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Weak convergence on the first exit time of randomly
perturbed dynamical systems with a repulsive

equilibrium point

Toshio MIKAMI
(Received August 27, 1996)

Abstract. We show that the first exit times of small random perturbations of dynamical
systems from a bounded domain D(\subset R^{d}) weakly converge to the life time of an explosive
diffusion process and that the mean first exit times converge to the mean explosion time,

as random perturbations disappear, when they are appropriately scaled. We consider the
case when D contains only one equilibrium point 0 of dynamical systems and when 0 is
polynomially unstabe and is repulsive.

Key words: small random perturbations of dynamical systems, first exit time, weak
convergence, polynomially unstabe, repulsive.

1. Introduction

Let us consider the following stochastic differential equation: for t>0 ,
x\in R^{d} and \in>0 ,

dX^{\in}(t, x)=b(X^{\xi j}(t, x))dt+\in^{1/2}\sigma(X^{\epsilon}(t, x))dW(t) ,
(1.1)

X^{\Xi}(0, x)=x ,

where b(\cdot)=(b^{i}(\cdot))_{i=1}^{d} : R^{d} –
R^{d} is bounded and globally Lipschitz con-

tinuous, where \sigma(\cdot)=(\sigma^{ij}(\cdot))_{i,j=1}^{d} : R^{d}
– M_{d}(R) is bounded, globally

Lipschitz continuous, and uniformly nondegenerate, and where W(\cdot) is a
d-dimensional Wiener process (see [9]). X^{\xi j}(t, x) can be considered as the
small random perturbations of X^{0}(t, x) for small \in (see [4, 5, 15]).

Let D(\subset R^{d}) be a bounded domain which contains the origin 0 and
suppose that b(x)=0 iff x=0. Then the asymptotic behavior, as\inarrow 0 ,
of the first exit time \tau_{D}^{\epsilon}(x) of X^{\in}(t, x) from D defined by

\tau_{D}^{\in}(x)\equiv\inf\{t>0;X^{\in}(t, x)\not\in D\} (1.2)

has been studied by many authors.
When X^{0}(t, x) – o as tarrow\infty for all x\in\overline{D} , it is studied by Freidlin

1991 Mathematics Subject Classification : 60F10 .



670 T. Mikami

and Wentzell [15], Day [1], and Fleming and James [3].
When o is a hyperbolic equilibrium point (see [7]) of X^{0}(t, x) and when

it is unstable, it is considered by Kifer [10], Mikami [13], and Day [2].
Mikami [14] considered the following case.
(A.O) D(\subset R^{d}) is a bounded domain which contains 0 . For any

x\in\overline{D}\backslash \{0\} there exists s=s(x)\geq 0 such that X^{0}(t, x)\not\in\overline{D} for t>s and
such that X^{0}(t, x)\in D for t<s , and X^{0}(t, x) – o as tarrow-\infty .

(A. I) There exist positive constants \ell , C_{0} and \delta_{0} such that U_{\delta_{0}}(0)\equiv

\{y\in R^{d}; |y|<\delta_{0}\}\subset D and that

|b(x)|\leq C_{0}|x|^{\ell+1} for all x\in D ,
(1.5)

<x , b(x)>\geq|x|^{\ell+2}/C_{0} for all x for which |x|<\delta_{0} .

Remark 1. Kifer [10], Mikami [13], and Day [2] considered the case when
|b(x)|\sim|x| as xarrow o and when b(x) is differentiable at 0 . If d=1 ,
D=(\alpha, \beta)(\alpha<0<\beta) and

b(x)=\{
x(2+\sin(1/x)) ; if x\neq 0 ,
o ; if x=0,

then (A.0)-(A.1) hold with \ell=0 , C_{0}=3 , and |b(x)|\sim|x| as x – 0 , but
b(x) is not differentiable at 0 . The case when b(x) is not differentiable at
o has not been studied yet. Mikami [14] and this paper consider the case
|b(x)|\sim|x|^{\ell+1} as xarrow o for \ell>0 (see Example 1 in section 2). In this case
Db(0) is a zero matrix, and henceforth 0 is not a hyperbolic equilibrium
point of X^{0}(t, x) .

In Kifer’s case, \tau_{D}^{\in}(0)\sim-\log\in as\epsilonarrow 0 .
Under (A.0)-(A. 1), the following is known.

Theorem 1 (I) Suppose that (A.O)-(A. 1) hold. Then for any \delta>0 ,

\lim_{\inarrow 0}P(\epsilon^{-(1-\delta)\ell/(\ell+2)}\leq\tau_{D}^{\in}(0)\leq\epsilon^{-(1+\delta)\ell/(\ell+2)})=1 (1.4)

(see Corollary 1.2, [14]).
(II) Suppose that (A.O) holds. Then for any x\in D\backslash \{0\} and \delta>0 ,

\lim_{\inarrow 0}P(|\tau_{D}^{\in}(x)-\tau_{D}^{0}(x)|<\delta)=1 . (1.5)

(see [5]).
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Theorem 2 (Theorem 1.3 and Corollary 1.4, [14]). Suppose that (A.O)-

(A.1) hold. Then

\lim_{\inarrow 0}\{\log E[\tau_{D}^{\in}(0)]\}/\log(\epsilon^{-\ell/(\ell+2)})=1 , (1.6)

and for any x\in D\backslash \{0\} ,

\lim_{\inarrow 0}E[\tau_{D}^{\in}(x)]=\tau_{D}^{0}(x) . (1.7)

In this paper we show that \in^{\ell/(\ell+2)}\tau_{D}^{\in}(0) weakly converge, as \inarrow 0 , to
the life time \tau(0) of an explosive diffusion process and that E[\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)]

converge, as \inarrow 0 , to E[\tau(0)] , under the stronger assumption than (A.O)-

(A. 1).
In section 2 we state our result and prove it in section 4, using lemmas

which are stated and proved in section 3.

2. Main result

In this section we state our result. Let us first introduce the assumption.
(H. 0 ) =(A.0) .

(H.I) There exists \ell>0 such that b(x) can be written as follows;
b(x)=B(x)+R(x) for x\in D . Here B(x) and R(x) are locally Lipschitz
continuous functions which satisfy the following;

B(tx)=t^{\ell+1}B(x) for all t>0 and x\in R^{d} . (2.1)

and there exist C_{1} and \gamma_{1}\in(0,1] such that

R(x)\leq C_{1}|x|^{\ell+1+\gamma_{1}} for all x\in R^{d} . (2.2)

(H.2)

inf <B(x) , x>>0 . (2.3)
|x|=1

Remark 2. (H. I) holds with \gamma_{1}=1 when \ell\in N , b\in C_{b}^{\ell+2}(R^{d}; R^{d}) , and

\partial^{k}b^{i}(0)/\partial x_{1}^{j_{1}} . \partial x_{d}^{j_{d}}=0

for all i=1 , . , d , k=0 , . . ’
\ell and (j_{1}, , j_{d}) for which j_{1}+\cdot +j_{d}=k

and j_{m}\geq 0 (m=1, \ldots, d) , by Taylor’s expansion. It also holds if b(x)=
|x|^{\ell}x(\not\in C_{b}^{\ell+1}(R^{d};R^{d})) for \ell\in N .
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Let Y^{\in}(t, x)(t\geq 0, x\in R^{d}, \in>0) be the solution of the following
stochastic differential equation, up to the life time (see [9]):

dY^{\epsilon}(t, x)=B(Y^{\in}(t, x))dt+\epsilon^{1/2}\sigma(0)dW(t) ,
(2.4)

Y^{\in j}(0, x)=x ,

and denote by \tau(x) the life time of \{Y^{1}(t, x)\}_{0\leq t} :

\tau(x)\equiv\inf\{t>0;\sup_{0\leq s\leq t}|Y^{1}(s, x)|=\infty\} (2.5)

Then we can prove the following.

Theorem 3 Suppose that (H.O)-(H.2) hold. Then\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0) weakly
converges to \tau(0) as\inarrow 0 , and

\lim_{\inarrow 0}E[\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)]=E[\tau(0)]<\infty . (2.6)

As a corollary to Theorem 3, we easily get the following whose proof is
omitted.

Corollary 1 Suppose that (H.O)-(H.2) hold. Then \tau_{D}^{\in}(0)/E[\tau_{D}^{\epsilon}(0)] weakly
converges to \tau(0)/E[\tau(0)]as\inarrow 0 .

Remark 3. (H.2) implies that P(\tau(x)<\infty)=1 for all x\in R^{d} by
Has’minskii’s test (see [8, 12]). It is easy to see that (H.1)-(H.2) imply
(A.I) in section 0, and hence that (1.4)-(1.7) holds under (H.O)-(H.2).

Let us give an example which shows that (H.1)-(H.2) is stronger than
(A. 1).

Example 1. Let d=1 and D=(\alpha, \beta)(\alpha<0<\beta) and put for \ell>0

b(x)=\{
|x|^{\ell}x(2+\sin(1/x)) ; if x\neq 0 and \alpha<x<\beta ,
o ; if x=0.

(2.7)

Then this b(x) satisfies (A.I) with C_{0}=3 , but does not satisfy (H. I ). In
fact, b(x)/x^{\ell+1} does not converge as x\downarrow 0 , though

\lim_{x\downarrow 0}b(x)/x^{\ell+1}=B(1) (2.8)

if (H. 1) holds.
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3. Lemmas

In this section we state and prove lemmas.
Let us give some notation.
Put, for t\geq 0 , x\in R^{d} and \in>0 ,

Z_{1}^{\in}(t, x)\equiv\epsilon^{-1/(\ell+2)}X^{6}(\in-\ell/(\ell+2)t, \in 1/(\ell+2)_{X)} ,
(1.1)

Z_{2}^{\in}(t, x)\equiv\in-1/(\ell+2)Y^{\in}(g^{-\ell/(\ell+2)}t, \in^{1/(\ell+2)}x)

(see Eqs (1.1) and (2.4)).
The following lemma plays a crucial role in the proof of Theorem 3.

Lemma 1 Suppose that (H.O)-(H. 1) hold. Then there exist positive con-
state C(\sigma) and C(r)(r>0) , and a one-dimensional Wiener process \tilde{W}(\cdot)

such that for t>0 , x\in R^{d} , r>0and\in(<1) for which U_{r\in^{1/(\ell+2)}}(0)\subset D ,

\sup_{0\leq s\leq t}|Z_{1}^{\in}(s, x)-Z_{2}^{\epsilon}(s, x)|

\leq\exp(C(r)t)\in^{\gamma_{1}/(\ell+2)}(1+tC_{1}r^{\ell+1+\gamma_{1}}+C(\sigma)^{2}r^{2}t/2

+C( \sigma)r\sup_{0\leq u\leq t}|\tilde{W}(u)|) , (3.2)

as far as \max(|Z_{1}^{\Xi}(s, x)| , |Z_{2}^{\in}(s, x)|)\leq r for all s\in[0, t] .

Proof. Suppose that \max(|Z_{1}^{\epsilon}(s, x)| , |Z_{2}^{\in}(s, x)|)\leq r for all s\in[0, t] . Then
there exists a one-dimensional Wiener process \tilde{W}(\cdot) such that for s\in[0, t] ,

|Z_{1}^{\in}(s, x)-Z_{2}^{\in}(s, x)|

\leq\epsilon^{1/(\ell+2)}+tC_{1}r^{\ell+1+\gamma 1}\in^{\gamma_{1}/(\ell+2)}+C(\sigma)^{2}r^{2}t\in^{1/(\ell+2)}/2 (3.3)

+C( \sigma)r\in^{1/(\ell+2)}\sup_{0\leq u\leq s}|\tilde{W}(u)|+\int_{0}^{s}C(r)|Z^{\xi j}(u, x)-Z(u, x)|du

from (H. I ), which will be proved later. Here we put

C(r) \equiv\sup\{|B(x’)-B(x)|/|x’-x|;x’\neq x, |x’|, |x|\leq r\} ,

C( \sigma)\equiv\sup\{[\sum_{i,j=1}^{d}|\sigma^{ij}(x)-\sigma^{ij}(0)|^{2}]1/2/|x|;x\neq 0 , x\in R^{d}\} .

By Gronwall’s inequality (see [7]), the proof is over from (3.3) since \epsilon<1

and \gamma_{1}\in(0,1] from (H. I ).
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Let us prove (3.3). For any s\in[o_{\in t]}^{-\ell/(\ell+2)}, , putting y=\epsilon^{1/(\ell+2)}x

|X^{\in}(s, y)-Y^{\in}(s, y)|

\leq\in^{2/(\ell+2)}+\int_{0}^{s}|B(X^{\in}(u, y))-B(Y^{\in}(u, y))|du

+ \int_{0}^{s}|R(X^{\in}(u, y))|du

+ \in^{1/2}|\int_{0}^{s}<(X^{\in}(u, y)-Y^{\epsilon}(u, y))(|X^{\in}(u, y)-Y^{\in}(u, y)|^{2}

+\in^{4/(\ell+2)})^{-1/2} . [\sigma(X^{\epsilon}(u, y))-\sigma(0)]dW(u)>|

+( \epsilon^{\ell/(\ell+2)}/2)\int_{0}^{s}\sum_{i,j=1}^{d}|\sigma^{ij}(X^{\epsilon}(u, y))-\sigma^{ij}(0)|^{2}du , (3.4)

since by the Ito formula (see [9]),

(|X^{\epsilon}(s, y)-Y^{\epsilon}(s, y)|^{2}+\in^{4/(\ell+2)})^{1/2}

= \in^{2/(\ell+2)}+\int_{0}^{s}<(X^{\in}(u, y)-Y^{\in}(u, y))(|X^{\in}(u, y)

-Y^{\in}(u, y)|^{2}+\epsilon^{4/(\ell+2)})^{-1/2} , B(X^{\epsilon i}(u, y))

-B(Y^{\in}(u, y))+R(X^{\in}(u, y))>du

+ \in^{1/2}\int_{0}^{s}<(X^{\epsilon:}(u, y)-Y^{\in}(u, y))(|X^{\epsilon}(u, y)-Y^{\in}(u, y)|^{2}

+\epsilon^{4/(\ell+2)})^{-1/2} . [\sigma(X^{\in}(u, y))-\sigma(0)]dW(u)>

+( \in/2)\int_{0}^{s}\sum_{i,j=1}^{d}|\sigma^{ij}(X^{\epsilon i}(u, y))-\sigma^{ij}(0)|^{2}

\cross(|X^{\epsilon}(u, y)-Y^{\epsilon}(u, y)|^{2}+\in^{4/(\ell+2)})^{-1/2}du

-( \in/2)\int_{0}^{s}|(\sigma(X^{\in}(u, y))-\sigma(0))^{*}(X^{\in}(u, y)-Y^{\in}(u, y))|^{2}

\cross(|X^{\Xi}(u, y)-Y^{\Xi}(u, y)|^{2}+\in^{4/(\ell+2)})^{-3/2}du .

Here we used that X^{\in}(u, y)\subset D(0\leq u\leq s) from the assumption since
U_{r\in^{1/(\ell+2)}}(0)\subset D , and denote by \sigma(x)^{*} the transposed matrix of \sigma(x) .

From (3.4) and (3.5)-(3.7) below, we get (3.3).
For s\in[0, t] and y=\in^{1/(\ell+2)}x

\in-1/(\ell+2)\int_{0}^{\in}-\ell/(\ell+2)_{s}|B(X^{\in}(u, y))-B(Y^{\epsilon}(u, y))|du
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= \int_{0}^{s}|B(Z_{1}^{\in}(u, x))-B(Z_{2}^{\epsilon}(u, x))|du (from (2.1))

\leq C(r)\int_{0}^{s}|Z_{1}^{\in}(u, x)-Z_{2}^{\epsilon}(u, x)|du (3.5)

from the assumption; and

\epsilon^{-1/(\ell+2)}\int_{0}^{\in s}|R(X^{\in}(u, y))|du-\ell/(\ell+2)

\leq\epsilon^{-(1+\ell)/(\ell+2)}sC_{1}(r\in^{1/(\ell+2)})^{\ell+1+\gamma_{1}}=C_{1}sr^{\ell+1+\gamma_{1}}\in^{\gamma_{1}/(\ell+2)} (3.6)

from (2.2) and the assumption; and

\in\int_{0}^{\in}\sum_{i,j=1}^{-\ell/(\ell+2)_{s}d}|\sigma^{ij}(X^{\in}(u, y))-\sigma^{ij}(0)|^{2}du

\leq\in\epsilon^{-\ell/(\ell+2)}sC(\sigma)^{2}(r\epsilon^{1/(\ell+2)})^{2}=\epsilon^{4/(\ell+2)}sC(\sigma)^{2}r^{2} (3.7)

from the assumption. \square

Put for x\in D , and r>0 and \in>0 for which r\in^{1/(\ell+2)}<\delta_{0} (see (A. I )),

T_{r,\in}(x)\equiv\{t>0;|X^{\Xi}(t, x)|\geq r\in^{1/(\ell+2)}\} , (3.5)

T_{\in}(x)\equiv\{t>0;|X^{\in}(t, x)|\geq\delta_{0}\} . (3.9)

Then the following lemma can be proved by the strong Markov property
(see [9]) of X^{\in}(t, x) .

Lemma 2 Suppose that (H.O) holds. Then for x\in D , T>0 , \delta\in(0, T) ,

r>0 and\in>0 for which r\epsilon^{1/(\ell+2)}<\delta_{0} ,

P(\in^{\ell/(\ell+2)}\tau_{D}^{\in}(x)\leq T)

\geq|\inf_{y1\leq r}P(\sup_{0\leq s\leq T-\delta}|Z_{1}^{\in}(s, y)|\geq r)

\cross|y|\geq r\in^{1/(\ell+2)}\inf P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)_{\delta/2}}|X^{\xi j}(s, y)|\geq\delta_{0})

\cross inf P(\tau_{D}^{\in}(y)\leq\in-\ell/(\ell+2)\delta/2) . (3.10)
|y|\geq\delta_{0}
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In particular,

P(\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)\leq T)

\geq P(\sup_{0\leq s\leq T-\delta}|Z_{1}^{\epsilon}(s, 0)|\geq r)

\cross|y|\geq r\in^{1/(\ell+2)}\inf P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)\delta/2}|X^{\in}(s, y)|\geq\delta_{0})

\cross inf P(\tau_{D}^{\in}(y)\leq\in-\ell/(\ell+2)\delta/2) . (3.11)
|y|\geq\delta_{0}

Proof. For x\in D , T>0 , \delta\in(0, T) , r>0 and \in >0 for which
r\epsilon^{1/(\ell+2)}<\delta_{0} ,

P(\in^{\ell/(\ell+2)}\tau_{D}^{\in}(x)\leq T)

\geq P(\sup_{0\leq s\leq\epsilon^{-\ell/(\ell+2)}(T-\delta)}|X^{\in}(s, x)|\geq r\epsilon^{1/(\ell+2)} ,

sup |X^{\xi j}(s, x)|\geq\delta_{0} , (3.12)
T_{r,\in}(x)\leq s\leq T_{r,\in}(x)+\in-\ell/(\ell+2)\delta/2

\tau_{D}^{\in}(X^{\epsilon} (T_{\in}(X^{\in}(T_{r,\in}(x), x)) , X^{\in}(T_{r,\epsilon}(x), x)))\leq\in-\ell/(\ell+2)\delta/2) .

By the strong Markov property of X^{\in}(t, x) , the proof is over. \square

The following lemma can be proved in the same way as in Lemma 2.4
in [14] and omit the proof.

Lemma 3 Suppose that (A.O)-(A.1) hold. Then for any \delta>0 , r\geq

(2^{\ell+1}C_{0}/[\ell\delta])^{1/\ell} and y for which |y|\geq r\in^{1/(\ell+2)} ,

P( \sup_{0\leq s\leq\epsilon^{-\ell/(\ell+2)_{\delta/2}}}|X^{\in}(s, y)|<\delta_{0})

\leq P( sup \{|\in^{1/2}\int_{0}^{t}(|X^{\epsilon}(s, y)|^{2}+1/n)^{-1/2}<X^{\epsilon}(s, y) , (3.13)

\sigma(X^{\epsilon}(s, y))dW(s)>|;0\leq t\leq\in-\ell/(\ell+2)\delta/2 , n\geq 1\}\geq|y|/2) .

4. Proof of main result

In this section, we prove Theorem 3 in section 2. We devide the proof
into the four steps; for any T>0 ,

\lim_{\inarrow}\sup_{0}P(\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)\leq T)\underline{<}P(\tau(0)\leq T) , (4.1)
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\lim_{\inarrow}\inf_{0}P(\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)\leq T)\geq P(\tau(0)\leq T) , (4.2)

\lim_{\inarrow}\inf_{0}E[\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)]\geq E[\tau(0)] , (4.3)

\lim_{\inarrow}\sup_{0}E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)]\leq E[\tau(0)]<\infty . (4.4)

Let us first prove (4.1).

Proof of (4.1). For r>0and\in(<1) for which U_{r\epsilon^{1/(\ell+2)}}(0)\subset D ,

P(\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)\leq T)

\leq P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)_{T}}|X^{\xi j}(s, 0)|\geq r\epsilon^{1/(\ell+2)})

\leq P(\sup_{0\leq s\leq T}|Z_{2}^{\in}(s, 0)|\geq r-1)

+P( \sup_{0\leq s\leq T}|Z_{1}^{\epsilon i}(s, 0)|\geq r,\sup_{0\leq s\leq T}|Z_{2}^{\in}(s, 0)|\leq r-1) (4.5)

(see Eq (3.1)).
The first probability in the last part of (4.5) is shown to converge to

P(\tau\leq T) as r-\infty ;

P( \sup_{0\leq s\leq T}|Z_{2}^{\in}(s, 0)|\geq r-1)

=P( \sup_{0\leq s\leq T}|Y^{1}(s, 0)|\geq r-1)arrow P(\tau(0)\leq T) , (4.6)

as r – \infty since the probability law of Z_{2}^{\epsilon}(s, 0)(0\leq s) is the same as that
of Y^{1}(s, 0)(0\leq s) from (H. 1) (see Eqs (2.4) and (3.1)).

The second probability in the last part of (4.5) converges to 0 as\inarrow 0

for any r and T>0 . Let us prove this. Put for r, \in>0 , y\in R^{d} and i=1,2
\tau_{r}^{i,\in}(y)\equiv\{t>0;|Z_{i}^{\in}(t, y)|\geq r\} (4.7)

(see Eq (3.1)). Suppose that U_{r\epsilon^{1/(\ell+2)}}(0)\subset D . Then from Lemma 1, there
exists a one-dimensional Wiener process \tilde{W}(\cdot) such that

P( \sup_{0\leq s\leq T}|Z_{1}^{\epsilon}(s, 0)|\geq r,\sup_{0\leq s\leq T}|Z_{2}^{\epsilon}(s, 0)|\leq r-1)

\leq P(\tau_{r}^{1,\in}(0)\leq T<\tau_{r-1}^{2,\in}(0), 1\leq|Z_{1}^{\in}(\tau_{r}^{1,\in}(0), 0)-Z_{2}^{\in}(\tau_{r}^{1,\in}(0), 0)|)

\leq P(1\leq\exp(C(r)T)\in^{\gamma_{1}/(\ell+2)}(1+TC_{1}r^{\ell+1+\gamma_{1}}+C(\sigma)^{2}r^{2}T/2
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+C( \sigma)r\sup_{0\leq u\leq T}|\tilde{W}(u)|))arrow 0 as \inarrow 0 . (4.8)

\square

Next we prove (4.2).

Proof of (4.2). From Lemma 2, for \delta\in(0, T) , r>0 and \in>0 for which
r\in^{1/(\ell+2)}<\delta_{0} ,

P(\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)\leq T)

\geq P(\sup_{0\leq s\leq T-\delta}|Z_{1}^{\in}(s, 0)|\geq r)

\cross|y|\geq r\in^{1/(\ell+2)}\inf P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)\delta/2}|X^{\in}(s, y)|\geq\delta_{0})

\cross|\inf_{y|\geq\delta_{0}}P(\tau_{D}^{\in}(y)\leq\epsilon^{-\ell/(\ell+2)}\delta/2) . (4.9)

The following (4.10)-(4.12) which are proved later complete the proof,

\lim_{\deltaarrow}\inf_{0}\lim_{rarrow}\inf_{\infty}\lim_{\inarrow}\inf_{0}P(\sup_{0\leq s\leq T-\delta}|Z_{1}^{\in}(s, 0)|\geq r)\geq P(\tau(0)\leq T)

(4.10)

; and for any \delta\in(0, T) ,

\lim_{rarrow\infty}\lim_{\inarrow}\inf_{0|y|\geq r\epsilon^{1/(\ell+2)}}\inf P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)\delta/2}|X^{\in}(s, y)|\geq\delta_{0})=1

(4.11)

; and for any \delta\in(0, T) ,

lim inf P(\tau_{D}^{\epsilon}(y)\leq\in-\ell/(\ell+2)\delta/2)=1 . (4.12)
\inarrow 0|y|\geq\delta_{0}

Let us first prove Eq (4.12). From (H.O), there exist \delta_{1}>0 and T_{1}>0

such that

inf \sup\{dist(X^{0}(t, x), D);0\leq t\leq T_{1}\}\geq 2\delta_{1} . (4.13)
|x|\geq\delta_{0}

Therefore

P(\tau_{D}^{\epsilon}(y)\leq\epsilon^{-\ell/(\ell+2)}\delta/2) (4.14)

\geq P(\sup_{0\leq t\leq T_{1}}|X^{\in}(s, y)-X^{0}(s, y)|<\delta_{1}) –1 as \inarrow 0 ,
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uniformly in y for which |y|\geq\delta_{0} (see [5]).
Next we prove (4. 10).
For any r and \delta\in(0, T)

P( sup |Z_{1}^{\in}(s, 0)|\geq r)

0\leq s\leq T-\delta

\geq P(\sup_{0\leq s\leq T-\delta}|Z_{2}^{\in}(s, 0)|\geq r+1) (4.15)

-P( \sup_{0\leq s\leq T-\delta}|Z_{2}^{\in}(s, 0)|\geq r+1,\sup_{0\leq s\leq T-\delta}|Z_{1}^{\in}(s, 0)|<r) .

The first probability on the right hand side of (4.15) converges to P(\tau(0)\leq

T) as rarrow\infty , and then \deltaarrow 0 , in the same way as in (4.6).
Let us prove that the second probability on the right hand side of (4.15)

converges to 0 as\inarrow 0 for any r>0 and \delta\in(0, T) , which can be done
in the same way as in (4.8). Suppose that U_{r\in^{1/(\ell+2)}}(0)\subset D . Then from
Lemma 1, there exists a one-dimensional Wiener process \tilde{W}(\cdot) such that

P( \sup_{0\leq s\leq T-\delta}|Z_{2}^{\in}(s, 0)|\geq r+1,\sup_{0\leq s\leq T-\delta}|Z_{1}^{\in}(s, 0)|<r)

\leq P(\tau_{r+1}^{2,\in}(0)\leq T-\delta<\tau_{r}^{1,\in}(0), 1

\leq|Z_{2}^{\in}(\tau_{r+1}^{2,\in}(0), 0)-Z_{1}^{\in}(\tau_{r+1}^{2,\in}(0), 0)|)

\leq P(1\leq\exp(C(r+1)T)\epsilon^{\gamma_{1}/(\ell+2)}(1+TC_{1}[r+1]^{\ell+1+\gamma 1}

+C( \sigma)^{2}(r+1)^{2}T/2+C(\sigma)(r+1)\sup_{0\leq u\leq T}|\tilde{W}(u)|))

arrow 0 as \inarrow 0 . (4.16)

Finally we prove Eq (4.11) from Lemma 3. Since (H. 1)-(H.2) is stronger
than (A.I) (see Remark 3 in section 2), we can suppose that (A.I) holds.

For C_{0}>0 in (A. I ), r\geq(2^{\ell+1}C_{0}/[\ell\delta])^{1/\ell} and y for which |y|\geq r\in^{1/(\ell+2)} ,

P(_{0\leq s\leq\in} \sup_{-\ell/(\ell+2)\delta/2}|X^{\in}(s, y)|<\delta_{0})

\leq P( sup \{|\epsilon^{1/2}\int_{0}^{t}(|X^{\in}(s, y)|^{2}+1/n)^{-1/2}

<X^{\in}(s, y) , \sigma(X^{\in}(s, y))dW(s)>| ;

0\leq t\leq\in-\ell/(\ell+2)\delta/2 , n\geq 1\}\geq|y|/2) (4.17)
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from Lemma 3; and by the time change (see [9]), there exists a one dimen-
sional Wiener process \tilde{W} such that

P( sup \{|\in^{1/2}\int_{0}^{t}(|X^{\in}(s, y)|^{2}+1/n)^{-1/2}<X^{\in}(s, y) ,

\sigma(X^{\in}(s, y))dW(s)>|;0\leq t\leq\in-\ell/(\ell+2)\delta/2 , n\geq 1\}\geq|y|/2)

\leq P(C_{1}(\sigma)(2\delta)^{1/2}/r\sup_{0\leq s\leq 1}|\tilde{W}(s)|\geq 1)

arrow 0 as rarrow\infty . (4.18)

Here we put C_{1}( \sigma)=\sup_{x\in R^{d}}(\sum_{i,j=1}^{d}\sigma^{ij}(x)^{2})^{1/2} . \square

Let us prove (4.3).

Proof of (4.3). For any T>0 ,

\lim_{\inarrow}\inf_{0}E[\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)]\geq\int_{0}^{T}P(\tau(0)>t)dt (4.19)

from (4.1) by Fatou’s lemma, since

E[ \epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)]=\int_{0}^{\infty}P(\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>t)dt

\geq\int_{0}^{T}P(\in^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)>t)dt . (4.20)

Let Tarrow\infty in (4.19). Then we get (4.3). \square

Finally we prove (4.4).

Proof of (4.4). We only have to show the following to complete the proof;

\lim_{narrow\infty}\lim_{\inarrow}\sup_{0}E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)-n;\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>n]=0 (4.21)

since for any n\in N ,

E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)]

=E[ \epsilon\tau_{D}^{\epsilon}(\ell/(\ell+2)0);\in\tau_{D}(\ell/(\ell+2)\in 0)>n]-\int_{0}^{n}tdP(\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)>t)

=E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0);\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)>n]

-nP( \epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>n)+\int_{0}^{n}P(\in\tau_{D}(\ell/(\ell+2)\in 0)>t)dt

=E[\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)-n;\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>n]
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+ \int_{0}^{n}P(\in\tau_{D}(\ell/(\ell+2)\in 0)>t)dt (4.22)

; and

\lim_{\inarrow}\sup_{0}\int_{0}^{n}P(\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>t)dt

\leq\int_{0}^{n}P(\tau(0)>t)dt (from (4.2) by Fatou’s lemma)

arrow E[\tau(0)] as narrow\infty (4.23)

; and for n\in N , from (4.3) and (4.22)-(4.23),

E[ \tau(0)]\leq\lim_{\inarrow}\inf_{0}E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)]

\leq\lim_{\inarrow}\sup_{0}E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)-n;\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>n]

+ \int_{0}^{n}P(\tau(0)>t)dt . (4.24)

To prove (4.21), we only have to prove

\lim_{\inarrow}\sup_{0}[\sup_{x\in D}P(1<\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(x))]<1 (4.25)

since

E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)-n;\epsilon^{\ell/(\ell+2)}\tau_{D}^{\in}(0)>n]

= \sum E[\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)\infty-n;k<\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0)\leq k+1]

k=n

\leq\sum\infty(k+1-n)P(k<\in^{\ell/(\ell+2)}\tau_{D}^{\in}(0)\leq k+1)

k=n

\leq\sum P(k\infty<\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(0))

k=n

\leq\sum\{\sup_{x\in D}P(1\infty<\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(x))\}^{k}

k=n

= \{\sup_{x\in D}P(1<\in^{\ell/(\ell+2)}\tau_{D}^{\in}(x))\}^{n}(1-\sup_{x\in D}P(1<\in^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(x)))^{-1}

by the strong Markov property of X^{\in}(t, x) .
Though (4.25) can be shown to be true in the same way as in the proof

of (4.2), we prove it for the sake of completeness.
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From Lemma 2, for r>0 and \in>0 for which r\in^{1/(\ell+2)}<\delta_{0} , and
x\in D ,

P(\epsilon^{\ell/(\ell+2)}\tau_{D}^{\epsilon}(x)\leq 1)

\geq|\inf_{y|\leq r}P(\sup_{0\leq s\leq 1/2}|Z_{1}^{\in}(s, y)|\geq r)

\cross|y|\geq r\in^{1/(\ell+2)}\inf P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)/4}|X^{\in}(s, y)|\geq\delta_{0})

\cross|\inf_{y|\geq\delta_{0}}P(\tau_{D}^{\epsilon:}(y)\leq\epsilon^{-\ell/(\ell+2)}/4) . (4.26)

Take sufficiently large r_{0}>0 so that

\lim_{\inarrow}\inf_{0|y|}\inf_{\geq r0\in^{1/(\ell+2)}}P(_{0\leq s\leq\in}\sup_{-\ell/(\ell+2)/4}|X^{\in}(s, y)|\geq\delta_{0})\geq 1/2 , (4.27)

which is possible from (4.11).
From (4.27) and (4.12), we only have to show the following;

\lim_{\inarrow}\inf_{0}\inf_{y||\leq r_{0}}P(\sup_{0\leq s\leq 1/2}|Z_{1}^{\epsilon}(s, y)|\geq r_{0})>0 , (4.28)

which can be proved in the same way as in (4.15)-(4.16).
In fact, for any y for which |y|\leq r_{0}

P( \sup_{0\leq s\leq 1/2}|Z_{1}^{\in}(s, y)|\geq r_{0})

\geq P(\sup_{0\leq s\leq 1/2}|Z_{2}^{\epsilon}(s, y)|\geq r_{0}+1) (4.29)

-P( \sup_{0\leq s\leq 1/2}|Z_{2}^{\in}(s, y)|\geq r_{0}+1,\sup_{0\leq s\leq 1/2}|Z_{1}^{\in}(s, y)|<r_{0}) .

The first probability on the right hand side of (4.29) can be shown to
be bounded from below by a positive constant, uniformly in \epsilon>0 and y for
which |y|\leq r_{0} ;

P( \sup_{0\leq s\leq 1/2}|Z_{2}^{\epsilon}(s, y)|\geq r_{0}+1)

=P( \sup_{0\leq s\leq 1/2}|Y^{1}(s, y)|\geq r_{0}+1)

\geq|\inf_{z1\leq r_{0}}P(\sup_{0\leq s\leq 1/2}|Y^{1}(s, z)|\geq r_{0}+1)>0 .
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This is true since u(t, x) \equiv P(\sup_{0\leq s\leq t}|Y^{1}(s, x)|\geq r_{0}+1) is a classical
solution of the following P.D.E. from (H.I) (see p. 383, [6], problems 1 and
2);

\partial u(t, x)/\partial t=[\sum_{i,j=1}^{d}a^{ij}(0)\partial^{2}u(t, x)/\partial x_{i}\partial x_{j}]/2

+ \sum_{i=1}^{d}B^{i}(x)\partial u(t, x)/\partial x_{i} for t>0 , |x|<r_{0}+1 ,

u(0, x)=0 for |x|<r_{0}+1 ,

u(t, x)=1 for t\geq 0 , |x|=r_{0}+1 .

Let us prove that the second probability on the right hand side of (4.29)
converges to 0 as \inarrow 0 , uniformly in y for which |y|\leq r_{0} . From Lemma
1, there exists a one-dimensional Wiener process \tilde{W}(\cdot) such that for y for
which |y|\leq r_{0}

P( \sup_{0\leq s\leq 1/2}|Z_{2}^{\in}(s, y)|\geq r_{0}+1,\sup_{0\leq s\leq 1/2}|Z_{1}^{\in}(s, y)|<r_{0})

\leq P(\tau_{r_{0}+1}^{2,\in}(y)\leq 1/2<\tau_{r_{0}}^{1,\in}(y), 1\leq|Z_{2}^{\in}(\tau_{ro+1}^{2,\in}(y), y)

-Z_{1}^{\in}(\tau_{r_{0}+1}^{2,\in}(y), y)|)

\leq P(1\leq\exp(C(r_{0}+1)/2)\in^{\gamma_{1}/(\ell+2)}(1+C_{1}[r_{0}+1]^{\ell+1+\gamma_{1}}/2

+C( \sigma)^{2}(r_{0}+1)^{2}/4+C(\sigma)(r_{0}+1)\sup_{0\leq u\leq 1/2}|\tilde{W}(u)|))

arrow 0 as \epsilonarrow 0 .

\square
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