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\S 0. Introduction

In this article we consider the graph as a topological space or a CW

complex and define some kinds of standard embeddings of the graphs into
the 3-dim. Euclidean space R^{3} or the 3-sphere S^{3} and discuss the prop-

erty. For example, for a knot or a link we can define the standard em-
bedding the trivial knot or the trivial link. And although, by Fox’s TheO-
rem, for any finite graph G there is a spatial graph \overline{G} of G such that the
complementary space of the interior of a regular neighborhood of \tilde{G} is
homeomorphic to a handlebody with genus equal to the rank H_{1}(G:Z) ,

this spatial graph is not suitable to the “ standard ” spatial graph in gen-

eral (see Figure 6). Furthermore the image of any embedding of the com-
plete graph with n vertices, \tilde{K}_{n} , contains a non-trivial link for n\geqq 6 and
contains a non-trivial knot for n\geqq 7([2]) . So if we adopt as the definition
of the standard embedding a spatial graph (i. e . the embedded image of
the graph) which does not contain a non-trivial knot or link, the definition
can not apply to all finite graph. Although there are concepts of minimal
genus, maximal genus and thickness in the graph theory ([1]), [11] ) , these
concepts do not satisfy the properties which should be satisfied by the “

standard ” embedding from view point of the knot theory. That is, the
graph theoretical properties of the above are weak for the “ standard ”

embedding from the knot theory. For example, although two spatial

graphs of the complete graph K_{5} of Figure 4 and 5 are both on the torus

but the first one does not contain any non-trivial knot and the second one
contains a trefoil knot.

From the knot theory, the properties which should be satisfied by the
“ standard embedding ” (or the “ standard spatial graph ”) are the follow-
ing ;

Let G be a finite graph and \overline{G} be a “standard ” spatial graph of G .

Then
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(I) \pi_{1}(R^{3}-\tilde{G}) is the free group of rank equal to rankH_{1}(G:Z) (see the
following Remark),

(II) any graph G has a “ standard ” spatial graph and
(III) two “ standard ” spatial graphs \overline{G}_{1} and \tilde{G}_{2} of a graph G are

equivalent in some sense.

REMARK. For a compact orientable 3-manifold with boundary, M, it
is homeomorphic to the handlebody if and only if \pi_{1}(M^{3}) is free group
([3]).

For example if G is a cycle graph ( =homeomorphic to a circle), a
disjoint union of cycle graphs ( =homeomorphic to a disjoint union of cir-
cles) or a planar graph, the “ standard ” graph of those one are the trivial
knot, the trivial link or the plane graph.
That is,

(1) a knot K is trivial if and only if \pi_{1}(S^{3}-K)\cong Z([6])

(2) a link L is trivial if and only if \pi_{1}(S^{3}-L)\cong Z*Z*\ldots.*Z where n is
the number of components of L, and \overline{n}

(3) for a planar graph G, its graph \overline{G} is a plane graph if and only if
for any spatial subgraph \overline{H} of \overline{G} , \pi_{1}(S^{3}-\tilde{H}) is free ([7]).

And these “ standard ” spatial graph of a graph are ambient isotopic
each other by the ambient isotopy of S^{3} . So these “ standard ” spatial
graphs satisfy the above conditions (I)–(III) where “ some sence ” in (III)
means “ ambient isotopy ” in these cases.

REMARK. We can not adopt the necessary condition of the above
example (3) as a condition of “ standard embedding ” because any embedd-
ing (or any spatial gragh) of the complete graph with n vertices (n\geqq 6)

contains a non-trivial link and contains a non-trivial knot for n\geqq 7([2]) .
But any spatial subgraph with some restrictions of the “ standard ” spatial
graph has a similar property (Corollary 2 to Proposition 9).

REMARK. We think that the ambient isotopy is too restrictive as
“ some sence ” in (III). For this, see Remark after Proposition 13.

Throughout this paper, we work in the piecewise linear (=PL) cate-
gory or differential category.

In \S 1 we consider the spatial graph from knot and link theory and
introduce concepts “ locally unknotted, globally unknotted (unlinked) ” and
discuss the properties. Although “ globally unknottedness ” is too
restricted as the definition of the “ standard ” spatial graph, it is conve-
nient to use results of the knot theory. Local unknottedness gives some
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restriction on spatial graphs. But there is evident difference between
“ local unknottedness ” and “ global unknottedness ” (example 2). And
“ local unknottedness ” is something weak by examples 2 and 3. So next
we difine “ locally unknotted with respect to a well situated base and with
respect to a triangle base ” which are more restricted concepts than simple
“ locally unknotted ” These are useful for the complete graph. In \S 2 we
shall introduce “ book presentation ” and define the book presentation with
minimum sheets which is probably a proper concept as the “ standard ”

embedding of pseudo Hamilton graphs (see \S 2 and Definition 12).

I want to acknowledge my debt to the many people, colleagues in our
seminar at Tokyo Woman’s Christian University, especially Shin’ichi
Suzuki (Waseda Univ.) who found some gaps and corrected many errors
and graduate students T. Endo, K. Ikeda, A. Kaneko and C. Toda who
determined the minimum number of sheets of a B. P. H. \Delta of complete
graphs K_{n} (Proposition 11. (2)). And I also want to express my apprecia-
tion Korea Advanced Institute of Science and Technology, especially Gyo
Taek Jin who invited me KAIST and gave me an opportunity to talk
about this subj ect .

\S 1. Local unknottedness and global unknottedness

Through this paper we assume that the graph is finite and does not
have vertices with degree 1 or 2 if otherwise stated. And as we consider
the “ standard ” spatial graph, we may restrict the graph to be simple
without cut edges. For the graph G let \gamma=rankH_{1}(G:Z) . We only use a
base \{x_{1},\ldots x_{\gamma}\} for H_{1}(G:Z) satisfying the condition that any element x_{i}

can be represented by a simple closed curve C_{i} . Let f:Garrow R^{3} (or S^{3} )

be an edgewise differentiate embedding and \tilde{G}=f(G) . We call \overline{G} a spa-
tial graph of G.

DEFINITION 1. A spatial graph \tilde{G} is locally unknotted if there are a

base \{x_{1}, \ldots, x_{\gamma}\} of H_{1}(G:Z) and a map \emptyset : \bigcup_{i=1}^{\gamma}D_{i}^{2}arrow S^{3} such that

1) \phi(\partial D_{i}^{2})=\overline{C}_{i} where \tilde{C}_{i} is a representation curve of x_{i} in \overline{G} .

2) \phi(\bigcup_{i=1}^{\gamma}\partial D_{i}^{2})=\overline{G}

3) \phi|D_{i}^{2}=embedding for i=1,2 , \ldots , \gamma

4) \phi(IntD_{i}^{2})\cap\phi(IntD_{j}^{2})=\phi for i\neq j

5) \phi(D_{i}^{2})\cap\tilde{G}=\phi(\partial D_{i}^{2})\cap\tilde{G}=\overline{C}_{i}

Otherwise we call also \overline{G} locally knotted.

DEFINITION 2. A spatial graph \overline{G} is locally unknotted with respect to



120 K. Kobayashi

a base (x_{1} , \ldots , x_{\gamma} } if for the distinguished base \{x_{1}, \ldots, x_{\gamma}\} there is a map
\emptyset : \bigcup_{i=1}^{\gamma}D_{i}^{2}arrow S^{3} satisfying (1)-(5) of Defifinition 1.

DEFINITION 3. We say that a spatial graph \tilde{G} is globally unknotted
if r any simple closed curve \tilde{C} on \tilde{G} is the trivial knot. Otherwise we say
also globally knotted.

DEFINITION 4. A spatial graph \tilde{G} is globally unlinked if for any set
of disjoint simple closed curves, \{ \tilde{C}_{i}\} , i=1,2, . . , \mu on \tilde{G},\tilde{C}_{1}\cup\ldots\cup\tilde{C}_{\mu} is
the trivial link.

Otherwise we say also globally linked.

PROPOSITION 1. Let \tilde{G} be a spatial graph. If for any spatial sub-
graph \overline{H} of \overline{G}\pi_{1}(S^{3}-\tilde{H}) is free then \overline{G} is globally unknotted and globally
unliked.

PROOF. If \tilde{G} contains a non-trivial knot or non trivial link \tilde{C} ,
\pi_{1}(S^{3}-\overline{C}) is not free. \square

The converse of the above Proposition 1 does not holds. Figure 0.
(S. Suzuki [10]) is a spatial graph of K_{4} which is globally unknotted and
globally unlinked. But \pi_{1}(S^{3}-\tilde{K}_{4}) is not free.

Fig. 0.
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DEFINITION 5. ([5], [9]) If for any spatial graph \tilde{G} of G,\tilde{G} is
globally knotted, then we define G to be self-knotted. And if for any spa-
tial graph \overline{G} of G,\tilde{G} is globally linked, then we call G to be self-linked.
According to ([2]), the complete graph with n- vertices, K_{n} , is self-linked
provided n\geqq 6 and self knotted for n\geqq 7 .

So the following holds.

PROPOSITION 2. If G is a self-knotted graph, any spatial graph of G

is not globally unknotted. Similary if G is a self-linked graph, any spa-
tial graph of G is not globally unlinked. \square

PROPOSITION 3. If a spatial graph \tilde{G} is contained in the 2-sphere S^{2} .
then \tilde{G} is locally unknotted, globally unknotted and globally unlinked. \square

REMARK. The converse of Proposition 3 does not hold. Since the
complete graph with 5 vertices, K_{5} , is not self-knotted and not self-linked,

there is a spatial graph \tilde{K}_{5} which contains only trivial knots. But K_{5} is
not planer so \overline{K}_{5} is not contained in S^{2} .

PROPOSITION 4. If a spatial graph \tilde{G} is locally unknotted then \pi_{1}(S^{3}

-\tilde{G}) is free.
PROOF. Since \overline{G} is locally unknotted, there are a base of H_{1}(G:Z)

and a map \emptyset:\bigcup_{i=1}^{\gamma}D_{i}^{2}arrow S^{3} satisfying the conditions of Definition 1. Put

P= \overline{G}\cup\psi(\bigcup_{i=1}^{\gamma}D_{i}^{2}) , then P is a connected 2-dim. complex with H_{1}(P:Z)=

\{0\} . If U(P) is a regular neighborhood of P, U(P) is a bounded 3-mani-
fold with homotopy type P. By the Alexander’s duality theorem, H_{1}(S^{3}

-U(P))\cong H_{1}(U(P))\cong\{0\} and H_{2}(S^{3}-U(P))\cong\overline{H}_{0}(U(P))\cong\{0\} . Hence S^{3}

-U(P) is acyclic and so \partial U(P) is a 2-sphere. By the Schoenflies the0-
rem, S^{3}-U(P) is a 3-ball. So S^{3}-\overline{G} is a 3-ball with 1-cells dual to

2-cells \bigcup_{i=1}^{\gamma}\phi(D_{i}^{2}) respectively and hence S^{3}-\overline{G} is a handlebody. There-

fore \pi_{1}(S^{3}-\overline{G}) is free.

We denote E(G) a set of edges of a graph G and |E(G)| a number of
elements of the set E(G) .

LEMMA 1. Let G be a connected graph and T_{G} be a maximal tree of
G. If \gamma=rankH_{1}(G:Z) then \gamma=|E(G)|-|E( T_{G})| .

PROOF. Since G is connected, by Euler’s formula
1-\gamma=|V(G)|-|E(G)| . Since T_{G} is a maximal tree of G , |V(T_{G})|=
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|V(G)| and |E(T_{G})|=|V(T_{G})|-1 . So |V(G)|=|E(T_{G})|+1 and 1-\gamma=

|E(T_{G})|+1-|E(G)| . Hence \gamma=|E(G)|-|E(T_{G})| . \square

The following lemma is well known. So we omit its proof.

LEMMA 2. Let G be a fifinite graph and \gamma=rankH_{1}(G:Z) . For a set
of simple closed curves on G, \Gamma=\{C_{1}, C_{2}, \ldots , C_{\gamma}\} , we construct a 2-comlexes
P=G \bigcup_{f}\bigcup_{i=1}^{\gamma}D_{i}^{2} where f : \bigcup_{i=1}^{\gamma}\partial D_{i}^{2}arrow G is a map so that f|_{\partial D_{\iota}^{2}}(i=1,2, \ldots, \gamma)

is an embedding and f(\partial D_{i}^{2})=C_{i} . Then \Gamma is a set of representation curves
of a base of H_{1}(G:Z) if and if P does not contain an image of an
immerision of an orintable closed surfuce.

COROLLARY. Let G be a fifinite graph and \gamma=rankH_{1}(G:Z) . If for a
set of simple closed curves on G, \Gamma=\{C_{1}, \ldots, C_{\gamma}\} , there is a maximal tree
T_{G} of G satisfying the following condition (*) , then \Gamma is in fact a set of
representation curves of a base of H_{1}(G:Z) .

(*) Let \Lambda be a E(G)-E(T_{G})=\{e_{1}, e_{2}, \ldots, e_{\gamma}\} . For any element e_{i}\in\Lambda ,
there is only one C_{j} in \Gamma with e_{i}\in E(C_{j}) .

THEOREM 1. Any comlete graph has a locally unknotted spatial
graph.

PROOF. Since |V(K_{n})|=n and |E(K_{n})|=n(n-1)/2 , by Euler’s formula
\gamma=(n-1)\cross(n-2)/2 where \gamma=rankH_{1}(K_{n} : Z) . Let V(K_{n})=\{v_{1}, \ldots, v_{n}\} and
set v_{k}=e^{2\pi i(k-1)/n}\in Ck=1,2 , \ldots , n where S^{1}=\{e^{ie}|0\leqq\theta\leqq 2\pi\} .

First join the pairs of vertices v_{1} & v_{2} ; v_{2} & v_{3} ; \ldots ; v_{n} -1 & v_{n} ; v_{n} &
v_{1} , then n edges were made. Second join the pairs of vertices v_{1}\ v_{3} ; v_{1}

& v_{4} ; \ldots ; v_{1} & Vn-l then (n-3) edges were made. And (n-2) triangles
\Delta v_{1}v_{2}v_{3} , \Delta v_{1}v_{3}v_{4} , ..., \Delta v_{1}v_{n-1}v_{n} bound 2-cells respectively which do not
intersect at their interiors. Third join the pairs of vertices v_{2}\ v_{4},\cdot v_{2} &
v_{5} : v_{2} & v_{6} ; \ldots ; v_{2} & v_{n} which pass under the edges made by the second
step then (n-3)-edges were made and n-3 triangles \Delta v_{2}v_{3}v_{4} , \Delta v_{2}v_{4}v_{5} , ....,
\Delta v_{2}v_{n-1}v_{n} bound 2-cells respectively such that these constructed 2-cells in
the second and third steps do not intersect at their interiors. Fourth join
the pairs of vertices v_{3} & v_{5} ; v_{3} & v_{6} ; \ldots ; v_{3} & v_{n} which pass under the
edges made by the second and third steps then n-4 edges were made and
n-4 triangles \Delta v_{3}v_{4}v_{5} , \Delta v_{3}v_{5}v_{6} , \ldots , \Delta v_{3}v_{n-1}v_{n} bound 2-cells respectively
such that these constructed 2-cells in the second, third and fourth steps do
not intersect at their interiors. And so on. Finally join v_{n-2} and v_{n}

whose edge is undermost among all edges constructed in the above steps.
And a triangle \Delta v_{n-2}v_{n-1}v_{n} bound a 2-cell which does not intersect the
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other 2-cells constructed by the above steps at their interiors (Fig. 1).

The total number of constructed edges by the above is n+(n-3)+((n
-2)(n-3)/2)=n(n-1)/2 and the total number of interior disjoint 2-cells
of the above is (n-1)(n-2)/2 of which boundaries are a set of represen-
tation curves of a base of H_{1}(K_{n} : Z) by lemma 2.

Fig. 1.

By the following examples, it is clear that the definition of locally

unknottedness is something weak for us (i. e . as a “ standard ” spatial

graph).

EXAMPLES 1. Locally unknotted complete graph K_{n} for n=3,4,5 .

n=3 . locally unknottedarrowarrow globally unknotted
arrow – trivial knot as a knot

Fig. 2-1 Fig. 2-2
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n=4 . \gamma=rankH_{1}(K_{4} : Z)=3 . Let H_{1}(K_{4} : Z)=\langle x_{1}, x_{2}, x_{3}|[x_{i}, x_{j}]\rangle=B_{1}

where x_{1}=\langle C_{1}\rangle , x_{2}=\langle C_{2}\rangle and x_{3}=\langle C_{3}\rangle and let
B_{2}=\langle\chi_{1}’ x_{2}’, x_{3}’|[x_{i}’, x_{j}’]\rangle where x_{1}’=\langle C_{1}\# C_{2}\rangle ,
x_{2}’=\langle C_{3}\rangle and x_{3}’=\langle C_{1}\rangle . By the symmetry of
K_{4} , there is only two way of the choice of the
base of H_{1}(K_{4} : Z) as above. If each base ele-
n ot of B_{1} bounds a 2-cell, \phi_{1}(D_{i}^{2}) satisfying
the conditions of Definition 1, then \overline{K}_{4}\cup

\phi_{1}(\bigcup_{i=1}^{3}D_{i}^{2})\cong D^{2} (a 2-cell). And if each bace element of B_{2} bounds a 2-cell

\phi_{2}(D_{i}^{2}) satisfying the conditions of Definition 1, then \overline{K}_{4}\cup\phi_{2}(\bigcup_{i=1}^{3}D_{i}^{2}) 2 -disk

with a pocket (Figure 3). So for the first case with respect to the base B_{1} ,
\overline{K}_{4} is globally unknotted. And the second case for B_{2} is also globally
unknotted by checking all 4 3-cycles and 3 4-cycles. Hence if \overline{K}_{4} is
locally unknotted, it is globally unknotted. And a locally unknotted \overline{K}_{4} is
unique up to ambient isotopy. But the converse is false. The spatial
graph \overline{K}_{4} of Figure 0 is globally unknotted but locally knotted.

For n=5, the complete graph with 5 vertices, K_{5} , has a spatial graph
\overline{K}_{5} which is locally unknotted but globally knotted (see Figure 5).

EXAMPLE 2. The spatial graph, \tilde{K}_{5} , of Figure 4 is locally unknotted,
globally unknotted, and \pi_{1}(S^{3}-\tilde{K}_{5}) is the free group of rank 6 (=rankH_{1}

(K_{5} : Z)) .
The spatial graph, \overline{K}_{5} , of Figure 5 is locally unknotted, globally knot-

ted and \pi_{1}(S^{3}-\overline{K}_{5}) is the free group of rank 6.
Although a multi-edge graph \theta is not simple, the spatial graph, \overline{\theta} , of

Figure 6 is locally knotted, globally knotted but \pi_{1}(S^{3}-\tilde{\theta}) is the free
group of rank 2.

Fig. 5.Fig. 4. Fig. 6.
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EXAMPLE 3. For the following spatial \overline{K}_{4} (Figure 7), there are 3
cycles x_{1}=e_{1} \bigcup_{\partial}e_{2}\bigcup_{\partial}e_{3} , x_{2}=e_{2} \bigcup_{\partial}e_{4}\bigcup_{\partial}e_{5} , x_{3}=e_{3} \bigcup_{\partial}e_{4}\bigcup_{\partial}e_{5}\bigcup_{\partial}e_{1} those which
bound 2-cell respectively satisfying the conditions of Definition 1 except 2).

But the set \{x_{1}, x_{2}, x_{3},\} is not a base of H_{1}(K_{4} : Z) .

Fig. 7.

So we shall define more restricted “ locally unknotted ”

LEMMA 3. Let G be a connected graph and T_{G} be a maximal tree of
G. If E(G)-E(T_{G})=\{e_{1_{ }},\ldots, e\gamma\}(\gamma=rankH_{1}(G:Z)) , there is a base
\{x_{1}, \ldots, x_{\gamma}\} of H_{1} (G : Z) such that

(1) the representative curve C_{i} of x_{i} passes through e_{i} for once.
(2) Int (e_{i})\cap C_{j}=\phi(i\neq j)

PROOF. Let \partial e_{i}=v_{i1}\cup v_{i2} . Since T_{G} is a maximal tree of G , we can
take a simple path f_{i} joining v_{i1} and v_{i2} in T_{G} . Set C_{i}=e_{i} \bigcup_{\partial}f_{i} then
\{C_{1}, \ldots, C_{\gamma}\} is the set of representative curves of the required base \{x_{1},\ldots ,
x_{\gamma}\} by lemma 2. \square

DEFINITION 6. We call the base obtained by Lemma 3 a well-situated
base of H_{1}(G:Z) for a mmimal tree T_{G} . This base, of course, depends on
the maximal tree T_{G} .

Accoding to Proposition 8’ and Proposition 9, we can show the follow-
ing proposition. (For the difinition of psuedo Hamiltonian, see \S 2.)

PROPOSITION 5. Any pseudo Hamiltonian G has a spatial graph
which is a locally unkotted with respect to the well situated base { x_{1} , \ldots J

x_{\gamma}\} for a maximal tree T_{G} of G.

PROOF. See Proposition 9.

Although the following Proposition 6 is contained in Proposition 4, the
proof is more elementary. So we leave the following.
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PROPOSITION 6. If a spatial graph \overline{G} is locally unknotted with respect
to the well situated base \{x_{1} , . . . Jx_{\gamma}\} for a maximal tree T_{G} of G , then
\pi_{1}(S^{3}-\overline{G}) is a free group of rank \gamma(=rankH_{1}(G:Z)) .

Proof. Since G is locally unknotted with respect to \{x_{1}, \ldots, x_{\gamma}\} ,

there is a map \emptyset:\bigcup_{i=1}^{\gamma}D_{i}^{2}arrow S^{3} such that

(1) \phi(\partial D_{i})=\tilde{C}_{i} (2) ( \bigcup_{i=1}^{\gamma}\partial D_{i}^{2})=\overline{G}

(3) \phi|D_{i}^{2}=embedding (4) \phi(IntD_{i}^{2})\cap\psi(IntD_{j}^{2})=\phi(i\neq j)

(5) \psi(D_{i}^{2})\cap\overline{G}=\psi(\partial D_{i}^{2})\cap\overline{G}=\overline{C}_{i} where \overline{C}_{i} is a representative curve
of x_{i} on \overline{G} .

And since \{x_{1}, \ldots, x_{\gamma}\} is a well-situated base for T_{G} , there is a set of
edges, \{e_{1}, \ldots., e_{\gamma}\} , such that

(6) \{e_{1}, \ldots, e_{\gamma}\}=E(G)-E(T_{G}) ,
(7) only \overline{C}_{i} contains \tilde{e}_{i} where \tilde{e}_{i} is the image of e_{i} by f and
(8) \overline{C}_{i} passes through \overline{e}_{i} for once.

Since T_{G} is a tree, a vertex x_{0}\in T_{G} is a deformation retract of T_{G} in S^{3} .

And since each \tilde{e}_{i} is a free face of a 2-complex \overline{G}\cup\bigcup_{i=1}^{\gamma}\phi(D_{i}^{2}) according to

this deformation retraction, \overline{G} deforms to a bouquet B=\overline{e}_{1}^{v\ldots v}\overline{e}_{\gamma} based
at x_{0} . Each \tilde{e}_{i} bounds a image \phi(D_{i}^{2}) . And \phi(IntD_{i}^{2})\cap\phi(IntD_{j}^{2})=\phi . So
B is the standard bouquet in S^{3} Therefore \pi_{1}(S^{3}-\overline{G})=\pi_{1}(S^{3}-B) and it
is the free group of rank \gamma . \square

EXAMPLE. There is a spatial graph, \overline{K}_{5} , which is a locally unknotted
with respect to a well situated base for a maximal tree \Delta but not globally
unknotted. The spatial graph \overline{K}_{5} of Figure 8 contains a trefoil knot.

\triangle

Fig. 8.
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The following definition is another restricted locally unknottedness for
a comlete graph. We think that it is useful for a standardness of spatial
graph of complete graphs.

DEFINITION 7. A base \{x_{1}, x_{2}, \ldots, x_{\gamma}\} of H_{1}(K_{n} : Z) is called a triangle
base if each element x_{i} of the base is represented by cycle whose length is
three i. e. x_{i} is representable by a complete graph with 3 vertices.

REMARK. The spatial graph, \overline{K}_{5} , of Figure 5 is locally unknotted but
not locally unknotted with respect to any triangle base.

PROPOSITION 7. Any complete graph with n vertices, K_{n} , has a spa-
tial graph which is locally unknotted with respect to a triangle base.

PROOF. The spatial graph, \overline{K}_{n} , constructed in the proof of Theorem
1 is in fact locally unknotted with respect to a triangle base. \square

REMARK. Since K_{6} is self-linked and K_{7} is self-knotted by ([2]),
there are spatial \tilde{K}_{6},\tilde{K}_{7} which are locally unknotted with respect to a tri-
angle base but not globally unlinked and not globally unknotted by PropO-
sition 7.

QUESTION. Are there locally unknotted spatial \overline{K}_{5} or \tilde{K}_{6} with respect
to the triangle base of 1-st homology groups of \overline{K}_{5},\overline{K}_{5} respectively which
are globally knotted ?

EXAMPLE. For a spatial graph, \overline{K}_{5} (Figure 9.), we take a set of tri-
angle cycles B=\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\} where x_{1}=\langle 124\rangle , x_{2}=\langle 125\rangle , x_{3}=\langle 1

45\rangle , x_{4}=\langle 245\rangle , x_{5}=\langle 134\rangle , x_{6}=\langle 235\rangle . Then every cycles x_{i} ’s bound
a disjoint 2-disk D_{i}^{2} respectively So D_{1}^{2} \bigcup_{\partial}D_{2}^{2}\bigcup_{\partial}D_{3}^{2}\bigcup_{\partial}D_{4}^{2} is a 2-sphere
and the vertices 1, 2, 4, 5 are on the 2-sphere. But the vertex 3 is not
cotained in the 2-sphere. And the cycles x_{5} and x_{6} bound curved triangles
respectively. So the spatial graph \tilde{K}_{5} (Figure 9) bounds 6 interior disjoint
2-cells and the \overline{K}_{5} obviously contains a non-trivial knot. But B is not a
base of H_{1}(K_{5} : Z)
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Fig. 9.

\S 2. Book presentation.

DEFINITION 8. Let P_{1}’=\{(x,y,z\}\in R^{3}|z=0, y\geqq 0\} and define induc-
tively by
P_{2}’=\{(x_{2}, y_{2}, z_{2})\Leftarrow^{-}R^{3}|x_{2}=x , y_{2}=y\cos\theta- zsin \theta , z_{2}=y\sin\theta+z\cos\theta ,

(x, y, z)\in P_{1} ’ and \theta=2\pi/n},}

P_{k}’=\{(x_{k}, y_{k}, z_{k})\in|x_{k}=x , y_{k}=y\cos\theta- zsin \theta , z_{k}=y\sin\theta+z\cos\theta ,
(x, y, z)\in P_{1} ’ and \theta=2(k-1)\pi/n\}

P_{n}’=\{(x_{n}, y_{n}, z_{n})\in R^{3}|x_{n}=x , y_{n}=y\cos\theta- zsin \theta , z_{n}=y\sin\theta+z\cos\theta ,
(x, y, z)\in P_{1} ’ and \theta=2(n-1)\pi/n\}

We call \mathscr{B}_{n}=\bigcup_{i=1}^{n}P_{i}
’ a book. Let –. =\{(x, y, z)\in R^{3}|y=z=0\} and call it the

binder of \mathscr{B}_{n} . And let P_{i}=P_{i}’---. and call it the i-th sheet of \mathscr{B}_{n} . So

we can also call \mathscr{B}_{n}=\bigcup_{i=1}^{n}P_{i}’=--. \cup\bigcup_{i=1}^{n}P_{i} a book with n-sheets \{P_{i}\} and the

binder \Xi .
Let \emptyset:Garrow \mathscr{B}_{n} be an embedding satisfying that
(1) \phi(V(G))\subset--. \subset \mathscr{B}_{n} ,
(2) for any edge e\in E(G) , \phi(e)\subset--. or \phi(Int(e))\subset P_{i} for some P_{i} and
(3) for any sheet P_{i} there is at least one edge e of G with \phi(Int(e))

\subset P_{i} .
Then we call \overline{G}=\phi(G) (or the embedding \emptyset ) a book presentation of G

with n sheets. It is clear that 0\leqq n\leqq|E(G)| . When n is minimum, we
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call \tilde{G} a book presentation of G with minimum sheets.

PROPOSITION 8. Any fifinite graph G has a book presentation.

PROOF. We set all vertices on —. And join the vertices by edges
which are on different sheets for different edges. Then any finite graph
can be embedded in a book, i . e . any finite graph has a book presentation.
\square

DEFINITION 9. For a fifinite graph G if there is a simple path {or
simple arc) containing all vertices of G we call the path a Hamilton path
and G a pseudo Hamiltonian. Let \Delta be a Hamilton path. If a book pre-
sentation \psi:Garrow \mathscr{B}_{n} satisfifies a condition \phi(\Delta)\subset_{-}^{-}- , we call \tilde{G}=\phi(G) (or
\phi) a book presentation with respect to a Hamilton path \Delta and denote \emptyset a

B. P. H. \Delta . Furthermore if there is a simple closed path on G containing
all vertices of G we call it a Hamilton cycle and G a Hamiltonian {or a
Hamilton graph).

By the same way to the proof of Proposition 8, we can prove the fol-
lowing.

PROPOSITION 8’. Any pseudo Hamiltonian graph has a B. P. H. \Delta .
DEFINITION 10. Let G be a pseudo Hamiltonian and \Delta be a Hamilton

path. Let \emptyset : Garrow \mathscr{B}n be a book presentation with respect to a Hamilton
path \Delta . If H is a subgraph of G containing the path \Delta then we call \tilde{H}=

\phi(H) a spatial subgraph for the B. P. H. \Delta of G.

PROPOSITION 9. Let G be a pseudo Hamiltonian with a Hamilton
path \Delta and \emptyset:Garrow \mathscr{B}p be a B. P. H. \Delta . Then for any spatial subgraph
\overline{H} for the B. P. H. \Delta of G,\tilde{H} is locally unknotted with respect to the
well-situated base \{x_{1} , x_{2} , . . .., x_{8}\} , for a maximal tree \Delta of H where \delta is
the rank of H_{1}(H : Z) .

PROOF. Take a subgraph H of G with H\supset\Delta . Let E(H)-E(\Delta)=
\{e_{1}, e_{2}, \ldots., e_{\delta}\} and \overline{C}_{i}=\tilde{e}_{i}\bigcup_{\partial}\tilde{f}_{i} be a presentation curve of x_{i} on \phi(H)

where f_{i} is a simple\sim path on \Delta . Then \overline{C}_{i} bounds a 2-disk \tilde{D}_{i} in a sheet
which contains e_{i} . By deforming these 2-disks { \overline{D}_{i} (i=1,2, \ldots., \delta) a little
if necessary, we can arrange \{\overline{D}_{i}\} so that \overline{D}_{i} ( =\phi(D_{i}) in Definition 1)
satisfies the condition (1)-(5) of Definition 1. Obviously \{x_{1}, \ldots., x_{\delta}\} is a
well situated base of H for a maximal tree \Delta .

COROLLARY 1. If G is a pseudo Hamiltonian and \emptyset:Garrow \mathscr{B} is a
B. P. H. \Delta then any spatial subgraph, \tilde{H}, for the B. P. H. \Delta of G is locally
unkotted.
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COROLLARY 2. If G is a pseudo Hamiltonian and \emptyset:Garrow \mathscr{B} is a
B. P. H. \Delta , then for any spatial subgraph \overline{H} for the B. P. H. \Delta of G\pi_{1}(S^{3}-

\overline{H}) is the free group of rank equal to rankH_{1}(H:Z) . ( This is a version
of Scharleman-Thompson ’s Theorem ([7]) ) .

PROOF. Since \tilde{H} is locally unknotted by Corollary 1, \pi_{1}(S^{3}-\overline{H}) is
free by Proposition 4. \square

REMARK. If \overline{H} is not a spatial subgraph for the B. P. H. \Delta of G in
Corollary 2, \pi_{1}(S^{3}-\tilde{H}) is not necessarily free. For example, a spatial
graph, \overline{K}_{7} , of Figure 10 contains a trefoil knot which is a spatial
Hamiltonian subgraph \overline{H} of \overline{K}_{7} but not a spatial subgraph for the B. P. H.
\Delta of K_{7} . Also see Figure 11. A spatial graph, \tilde{K}_{5} , contains a trefoil knot
which is a spatial Hamiltonian subgraph \tilde{H} of \tilde{K}_{5} but not a spatial sub-
graph for the B. P. H. \Delta of K_{5} .

Fig. 10.
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REMARK. The converse of the above Corollary 1 in some sence does
not hold, i . e . there is a locally unknotted spatial graph of a pseudo
Hamiltonian which is not ambient isotopic to any B. P. H. \Delta of the graph.
Although the spatial graph, \overline{K}_{5} , of Figure 5 is locally unknotted, it is not
ambient isotopic to a spatial graph which is a book presentation of the
complete graph with 5 vertices by the following Proposition 10 because the
spatial graph contains the 5_{1} knot. And the complete graph is a pseudo
Hamiltonian (in fact it is Hamiltonian).

Combining Proposition 8’ with Corollary 1 we get a following generali-
zation of Theorem 1.

COROLLARY 3. If G is a pseudo Hamiltonian, G has a locally un-
knotted spatial graph.

PROPOSITION 10. A. B. P. H. \Delta of a complete graph K_{5} can contain
only trefoil knot as a non-trivial knot.

PROOF. Let \emptyset:K_{5}arrow \mathscr{B}p be a B. P. H. for a Hamilton path \Delta . So
\phi(\Delta)\subset\overline{=} . We label all vertices of K_{5} via \Delta . Then \underline{such}\underline{asF}ig\underline{ure}12\underline{ca}n

\underline{not}occur in the book presentation. So the edges VlV2, v_{2}v_{3} , v_{3}v_{4} , v_{4}v_{5} ,
\underline{v_{5}v_{1}}i\underline{n\psi}(K_{5}\perp ca\underline{nno}t\underline{hav}e any crossing. And the remaining edges are

v_{1}v_{3} , v_{1}v_{4}v_{2}vv_{2}v_{5}\underline{v_{3}},v_{5}\wedge\wedge^{4}\cdot So p\underline{ossi}ble intersections are in t\underline{hep}a\underline{irs}of
edges ( _{v_{1}v_{3}} , ( _{v_{1}v_{3},\overline{v_{2}v_{5}})} , ( _{v_{1}v_{4},\overline{v_{2}v_{5}})} , (\overline{v_{1}v_{4}},\overline{v_{3}v_{5}}) or ( v_{2}v_{4}, v_{3}v_{5}) .
We draw these edges on the upper side of the binder. But at least 2 edges
can move the lower side of the binder. So we move one edge the lower
side. But every edges was used twice in the above possible intersections.
So aft\underline{ert}hi\underline{sm}ov,ipn2 inter\underline{\sec}tions reduce. Hence the remaining five
edges v_{1}v_{3} , v_{1}v_{4} , v_{2}v_{4} , v_{2}v_{5} , v_{3}v_{5} can have only three crossings as mini-
mal number of crossing among five sheets. So a book presentation of K_{5}

contains only trefoil knot as a non-trivial knot.

Fig. 12.
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PROBLEM. Determine the following number c .
A generalization of Proposition 10. A book presentation of a complete

graph K_{n} can contain only a knot with at most c crossings as minimal
crossings.

LEMMA 4. Let \emptyset:K_{n}arrow \mathscr{B}_{p} be a B. P. H. \Delta of a complete graph
K_{n} . Then every sheets of \mathscr{B}p can not contain (n-1) edges.

PROOF. In this case, the maximum number of edges contained in a
sheet is equal to [the number of the lines joining the opposite angle in the
n-g0n]+1. It is n-2. \square

LEMMA 5. Let \emptyset:K_{n}arrow \mathscr{B}p be a B. P. H. \Delta of a complete graph.
Then there is at most one sheet containing (n-2) edges.

PROOF. Every sheet can not contain (n-1) edges by lemma 4. And
the edge 1 n can be contained every sheets. So to contain (n-2) edges in
a sheet we have to use the edge In. Hence there is only one sheet
containing (n-2) edges.

THEOREM 2. Let K_{n} be the complete graph with n vertices and \emptyset:K_{n}

arrow \mathscr{B}p be a B. P. H. \Delta with p -sheets, then [(n+1)/2]\leqq p\leqq(n-1)(n-2)/2

for n\geqq 4 and p=1 for n=3 where [k] is greatest integer less than or equal
to k.

PROOF. For n=3 it is obvious. And obviously 0\leqq p\leqq|E(K_{n})|=n(n

-1)/2 .
Since \emptyset is a B. P. H. \Delta , there are (n-1) edges on the binder E, n(n

-1)/2-(n-1)=(n-1)(n-2)/2 . Hence p\leqq(n-1)(n-2)/2 . And any
sheet can not contain (n-1) edges by lemma 4. And there is only one
sheet which contains (n-2) edges by lemma 5. So other sheets contain at
most (n-3) edges. Therefore (n-1)+(n-2)+(p-1)(n-3)\geqq n(n-1)/2
and p\geqq n/2 . Since p is an integer p\geqq[(n\dagger 1)/2] . \square

If there is a B. P. H. \Delta with 2 sheets, \emptyset:Garrow \mathscr{B}_{2} , then \phi(G) is a
plane graph. The following Proposition states the converse for
Hamiltonian (not pseudo Hamilton) and determine the minimum number
of sheets of the B. P. H. \Delta for the complete graph.

PROPOSITION 11. (1) Let \tilde{G} be a plane Hamiltonian. Then there is
a B. P. H. \Delta of G with 2 sheets, \emptyset:G — \mathscr{B}_{2} which is ambient isotopic to
\tilde{G}.

(2) [ T. Endo, K. Ikeda, A. Kaneko and C. Toba] Let K_{n} be a com-
plete graph and \emptyset:K_{n}arrow \mathscr{B}_{p} a B. P. H. \Delta of K_{n} with the minimum num-
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ber of sheets. Then p=[(n+1)/2] .
PROOF. (1) Since \tilde{G} is a plane graph, \overline{G} is on a 2-sphere S^{2}- And

since G is a Hamiltonian, there is a Hamilton cycle \overline{C} on \tilde{G} which divides
S^{2} into two 2-balls by Scoenflies Theorem (or Jardan Curve Theorem).
We isotope \overline{C} to the equator K. By considerinsg the north hemishere the
first sheet and the south hemisphere the second sheet, we can construct a
B. P. H. \Delta of G, \emptyset:Garrow \mathscr{B}_{2} with 2 sheets whose image \phi(\tilde{G}) is ambi-
ent isotopic to \overline{G} .

(2) First we prove the case n even, n=2m. Let \Delta_{\backslash }VK_{2m} ) –\perp v_{1}, v_{2} , \ldots .,
\underline{v_{2m}\}.} On the\underline{i}-th sheet P_{iA_{\sim}^{1\leqq i\leqq m)}} we draw edges v_{i}v_{i}+2 , v_{i}v_{i}+3 , \ldots .,
v_{i}v_{i+m} and v_{i+m}v_{i+m+2} , \ldots ., v_{i+}v_{i\underline{+2m-}1}wh\underline{ere} the number of vertices is of
mod 2m. And draw the edges v_{i}v_{i+1} , v_{i+m}v_{i+m+1} on the binder — \cdot By the
contruction, we get a B. P. H. \Delta of K_{2m} , \emptyset:K_{2m}arrow \mathscr{B}_{m} .

The case n odd, n=2m+1. Let V(K_{2m+1})=\{v_{1}, v_{2}, \ldots., v_{2m}v_{2m+1}\} and
V_{0}=\{v_{1}, \ldots., v_{2m}\} . Then we may consider K_{2m+1}=K_{2m}\cup(V_{0}*v_{2m+1}) wher\^e
V_{0}*v_{2m+1} is a set of edges obtained by joining every vertices in V_{0} with
v_{2m+1} . We draw \tilde{K}_{2m} in a book \mathscr{B}_{m} as a B. F. H. \Delta . Add one sheet P_{m+1}

and the last vertex v_{2m+1} on the binder —. And by joining the vertex v_{2m+1}

with the remaining vertices v_{1} , \ldots ., v_{2m} on the new sheet P_{m+1} , we get a B .
P. H. \Delta\emptyset : K_{2m+1} – \mathscr{B}_{m+1} . These number of sheets are minimum by
Theorem 2. \square

Fig. 13.
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DEFINITION 11. Let \mathscr{B}_{p}=\overline{=}\bigcup_{i=1}^{p}\cup P_{i} be a book with p theets where P_{i} is
an i-th sheet. And let h : \mathscr{B}_{p}arrow \mathscr{B}_{p} is a homeomorphism such that

(1) h|_{-}^{-}-=id.
(2) h(P_{i})=P\sigma_{(i\rangle} where \sigma is a permutation of \{1, 2, \ldots., p\} . Then we

defifine h to be a sheet translation.

PROPOSITION 12. Let \emptyset

’ : K_{n} – \mathscr{B}_{q} be a B. P. H. \Delta with mmimum
q sheets. Then there is a sheet translation h:\mathscr{B}_{q}arrow \mathscr{B}_{q} so that h\phi’(K_{n})

is ambient isotopic to a spatial graph \psi(K_{n}) where \emptyset:K_{n}arrow \mathscr{B}_{-p} is a B. P.
H. \Delta with minimum p sheets.

PROOF. Take a B. P. H. \Delta \emptyset:K_{n}arrow \mathscr{B}p with minimum sheets.
And peel every edges from sheet and set each edge in one sheet. And use
the sheet translation h, we can deform h&’ to \emptyset up to an ambient isotopy.
\square

REMARK. According to Proposition 12, if we use a finite number of
times of sheet translations and ambient isotopies, then all spatial graphs,
\overline{K}_{n} , of the complete graph with n vertices are ambient isotopic each other.
So we can use only one time of sheet translation and an ambient isotopy.

PROPOSITION 13. Let K_{5} be the complete graph with 5 vertices and \emptyset :
K_{5}arrow \mathscr{B}_{3} be a B, P. H. \Delta with minimum sheets of K_{5} then \phi(K_{5}) is
unique up to homeomorphism of S^{3}- Furthermore \phi(K_{5}) is unique up to
ambient isotopy of S^{3} And \phi(K_{5}) is globally unknotted.

PROOF. Let h be a sheet translation of \mathscr{B}_{3} corresponding to a permu-
tation \sigma=(3,2) . Then h is a homeomorphism defined by h(x, y, z)=(x, y ,
-z) . So h is an orientation reversing homeomorphism of R^{3} . Since \mathscr{B}_{3}

has only 3 sheets, any sheet translation is an orientation preserving or
reversing homeomorphism. And possible images of K_{5} by a B. P. H. \Delta up
to a \pi-rotation of — arround the z-axis are the followings 1-1, 12,
2-1, 2-2 of Figure 14. ’

\cdot
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Fig. 15.
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1-1 (resp. 2-1) is ambient isotopic to 1-2 (resp. 2-2) after sheet trans-
lation. 1-1 (resp. 1-2) is ambient isotopic to 2-1 (resp. 2-2). So
\phi(K_{5}) is unique up to homeomorphism of S^{3} . And 1-1 (resp. 1-2) is
\underline{ambient}\underline{isot}opic to (1) (resp. (2)) of Figure 15. Then take the edges

v_{1}v_{3} and v_{1}v_{4} in the diagram (1) of Figure 15 outside of the pentagon and
change the vertices v_{2} and v_{5}isotop_{-\backslash }ica11ykeeping\wedge\backslash the vertices v_{1} , v_{3} and v_{4}

fixed. At the last take the edges v_{1}v_{3} and v_{1}v_{4} into the pentagon, then we
get the diagram (2). Hence the diagram (1) and (2) of Figure 15 are
ambient isotopic each other. So \phi(K_{5}) is unique up to ambient isotopy of
S^{3} and it is obviously globally unknotted. \square

COROLLARY. Let \emptyset:K_{5}arrow \mathscr{B}_{3} be a B. P. H. \Delta with minimum sheets.
Then \phi(K_{5}) is locally unknotted with respect to a triangle base.

PROOF. If \emptyset is a B. P. H. \Delta with minimum sheets, then \phi(K_{5}) is one
of Figure 14. And they are all locally unknotted with respect to a tri-
angle base.

REMARK. In general we can not extend the second part of Proposi-
tion 13 to any B. P. H. \Delta with minimum sheets, \emptyset:K_{n}arrow \mathscr{B}p , p=[(n+1)/
2] . For example, K_{7} has two kind of B. P. H. \Delta with 4 sheets such that
one is a mirror image of the other. So one contains a right handed trefoil
knot and the other one contains a left handed trefoil knot (Fig. 16.). So
these two spatial graphs \tilde{K}_{7-1} and \overline{K}_{7-2} of K_{7} are not ambient isotopic each
other. But \overline{K}_{7-1} changes to \tilde{K}_{7-2} by a sheet translation with \sigma=(14)(2

3) . This sheet translation extends to an orientation reversing homeomor-
phism of S^{3}
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Fig. 16-1
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QUESTION. Can we generalize the first part of Proposition 13 for any

comlete graph, K_{n}?.

REMARK. Although for a B. P. H. \Delta of K_{6} with the minimum number
of sheets \emptyset:K_{6}arrow \mathscr{B}_{3},\tilde{K}_{6}=\psi(K_{6}) contains a Hopf link, it does not con-
tain any non-trivial knot. Because any cycle \overline{C} on \overline{K}_{6} is a 2 -bridge knot
for which the upper bridges is contained in the first sheet (Figure 17.).

But any 2-bridge knot with 6-vertices in the standard form of Schubert is
the trivial knot. So K_{6} does not contain a non-trivial knot and it is
globally unknotted. This method is also applicable to the proof of PropO-

sition 13.

CONJECTURE. Any B. P. H. \Delta with minimum sheets \emptyset:K_{n}arrow \mathscr{B}_{p} is
equivalent up to the sheet translation of \mathscr{B}_{p} and the ambient isotopy.

At the present time, in spite of the above conjecture, we think the
following definition is suitable for the standard spatial graph of the pseudo
Hamiltonian.

DEFINITION 12. Let G be a pseudo Hamiltonian and \emptyset : Garrow \mathscr{B}p be
a B. P. H. \Delta with minimum sheets. We call a spatial graph \overline{G} of G the
standard spatialgraph of G if \overline{G} is ambient isotopic to the spatial graph
\phi(G) .
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Fig. 17
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