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§ 0. Introduction

In the previous paper [2], we constructed complex powers for some
hypoelliptic pseudodifferential operators P in OPL™™(Q; 3)) (for the
notation, see Sjostrand [I8]) on a compact manifold Q of dimension #
without boundary and examined the asymptotic behavior of the eigenvalues
of P. Here the principal symbol vanished exactly to M-th order on the
characteristic set 2 of codimension & in T*Q\0. The hypoellipticity of
these operators is well known by Boutet de Monvel for M=2 and
Helifer [6] for general M. Moreover Menikoff-Sjostrand [11], [12], [13],
Sjostrand and Iwasaki [9] studied the asymptotic behavior of eigen-
values of P under various assumptions on 2> in the case M =2. Their
methods are based on the constructions of heat kernel and an application of
Karamata’s Tauberian theorem. For general M, Mohamed [14], and
gave the asymptotic formula for the eigenvalues of P by using Carle-
man’s method in which the Hardy-Littlewood Tauberian theorem was used.

However the method in was essentially due to Minakshinsunda-
ram’s method (c. f. Seeley and Smagin [20]). The essentials of the
theory in were as follows : At first we construct complex powers { P%}, ¢
of P. When the real part of z is negative and |z| is sufficiently large, P?is
of trace class and the trace is extended to a meromorphic function in C which
is written by Trace(P?. Secondly we examine the first singularity of
Trace(P?). Finally we apply the extended Ikehara Tauberian theorem.
(See [2: Lemma 5.2] and Wiener [2I]). Here since Trace(P? is a
meromorphic function in C, we call the pole with the smallest real part the
first singularity throughout this paper. More precisely, denoting the count-
ing function of eigenvalues by N (1), the first term of the asymptotic behav-
ior of N(1) as A tends to infinity is closely related to the position and the
order of the pole at the first singularity. In the case where n/m=d/M, the
first singularity situates at z=—#n/m and is a double pole and then we have
for a constant ¢
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NQA)=c A" log A+0(A""log L) as A—co.

In the other cases they are only simple poles and log A does not appear in the
first term of N(Q1).

However in the framework of , for example, we can not treat the
following operator on R®:

P=(D:+x)*( D+ De [P+ x|+
p(Di+ Do+ 28+ 3)2 (I De 24 x|+ v (| De [P+ %1 (g, v>0),

Our purpose in the present paper is to study the asymptotic behavior of N (1)
for such operators. In order to do so we consider a class OPL™™-":(3, '31,)
where the characteristic set 2! is a union of two closed submanifolds >}, and
2!, of codimension ¢; and &, in R?"\0 and the principal symbol vanishes
exactly to M;-th order on 2!; (i=1,2) respectively. Under some appro-
priate conditions, we construct complex powers {P?} and examine the first
singularity of Trace(P? in the same way as [2]. But it is necessary to
construct different symbols of P?according to the order relations among real
numbers 2n/m, d,/M, and d,/M,. In particular, we have a new result that
for the case 2n/m=d,/M,=d,/ M, with a constant ¢

NQ)=c 2?*™(log 1)*+0(1?"™(log 1)?) as A—oo.

The plan of this paper is as follows. In § 1 we give the precise definition
of the operators mentioned above and give some hypotheses. In §2 we
introduce two classes of operators in which we construct the parametrices of
P—¢ for some ¢ C. By taking an application in § 5 and § 6 into considera-
tion, we construct in §3 various parametrices of P—¢ for some
EeC. In §4 we construct symbols of ‘complex powers corresponding to
parametrices in § 3 respectively. In §5 we examine the first singularity of
the trace of complex powers. Finally in § 6 we study asymptotic behavior of
the eigenvalues using the results in § 5 and give some examples.

For brevity of the notations, we use the followings which are held from
§1to§5:

M0:M1+M2, do:d1+d2
20:21022, Z‘.ZExUZ‘.z

N (a, b)=a—b/2 for any real numbers ¢ and 5.
§ 1. Definitions of operators and some hypotheses

In this section we introduce a class of pseudodifferential operators on R”
and give our hypotheses.
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Let >}, and 2}, be closed conic submanifolds of codimension d; and d, in
R"X R" respectively such that dy=d,+d,<2n. Here the conicity of 2},
means that (x, &) €2}, implies (Ax, A&) €2J; for any A > 0.

DerINITION 1.1, (c. f [1] and [18]) Let m be a real number and M;
(i=1,2) be non-negative integers. Then the space OPL™ ™ (3, 3,) is
the set of all pseudodifferential operators P(x, D) €L™(R") (for the notation
L™(R™) see Hormander (7] and [8]) such that P(x, D) has a symbol
p(x, &) €C=(R*™) satisfying the following (1. 1) and (1.2):

(1.1 There exists a sequence of functions {pm_j2(x, &)} =01 .. Such that
p(x, E)Ni] DPmsiz(x, &) wheve pm_;2(x, &) arve elements of C>(R*™\0) and
=

positively homogeneous of degree m—7j/2 in (x, &) €R**\0. Here the asymp-
totic sum in (1.1) means that for every positive integer N and every multi-
indices a, 8, there exists a constant C, , >0 such that

I DEDEHCx §)— 2, puss( E)1=C, 5y 7Cx §Im N 1e 8]
for v(x, &) =1 wheve r=vr(x, &) =(|x|*+ | & D"

(1.2 Theve exists a positive constant C such that

| P2 (X, E) ’ <
r(x, E)"7F T

C 3 dpx " dp(x O" 5 j=0,1,.., M,
W+ =7
k=M,

where dsy (x, )= inf_(|v—22|+ (&2, i=1, 2.
' (x, §HEZ, 4 r

The class of symbols satisfying (1.1) and (1. 2) in an open conic set U
in R*"\0 is denoted by L™ ™ (U ; 3,,3,). Finally we say that P(x, D)
is regularly degenerate if moreover p(x, &) satisfies:

[P, &)1 o
r(x, &)™

For brevity of the notations, we denote :

OPL™ M- (%, 232) = OPL™ " (X))
OPLm 0. M2<21, 22) — OPLm M2<22>-

(1.3) C dg (x, )™ dy (x, E)™.

If necessary, by relabelling of 2};, we may assume :

d2<d1

(1.4 A

For the construction of parametrices of P(x, D)—¢ as in introduction,
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we have to keep the following hypotheses (H.1)~(H. 4).
(H.1) Pu(x, &)=0 for all (x, &) €R**\0.

(H.2) 2 and 2, intersect transversally. That is, 2,=21 N>, is a
closed conic submanifold such that for every point p €3},

7:,20: 7;,21 N 7;22-

Now for every p &2}, and 7=0, 1,..., M,, we can define a multi-linear
form pn;2(p) on N,30= R*/T, 3, which may be identified with R%x R* :
For X, X,,..., X, _;EN,>,

= 1 ~ ~
Dm-iz(P) (X, ..., XMo—j):m<Xl - XM(,_]' DPn-si2) (p)

where X means a vector field extending X to a peighborhood of p. For
every p €2, \2) and j=0,..., M;, we also define p,_;.(p) similarly. Thus
we define the followings: If p €33,

~ M, o
Blp, X)= 2 bnso(0)(X), X EN,Z,
where pu-i2(p)(X)=pm s2(p)(X, ..., X) and similarly if p €X'\,
~ M, L
p(p, Xi>:j§0 Pmirn(p) (XD, XIEJ\/},ZZ-.

ReMARrRk 1.2. For example, if p €2}, and W is a conic neighborhood of
Mﬂ

p, the class [2} pn-jo] &L™ Mo MW 3, D) /L ML SN Y
is

is invariant under a transformation of local coordinates. (c.f. and
[Proposition 2.2). Therefore p(p, X) is defined invariantly.

(H.3) There exists a positive constant ¢ such that for any p €3, N S* R?”
(where S*R*'={(x, &) ER?"; r(x, &§)=1})

p(p, X) =28 X, |2+ DM2(| X, |2+ 1™ for all
X=X, X,) eR%x R*,

and for any p €(Z;\2ONS* R (i=1,2),
pp, XD =26(| X2+ DM for all X,=R?.
(H .4) M, and M, are positive integers and m > M,/2.

REmark 1.3. If P(x, D)EOPL™ M M3 ) satisfies (H.1)~
(H.4), it is well known that P(x, D) is hypoelliptic with loss of M,/2-deriva-
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tives. (c.f. [1]).
§ 2. The preparations for constructions of parametrices

In this section we introduce two classes of symbols in which we construct
parametrices of P(x, D)—¢I for some ¢ &C and complex powers of P(x, D)
eOoPL™ M- M(3, ) 3,). In order to do, let pe2l,. By (H.2) we can
choose a local coordinate system in a conic neighborhood W of p: w=
(ur, 2, v, ¥) where wy=(uyy, tz,..., U1g), U= U1, Uso, ..., Usg), V=
(v1, Vo, ..., Vsp_gq—1) such that u,;, v, are positively homogeneous functions
of degree 0 with du;; (j=1,...,d;,1=1,2), dv. (k=1,...,2n—d,—1) being
linearly independent and XN W ={wu,=0}, i=1, 2. When p&3>};\>},, we
can choose a local coordinate system (#;, v, ) in a conic neighborhood W
of p€21,\2 such that WNZy=¢ and ;N W ={u;=0}, i=1, 2.

DerINITION 2.1.  (c. f. [2] and [3]) Let m, k and k, be rveal numbers
and W a conic neighborhood of p €Y. We denote by S™"* =(W ; 2, 30
the set of all C= functions a(w) defined in W such that for any non-negative

integer p and any multi-indices (ai, as, B), there exists a constant C>0 such
that for all »=1,

2.D l(a—u) ( ) ( )ﬁ( )” a(w) | SC r™hp&lxlp&=lel  ywhere
1

P s=(d% +r D" Similarly if W is a conic neighborhood of p €2 \2s

such that W N2e=¢, we also define S™ *“(W ; 2.

Note that S™ % =(W ; 3, 31, and S™ *(W ; 31,) are Fréchet spaces
when equipped with the semi-norms defined by the best possible constants in
(2.1). Then we have:

ProrosiTiON 2.2. If W isa conz'c neighborhood of p €2 or p €23 \2
such that WN2o=4¢, z‘hen = and 5

Sk B(W 5 20, 20 to S’” 2 4, (W5 30, 2 or from S™R(W 5 20
to S™VEE(W . 2, respectively.

are continuous from

0 _Jwm O Owmp 0 Ov O  Or 9 .

axi_ax, au1+ax2 ax2+ax, av+ax, or’ Thus it

ou; ov
and

ox;’ axz ox;

In fact we can write

suffices to note that =~

are homogeneous of degree — 1, —1 and

0 respectively and

Sm, ki, szSm+1/2, k41, kzmsm+1/2, ki, ka+1.
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Let W be a conic neighborhood of p €%},. Then we need the following
three propositions which follow from a routine consideration (c.f. [2], [3]).

ProrosiTiON 2.3.  For non-negative integers M, and M,, we have

L M MW S, B S M MW 3, B,

ProrosiTiON 2.4. If
hesS™ M MW ; 201, 202) and paeS™ M MW,
20, 202), them we have pp, eSmTm MTML MMy - SV SV where #
means the composition of the symbols :

1
PI#PzNZ?a‘EﬁlD‘;Pz
ProrosSITION 2.5. If peS™ M- MW . 3, 3, satisfies

[p1=C r™pgp¥

for a positive constant C, then we have

pres ™ — M _MZ(W ; 201, 22).

Finally we define a symbol class with a parameter ¢ in order to consider
parametrices of P(x, D)—¢& for some ¢ &C.

DEFINITION 2.6.  Let m, M, and M, be fixed numbers as in (H.4) and
let I, k and k, be veal numbers, W a conic neighborhood of p €2 and A an
open set in the complex plane C. Then we denote by St ™ (W ; 3., 3,
the set of all a(w, &) €C=(W XA) satisfying the following (i) and (ii),

(i) for every §EA, alw, &) ESH* »(W ; 21, 3

(i) for every E€A, |Ela(w, &) eSmtht Mtk Mtk - S SV and
for every non-negative integer p and multi-indices (a,, az, B), therve exists a
positive constant C independing in & EA such that

1(5;1)( (3, )"( LIS latw, O]1=

C’,m-i-l ngl‘”-i-k |a1|p§4§+kz || f07’ all (?/U, C) eW XA.
§ 3. Constructions of parametrices

In this section we construct the parametrices of P(x, D)— &l for some &
&A with various top symbols where A is the union of a small open convex
cone containing the negative real line and {¢&C; |&|<d} where ¢ is as in
(H.3). Letpe&e2,and w=(u,, u,, v, ) be a local coordinate system in a
small conic neighborhood W of p asin § 2. By (1.2) and Taylor’s theorem,
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we can write

(31) pmfj/zzl |+|2|vM ; am’aiul, U, 0, 7,>uizlu§vz in W.
an &2 | = 0o—
"hlSMh |42|§M2

Thus we have for X =(X;, X;) €N, 2= R*x R*,

~ Mo
plp, X)=2 > Ao, (P XT X5

7=0 la| + laz| = Mo—], la:| =M,

Then we need the following three symbols which are needed in order to
examine the first singularity in various cases.

PropPOSITION 3.1.  Let p €Y. Then therve exists a small conic neigh-
borhood W of p and a?(x, &) €Sy ™ M M (W ; 21, 22U =1,2, 3) such
that

. 3 ;
(p—08 tad =1+ Zl e
Wheye Céll) ESE)\’ 1,0 CélZ) CéZZ) ES?\ 0, 1’ Cé(_Zl) ESKI/Z, -1, 0 Cé—lg) CE—SD ESXI/Z, 0, 0
and ¢ = =¥ =0.
Proor. We choose a function y €C*( R*") :
x(x, &)=1if |x[+[&|>1and =0if |x[+[§]=1/2.

Existence of af : Let (i, u», v, ) be a local coordinate system in W as
above. We identify (Xi, X,) with (u, u,) and p with (0,0, v,7) and
write p(p, X)=p(u,, u., v, v). Define for §EA,

(3.2)  al’(w, we, v, V)=x (s, o, v, ¥) (Plotr, wo, v, ¥)—§) 7.

Then we have
(b= 40 =x (B~ O¥ -+ (b= 3 pu )b (=)
+ B Dnss— b A B4 (0= 21 (B

Here we note that by [Proposition 2.5 and (H.3) we have
(p—E)reSym ~M (W By, o).

Thus it suffices to apply [Proposition 2.2 and 2. 4.
Existence of af® : By (1.4) we have D, s, v, ¥)— s, (th, s, U, ¥) =N+ 7,
where
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M,

p22:| lZM{ 2 2 aan, a2<u1; 0’ v, 7>u32}u?1’
a | =M, ]=

0 |a’2|:M2_j

rneSrlVaEM-L M gnd y,&S™ M- MF1 On the other hand, by (H.3), we
have for A >0,

. M,
A MpQQAuy, u,, v, r)—| TEM{]ZO | ’Z‘,M y a4y 20,0, 0, Nugtur+0Q™")

2200~ MymC duy [P+ DMy, |24y D) M2,

Letting 1—o00, we see

2 G, (0,0, 0, Pusud
lai|=M, j=0 |a.|=M,—
226‘7’”|u,|M(|uzl + M2,
Since W is small enough, for any & >0,
|Gy, o0(tth, 0, 0, 7)—a, ,(0,0,0, )| <eym Mlab/
if |a;|=M,. Therefore we have
bs (ttr, y, 0, )= (38/2) 7™y |ty |24 7~ M2,

Thus it suffices to define for & €A,

(3.3 a®(u, we, v, N=x(w, wp, v, V) g (th, s, v, ¥)+
+ V"_M‘/2< ' "y |2+ 7,~1>M2/2__§.]—1.

Existence of af” : Since W is small enough, it suffices to define

B0 G =20 ) (Zpn (s )=

This completes the proof.

Now we can construct microlocal parametrices of P(x, D)—¢&I, & EA.
Let ¥ (x,&) be a C* function of positively homogeneous of degree 0 and
supp y €W . We define

(3.5  Pgy(x, D)=y (x, D)ag”(x, D)
3.6) P& D)=y (x, D){af” (x, D)—a” (x, D)(Z ce'” (x, D))}

3.7 P&x D)=y (x, D){ad (x, D)—a® (x, D)(Z c&” (x, D)) }.

Then we have (P(x, D)—EDPy(x, D)=y (x, D)+d?(x, D) where
d?(x, &) &S V20 for j=1, 2, 3. If we put
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P ,(x, D)=PPy(x, D)(—dP (x, D))', 1=0, 1, 2,...,

we see that P¢’,(x, D) €OPSy™ %% ~M =™ and there exist ¢f’(x, D) &
OPS ™ —M. =M gyuch that for every N >0,

q¢’ (x, D) — 2 P@ (x, D) €OPS;m—N/Z =M, =M. j=1 2, 3.

Then we have (P(x, D)—¢l)q{’ (x, D)=y (x, D) mod OPS\”=
N OPSy™ —M. =t

m>0
Next we consider the case where W is a small conic neighborhood of
p E22:\2 such that WNXe=¢, i=1, 2. In this case, we can write as in

3.D:

Mlv
Ko X0=3 3 a(p)Xr for X,ER".

a;|=M;—]

PrROPOSITION 3.2. Let pE23:\2. Then there exist a conic neigh-
borhood W of p and al”(x, &) €Sy™ M (W ; DG =1,2) such that

(p—Ota?” =14
where ¢V Sy (W ; ) and ¢ €SV W 2.

Proor. If we consider as in the proof of Proposition 3. 1|, it suffices to
define as follows :

Existence of ag® : a&®(u;, v, ¥)=x (us, v, v) Pty v, )=}
Existence of al® : af®(x, &)=y (x, &) (pn(x, E)+ v M2
This completes the proof.

Let ¥ (x, &) be a C* function of positively homogeneous of degree (0 and
supp v C W. Define

P (x, D)=v(x, D)(af" (x, D)—a¢® (x, D) &V (x, D)),
Péfza(x, D)=+ (x, D)(aém(x, D)— aé’l)(x, D)cé’z) (x, D)).

As the same way as the preceding arguments, we can construct ¢{”(x, D) €
OPSy™ M (i=1,2 and j=1,2) such that for every N >0, we have

(U)(x D)— 2 p“”(x, D) EOPSKm—N/z, —M;

and (P(x, D)—€I)qi” (x, D)=y (x, D) mod OPSy*
Finally we have
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ProposITION 3.3.  Let W be an open cone such that W NX=¢. Then
there exists ac® (x, &) €S ™(W) such that

(p—Etas” =1+ c” where ¢ €Sy

Proor.  If necessary, we replace ¢ as in (H.3) with smaller one. So
we may assume p,(x,&)=¢ inW. Thus if we put

ag’ (x, &)=y (x, &) (pn(x, )= &),

the proof is complete.

§4. Construction of complex powers

In this section we consider complex powers of an operator P associated
to P(x, D). Assume that P(x, D) €OPL™ " M3 ~3.) satisfies (1.3),
(1.4) and (H.1)~(H.4). Moreover we assume :
(H.5) P(x, D) is formally self-adjoint, i. e., for every u, vE¥(R").

fRnP(x, Duo dx:fmu Plx, D)v dx.

Let P, be an operator on L*( R") with the definition domain D(F,)=
F(R™ such that P, u=P(x, D)u for ucD(F,). By Remark 1.3 and (H. 4),
P(x, D) is hypoelliptic with loss of M,/2-derivatives and m— M,/2>0.
Therefore P, is essentially self-adjoint and the closure P of F, is an

unbounded self-adjoint operator with the definition domain
D(P)={uceLl*R"; P(x, D)ucsL*(R"},

P u=P(x, D)u for ucD(P).

Since P(x, D) has a parametrix Q(x, D) €OPS~™ ~M. =M(31 '3, P has
a compact regularizer on L*(R". (c. f. Kumano-go and also Grushin
[6]). Thus P has the spectrum consist only of eigenvalues of finite
multiplicity. Finally we assume :
(H.6) P is positive definite, i. e., there exists a positive real number y such
that (P u, u) >y |ul%:p for all uD(P).

Then we can define complex powers P? by the spectral resolution of P.
Let I" be a curve beginning at infinity, passing along the negative real line to
acircle {&; |E|=06} (where ¢ isin (H.3) and we may assume 6 <y), then
clockwise about the circle and back to infinity along the negative real line.
For % z2<0, we see

Z— i Z -1
(4. Pr=o [ (PO
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where ¢7 takes the principal value in C\R~. Here we note that
I(P=8&) g 1n<[dist(&, [y,)]'=0(§[I™D as [§]|—00 and ¢ €A
Therefore the integral in the right hand side in (4.1) is convergent.

On the other hand we define operators P.(x, D) with the symbol o (F;)
by the formula :

4D ok &)= [ Eals §)dt.

Here for brevity of the notations we have dropped the upper indices of
g (x, D)(j=1,2,3) in § 3. Since g. €Sy ™ ~™ " (X, 202), we see easily
that the integral in (4.2) is absolutely convergent when % z<0. For .%Z z
>(, choose an integer £ such that —1< % z— k<0 and define

(4.3) P.(x, D)=P(x, D)*P,_.(x, D).
Then we have:

THEOREM 4.1. Assume that P(x, D)€OPL™ ™ "(3},, 3,) satisfies
(1.3), (1.4) and (H.1)~(H.6). Then we have the followings :

( i > PZEOPSmﬁ.z, M #.z, Mzﬂ?,z(zl) 22>

(ii) For any negative veal number a and rveal numbers m’, k and k
satisfving  ma<m', N(Om, Mya<N(m', k)(i=1,2) and N (m, My)a<
N(m', bi+hk), o(P? is holomorphic on any compact set in {z; F.z<a)
with value in S™ * #(Z,, 2.

Later from now we write such class of symbols satisfying (i) and (ii) by
Somﬂ?,a, M, Pz, M, %.z .

Proor. Let #z<0. Near X, we see that by (H.3), q.(x, &) is
holomorphic in {&¢; AE=0, BE<0}U{E; |E1<6 R(», w1, )} where

(4.4 Rrw, w)=r"pdp%,

So we may replace the contour T in (4.2) with I''=T"\"+T'+T’

where I')': §=—5 OR(r, uy, u,) <s<+00,
T,: E=0R(v, wy, w)e ™ —7<6<m,
I'y: E=s OR(», uy, u,) <s<+00.

On the other hand since ¢.(x, &) &S, " ~™(Z,, 2.), for any multi-index
(a1, a», 8) and non-negative integer p there exists a constant C=GC,, .. 5 »
such that

o o o )
Vo) () () g, e, v, S CIE | r o5l oz,

I <3u1 aug
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In order to estimate o (P%), put for each j=1, 2, 3,
*—i z—a—“*iaziﬁﬁp
L—Zﬂﬁj’ g <au1> <au2> <av> <87> QQ'(ul, U, 0, 7’) dC

Then we have for j=1 or 3,

o

R oy —m;f Fz—1
'IJ‘ SC ¥ pz: pEz SR(T,ul,uz) S ds

<C. R(r, m, w)*™r 7 pzl=! pgl«
where C, is a constant depending on z. For j=2, we have easily
ILISC: ROy wi, )™ v hpgl™! pgle!

where C; is a constant depending on z. Similarly we can estimate (4.2)
also in the other cases of 3}, and 3',. Thus we have

G'(PZ> (x’ é_-) ESOm%z, M %2, M.%.2 (21, 22>

Moreover since (P—¢&)™'—q.(x, D) €EOPS;*,
then we see that

o (PY—5- [ &aix §) dgesi

Thus we have (i) for £ z<0and (ii). For .# z>0, by Proposition 2. 4
and (4.3), (i) is clear. This completes the proof.

For the symbols of P* we have the following Propositions corresponding
to Proposition 3. 1, 3. 2 and 3. 3 respectively whose proofs are omitted.

(c.f. [2]).

PROPOSITION 4.2.  Let W be a small conic neighborhood of p €\ and

X a function of positively homogeneous of degree 0 such that suppx C W.
Then we have in W

( i ) O‘(Pz)zng(ux, Uy, 0, r)z_,_ dz(11)+dz(12)_{_ dz(13)

Whe7’€ dz(ll)esom%’.z, M, #.z+1, Mzﬂ?-z) d(zl2)€SOm.9?,z, M\ #.z2, M, #.z+1 dnd
3 Rz—1/2, M\ #2, M, %
d(zl )esom 4 ¥4 z

(i) o(PO=x [P, e, v, 1)+ 7"~ M2 |y |4 7 D) M2 )5 d$0 4 4
where dfzz”ESOm%Z””z’ Mrz—1, My 2.2 amd dfgm ESO mBz, M\ Bz, MRz +1 _

M,
<111> O'(Pz) — (2 pm_ﬂ2>z+ d(zs) where dng)ESOm%Z‘l/g’ M, #.z, M, #.z .
i=0
Next for every i=1, 2, we have:

PROPOSITION 4.3(y.  Let W be a small conic neighborhood of pEX\S,
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such that WN2Xo=¢. And also let x be a function of positively
homogeneous of degree 0 such that suppxy CW. Then we have in W :
(i) o(PH=xp(u:, v, ¥)*+d"+d%
where dgl)esgnﬁ.z, M,»ﬂ.z+l<W : 21) and d(zz'Z)ESOm%z—l/Z, M .z .
(i) o(PH=x (put " M54+ 4dP
where d(zz'z)esomﬂ’.z~l/2, M, Rz—1 (W R 2)

ProrosiTioN 4.4.  Let W be an open cone such that W N2=¢ and x
be a function of positively homogenecous of degree 0 such that supp y C W.
Then we have in W,

oc(PY)=xpntd:
where d,eSy*VI(W).
§ 5. The first singularity of Trace(P?)

In this section we consider the first singularity of Trace(P?) and
determine the order of the pole and the coefficient at the point. Let p.(x, &)
be the symbol of P% It is well known that if

[ Ipx &) 1dx dg<C.

for some constant C,, then P?is an operator of trace class and the trace is
given by :

Tr(PH=Cr)7",, o b(x E)dx d&.
Since

[ peCx ) a
is entire, we may consider :

[()=Cm) " [ puCx &)dx d.

ProOPOSITION 5.1.  Let p, &S, M#z—h Mez—k (S SV aud W be

an open cone and x a C* function of positively homogeneous of degree 0 such
that supp x C W. Put

L= [ 2 ©)p(x §)dx de.

(1) The case: W is a small conic neighborhood of p €. Then [, (z) is



14 J. Arvamaki

holomorphic in {z; % z<a} if a satisfies any one of the followings.

dz’_k,' . _N(Z?’l_], do_kl_k2>
_dl_kl _dz_kz _N(Z%—j, d.— k)
(1.2 i <a< A and a< N )
d.— k di—hk _N<2n_]., d\— k)
(1.3 -— A <a< — 78 and a< N m, 3D ,
(1.4 —d—iﬁ%lﬂﬁa (i=1,2) and a<——@.

(IIDy The case: W is a small conic neighborhood of p €31;\2}, (i=1,2)
such that WN2o=¢. Then I (2) is holomorphic in {z; % z<a} if a
satisfies any one of the followings.

. _d[—k{ _N<2n—j, dz'_ki>
(Il.1.2) a< 7 and a< Nom M)
(1I1.2.7) —di—ﬁzﬁéa and a<—2n_].

(IID The case: W is outside of 2. Then I, (z) is holomorphic in

2, R oz<a) if a<—2n—].

Proor. (1) We choose a local coordinate system w= (i, #., v, )
as in §2. We may assume that W C{w=_(u;, ,, v, v); |u;| <1, i=1, 2}.
Let K be an arbitrary compact setin {z; % z<a|. Then by Theorem 4. 1,
there exists a constant C which is independent of z €K such that

10:(x, E) | <C R, wp)r oy [P+ 77D P2 [P+ R

Note that dvdé=J(u,, u,, v, v) du, du, dv dr where J(u, u,, v, v)
D(uy, up, v, 7v) -t
D(x, &)

#. z<a, we have for some constants C, C"and T,

5.0 [ Ix ) pix & dr dg

<O [T RO
1 [v]< T|ul<1

= |det

is positively homogeneous of degree 2n—1. Thus if

(|24 7D % duydu,dvdy

2 rl/z
<C’ fw ;,lv(m, MDa+NQCn, d)—1—j+ (ki+ k) /2 dr 1 f (t?+1>(M,a—k,)/2 ltdz_,v—l dtz
- 1 i=1v0

Here we have that if M,a— k:+ d;<0,
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J s nteor g g [Ty ptten g1 g <o
and if M,a—k;+d; =0,
_/;y (t24 1) Ma=ko/z pd=1 gt — Q(yMatd—k/2 g0 ») as r—co.

Thus (I) holds. Also (II) and (IlI) follows from the same arguments,
so we omit them.

Now we have results on the first singularity of Tr(P? for each case.

ProposiTION 5.2. When D é>— Tr(P? is holomorphic in
M, — M,

{z; # z2< —%} and has a simple pole at z= —% as the first singularity with
_2n A,
 om

the residue Res(— %) where

5.2 A=Co[ . dde

Proor. That Tr(P?% is holomorphic in {z; % z<—2£} follows from

Proposition 5. 1 with j=% =% =0. In this case we use [Proposition 4. 2(iii),
4. 3(Cii), 4. 4 and slso 5. 1. Then we can write Tr(P?* =1,(z)+1,(z) where

l(2)= Q) [ (e M )2 Gy g

and /,(z) isholomorhicin {z; % z< —2%”}. Here by using the mean value

theorem, for any ¢<0 and any &, 0<e <1, there exists a constant C such
that

[ (N (£ 1)%) G di
— ’f 1[a<7,m~Min(Ml,Mz)/2_1>><
fl{pm—k1+6(1”"—Mi“<M"M2>/2—1)}‘“ de] dx dg |

0

<Cf 7ma+2n 1—eMin(M,, M) /2 d?’ H tMa Me+di—1 dt
i=1

Thus if we choose a such that a> —%, we see that the integral is convergent.

So we are reduced to (c.f. [2]):
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f(pm+1>z dx d&z%o‘(l)F@Wm)II‘f(—_%nL2n/m)>

where ¢ (1) =Qn)™" dx d&.

Therefore by the properties of I'-function, we reach the conclusion.

N(Zﬂ, dz) >2_7’l ﬁ
N(m, Mz) m’ MIJ

pm(x,6)<A

Tr(P? s holomorphic

_ NQn dy)
N (m, My)
N (2n, dy) A

. . . , —_— - 2
first singularity with the residue Res( N(m, MY ~N(m, My

ProrosiTiON 5.3. When

N(Zn, do) N

—NCW, M())I as the

m iz, B z<— and has a simple pole at z=

where

5.3 A= [ coperemonme J(0,0,0, D x

Py, ty, v, 1)~ N WINOLMY 1y iy, G,
N 2n, d,) > NQ2n, d;)
N(m, My)” N (m, M,)

IProposition 4. 2( i), 4. 3Ci), 4. 4and 5. 1, we may consider with W and g
as in Proposition 5. 1( 1),

Proor. We have

(1=1,2) in this case. By

f21h<u1; U, U, 7)5(“1, U, 0, 7)2 du1 dug dv d?’

where  h(u,, wo, v, ¥)=x(tty, 2, v, ¥)J (s, u, v, ¥). Since we have
{hCuy, p, 0, 7) = h(0,0,0, ) pCots, 0z, v, ¥)i=71}+ 7"
Where rz'e S Snﬁ’.z, M Rz+1, M %.2 and 72” e S 6nﬁ.z, M\ Rz, M, Rz+1 , again by

Proposition 5. 1 we are reduced to the integral /(z)=
Q2rm)" .[Zoﬂ{rzl})XRd‘XRd’ h(0,0, v, VP, s, v, ¥)? dun du, dv db.

By quasi-homogeneity of p and the change of variable: u—7r "2y, (i=1,2),
we see that

=]

1<Z>:<27[>-n'/1‘ 7,N(m,Mo)z+N(2n,dn)~1 dr ]1<Z)
where

I(z)= ( 10,0, v, DpCur, us, v, D?dudus do.

20N S*R?™ )X R X R4»

NQ@n dy)

) o . C e -
Since it is clear that [,(z) is holomorphic in {z; % z< Nim My we

reach the conclusion.
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N (2n, dz)
PropPOSITION 5.4. When N m M2> , Tr(P?% is holomorphic
] NQ@n, dy) . _ _NQ@n dp)
niz, % z2<— Nim M) and has a simple pole at z= Nom M) as the
. . . . N(Zn, dg) _ Ag
first singularity with the vesidue Res( —m)— Nm N where
. n ~ ~N(2n, &)/N(m, My)
(5.4) As=Qm)™) | o pn e o (Pt v, DA DTS/ J (0, v, D) dudv
z . . . . _ N<2n; dZ) \
Proor That Tr(P? is holomorphic in {z; % z< Nom i)

follows from Proposition 5. 1. By [Proposition 4. 2(ii), 4. 3(1i), 4. 3,
(ii), 4. 4 and 5. 1, we may consider the integral of p.(x, &) near X},. First
let W and y be as in Proposition 5. 1(II);. Then by the same way as the

proof of Proposition 5. 3, we have modulo holomorphic functions for
N(Q2n, d,)
N (m, My)’

L(z)=
@) [ B0, v, B, 0, P+ 7M1 [ D2 iy d d.

-_@o ZS——

Secondly let W and yx be as in Proposition 5. 1(I). Then we have

5(”1) u2’ U, 7,)-3_{‘522(%2, ul} v’ r>+;/n_Ml/2<|u2|2+7_1>M2/2> }Z
=7ri+7:
Where 7,2 Smﬂz 1/2, M\ #.z—1, M, Rz and ’,zeSmﬂ’z M, %.z, MzﬁZ—Fl. SO we have
L=Qo" [ hw,0,0,7)x
{;522(u2, w, v, v)+ 7" M2y |24 M2 dy du,dvdy.

By the quasi-homogeneity of p(u,, v, ) and 522(%, u,, v, ) and the change
of variable u,—7 "*u,, we reach the conclusion.

d _d_2n . ..
PropPOSITION 5.5. When M=M= m Tr(P? s holomorphic n

{z; # z< —%} and has a triple pole at z= —% as the first singularity with

N (@2m, My) A,
4mN (m, M) N (m, M) N (m, M,)

the coefficient of (z +%)'3 equal to —

where
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(5.5 A= Ca)™ (st*Rz”)xs*Rd'xs*Rd=5’"<w1’ @z, 0, D)7X
J(0,0,v, 1) dw dw,.dv.
Proor. In this proposition if a function f(z) is holomorphic in
z; % z<—27n72} and has at most a double pole at z:—%—n as the first
singularity, we say that the function is negligible and write f(z)=0.

That Tr(P? is holomorphicin {z; % z< ——%} follows from Proposi-

tion 5. 1. Let W and x be as in [Proposition 5. 1j( I ). By [Proposition 4. 2
(i), 4. 3,5(i) and 4. 4, we may consider

J(2)=Qn) " rzlh(u,, o, v, YD s, o, v, ¥)*+dP+d?} duy du, dv dr

where d%=
:{ > ., W, U, U, VUT U =1 X Ay b0, e, v, 7)) ufus it
a| <M e | =M,
’S IthlSMz
and d%= { 2< Ay, 00, s, v, ) UT U }F— |2<M Ay 20,0, 0, ) ufus}?
}% ol 20

Here we may assume that supph C{(w, w, v, 7); |u;| <1, i=1,2}.
Moreover we shall prove:

(5.6)  J(z2)=/(z) where J,(2)=
=Q2x)™" 1(0,0, v, ) p(ur, s, v, 7)? duy du, dv dr.

r>1, r V2 <ful<1
In order to prove (5.6) we need the following lemmas.

LemMA 5.6.  If we put J,(z)=

= h(u,, u,, v, 7),5(%, Uy, U, )% duy, du, dv dr,

|u,'|S7’”2

then J,(z)=0.

N@2n, d,)

Proor. By the preceding arguments, we have for % z< ———-—2 22
N (m, My)

]1(2>:'/; ’JV(m,Mn)z+N(2n,aim)~l d’,x

X ./l;t»‘él h(r‘uzul, 7&”2742) v, 1)5(”1; u2) Uy 1>Z dul duz dl}
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1
= TN, Mz N, &) Jute #0000 e 0 DX

o0
pus, up, v, 1)? duy, du, a’v—f1 PN MOz + N (@n, do)=3/2 il ¢

2

w b (r "2uy, v, 0, Dplus, us, v, D? duy due dv.
1

|uid<1 i=
Thus we see that /;(z)=0 and this completes the proof.
LemMma 5.7.  If we put J,(z)=

Lulgr—uz h<u1) u21 U; r)ﬁ(”l uZ; v, ;,)Z d%l dv d?’,

o2 <yl <1

then J,(z)=0.
Proor. 1%-step: If we put f;(z)=

ﬁu‘,guz {hCur, wo, 0, 7) = 0wy, 0, v, )} P, w0, 0, )7 dus duy dv dr,

r 2 <ul<1

we can prove Jf(z)=0. In fact, if we put 2w, w., v, v)—h(u,, 0, v, )=
o h(uy, u,, v, ), we have

]3(2)2 [wrﬁ/(m,M.)z+N(2n,dl)—l ﬂ(?’, Z> d?’.

Here J,(7, 2)=

~ 2 .
ﬁul<1 u2°h(7"”2u1, Uz, U, 7’>{ 21 Pi(?/h, U, 0, 7’) }Z du, du, dv dr-
1S =

1< el <1

where p(ui, u,, v, )= 2} a, ,.(0,0,0, 7) uf uy and

pz(”l) Uy, v: 7>:] ,2<M 7(|QZI_M2)/2 Cla,], a,2<0, O, v, 1) uih Z/t%z.
| <M

Moreover we can write
1
Ji(r, 2)= f et d L (t, 7, 2) dt
where J;(¢, 7, z2)=

f&)g°h(7’_”2u1, t&)z, U, 1)[51(”1, ©@2, U, 1>+52(u1, @2, v, t27’>]z du1 d&)z d?).
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Thus by the integration by parts, we have J, (7 z) :m X
2 2

w1 9 rit oy 2t

1
[Jo(1, 7, 2) —p~ (Matdt D2 J (12 2 '/;/ Moz +d, =

Here we have

%]5(t, 7, Z) :./‘{}‘Z](V_-l"zul, t&)z, 0, 1) [51(”1, @2, U, 1>+

52(”1) wz; v} t27>]z+2(g)2'h'2<77713/2u1, t&)2) v} 1)[51(”1) @3, v, 1>+
by, @2, v, t27) )7 X plleel =M/2 placl=M=VL gy oy, dy

where &, and %, are bounded functions. Thus we have

—1
S(z)= Nm, M)z+N2n, d) )

o o
7N(m, M)z+NQ@n, d) ~ v z) dr
ar]4( bl )
Here we note

%]5(1’ 7, Z)ZO(T_M), %[7—(Mzz+d2+l>/2 ]50,—-1/2’ 7, Z)]—_-
O(T*(Mzz+dz+3)/2> and

9 ' o -3/
5;[ f_m thz+d2+1 Ej‘xt’ 7, Z) dt]:O(V ‘2>

v

. 2n
as r—oo uniformly on {z; % z< __n—z—+£} for any € >0. Therefore we see

that /;(z) is negligible.
2" —step . If we put Ji(2)=

/;u,lgy‘”z h<u1} O) v) 7) 5(”1; u2; U; 7,)2 dul du2 dl) d”,

7—uzs|u2lsl

we can prove J;(z)=0. In fact, we have J;(2)=

f pN Ome Mozt N 2n, do) =1 a’rﬁullgl h(r2uy, 0,0, Dp(w, s, v, D7 durdurdv.
1

1<|wal <72
Here if we write 13(u1, Uy, U, l)zzﬁl(ul, w, v, D+ 7.(uy, u,, v), we have
|7ty 2, 0) | <C |z |™#*71. Therefore we have J;(2)

= (m, M)z+N(2n, dy)—1
= j: r dr X

/| L RO, 00, Db G, 1y, v, ) dusdupdvdr

IS|u2f£ yl2

:fw N0 Mz +N@n d)=1 g, fr M+ a1 gy
1 1
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x f RCr—2u 0,0, 1) b, @, v, 7)° duy des dv
|2 <1, |wol =1

1 f‘”
_ (m, M)z+N(2n, do)—1 (y Mz + a2
= ad v -1
M,z+d, )L

v/l‘ 1 ol h(r "y, 0,0, 1) 131(%, w2, v, 1)? du, dw, dv.

By the integration by parts with respect to », we see that J;(z) =0. This
completes the proof.
Similarly we see that

/,4,231u1|gl R, o, 0, 7) Py, s, v, ) duy du, dv dr =0.

qu|§ yo12

Thus we are reduced to study /J,(z) where

J ()= f W, ws, v, 7) p(ws, s, v, ¥)? duy, du, dv dv.

rie< i) <1
However we have
LemmA 5.8.  If we put J.(z) as above, we have J.(z2)=],(2).

Proor. We put hlu, o, v, ¥) —h(0,0,0, ) =we b, (uy, w,, v, v) +
ur* (i, u, v, ¥). Then by the same way as the proof of
(2"—step), the proof is clear.

Finally we must prove

LEmMA 5.9.  If we put

K@= [ d¥u, w, v, r) ks, w0, 7) du du, dv dr,

then we have K,(z)+ K,(z) =0.

Proor. By Proposition 3. 1 and the construction of parametrices (c.f.
[2;§4]), we have K,(z)+ K,(2)=

M, . M,
S hC, s, 0. DU E B4 3 e s d o ar
j= j=
Here by the mean value theorem, we have K, (z2)+ K,(z) =
M, -~
o i, us, v, 7) Z{jg)(Pm—sz—Pm~j/z>}
1 M, o M, ~
X,/o‘ [me—j/2+ t9{'2(pm—j/z—pm—j/z)}Zvl] df du, du, dv dr.
j=0 7=0

As the same way as the proof of (2™.-step), we see that K,(z)+
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K,(z) is negligible. This completes the proof.
End of the proof of Proposition 5. 5.
By (5.6), we may consider J,(z). If we write
P, o, 0, 1= pnCotr, 102, v, D3+ 7.(otn, 5, ) for 1< |u;| <712,
we have
| 7:(r, 12, 0) | < C oy |27 ug M (o |+ ]
So we can see that the integral corresponding to 7, is negligible. Therefore

we have /,(z)=Q2nr) "X

Jrwonmsenenw-tgr [ h0,0,5, DfnCn, 1, v, D dis e do

0 2 12
:Aé(z)f yNom Myz+NCndd -1 gy T [ fMatd=1 gy
! i=1J1
A )fw N(m, Mpz+N@n dd)—1 l?I (yMz+dd/z—1)
= < Y m, Mo)z+ n, — y
4 : i=1 Miz+di

where A;(z) is defined by
Q)™ Jigns mmrs moxs e 10,00, 1D pul@r, @, v, D* deon des, dv.

and A.(z) is an entire function. By using an appropriate partition of unity,
we reach the conclusion of [Proposition 5. 5,

d _ NQ2n, dy)
M, N(m, M)
o NCn ), _
phic in {z; % z< NOm M) and has a double pole at z=
N(Q2n, dy)
N(m, Mz)

>—2£, Tr(P?% s holomor-

. N(Zn, dz)
N (m, M,)

ProposiTION 5.10.  When

as the first singularity with the coefficient of (z+

A,
M d—Mdy Nom M) Nom My Where

5.7 As=Qr)T"X

ml@r, @2, v, )N D/NMI T 0 9 1) dw, dw, dv.

)72 equal to

'[200 S*R*")XS*R"XS*R*

Proor. In this proposition if a function f(z) is holomorphic in
_ NQn, d») ~ NQCn, do)

N (m, M,) N (m, M)
as the first singularity, we say that f(z) is negligible and write f(z)=0.

{z; # z2< + and has at most a simple pole at z=
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NQCn, d,)
N (m, M,)
Proposition 5.1. In 3,\3,, by using 13222, we see that the corresponding
integral is negligible. Also outside X,, by using pZ, we see that the
corresponding integral is negligible. Near 3, by the same way as the proof
of [Proposition 5. 5 we see that if we define an entire function

That Tr(P?% is holomorphic in {z; % 2z<-— } follows from

AD= [ 00,05, D) e, w2, 0, D deor e, do,
then we have [ (z)=

oo 2 ytz
Aé(Z) [ 7N(m, M)z+NQ2n, do)—1 d?’ .Hl ’/.5 tiM.-z+d,._1 dtz
1=

_ —As(z) ®
- Miz+d)(Myz+d,) X

y N(Gm, Mz+N (2n, d) —1 <7<Mﬂ+dn>/2_ 1) dr

modulo negligible terms. This completes the proof.

d1 dz i 2n . . .
ProrosiTION 5.11.  When W;> L Tr(P? is holomorphic in
{z; % z< —%} and has a double pole at z= —% as the first singularity with
the coefficient of (z +2__n> 2 equal to A, where
m 2m N (m, M,)

(5.8) Ae=Cr)™" (Ezms*Rzn)xs*Rd,(ﬁzz,m(wz, v, D+D"] (0,0, 1) dw, dv
where 522’,%(%2, v, r):l lZ_}M a, (0,0, ) us.
Proor. In this proposition if a function f(z) is holomorphic in

{z: % 2<—2Wn} and has at most a simple pole at z:—% as the first

singularity, we say that f(z) is negligible and write 7 (z) =0. That Tr(P?

is holomorphic in {z; 2 z< —%} follows from [Proposition 5. 1. OQutside

2.2, by using the symbol (p,+ » m—Min(#. M>/2)2 we see that the correspond-
ing integral is negligible. Thus we may consider /(z)=

le lud<1 hCitz, v, ) s, (2, v, V) +7 " M2 |*+ v D™} du, dv dr.
However by the way as the preceding arguments we have 7(z)=

oo
f ¥ N(m, M)z+NC2n, )1y X
1
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-/l‘sluzlg,uz h(O, v, 1)\ 2 a, (O v, 1) uazlz du2 dv

laz| =M.

oo 71
:Ag(z)f y NOm, Mpz+NQn d)—1 gy f pMztdi=1 gy
! 1
where A¢(z) =

0,0, D{ 2 a,0,0, Dws? dw, dv.

la:| =M,

-[220 S*R*™)xX S*R*
Thus we have

Ag(2)

Iz >_M22+dz

fmyN(m,M,)z+N(2n,d2)—1 (7/(M22+d2>/2_1> d;,'

This completes the proof.

§ 6. The asymptotic behavior of eigenvalues of P

Let P(x, D) €OPL™ MM S5, In this section we assume that
P(x, D) satisfies (1.3), (1.4) and (H.1)~(H.6). As in §4, define an
unbounded self-adjoint operator P in L*(R"). Then P has the spectrum
consist only of eigenvalues of finite multiplicity. By (H.6), we can write

the sequence of eigenvalues: 0<1,<A1,..., lim 1,=+oco with repetition ac-

k—c0

cording to multiplicity. Let N (1) be the counting function, i. e,
NQA)= >} 1. Then we have

A=A

THEOREM 6.1. Let P(x, D) €OPL™ M- "(3, ). Assume that (1.3),

(1.4) and (H.D~(H.6) hold.

(1) If5 a >XZ>— then we have N(A)=A, A*""+0(A*"™), A—>+ 0.
(ID If ﬂi % then we have

N(UZWA—M)AQ”""(bg A)+o(A?™log 1), A—>+oo.

am If ;}l> 2%_7;;2 >2%n’ then we have

N(“_42—ildzl<4n @/ @m=M) | () Gn=dd/@m=MDY 3,4 op

V) I 2l B0 e have N(2)=

2m—M,
2M1 As

An—dy)/2m— M)
<Mzah—Mldz><2m—Ml—1142><4n—dl-arz>l (log 1)+
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0(/1(4n~d)/(2m~M)10g /‘l'>, A— +oco.

(V) If 2472 ?;; >27;Z, % then we have

N(l>:4n—2;§lf_ dzl(4n—d1—~dz)/(2m—M1—Mz)_+_0(1(4n—d‘—dz)/(2m—M,—M2)>’
A—+ 0.
(VD If éZZ_n then we have N(1)=
M1 M, wm’
(Am— M — M)A,
dnC2m— M) Cm— M) 2m— M,— M,)
o(A*""(log A)%), A—+co.
Herve A\~ As ave defined by (5.2), (5.3), (5.4), (5.5), (6.7) and (5.8).

dg . 47’1—‘ dz
REMARK 6.2. Since we see easily that —> 7A if and only if Sm— I,

A2"™(log L)%+

>

gmﬁ, taking (1.4) into consideration, this theorem covers all the cases.

For the proof, we use the following extended lkehara’s Tauberian
theorem.

ProposITION 6.3.  ([2; Proposition 5.3]) Let ;i A% be convergent for

B 2<5(<0), hence holomorphic. Assume that theve exist real numbers A,,
A,, ...., A, such that

o p Aj
kgl lk_i=1 (z—$0)’

is continuous on {z; % z2<s. Then we have

N= %#’ A—*(log 1>+ 0(A-*(log 1)*1), A—>—oo.

End of the proof of Theorem 6.1

It is well known that if % z<0 and |z]| is large, Tr(P‘?zké1 A%Z. For

example, we consider the case (VI): %z%:%. By |Proposition 5.5,
1 2

&, . 2 . . .
kgl A% has a triple pole at z= —73 as the first singularity with the coefficient

Adm—-M,— M)A,
m<2m—M1><2m_M2> <2m_M1_M2> )

of (z +%l)“3 equal to A;=— Thus

by Proposition 6.2, we have

—m A,

N =—p

/-LG/m(log l) _+_0</12n/m(10g l)Z) A1— +oo.
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Since the other case are proved similarly, we omit them.

ExampLE 6.4. (1) Let P(x, D)=(D%+x)2(D% +x)2(| Dy|*+ |x |+
u (D% + D%+ 2542 (| De |24 |2 1D+ v (| De |24 |x[D)*
on R?® for any positive numbers ¢ and v. Then we can put
2i={n=&=0}, 2={x=&=0}. Since M\=M,=4, di=d,=2, m=12 and
n=23, we have the case (VI), i. e,

NQ) =50+ A"2(log A)*+0(1"*(log 1)?), A— + 0.

3840
2 Laf%xLD:%{ﬁ+DiYKﬁ+ﬁ+DiYuDwﬂﬁﬂ%“%

CIDx[*+ [x|? (x1+xz+D2)2]+ [(x1+xz+D2) (I De |+ x|+
(1 Def*+ |2 [ Cett 23+ D3]+ (34 D22 De |+ 121D+ (| De P+ ]

on R® for any positive number x. Then we can put 3, ={x=x=£& =0},
2:={x=8&=0}. Since M\=M,=4, d,=3, d,=2, m=14 and n=5, we have
the case (IV), i. e,

NQ)= A log A+0(1¥1og 1), A—+ 0.

%

(3) Let P(x, D)=-5 [LV.D2<Ix}+¢1)|@ + x|+ [Dx D%, D]+
u(DL+ D) (x| +IDx12)7”+/z(lx!2+|DleW(Di+Di>+v(|xlz+IDXIZD“

on R? for any positive numbers ¢ and v. Then we can put
21={6=0}, 2,={&=0}. Since M\=M,=2, di=d,=1, m=10 and n=2,
we have the case (1), i. e,

5{I"(1/10) }?

N ==g =175

1254+ 0(1%9), A—>+oo.

Finally we give a generalization.

ReMARK 6.5. We can also define a symbol class which is an extension
of Definition 1.1l Let >, 3%, ..., 3, be closed conic submanifolds of
codimension d,, dz, ..., d, in R?"\0 and m a real number and moreover
M, M, ..., M,non-negative integers.

Then OPL™ ™ M- Mo( 3N, ..., 2 is a set of all pseudo-
differential operators P(x, D) on R" whose symbol p(x, &) satisfies (1.1)
and
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6.2 Lrenloc wm qyerauee

r(x, f)mvﬂz IR ey
k<M,
for ]:0, 1,..., M1+Mz++Mp Here

d = i f ,~—£ ,—i ) —
p=_ il (X = 41§20, i=1 2., p

As in Definition 1.1, we say that P(x, D) is regularly degenerate if p
satisfies

(6.3)" %zc as

We assume (H.1)~(H.6). Here (H.2), (H.3) and (H.4) are revised
according to this case. Then in the particular case :

dl N dz . . dp _27’l
MM M m we have for some constant A

N@)=A 2?""(log L)*'+0(1*""(log A)*™), A—>+oco.
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