{n'} \leq \rho'_{n'} \text{ on which } W(F, z, \mathfrak{R}'_{n'}) < \varepsilon_{n'}, \text{ where } \{n'\} \text{ is a }$ subsequence of $\{n\}$. Clearly $\Gamma_{n'} \cap F = \phi$. $\Gamma_{n'}$ divides G_{ρ} into two parts. We denote by $v_{n'}(\mathfrak{p})$ the part containing $\Gamma_{m'}: m' > n'$. Then $\{v_{n'}(\mathfrak{p})\}$ is a determining sequence of \mathfrak{p} . For the simplicity put $G = G_{\rho}$ and $G' = G_{\rho} - F$. We remark. Let U(z) be an HB in $\Re'_n(r_{n'}, \alpha, \varepsilon_{n'}) - F$ such that $|U(z)| \le 1$. Let $U'(z) = H_q^{\Re_{n'}}$: g = U(z) on $\partial \Re'_{n'}(r_{n'}, \alpha, \epsilon_{n'})$. Then

$$|\,U(z)-U'(z)\,|\!\leq W\,(F,\,z,\,\Re'_{n'}).$$

Hence Os of U(s) on $\Gamma_{n'} \leq Os$ of U'(z) on $\Gamma_{n'} + 2 \max_{z \in \Gamma_{n'}} W(F, z, \varepsilon_{n'})$

$$\leq 3\varepsilon_{n'}$$
 (1)

Let $G(z, z_0)$ and $G'(z, z_0)$: $z_0 \in G'$ be Green functions of G and G' respectively. Let n_0 be a number such that $v_{n_0}(\mathfrak{p}) \subset G$ and $z_0 \notin v_{n_0}(\mathfrak{p})$. Since G is an end of a Riemann surface $\in O_g$, by the maximum principle

$$G'(z, z_0) < M = \max_{z \in \partial v_{n_0}(y)} G'(z, z_0) : z \in (G' \cap v_{n'}(y)).$$

Hence by (1)

Os of
$$G'(z, z_0)$$
 on $\Gamma_{n'} < 3 \varepsilon_{n'} M : n' > n_0 + 1$.

Sinc F is irregular at \mathfrak{p} , there exists a const. $\delta > 0$ such that $\overline{\lim}_{z \to \mathfrak{p}} G'(z, z_0) > 0$

28. Let
$$N_{n'} = \underset{z \in \Gamma_{n'}}{\text{Min}} G'(z, z_0)$$
. Then

$$G'(z, z_0) < \max_{z \in \Gamma_{n'}} G'(z, z_0) \le N_{n'} + 3M \varepsilon_{n'} : z \in v_{n'}(\mathfrak{p}), n' \ge n_0 + 1.$$

Now since $\epsilon_n \rightarrow 0$, there exists a number n_1 such that $N_{n'} > \frac{3\delta}{2}$: $n' > n_1$, i. e.

$$\Gamma_{n'} = \partial v_{n'}(\mathfrak{p}) \subset G^{\mathfrak{s}} = \{ z \in G' : G'(z, z_0) > \delta \} : n' > n_1.$$

and F is completely thin at $\mathfrak p$ and by the proposition, any HP function in G'=G-F vanishing on $\partial G+F$ is a multiple of $G'^*(z,\mathfrak p)=\prod_{G-F}^G[G(z,\mathfrak p)]$: $G(z,\mathfrak p)=-\log|z|+\log\rho$. We show

$$\lim_{\substack{z \to \mathfrak{p} \\ z \in G^{\mathfrak{d}}}} f(z) \text{ exists.}$$

Let $G^w(w,q)$ be a Green function of |w|<1. Then $G^w(f(z_1), f(z_2)) \ge G'(z_1, z_2)$. Assume there exist sequences $\{p_n^1\}$ and $\{p_n^2\}$ such that $\lim_n f(p_n^1) = w_2 \ne w_2 = \lim_n f(p_n^2)$. Then $G^w(f(z), f(p_n^i)) \ge G'(z, p_n^i) : i = 1, 2$. Choose subsequence $\{p_n^i\}$ of $\{p_n^i\}$ such that $G'(z, p_{n'}^i) \to \operatorname{an} HP$. $U^i(z) : i = 1, 2$. By the proposition 1. $U^i(z) = \alpha_i G'^*(z, \mathfrak{p}) : \alpha_i > 0$ by $p_n^i \in G^{\mathfrak{F}}$. Then

$$\infty > \sup_{w} (\min(G^{w}(w, w_{1}), G^{w}(w, w_{2})) \ge (\min(\alpha_{1}, \alpha_{2})) G^{*}(z, p) > 0.$$

This is a contradiction. Now $\{p_n^i\}$ is an arbitrary sequence in G^{δ} . Hence $\lim_{\substack{z \to 0 \\ z \in G^{\delta}}} f(z)$ exists.

In the following we suppose $\lim_{\substack{z\to \mathfrak{p}\\z\in G^s}}f(z)=0,\ |f(z)|\leq 1.$ We can find a

closed set $F' \supset F$ without disturbing the condition A such that $f(z) \neq 0$ on $\partial F'$, f(z) is analytic on $\partial F'$ and every point of $\partial F'$ is regular. We can suppose from the first f(z) and F satisfy the above conditions. Similarly we can suppose also $f(z) \neq 0$ on ∂G . Now

$$\log \frac{1}{|f(z)|} = S(z) + \sum_{i} G'(z, p_i) + V(z) : z \in G'.$$

where S(z) is a non negative singular function, p_i is a zero point of f(z) and V(z) is a non negative quasibounded harmonic function. By the assumption of F, zero points of f(z) has no accumulating point in $G-F+\partial G+\partial F$ and $V(z)=H_g^{G'}:g=-\log|f(z)|$ on $\partial F+\partial G$. Since G is an end of a Riemann surface $\in O_g$, such $H_g^{G'}$ is uniquely determined and $V(z)=-\log|f(z)|$ on $\partial G+\partial F$, though g is not bounded, by the existence of SPH. $-\log|f(z)|$ and by the regularity of ∂F . Hence S(z)=0 on $\partial G+\partial F$ and by the proposition S(z)=b $G'^*(z, \mathfrak{p}):\infty>b\geq 0$. For any two points z and q in G'

$$\log \left| \frac{1 - \bar{f}(q) f(z)}{f(z) - f(q)} \right| = G^{w}(f(z), f(q)) \ge G'(z, q). \tag{2}$$

Now there exists a sequence $\{p_n\}$ in $G^{\mathfrak{d}}$ such that $p_n \to \mathfrak{p}$ and $G'(z, p_n) \to \mathfrak{a}$ and HP. U(z). Then $f(p_n) \to 0$. By $p_n \in G^{\mathfrak{d}}$ and by proposition $U(z) = a' G'^*(z, \mathfrak{p}) : G'^*(z, \mathfrak{p}) = \int_{G-F}^G G(z, \mathfrak{p}).$ a' > 0 and a' depends only on $\{p_n\}$.

Putting $p_n = q$ and then $n \to \infty$. Then by 2) $-\log |f(z)| \ge a' G'^*(z, \mathfrak{p})$. Clearly $G'^*(z, \mathfrak{p})$ is singular, hence

$$S(z) = b G'^*(z, \mathfrak{p}) : b \ge a' > 0.$$
 (3)

Let $T(z) = \sum_i G(z, p_i) + V(z)$ and $\eta_{n'} = \operatorname{Min} \frac{T(z)}{S(z)}$: $z \in \Gamma_{n'}$. Assume $\eta = \overline{\lim_{n'}} \eta_{n'} > 0$. Then we have at once $T(z) \ge \eta$ S(z) by $S(z) = S_{\Gamma_{n'}}(z)$ in $G' - v_{n'}(\mathfrak{p})$. This is a contradiction. Hence $\eta = 0$ and there exists a number n_2 and a point $z'_{n'}$ on $\Gamma_{n'} = \partial v_{n'}(\mathfrak{p})$ such that

$$T(z'_{n'} \leq \frac{1}{2}S(z'_{n'}): n' \geq n_2.$$

Now $G'^*(z, \mathfrak{p}) = \int_{G-F}^{G} [G(z, \mathfrak{p})] \leq -\log |z| + \log \rho \leq -\log |z|$. By $r'_{m'} \geq r_{n'} \exp(-\frac{3\alpha}{4}) = \exp(-na - \frac{3\alpha}{4})$, we have by $-\log |f(z'_{n'})| \leq \frac{3b}{2}G'^*(z'_{n'}, \mathfrak{p})$

$$0 > \log |f(z'_{n'})| \ge \frac{3b}{2} (-n'a - \frac{3\alpha}{4}) : n' \ge n_2.$$
 (4)

Re f(z) and Im f(z) are *HB*.s in $\Re'_{n'}(r_{n'}, \alpha, \varepsilon_{n'}) - F$. Then by (1) $|f(z) - f(z'_{n'})| < 6\varepsilon_{n'} : z \in \Gamma_{n'}.$

This means that the image $f(\partial v_{n'}(\mathfrak{p}))$ of $\partial v_{n'}(\mathfrak{p})$ is contained in a circle $C_{n'} = \{ |w-f(z'_{n'})| < 6\varepsilon_{n'} \}$. Put $C^w = \{ |w-t| < \rho \} : 1 > |t| + \rho$, $|t| > \rho > 0$. Let $W(C^w, w)$ be the H. M of C^w with respect to $\{ |w| < 1 \}$. Then we have by a brief computation

$$W(C^w, 0) < 2 \log |t| / \log \rho : |t| < \frac{1}{4}.$$

Hence by (4) the value of H. M of $f(\partial v_{n'}(\mathfrak{p}))$ with respect to |w| < 1 at $w = 0 \le -3b(n'a + \frac{3\alpha}{4})/\log 6\varepsilon_{n'} = l(n')$.

By the assumption $\lim_{n'} n'/\log \varepsilon_{n'} = 0$, for given i we can find a number m(i) such that $l(n'_{m(i)}) < \frac{1}{2^i}$. Hence we can find a subsequence $\{n'_i\}$ of $\{n'\}$ satisfying $l(n'_i) < \frac{1}{2^i}$. In the sequel we attend to only this subsequence. Then

$$\sum_{i} W(f(\partial v_{n_{i}}(\mathfrak{p})), 0) < \infty.$$

This measns $\mathfrak{F} = \sum_i f(\partial v_{n_i}(\mathfrak{p}))$ is irregular at w = 0. Suppose Martin' topology \mathfrak{M}^w is defined over $|w| \leq 1$. Then $K(w,0) = C \log \frac{1}{|w|} = C G^w(w,0)$: C is a const. Let $v_m = \{|w| < \frac{1}{m}\}$. Then $\{v_m\}$ is equivalent to $\{v_m(0)\}$: $v_n(0) = \{w: \mathfrak{M}^w\text{-dist}(w,0) < \frac{1}{m}\}$, where $\mathfrak{M}^w\text{-dist}$ means the distance of \mathfrak{M}^w . Hence by the Remark 3

On the Existence of bounded Analytic Functions in a lacunary End of a Riemann surface. 107

$$\lim_{w} \overline{v}_{m}(G_{\mathfrak{F}}^{w}(w,0)) = 0.$$
 (5)

Compare $G^w(f(z), 0)$ and S(z). Since $f(z) \rightarrow 0$ as $z \rightarrow \mathfrak{p}$ in $G^{\mathfrak{s}}$, there exists a number n(m) for any given number m such that

$$f(\partial v_{n'}(\mathfrak{p})) \subset v_m \colon n'_i \ge n(m). \tag{6}$$

Let $\tilde{v}_{n_i'}=f^{-1}(f(\partial v_{n_i'}(\mathfrak{p}))$. Then $\tilde{v}_{n_i'}\supset \partial v_{n_i'}(\mathfrak{p})$. Since $G^w(f(z), 0)\geq S(z)=bG'^*(z,\mathfrak{p})$ on $\tilde{v}_{n_i'}$ and f(G-F) is contained in |w|<1, we have by $\mathfrak{F}\supset f(\tilde{v}_n)=f(\partial v_{n_i'}(\mathfrak{p}))$ and by 3)

$$G_{\mathfrak{F}}^{w}(f(z), 0) \geq bG_{v_{n_i}}^{\prime *}(z, \mathfrak{p}) \geq bG_{\partial v_{n_i}}^{\prime *}(z, \mathfrak{p}).$$

Since $v_{n_i'}(\mathfrak{p})$ is a determining sequence, $G'^*_{\partial v_{n_i}}(z,\mathfrak{p}) = G'^*(z,\mathfrak{p})$ in $G - v_{n_i'}(\mathfrak{p})$. Hence $G^w_{\mathfrak{F}}(f(z),0) \ge bG'^*(z,\mathfrak{p}) > 0$. Also by (6)

$$_{\sigma_{m}}(G_{\mathfrak{R}}^{w}(f(z),0)) \ge bG_{\partial v_{n}}^{**}(z,\mathfrak{p}) = bG^{**}(z,\mathfrak{p}) > 0.$$
 (7)

Let $m\to\infty$. Then by (5) $G'^*(z, y)=0$. This is a contradiction. Hence

$$G'-F\in O_{AB}$$

for any subend G' of G.

References

- [1] Z. KURAMOCHI: Analytic functions in a neighbourhood of irregular boundary points, Hokkaido Math. J. V, 97-119 (1976)
- [2] Z. KURAMOCHI: On Iversen's property and the existence of bounded analytic functions, Hokkaido Math. J. XII, 147–198 (1983)
 - Z. KURAMOCHI: Anaytic functions in a neighbourhood of boundary points of Riemann surfaces, Kodai Math. Sem. Rep. 27, 62-83 (1976).
- [3] Z. KURAMOCHI: On quasi-Dirichlet bounded harmonic functions, Hokkaido Math. J. VIII, 1–22 (1979).
- [4] Z. KURAMOCHI: Relations between harmonic dimensions, Proc. Japan Acad. 7, 576–580 (1954).
- [5] Z. KURAMOCHI: Singular points of Riemann surfaces, J. Fac. Sci. Hokkaido Univ. 16, 80-148 (1962).
- [6] M. HEINS: Riemann surfaces of infinite genus, Ann. Math. 55, 296-317 (1950).

Hokkaido Institute of Technology Teine, Sapporo

Hokkaido University (Professor Emeritus) Sapporo Japan