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Introduction.

An answer to the question whether, for a given complex-valued
harmonic function f in the open unit disk D, there exists a finite measure on
[-\pi, \pi] ( i . e . on the unit circle \Pi ) such that f is the Poisson integral of this
measure can be given in terms of the family of functions \{f_{r} ; 0\leq r<1\}

defined on the unit circle by

(1) f_{r} : e^{i\theta}\vdasharrow f(re^{i\theta}) , \theta\in[-\pi, \pi] .

Namely, such a measure exists if and only if there exists a constant \alpha ,

independent of r, such that

\int_{-\pi}^{\pi}|f_{r}(e^{i\theta})|d\theta\leq\alpha,

for each 0\leq r<1 . This condition means that the linear maps \Phi_{r} , 0\leq r<1 ,

from the space C(\Pi) of continuous functions on the unit circle (equipped

with the uniform norm) into the complex numbers defined by

(2) \Phi_{r}(\psi)=\int_{-\pi}^{\pi}\psi(\theta)f_{r}(e^{i\theta})d\theta, \psi\in C(\Pi) ,

map the unit ball of this space into a bounded set independent of r.
Just as well known is the criterion that f is the Poisson integral of an

integrable function on II if and only if the net of functions \{f_{r},\cdot 0\leq r<1\} is
Cauchy in the sace L^{1}(\Pi) .

If f is a harmonic function in D, but now with values in a Banach space
X, in which case the family of functions \{f_{r} : 0\leq r<1\} also assumes its
values in the space X, then it is natural to ask whether the classical results
for numerical-valued functions have vector analogues which characterize f
as the Poisson integral of an X -valued measure or integrable function on the
unit circle. The aim of this note is to show that this is indeed the case.
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It turns out that for a harmonic function f : Darrow X the maps (2) can
again be formed, but now with values in X. Then there exists an X-valued
vector measure on the unit circle such that f is its Poisson integral if and only
if the associated operators \{\Phi_{r} ; 0\leq r<1\} map the unit ball of C(\Pi) into a
weakly compact set not depending on r (cf. Theorem 2. 1).

It is well known that f is the Poisson integral of an X-valued Bochner
integrable function on II if and only if the net \{f_{r} ; 0\leq r<1\} is Cauchy in the
space L^{1}(\Pi, X) of X -valued Bochner integrable functions on the unit circle
\Pi ; see [4; Th\’eor\‘eme 3] or [1: Theorem 2. 1]. The essential point in this
case is that the space L^{1}(\Pi, X) is complete, [2 ; p. 50]. In practice the
requirement of Bochner integrability is often unduely restrictive and it is,
therefore, desirable to have available criteria which ensure that f is the
Poisson integral of a Pettis integrable function. Unfortunately, unlike L^{1}

(\Pi, X) the space of X -valued Pettis integrable functions is not in general
complete for the topology of uniform convergence of indefinite integrals.
This difficulty is overcome in a somewhat novel way in \S 3 and is possible due
to some recent work of S. Okada which characterizes the completion of the
space of strongly measurable, Pettis integrable functions for the topology of
uniform convergence of indefinite integrals, as a space of Pettis integrable
functions, not with values in X itself, but with values in an auxiliary space
containing a copy of the original space X.

1. Preliminaries.

For a vector-valued function there are many possible ways of defining
measurability and integrability. Some of these definitions may be con-
sidered as natural extensions of the numerical-valued case. This is in
particular true of the notion of strong measurability which will suffice for the
purposes of this note. In this section we give the basic definitions and results
concerning vector measures and integrability of vector-valued functions
which are needed in the sequel.

Let D=\{z\in C:|z|<1\} denote the open unit disc in the complex plane
C and \Pi=\{z\in C:|z|=1\} denote its boundary which we will often identify
with the interval [-\pi, \pi] in the obvious way. Accordingly, it is tacitly
assumed that functions defined on [-\pi, \pi] have equal values at the
endpoints. The \sigma -algebra of Borel subsets of the unit circle is denoted by B.
The space of continuous linear functionals and the space of all linear
functionals on a Banach space X are denoted by X’ and X^{*} , respectively.

Let X be a Banach space. Then an X-valued function f defined in an
interval (a, b) is said to be differentiate at a point \xi\in(a, b) if there exists
an element f’(\xi) of X, necessarily unique, such that
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f’( \xi)=\lim_{\omegaarrow\xi}\sigma(\omega)-f(\xi))/(\omega-\xi) ,

where the limit exists in the norm topology of X. The function f is said to
be differentiate in (a, b) if it is differentiate at each point of the interval.
This definition extends to higher derivatives and also to partial derivatives of
X -valued functions of two variables with domain an open subset of H in an
obvious way.

A function f : Darrow X is called harmonic if it has continuous partial
derivatives up to order (at least) two and satisfies Laplace’s equation

((\partial^{2}f/\partial x^{2})+(\partial^{2}f/\partial y^{2}))(z)=0 ,

at each point z\in D where, as usual, x and y denote the (real) variables
corresponding to the real and imaginary parts of points in D, respectively,
and elements of D are considered as points in R.

Let X be a Banach space. A map m : Barrow X is a vector measure if it
is \sigma -additive. For each x’\in X’- the C-valued measure Earrow\langle m(E) , x9 ,
E\in B, is denoted by \langle m, x) . Its variation is denoted by |\langle m, x^{\cap}) | . The
semivariation of m is the set function ||m|| defined by

||m||(E)= \sup\{|\langle m, \chi*|(E) ; ||x’||\leq 1\} , E\in B.

The number ||m||(\Pi) is called the total semivariation of m. The function m
arrow||m||(\Pi) is a norm for the space of X -valued vector measures on B.

A vector measure m : Barrow X is of finite variation if there exists a
non-negative finite measure \nu on B such that ||m(E)||\leq\nu(E) for each set
E\in B. The smallest such measure \nu (in the sense of [2; p. 3]) is called the
variation measure of m and is denoted by |m| .

Let m : Barrow X be a vector measure. A complex-valued, B-measurable
function f on II is said to be m-integrable if it is integrable with respect to
every measure \langle m, x9 , x’\in X’- and if, for every set E\in B, there exitst an
element \int_{E}fdm of X such that

\langle\int_{E}fdm, x^{A}>= \int_{E}fd\langle m, x* , x’\in X’

The X-valued mapping

fm : E arrow\int_{E}fdm, E\in B,

is called the indefinite integral of f with respect to the measure m. The
Orlicz-Pettis lemma implies that it is a vector measure.
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For each 0\leq r<1 define non-negative, 2\pi -periodic, continuous
function P_{r} by

(3) P_{r}(\theta)=(1-r^{2})/ ( 1+r^{2}-2r cos \theta ), \theta\in[-\pi, \pi] .

It is clear that each function P_{r} , 0\leq r<1 , is symmetric about \theta=0 . The
family of functions P_{r} , 0\leq r<1 , usually called the Poisson kernel, is an
approximate identity for L^{1} of the circle.

Let m : Barrow X be a vector measure. If 0\leq r<1 , then for each \theta\in[-\pi ,
\pi] the function tarrow P_{r}(\theta-t) , t\in[-\pi, \pi] , is certainly bounded and
B -measurable and, hence, is m -integrable, [8: II Lemma 3. 1]. According-
ly, it is possible to define the Poisson integral of m to be the function
m*P : Darrow X given by

(4) (m*P)(re^{i\theta})=(2 \pi)^{-1}\int_{-\pi}^{\pi}P_{r}(\theta-t)dm(t) ,

for each point re^{i\theta}\in D. It follows, from the inequality || \int fdm||\leq||f||_{\infty}||m||

(\Pi) , for example, valid for bounded Borel functions f on \Pi , that m*P is an
X -valued, harmonic function in D.

Let X be a Banach space. A function f : \Piarrow X is said to be Pettis
integrable with respect to Lebesgue measure \lambda on II if the function

\langle f, x9 : tarrow\langle f(t) , x9 , t\in\Pi ,

is \lambda -integrable for each x’\in X’ . and if, for every set E\in B, there exists an
element \int_{E}fd\lambda of X such that

\langle\int_{E}fd\lambda , x*= \int_{E}\langle f, x9d\lambda , x’\in X’

The Orlicz-Pettis lemma implies that the indefinite integral of f with respect

to \lambda , that is, the set function f\lambda : E arrow\int_{E}fd\lambda , E\in B, is an X -valued vector
measure; its total semivariation is given by

(5) ||ffl||= \sup\{\int_{\Pi}|\langle f, x9|d\lambda : ||x’||\leq 1\} .

The Poisson integral, f*P, of f, is defined to be the Poisson integral of its
indefinite injegral fX . Since for each point re^{i\theta}\in D the X -valued function
tarrow P_{r}(\theta-t)f(t) , t\in[-\pi, \pi] , is again Pettis \lambda -integrable, it follows that

(f*P)(re^{i\theta})=(2 \pi)^{-1}\int_{-\pi}^{\pi}P_{r}(\theta-t)f(t)d\lambda(t) .
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An X-valued function f on the unit circle is said to be strongly

measurable (with respect to \lambda ) if there exists a sequence of B-simple

functions f_{n} : \Piarrow X, n=1,2 , \ldots , such that f_{n}(t)arrow f(t) , in the norm topology

of X, for \lambda- a . e . point t\in\Pi . If in addition \int_{n}||f(t)||dt is finite, then f is

said to be Bochner integrable. The Banach space of all (equivalence classes
of) X -valued Bochner integrable functions on the unit circle, equipped with
the norm

||f||_{B}= \int_{\Pi}||f(t)||dt,

is denoted by L^{1}(\Pi, X) . If f\in L^{1}(\Pi, X) , then its indefinite integral ffl is a
vector measure of finite variation and ||f||B=|ffl| : see [2; II Theorem 2. 4
(iv) ] . Furthermore, it follows from (5) that

||ffl||\leq||f||_{B} , f\in L^{1}(\Pi, X) .

Since Bochner integrable functions are Pettis \lambda -integrable, their Poisson
integral in already defined. We remark that any continuous function f : II
arrow X is necessarily Bochner integrable.

2. Poisson integral of vector measures.

Throughout this section X denotes a Banach space. Let f : Darrow X be a
harmonic function and f_{r} denote the continuous X -valued function on the unit
circle defined by (1), for each 0\leq r<1 . Then for each \psi\in C(\Pi) and each
0\leq r<1 the function \psi f_{r} is Bochner integrable and, hence, the family of
linear operators \Phi_{r} , 0\leq r<1 , given by (2) is certainly defined. The family
of maps \{\Phi_{r} : 0\leq r<1\} is said to be equicompact (weakly equicompact)

whenever

(6) \{\Phi_{r}(\psi) ; 0\leq r<1, \psi\in C(\Pi), ||\psi||_{\infty}\leq 1\}

is a relatively compact (weakly compact) subset of X. It is worth noting
that for each 0\leq r<1 the operator norm ||\Phi_{r}|| of \Phi_{r} is precisely the total
semivariation ||f_{r}\lambda|| of the indefinite integral of f_{r} ; this follows easily from
(5) and the formula (10) below.

THEOREM 2. 1. Let f : Darrow X be a harmonic function. Then f is the
Poisson integral of an (unique) X-valued measure with domain B if and
only if the associated family of rmps \{\Phi_{r} ; 0\leq r<1\} defifined by (2), is
weakly equicompact.

PROOF. Let m : Barrow X be a vector measure and f=m*P be its Poisson
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integral. If \psi\in C(\Pi) , then

(7) \Phi_{r}(\psi)=\int_{-\pi}^{\pi}\psi(\theta)(2\pi)^{-1}\int_{-\pi}^{\pi}P_{r}(\theta-t)dm(t)d\theta, 0\leq r<1 .

Since for a fixed 0\leq r<1 , both \psi and P_{r} are continuous functions on the
circle and the function

h_{r,\psi} : t arrow(2\pi)^{-1}\int_{-\pi}^{\pi}P_{r}(\theta-t)\psi(\theta)d\theta, t\in[-\pi, \pi] ,

satisfies ||h_{r,\psi}||_{\infty}\leq||\psi||_{\infty} , it is permissible to interchange the order of iterated
integrals in (7) giving

(8) \Phi_{r}(\psi)=\int_{-\pi}^{\pi}h_{r,\psi}(t)dm(t) , \psi\in C(\Pi) ,

for each 0\leq r<1 . If \overline{bco}(m(B)) denotes the closed convex balanced hull in
X of the range m(B)=\{m(E) ; E\in B\} , of m, then it follows from (8)

that \Phi_{r}(\psi)\in||\psi||_{\infty}\overline{bco}(m(B)) for each \psi\in C(\Pi) and each 0\leq r<1 .
Accordingly, the set (6) is contained in \overline{bco}(m(B)) and, hence, is rela-
tively weakly compact (by [2; IX Lemma 1. 3] and Krein’s theorem).

This shows that the family of maps (2) associated with f=m*P is weakly
equicompact.

Conversely, let f : Darrow X be a harmonic function for which the
associated family of maps \{\Phi_{r} ; 0\leq r<1\} is weakly equicompact. Fix
x’\in X’ Then

(9) \langle\Phi_{r}(\psi) , x9= \int_{\Pi}\psi\varphi_{r} , x9d\lambda , \psi\in C(\Pi) ,

for each 0\leq r<1 . Since <f_{r} , x^{\wedge}>\in L^{1}(\Pi) and

(10) ||\langle f_{r} , x*||_{1}= \sup\{|\int_{\Pi}\psi\langle f_{r} ,x9d\lambda | ^{;} ^{\psi\in C(\Pi)}

for each 0\leq r<1 , it follows from (9) and the boundedness of the set (6)

that there is a constant B(x9 such that

\sup\{||\langle f_{r}, x9||_{1} ; 0\leq r<1\}\leq B(x\gamma .

Accordingly, there exists a unique measure \mu_{x} ’ : Barrow C such that \langle f, x9 is its
Poisson integral, that is,

(11) \langle f_{r} , x9=P_{r}*\mu_{x\prime}0\leq r<1 :

see [7: p. 38]. Since the net of measures \{(2\pi)^{-1}(P_{r}*\mu_{x’})(t)dt : 0\leq r<1\}

converges weak-star to \mu_{x’} , [ 7: p. 33], it follows that
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(12) \lim_{rarrow 1-}(2\pi)^{-1}\int_{-\pi}^{\pi}\psi(t)(P_{r^{*\mu_{x}\prime}})(t)dt=\int_{\Pi}\psi d\mu_{x’\prime}

for each \psi\in C(\Pi) . Then (9), (11) and (12) imply that, given x’\in X’-

\lim_{rarrow 1-}\langle\Phi_{r}(\psi) , x9=2 \pi\int_{\Pi}\psi d\mu_{x’}

exists for each \psi\in C(\Pi) .
Let V be the closed convex balanced hull of (6). Since, for a given

element \psi\in C(\Pi) , the values \Phi_{r}(\psi) , 0\leq r<1 , belong to ||\psi||_{\infty} V and
\lim_{rarrow 1-}\langle\Phi_{r}(\psi) , x9 exists for each x’\in X’ . it follows from the weak
compactness of ||\psi||_{\infty}V that there exists an element \Phi(\psi) in ||\psi||_{\infty}V such
that

\lim_{rarrow 1-}\langle\Phi_{r}(\psi) , x9=\langle\Phi(\psi) , x9 , x’\in X’

So, the linear map \Phi : C(\Pi)arrow X defined by \psiarrow\Phi(\psi) for each \psi\in C(\Pi) is
weakly compact as it maps the unit ball of C(\Pi) into V. Hence, there
exists a vector measure m : Barrow X such that

(13) \Phi(\psi)=\int_{\Pi}\psi dm, \psi\in C(\Pi) :

see [2: p. 153, Theorem 5], for example. In particular, if x’\in X’- then the
identities

2 \pi\int_{\Pi}\psi d\mu_{x’}=\langle\Phi(\psi) , x9 \int_{\Pi}\psi d\langle m, x9 ,

valid for each \psi\in C(\Pi) , show that \langle m, x9=\mu_{x’} . Since the family of
numerical measures \{\mu_{x’} ; x’\in X’\} is unique it follows that m is the unique
vector measure on B such that

\langle P_{r}*m, x9=P_{r}*\langle m, x9=\langle f_{r} , x9 , x’\in X’

In particular, f is the Poisson integral of (2\pi)^{-1}m .

REMARK. It is worth noting that if the Banach space X is reflexive then
bounded sets are relatively weakly compact and, hence, for such spaces it
follows from Theorem 2. 1 that a harmonic function f : Darrow X is the Poisson
integral of an X -valued measure on the unit circle if and only if the
associated operators \{\Phi_{r} ; 0\leq r<1\} are equibounded, that is,

\sup\{||f_{r}\lambda|| ; 0\leq r<1\}<\infty .

This statement is an exact vector analogue of the criterion stated in the
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introduction characterizing those complex-valued harmonic functions on D
which are the Poisson integral of a complex Borel measure on the circle.

The criterion of Theorem 2. 1 does not allow us to decide whether the
vector measure whose Poisson integral is f has special properties, such as
finite variation or relatively compact range, for example. The latter case is
relatively easy to formulate.

THEOREM 2. 2. A harmonic function f : Darrow X is the Poisson integral
of an X-valued measure on B with relatively compact range if and only if the
associated family of linear rmps \{\Phi_{r} ; 0\leq r<1\} defifined by (2) is equi-
compact.

PROOF. If m : Barrow X is a measure with relatively compact range then
the same calculation as in the proof of Theorem 2. 1 shows that the set (6)
is contained in \overline{bco}(m(B)) . Since \overline{bco}(m(B)) is compact this shows that
the family \{\Phi_{r},\cdot 0\leq r<1\} is equicompact.

Conversely, suppose that \{\Phi_{r} ; 0\leq r<1\} is equicompact. If V denotes
the closed convex balanced hull of (6) then V is compact and so in
particular, weakly compact. An examination of the proof of Theorem 2. 1
shows that the weakly compact operator \Phi : C(\Pi)arrow X constructed there
maps the unit ball of C(\Pi) into V. Accordingly, \Phi is actually compact and
so the representing measure m : Barrow X satisfying (13) and whose Poisson
integral is f (cf. proof of Theorem 2. 1) has relatively compact range,
[2,\cdot VI Theorem 2. 18].

The case for measures of finite variation is due to M. Heins, namely

THEOREM 2. 3. A harmonic function f : Darrow X is the Poisson integral
of an X-valued measure of fifinite variation on B if and only if
(14) \sup\{||f_{r}||_{B} ; 0\leq r<1\}<\infty .

PROOF. Since w-\succ||f(w)|| is subharmonic in D, [5: p. 89], it follows
that (14) holds if and only if w }arrow||f(w)|| has a harmonic majorant, [3: p .
38, Theorem 6. 7]. The desired conclusion follows from [6; Theorem 3. 1].

REMARK. If the Banach space X has the Radon-Nikodym property and
f : Darrow X is a harmonic function satisfying the hypothesis of Theorem 2. 3,
then the (unique) X -valued measure of finite variation on B whose Poisson
integral is f necessarily has relatively compact range (cf. proof of IX
Theorem 1. 10 in [2] ) . This assertion is false if the assumption that X has
the Radon-Nikodym property is removed, [2; IX Example 1. 1].

3. Poisson integrals of Pettis integrable functions.
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The first result concerning the Poisson integral of Pettis integrable
functions is the following

THEOREM 3. 1. Let f : Darrow X be a harmonic function and F : \Piarrow X

be a Pettis integrable function. Let \{\Phi_{r} ; 0\leq r<1\} be the family of maps
associated with f via the formulae (2) and \Phi_{F} : C(\Pi)arrow X be the linear map
defifined by

\Phi_{F} : \psiarrow\int_{\Pi}\psi Fd\lambda , \psi\in C(\Pi) .

Then f is the Poisson integral of F if and only if in the weak topology,

(15) \lim_{rarrow 1-}\Phi_{r}(\psi)=\Phi_{F}(\psi)

uniformly with respect to \psi\in C(\Pi) , ||\psi||_{\infty}\leq 1 .

PROOF. Suppose that (15) holds uniformly with respect to \psi in the
unit ball of C(\Pi) . Fix x’\in X’ Then

\lim_{rarrow 1-}\langle\Phi_{r}(\psi) , x9=\langle\Phi_{F}(\psi) , x9

uniformly for ||\psi||_{\infty}\leq 1 or, equivalently,

\lim_{rarrow 1-}\sup\{|\int_{\Pi}\psi\langle f_{r}-F,x9d\lambda | ^{:} ^{\psi\in C(\Pi)} .

Since L^{1}(\Pi) is part of the topological dual space to C(\Pi) , this means that
\lim_{rarrow 1-}||\langle f_{r} , x9-\langle F, x9||_{1}=0 and, hence, \langle f, x9 is the Poisson integral of
\langle F, x9 ; see [7: p. 33]. Since this is the case for every x’\in X’ it follows that
f=F*P.

Conversely, suppose that f is the Poisson integral of F. Then it follows
from the numerical case that

(weak) \lim_{rarrow 1-}\int_{\Pi}\psi((P_{r}*F)-F)d\lambda=0

uniformly with respect to \psi\in C(\Pi) , ||\psi||_{\infty}\leq 1 . But P_{r}*F=f_{r} for each
0\leq r<1 and, hence, the limit (15) holds uniformly for \psi in the unit ball of
C(\Pi) .

It is clear that Theorem 3. 1 is of little use in determining whether or not
a given harmonic function f : Darrow X is the Poisson integral of some
X -valued Pettis integrable function on II as it can only confirm or refute
whether f is the Poisson integral of a particular Pettis integrable function,

assumed known in advance. A natural starting point for finding a criterion
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allowing such a determination for f would be to examine the corresponding
family of functions f_{r} , 0\leq r<1 , considered as being Pettis integrable rather
than Bochner integrable, with respect to some natural topology. Since the
indefinite integral of a Pettis integrable function is a vector measure, the
space P^{1}(\Pi, X) of all (equivalence classes of) X -valued Pettis integrable
functions on the unit circle comes equipped with a ready made norm
topology, namely the total semivariation topology induced from the space of
X -valued measures on B (cf. \S 1). However, as noted previously, the
space P^{1}(\Pi, X) is not usually complete. In fact, if X is an infinite
dimensional, separable Banach space then P^{1}(\Pi, X) , in contrast to L^{1}(\Pi ,

X) , is never complete, [10; p. 131]. Accordingly, if the net \{f_{r} ; 0\leq r<1\}

is Cauchy in P^{1}(\Pi, X) , then it is not in general possible to deduce the
existence of a limit of this net in the space P^{1}(\Pi, X) . Of course, if P^{1}(\Pi ,

X) is considered as a subspace of the X -valued measures on B, then this net
does have a limit, a measure of a special type; see Theorem 3. 3. However,
it is desirable, if possible, to remain within the realm of functions. If we
relax the requirement that the function whose Poisson integral is to be f must
assume its values in X, then due to some recent results of S. Okada, [9],
this is indeed possible; see Corollaries 3. 3. 1 and 3. 3. 2 below. For the sake
of self containment we summarise those aspects of [9] which are relevant to
this paper.

Let Y be a locally convex Hausdorff space such that there exists a
continuous linear injection of X into Y. Then the space Y’ can be identified
with a subspace of X’ which separates the points of X.

A Y-valued function f defined on II is said to be (X, Y) -Archimedes
integrable with respect to Lebesgue measure \lambda , [9], if there exist vectors c_{i}

\in X and sets E(i)\in B, i=1,2 , \ldots such that
(i) the sequence of sets \{ c_{i}\lambda(F) ; F\in B, F\subseteq E(i)\}_{i=1}^{\infty} is summable in

X, in the sense of [9], and
(ii) if y’\in Y’- then the equality

\langle f(t) , y9= \sum_{i=1}^{\infty}\langle c_{i} , y9\chi_{E(i)}(t)

holds for every t\in\Pi for which \Sigma_{i=1}^{\infty}|\langle c_{i} , y9|\chi_{E(i)}(t) is finite.
The indefinite integral of f with respect to \lambda is the X-valued vector

measure f\lambda given by

f\lambda : E arrow\sum_{i=1}^{\infty}\lambda(E\cap E(i))c_{i} , E\in B.

The Poisson integral P*f, of f, is defined as the Poisson integral of its
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indefinite integral. Hence, even though f itself is Y -valued its Poisson
integral assumes its values in X. Equivalently, for each point re^{i\theta}\in D the
Y -valued function tarrow P_{r}(\theta-t)f(t) , t\in[-\pi, \pi] , is Pettis \lambda -integrable
(with the values of its indefinite integral belonging to X) and

( \infty)*P_{r})(\theta)=(2\pi)^{-1}\int_{-\pi}^{\pi}P_{r}(\theta-t)f(t)dt.

The vector space of all {X,Y) -Archimedes integrable functions on II is
denoted by L_{0}(\lambda : X, Y) . The total semivariation induces a seminorm

farrow||]\lambda||(\Pi) , f\in L_{0}(\lambda ; X, Y) :

see \S 1 for the notation. The so defined seminormed space L_{0} ( \lambda;^{X} may

not be Hausdorff. This can be overcome in the usual way by declaring two

elements f and g of L_{0}(\lambda ; X, Y) to be equal if ||U-g) \lambda||(\Pi)=0 . This is
equivalent to the requirement that \langle f, y9=\langle g, y9 , \lambda- a . e . for each y’\in Y’-

[ 9; Proposition 9]. The resulting normed space (of equivalence classes) is

denoted by L(\lambda ; X, Y) . In particular, if L_{0}(\lambda ; X, Y) is complete then L
(\lambda ; X, Y) is a Banach space.

The existence of spaces Y for which L_{0}(\lambda ; X, Y) is complete is
guaranteed by the following result, [9].

PROPOSITION 3. 2. The seminormed space L_{0}(\lambda ; X, X^{r*}) is complete

and contains as dense subspaces the space of X-valued, B-simple functions and

the space of strongly measurable, X-valued Pettis integrable functions on the
unit circle.

REMARK It is not claimed in Proposition 3. 2 that L(\lambda ; X, X^{\prime*}) is the
completion of P^{1}(\Pi, X) but only of its subspace P_{0}^{1}(\Pi, X) , consisting of
strongly measurable functions. This will suffice for our purposes.

The space of all \lambda -co,ntinuous vector measures m : Barrow X with
relatively compact range in X, equipped with the semivariation norm, is

denoted by K(\Pi, X) .

THEOREM 3. 3. A harmonic function f : Darrow X is the Poisson integral

of an element from K(\Pi, X) if and only if the associated net of functions
\{f_{r} ; 0\leq r<1\} , considered as belonging to the space P^{1}(\Pi, X) , is Cauchy.

PROOF Suppose that \{f_{r} ; 0\leq r<1\} is Cauchy in P^{1}(\Pi, X) . Noting

that each element f_{r} , 0\leq r<1 , actually belongs to P_{0}^{1}(\Pi, X) , by continuity

for example, it follows from [2: VIII Theorem 5] that there exists m\in K

(\Pi, X) such that f_{r}\lambdaarrow m with respect to the semivariation norm. In

particular, for x’\in X’ . we have that \langle f_{r}\lambda , x9arrow\langle m, x9 in the space of
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complex measures. But, \{\langle f_{r}, x9 ; 0\leq r<1\} is Cauchy in L^{1}(\Pi) , as { f_{r} ;
0\leq r<1\} is Cauchy in P^{1}(\Pi, X) , and hence there exists g_{x’}\in L^{1}(\Pi) such that
\langle f_{r} , x9arrow g_{x’} in L^{1}(\Pi) and \langle f, x9=P*g_{x’} , [7; p. 33]. Then \langle f_{r}\lambda , x9=\langle f_{r} , x9\lambda

arrow g_{x’}\lambda in the space of complex measures and hence, \langle m, x9=g_{x’}\lambda .
Accordingly,

\langle P*m, x9=P*\langle m, x9=P*g_{x’}\lambda=P*g_{x’}=\langle f, x9 .

Since this is the case for every x’\in X’ it follows that f is the Poisson integral
of m.

Conversely, suppose that f=P*m for some m\in K(\Pi, X) . We have
already noted (cf. \S 1) that \{f_{r} ; 0\leq r<1\} is contained in P_{0}^{1}(\Pi, X) in this
case and so it remains to show that it is a Cauchy net.

Let \epsilon>0 . Since simple functions are dense in K(\Pi, X) , [2: p. 224],
there exist elements c_{1} , .. . - c_{n} in X and sets E(1) , \ldots . E(n) in B such that
h=\Sigma_{j=1}^{n}c_{j}\chi_{E(j)} satisfies ||h\lambda-m||<\epsilon/3 . Using (5), (8), (9) and (10) we
have

||f_{r} \lambda||=\sup\{|<\Phi_{r}(\psi) , x’>| ; \psi\in C(\Pi) , ||\psi||_{\infty}\leq 1 , x’\in X’

||x’||\leq 1\}\leq||m|| .

Replacing m by h\lambda-m in this inequality, it follows that
||f_{r}\lambda-h_{r}\lambda||\leq||h\lambda-m||<\epsilon/3 ,

for all 0\leq r<1 . Since h\in L^{1}(\Pi, X) , there exists \delta>0 such that (1-\delta)<

r<1 implies ||h_{r}\lambda-h\lambda||<\epsilon/3 . Hence, ||f_{r}\lambda-m||<\epsilon whenever (1-\delta)<r<
1 . This proves the theorem.

COROLLARY 3. 3. 1. Let f : Darrow X be harmonic and suppose that the
associated net of functions \{f_{r},\cdot 0\leq r<1\} as defifined by (1) and considered
as a part of the space P^{1}(\Pi, X) , is Cauchy. Then there exists an (uniqu\^e
Archimedes (X, X^{\prime*}) -integrable function, in particular, X^{r*} -valued Pettis
integrable function, whose Poisson integral is f.

PROOF. It follows from Theorem 3. 3 that f=P*m for some measure
m\in K(\Pi, X) and hence, f=P*F for some F\in L(\lambda : X, X^{\prime*}) , [9; Proposi-
tion 15(ii) ] . The uniqueness of F follows from the uniqueness of m and
[9; Proposition 9].

REMARK. It is worth noting that for particular spaces X it may be
possible to replace the space X^{\prime*} in Corollary 3. 3. 1 by a substantially smaller
space. For example, if X is a separable Hilbert space and \Gamma is a complete
orthonormal basis for X’ then the vector space C^{\Gamma} . consisting of all C-
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valued functions on \Gamma equipped with the natural linear operations is a Fr\’echet
space with respect to the topology of pointwise convergance. Furthermore,
X is continuously imbedded in C^{\Gamma} and the space L(\lambda ; X, C^{\Gamma}) is complete,
[9; \S 2]. Accordingly, if a harmonic function f : Darrow X satisfies the hypoth-
esis of Corollary 3. 3. 1, then there exists an unique (X, Cr) -Archimedes
integrable function on the unit circle whose Poisson integral is f .

COROLLARY 3. 3. 2. Let Y be a locally conuex Hausdorff space into
which X is continuously imbedded. If F : \Piarrow Y is an (X, Y) -Archimedes
integrable function, then the net \{P_{r}*F;0\leq r<1\} is contained in P^{1}(\Pi, X)

and is Cauchy in that space.

PROOF. Let m=F\lambda . Since Y’ separates points of X and \langle m, y9 is
absolutely continuous with respect to \lambda , for each y’\in Y’ . it follows that m
is absolutely continuous with respect to \lambda . Furthermore, m has relatively
compact range in X, [9 ; Proposition 15( i )], and so m\in K(\Pi, X) .
Noting that P*F is precisely P*m (by definition), it follows from Theorem
3. 3 that \{P_{r}*F;0\leq r<1\} is a Cauchy net in P^{1}(\Pi, X) .
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