
Hokkaido Mathematical Journal Vol. 29 (2000) p. 391-407

A generalization of prime graphs of finite groups

Seiichi ABE and Nobuo IIYORI
(Received May 6, 1999)

Abstract. We investigate some properties of generalized prime graphs of finite groups,
especially solvable graphs which is newly defined in this paper. A solvable graph of a
finite simple group has a striking feature, that is, connected and incomplete. In the last
section we give some applications of solvable graphs. We use the classification of finite
simple groups in order to prove main theorems.
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1. Introduction

There are a lot of ways to characterize a finite group by orders of its
elements. Considering a prime graph is one of such ways. In a prime
graph \Gamma(G) of a finite group G, edges p and q are defined to be joined
when there exists an element x of G whose order is pq . This condition
can be interpreted that G includes a cyclic subgroup of order pq . So it
seems natural to consider some other graphs in which the condition “being
cyclic” is replaced to other ones. We will discuss solvable graphs which will
be defined afterward of this paper and will show some applications of the
graphs. Every group appearing in this paper is a finite group. Following
the notation in Iiyori-Yamaki [4] and Williams [9], \pi_{i} stands for the ith
connected components of prime graphs in tables of [4, 9] and we let com(G)
stand for the number of connected components of prime graph of G.

2. Definitions and Remarks

Definition 1 Let \Lambda be a set of positive rational integers. We denote \Lambda
-

graph by \Gamma_{\Lambda} and the set of vertices of \Gamma_{\Lambda} by V_{\Lambda} which is the set of primes
which divide an element of \Lambda . For vertices p and q of \Gamma_{\Lambda} , p is joined to q if
and only if there exists an element a in \Lambda such that pq|a .

For example, let \Lambda=\{6, 7, 30, 33\} . Then \Gamma_{\Lambda} is the following;
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7

Definition 2 Let— be a group theoretical property. For a group G, S—(G)
is the set of—-subgroups of G. S_{-}^{*}--(G) is the set of—-subgroups of G which
do not coincide with G . Let \rho be a mapping of S—(G) to the set \mathbb{N} of natural
numbers.

\Gamma_{\rho(S-(G))}-- stands for the (\rho,--- ) -graph of G and \Gamma_{\rho(S_{\frac{*}{--}}(G))} stands for the
(\rho,---)^{*}-graph of G .

We can consider several types of the mappings as follows: for H\in

S—(G), ” ord” : H\mapsto|H| , ” ind” : H\mapsto|G : H| , “conj” : H\mapsto the number of
conjugacy classes of H to construct H and so on.

Let G be the alternating group A_{5} of degree 5 and — be solvable
Then an element of S—(G) is isomorphic to one of the following groups:
the alternating A_{4} of degree 4, the dihedral group D_{10} of order 10, the
symmetric group S_{3} of degree 3. Hence the (ord, —)-graph of A_{5} is

23 5

Let —, be “abelian” Then the (ind, —’)-graph of A_{5} is as follows.

This time we focus on a mapping ” ord” and disregard the rest. We
denote the image of ord by Ord=-(G) for convenience.

Ords (G)= ord(5E(G))\subseteq N

We simply call the (ord, —)-graph of Gthe\cup-- -graph of G . According to
this rule, a prime graph \Gamma(G) can be called a cyclic graph, which is denoted
by \Gamma_{cyc}(G) . If— stands for “solvable”, then we call the Ord_{-}S)-graph
the solvable graph of a group G, which is denoted by \Gamma_{sol}(G) . \Gamma_{nil}(G) ,
\Gamma_{abel}(G) and so on can be defined in the same way where nil and abel stand
for “nilpotent” and “abelian” respectively. It is easy to see that \Gamma_{nil}(G) ,
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\Gamma_{abel}(G) and \Gamma_{cyc}(G) are the same thing. Note that \Gamma_{sol}(G) is different from
\Gamma_{cyc}(G) in general, although V_{sol}(G)=V_{cyc}(G) .

Example The solvable graph and the cyclic graph of S_{6}(2) are drawn as
below:

2

5 \cdot | .7

3
\Gamma_{sol}(S_{6}(2)) \Gamma_{cyc}(S_{6}(2))

The following two lemmas are fundamental for our studies of solvable
graphs of finite groups.

Lemma 1 Let G be a group.
(1) If G is not solvable, then \Gamma_{sol}(G)=\Gamma_{sol}^{*}(G) .
(2) If G is solvable, then \Gamma_{sol}(G) is complete.
(3) If G is solvable and |\pi(G)|\geq 3 , then \Gamma_{sol}^{*}(G) is complete.

Lemma 2 Let G be a group, H a subgroup of G and N a normal subgroup
of G .
(1) If p and q are not joined in \Gamma_{sol}(G) for p, q\in\pi(H) , then p and q are

not joined in \Gamma_{sol}(H) .
(2) Let N be a normal subgroup of G. For p\in\pi(N) and q\in\pi(G)-\pi(N) ,

p and q are joined in \Gamma_{sol}(G) .
(3) If p and q are not joined in \Gamma_{sol}(G) for p, q\in\pi(G/N) , then p and q

are not joined in \Gamma_{sol}(G/N) .

Proof. It is easy to see that (1) holds. By the Frattini argument,
N_{G}(Q)N=G for a Sylow q-subgroup of N . For a Sylow p-subgroup P
of N_{G}(Q) , PQ is a solvable subgroup of G such that pq||PQ| . This implies
(2). Suppose that p and q are joined in \Gamma_{sol}(G/N) . Then there exists a
solvable subgroup H/N of G/N such that \pi(H/N)=\{p, q\} . If |N| and
pq are coprime, then there exists a subgroup K of G such that H=KN,
K\cap N=1 , K\simeq H/N by Schur-Zassenhaus’ theorem. Since K is a solvable
group, p and q are forced to be joined in \Gamma_{sol}(G) . This is a contradiction.
The proof is complete. \square
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3. Some Results on Solvable Graphs

Theorem 1 Let G be a non abelian simple group. Then \Gamma_{sol}(G) is con-
nected.

We divide the proof into following three cases:
(1) G is isomorphic to the alternating group of degree n(n\geq 5) ,
(2) G is a simple group of Lie type,
(3) G is a sporadic finite simple group.

We need some lemmas to prove Theorem 1.

Lemma 3 (Williams [9]) Let G be a non abelian simple group such that
com(G)\geq 2 . Then the following hold.
(1) G has a Hall \pi_{i} subgroup H_{i} for a connected component \pi_{i}(i\geq 2) of

the prime graph of G
(2) H_{i} is an isolated abelian subgroup of G .

Lemma 4 Let G be a non abelian simple group such that com(G)\geq 2

and H_{i} is an isolated \pi_{i} -subgroup. Then H_{i} is a proper subgroup of N_{G}(H_{i})

for i\geq 2 .

Proof. Suppose N_{G}(H_{i})=H_{i} . Since H_{i} is a Hall \pi_{i} subgroup of G, a
Sylow p-subgroup P of H_{i} is that of G for any p\in\pi(G) . Since P is the
unique Sylow p-subgroup of H_{i} by Lemma 2, N_{G}(H_{i})\subseteq N_{G}(P) . If N_{G}(H_{i})

is a proper subgroup of N_{G}(P) , then this contradicts Lemma 2. Hence
N_{G}(H_{i})=N_{G}(P) . Since H_{i} is an abelian subgroup, then H_{i}=Z(N_{G}(P)) .
By Burnside’s transfer theorem, there exists a normal complement of P.
This contradicts the simplicity of G. \square

Corollary 1 Let G be a non abelian simple group such that com(G)\leq 2 .
Then \Gamma_{sol}(G) is connected.

Proof. As we mentioned in the definition of \Gamma_{sol}(G) , if two primes which
divide the order of G are joined in the prime graph of G, they are also joined
in \Gamma_{sol}(G) . Therefore we may assume that com(G)=2 . For p\in\pi_{2} , there
exists q\in\pi(N_{G}(H_{2}))-\pi_{2} by Lemma 2. Since \pi(G) is decomposed to \pi_{1}

and \pi_{2} , q\in\pi_{1} . Hence \Gamma_{sol}(G) is connected. \square

Proof of Theorem 1.
Case: G\simeq A_{n}(n\geq 5)

For n=5,6 see Atlas [2]. For n\geq 7 , com(G)\leq 2 by Williams [9]. The
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The number i in Tables of this paper corresponds to the ith prime graph
component \pi_{i} in Williams [9].

Table 1. Three components

group i |H_{i}| |N_{G}(H_{i}) : H_{i}|

A_{1} (q) 2
3

q

(p+1)/2
(q-1)/2

2
q\equiv 1(4)

2D_{p}(3^{2}) 2
3

(3^{p-1}+1)/2

(3^{p}+1)/4

a
b

(a, 2(p-1))\neq 1

(b, 2p)\neq 1

E7 (2) 2
3

73
127

2 . 3^{2}

s 2 . 7|s

E7 (3) 2
3

757
1093

2 . 3^{2}

t 2|t

F_{4}(q) 2
3

q^{4}+1

q^{4}-q^{2}+1

2^{3}

2^{2} . 3
2|q

2F_{4}(q) 2

3

q^{2}+qm+q+m+1

q^{2}-qm+q+m+1

2^{3}

2^{2} . 3

q=2^{2k+1} (k\geq 1) ,
m=2^{k+1}

G_{2}(q) 2
3

q^{2}+eq-1

q^{2}+eq+1/3
2 . 3
2 . 3

q\equiv e(3) , e=\pm 1

G_{2}(q) 2
3

q^{2}+q-1

q^{2}-q+1
2 . 3
2 . 3

q\equiv 0(3)

2G_{2}(q) 2

3

q+3m+1

q-3m+1

2 . 3

2 . 3

q=3^{2k+1} (k\geq 1) ,
m=3^{k}

theorem holds for G by Corollary 1.

Case: G is a simple group of Lie type
If com(G)\leq 2 , then the theorem holds for G by Corollary 1. For every
group G such that com(G)\geq 3 except 2D_{p}(3^{2}) and A_{2}(4) , Tables 1, 2 show
that 2 divides |N_{G}(H_{i}) : H_{i}| for any isolated subgroup H_{i} corresponding to
a prime graph component \pi_{i} of G . This implies that the theorem holds for
G. See Atlas [2] for G\simeq A_{2}(4) . Let\simeq 2D_{p}(3^{2}) . Both a and b in the Table 1
can be divided by elements of \pi_{1} .
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Table 2. Four and Five components

group i |H_{i}| |N_{G}(H_{i}) : H_{i}|

A_{2}(4) 2
3
4

3^{2}

5

7

2
2
3

2B_{2}(q) 2

3
4

q-1

q+m+1
q-m+1

2

2^{2}

2^{2}

q=2^{2k+1}(k\geq 1) ,
m=2^{k+1}

2B_{2}(q) 2

3
4

q-1

q+m+1
q-m+1

2

2^{2}

2^{2}

q=2^{2k+1}(k\geq 1) ,
m=2^{k+1}

E_{8}(q) 2
3
4

q^{8}+q^{7}-q^{5}-q^{4}+q^{3}+q+1

q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1

q^{8}-q^{4}+1

30
2 . 3 . 5

2^{2} . 3

q\equiv 2 , 3(5)

E_{8}(q) 2
3
4
5

q^{8}+q^{7}-q^{5}-q^{4}+q^{3}+q+1

q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1

q^{8}-q^{6}+q^{4}-q^{2}+1

q^{8}-q^{4}+1

30
2 . 3 . 5
2 . 3 . 5

2^{2} . 3

q\equiv 0 , 1, 4(5)

Case: G is a sporadic simple group
In table IIc in Williams [9], Monster M has 4 prime graph components,

say \pi_{2}=\{41\} , \pi_{3}=\{59\} and \pi_{4}=\{71\} . Since prime divisors of orders of
automorphisms groups of a Sylow 41-subgroup, a Sylow 59-subgroup and a
Sylow 71-subgroup of M belong to the prime graph component \pi_{1} , \Gamma_{sol}(M)

is connected.
In table IIc in Williams [9], Mathieu group M_{24} of degree 24 has three

prime graph components, say \pi_{2}=\{11\} and \pi_{3}=\{23\} . Since the order
of the normalizer of a Sylow 23-subgroup of M_{24} is 11 23, \Gamma_{sol}(M_{24}) is
connected. The connectivity of \Gamma_{sol}(G) can be shown in the same way for
other sporadic simple groups.

This completes the proof of Theorem 1.

Corollary 2 Let G be a finite group. Then \Gamma_{sol}(G) is connected.
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Theorem 2 Let G be a non-abelian simple group. Then \Gamma_{sol}(G) is an
incomplete graph.

By the classification of finite simple groups, G is isomorphic to one of
the followings:
(1) alternating groups A_{n}(n\geq 5) ,
(2) classical simple groups, i.e. , PSL_{n}(q) , PSUn(g), PSpn(g), P\Omega_{2n}^{\pm}(q) ,

P\Omega_{2n+1}(q) ,
(3) other simple groups of Lie type, or
(4) 26 sporadic finite simple groups.
We will prove our theorem for each case.

Case: G = an alternating group A_{n} (n\geq 5)

Lemma 5 Let n\neq 6,10 . Then there exist at least two primes between
n/2 and n .

Proof. By Brandl-Shi [1], there exist more than 6 primes between n/2
and n for n\geq 47 . Therefore the lemma is straightforward. \square

Suppose that \Gamma_{sol}(A_{n}) is a complete graph. By Lemma 5, there exists
primes p, q such that n/2<p , q\leq n . Since \Gamma_{sol}(A_{n}) is a complete graph,
there exists a subgroup H of order pq of A_{n} . Let x , y\in H such that
o(x)=p, o(y)=q. Then \langle x\rangle or \langle y\rangle is a normal subgroup of H . Note that
Aut(\langle x\rangle)\simeq \mathbb{Z}_{p-1} and Aut(\langle y\rangle)\simeq \mathbb{Z}_{q-1} . q\parallel p -1 and p\parallel q -1 lead that
H is an abelian subgroup of A_{n} by Burnside’s transfer theorem. Since the
order of the centralizer of x is coprime to q , we have a contradiction. Hence
\Gamma_{sol}(A_{n}) is not a complete graph.

Case: G =a classical simple group.

First we will prove the incompleteness of \Gamma_{sol}(GL(n, q))(n\geq 4) . In
this case we denote GL(n, q)(n\geq 4) by L_{n} . Let \Phi_{m}(x) be the cyclotomic
polynomial of index m.

Lemma 6 Let m>n/2 .
(1) Let (q, m)\neq(2,6) . There exist a cyclic subgroup C_{m} of order q^{m}-1

and a Hall subgroup H_{m} of order h_{m}(q)=\Phi_{m}(q)/(\Phi_{m}(q), m) of L_{n}

such that H_{m}\subset C_{m} .
(2) Let x\in H_{m} . Then there exists a subgroup T of L_{n} such that C_{L_{n}}(x)\subseteq

C_{m}T and T\simeq L_{n-m} .
(3) N_{L_{n}}(H_{m})\simeq(C_{m} : m)\cross T
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Proof. Since F_{q^{m}} can be regarded as a vector space over F_{q} of dimen-
sion m, F_{q^{m}}^{\cross}\subset GL(F_{q^{m}}) . Since h_{m}(q) is a Hall divisor of L_{n} , (1) holds.
(2) is shown in the same manner of Iiyori [5]. It is easy to see that
N_{GL(F_{q}m)}(F_{q^{m}}^{\cross})\simeq F_{q^{m}}^{\cross} : m . Then we have (3). The proof is complete.

\square

Suppose that r and s are joined in \Gamma_{sol}(L_{n}) for r\in\pi(H_{n}) and s\in\pi(H_{l})

(n>l>n/2) . Then there exists a subgroup of L_{n} such that \pi(K)=
\{r, s\} Lemma 6 (1) yields that R and S are cyclic for R\in Sy1_{r}(K) and
S\in Sy1_{s}(K) . At least one of the following happens; (i) R\neq N_{K}(R) , (ii)
S\neq N_{K}(S) , or (iii) R=N_{K}(R) and S=N_{K}(S) . By Burnside’s transfer
theorem, R=N_{K}(R) implies that S is a normal subgroup of K, which
contradicts S=N_{K}(S) . Therefore the case (iii) never happen.

Suppose that (ii) holds. Since Nk(S)\subset NLn(S)\simeq C_{l} : l\cross L_{n-l} and
(|C_{n}| |L_{n-l}|, r)=1 , r divides l . r\leq l and q^{r-1}-1\equiv 0 (mod r) yield
r|(h_{n}(q), q^{r-1}-1) , which contradicts that h_{n}(q) is a Hall divisor of L_{n} . If
(i) holds, then \pi(N_{K}(R))=\{r, s\} . We may assume that R is a subgroup
of H_{n} . Lemma 6 leads N_{L_{n}}(R)\simeq C_{n} : n . N_{K}(R)\subset NLn(R)\simeq C_{n} : n and
(|C_{n}|, s)=1 imply s|n . We note that there exists a\in \mathbb{Z} such that n=as
and q^{s-1}-1\equiv 0 (mod r). If a\geq 2 , then l<n/2 . This contradicts the
choice of l . Thus we have s=n and l=n-1 , which lead the following
lemma.

Lemma 7 (1) h_{n}(q)=1 if and only if (g, n)=(2,6) .
(2) Let n\geq 4 . Suppose that h_{n}(q) , h_{l}(q) , h_{n-1}(q)\neq 1 . Lelr\in\pi(H_{n})

and s\in\pi(H_{l})(n/2<l<n-1) . Then r and s are not joined in \Gamma_{sol}(L_{n}) .
r\in\pi(H_{n}) and s\in\pi(H_{n-1}) are joined in \Gamma_{sol}(L_{n}) if and only if s=n .

(3) Let q=p^{u} for a prime p . Suppose that r\in\pi(H_{n}) and p \int n .
Then r and p are not joined in \Gamma_{sol}(L_{n}) .

Proof. Let L_{n}=GL(n, q) act on a vector space V of dimension n natu-
rally. Suppose that there exists a subgroup U of L_{n} such that \pi(U)=\{p, r\} .
Since N_{L_{n}}(R)\simeq(q^{n} –1) : n and ((q^{n}-1)n,p)=1 , N_{U}(R)=R for
R\in Sy1_{r}(U) . By Burnside’s transfer theorem, a Sylow p-subgroup P of U
is a normal subgroup of U . Put W= {v\in V|v^{x}=v for all x\in P}.
Note W\neq 0 . For y\in U and w\in W , (w^{y})^{x}=(w^{yxy^{-1}})^{y}=w^{y} implies that
W^{y}\subseteq W . (r, |GL(n-1, q))|)=1 leads W=V This contradicts P\neq 1 .
We have (3) \square
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Now we are going to prove Theorem 2 for classical simple groups.

[1] G=PSL_{n}(q) .
Lemma 7 implies that the theorem holds for G=PSL_{n}(q) for n\geq 4

unless (q, n)=(2,6) .
For G=PSL_{2}(q) , see Suzuki [8].
Suppose G=PSL_{3}(q) . If p\neq 3 , then p and a prime which divides h_{3}(q)

are not joined in \Gamma_{sol}(PSL_{3}(q)) by Lemma 7. If p=3, then namely q is a
power of 3, G=SL_{3}(q) includes an isolated cyclic subgroup H of order q^{2}+

q+1 by Williams [9]. Suppose that r and 2 are joined in \Gamma_{sol}(G) for a prime
r such that r||H| . Then there exists a subgroup J of G such that \pi(J)=

\{2, r\} . Nc(H)\simeq H : 3 and (|H : 3|, 2)=1 imply that a Sylow 2-subgr0up
Q is a normal subgroup of J by Burnside’s transfer theorem. There exists
a Sylow 2-subgroup B of GL_{3}(q) such that Q\subseteq B . Let V be a natural
GL_{3}(q) -module of dimension 3. Since there exists a canonical embedding
of GL_{1}(q)\cross GL_{2}(q) to GL_{3}(q) and |GL_{1}(q)|_{2} |GL_{2}(q)|_{2}=|GL_{3}(q)|_{2} , then
V=W_{1}\oplus W_{2} as B-module such that dim W_{1}=1 . Since W_{1} is a Q-
module which is generated by an element w of W_{1} , there exists an eigen
value \lambda_{y}\in F_{q} such that w^{y}=\lambda_{y}w for y\in Q . For z\in R , w^{zyz^{-1}}=\lambda_{zyz^{-1}}w

leads (w^{z})^{y}=\lambda_{zyz^{-1}}w^{z} . Thus \langle w^{z}\rangle is a Q-module. The R-irreduciblity of
V implies V=W_{1}\oplus W_{1}^{z}\oplus W_{1}^{z^{2}} Since V is a faithful Q-module and there
exists an embedding of Q to GL_{1}(q)^{3} , \Omega_{1}(Z(Q)) is isomorphic to a subgroup
of \mathbb{Z}_{2}^{3} . Q\subset SL_{3}(q) leads |Q||4 . Since \Omega_{1}(Z(Q))R is a Frobenius group, r
divides |\Omega_{1}(Z(Q))| –1. This implies that r=3, which is contradiction.
Thus r and 2 are not joined in \Gamma_{sol}(G) .

Let G=PSL_{6}(2) . Suppose that 7 and 31 are joined in \Gamma_{sol}(G) . There
exists a subgroup A of G such \pi(A)=\{31,7\} . |G|_{31,7}=31 7^{2} leads that
A is an abelian group. This contradicts that G has an isolated subgroup
of order 31 by Iiyori-Yamaki [3]. Thus 7 and 31 are not joined in \Gamma_{sol}(G) .
Hence the theorem holds for G=PSL_{n}(q) except (n, q)=(2,2) , (2, 3) .

[2] G=PSp_{2n}(q) .
For n\geq 3 except (q, n)=(2, 3) , (2, 4) , we have that h_{2n}(q)\neq 1 ,

h_{2n-2}(q)\neq 1 and that h_{2n}(q)h_{2n-2}(q)||Sp_{2n}(q)| . For primes r and s such
that r|h_{2n}(q) and s|h_{2n-2}(q) , r and s are not joined in \Gamma_{sol}(GL_{n}(q)) by
Lemma 7. Which implies that they are not joined in \Gamma_{sol}(PSp_{n}(q)) by
Lemma 2. If (q, n)=(2,3)i.e . G=PSp_{6}(2) , then 5 and 7 are not joined
by Atlas [2]. Let (q, n)=(2,4)i.e . G=PSp_{8}(2) . Suppose that there exists
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a solvable subgroup E of order 7 17. Then E is an abelian group. This
contradicts that G contains no element of order 7 . 17 (see Atlas [2]).

Let G=PSp_{4}(q) and V be a natural module over F_{q} of dimemsion
4. For a prime r such that r|h_{4}(q)=q^{2}+1 , r and p are not joined in
\Gamma_{sol}(GL_{4}(q)) by Lemma 7 if p\neq 2 . If p=2, then G includes an isolated
cyclic subgroup B of order q^{2}+1 . We will show that a\in\pi(B) is not joined
to r which divides q+1 . Suppose that r and a are joined in \Gamma_{sol}(Sp_{4}(q)) .
Then there exists a subgroup T of PSp_{4}(q) such that \pi(T)=\{a, r\} . We may
assume that a Sylow a subgroup R of T is a subgroup of B. N_{Sp_{4}(q)}(B)\simeq

(q^{2}+1) : 2 and (|(q^{2}+1) : 2|, r)=1 lead that R is a normal subgroup of
T Let G_{0}=GL_{4}(q) . |G_{0}|_{q+1}=(q+1)^{2} yields that R is conjugate to a
subgroup of

\{ (Z_{1} Z_{2}) |Z_{1} , Z_{2}\in GL_{2}(q) , o(Z_{1}) , o(Z_{2})|q+1\} .

Hence V=W_{1}\oplus W_{2} as R-module. Note that W_{i}(i=1,2) is an irreducilbe
R-module of dimension 2. If R is not cyclic, then N_{G_{0}}(R) is isomorphic to a
subgroup of GL_{2}(q)1S_{2} . (a, |GL_{2}(q)lS_{2}|)=1 leads that R is not a normal
subgroup of T, which is a contradiction. Therefore R is a cyclic group.
C_{G}(R) includes a subgroup L which is isomorphic to \mathbb{Z}_{q+1}\cross \mathbb{Z}_{q+1} . Since
B is isolated, a\parallel|C_{G}(R)| . [T, C_{G}(R)]\subset C_{G}(R) yields that K=TC_{G}(R)
is a subgroup of G . By the Frattini argument, K=N_{K}(R_{0})C_{G}(R) for
R_{0}\in Sy1_{r}(C_{G}(R)) . R_{0}\simeq \mathbb{Z}_{|q+1|_{r}}\cross \mathbb{Z}_{|q+1|_{r}} leads that N_{K}(R) includes a
subgroup T_{0}\simeq \mathbb{Z}_{r}^{2} : a . This attributes to the case in which R is not cyclic.
Hence r and a are not joined in \Gamma_{sol}(Sp_{4}(q)) .

[3] G=P\Omega_{2n}^{+}(q)(n\geq 4) .
Lemma 8 Let G=GL_{n}(q)(n\geq 10) . For primes r and s such that
r|h_{n-2}(q) and s|h_{n-4}(q) , r and s are not joined in G .

Proof. Suppose that r and s are joined in \Gamma_{sol}(G).Then there exists a
subgroup H such that \pi(H)=\{r, s\} . Lemma 7 implies |N_{G}(R)|=(q^{n-2}-

1)(n-2)|GL_{2}(q)| and |N_{G}(S)|=(q^{n-4}-1)(n-4)|GL_{4}(q)| for R\in Sy1_{r}(H)

and S\in Sy1_{s}(H) . Since there exists no element of order rs , r|(n-4)
or s|(n-2) by Burnside’s transfer theorem. If s|(n-2) , then Fermat’s
theorem leads s=(n-2) . s|(q^{n-3}-1) and (q^{n-3}-1, h_{n-4}(q))=1 yield
a contradiction. Then r|(n-4) . Fermat’s theorem leads r=n-4 and
r|(q^{n-5}-1) . This is a contradiction. Therefore r and s are not joined in
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\Gamma_{sol}(G) . This completes the proof. \square

By the previous lemma, \Gamma_{sol}(P\Omega_{2n}^{+}(q)) is not a complete graph for n\geq 5 .
Suppose that n=4. For G=P\Omega_{8}^{+}(2) , \Gamma_{sol}(G) is not complete as drawn
below:

Let G_{0}=GL_{8}(q)(q\neq 2) , G=P\Omega_{8}^{+}(q) and V a natural G_{0}-module
of dimension 8. Suppose that r and s are joined in \Gamma_{sol}(G) for primes
r and s such that r|h_{6}(q) and s|h_{4}(q) . Then there exists a subgroup H
such that \pi(H)=\{r, s\} . For R\in Sy1_{r}(H) and S\in Sy1_{s}(H) , |N_{G_{0}}(R)|=

(q^{6}-1)6|GL_{2}(q)| by Lemma 7. s\parallel 6 implies that S is the normal r-
complement of R by Burnside’s transfer theorem. Since a Sylow s-subgroup
of G_{0} is conjugate to a subgroup of

\{ (Z_{1} Z_{2}) |Z_{1} , Z_{2}\in GL_{4}(q) , o(Z_{1}) , o(Z_{2})|h_{4}(q)\} ,

there exist S-modules W_{i}(i=1,2) such that V=W_{1}\oplus W_{2} and dim W_{i}=

4(i=1,2) . Note that at least one of W_{i}(i=1,2) is S-irreducible. We
may assume that W_{1} is irreducible. Suppose that there exists w , v\in W_{1}

such that w^{y}\neq w and v^{y}=v for y\in R . For z\in S , w^{yzy^{-1}}\in W_{1} implies
that W_{1}^{y} is an S-module. o(y)|h_{6}(q) yields W_{1}^{y}\neq W_{1} . The irreducibility
of W_{1} contradicts that W_{1}^{y}\cap W_{1} is an S-module and W_{1}^{y}\cap W_{1}\neq 0 . Hence
w^{y}\neq w for w\in W_{1}-\{0\} . Since W_{1} is not R-invariant, the 5-irreducibility
of W_{1} implies V=\langle W_{1}^{y}|y\in R\rangle . Then W_{2} is S-irreducible by Krull-
Remak-Schmidt’s theorem. V decomposes into an irreducible R-module of
dimension 6 and two trivial modules. Then there exist w , v\in W_{2} such that
w^{y}\neq w and v^{y}=v . W_{2}^{y}\cap W_{2} is an S-module and W_{2}\neq W_{2}^{y}\cap W_{2}\neq 0 .
This contradicts the irreducibility of W_{2} . Hence r and s are not joined in
\Gamma_{sol}(G) .

[4] G=P\Omega_{2n}^{-}(q)(n\geq 4) .
O_{2n}^{-}(q) is a subgroup of GL_{2n}(q) and h_{2n}(q)||G| . Lemma 7 yields the

incompleteness of G unless (q, n)\neq(2,4) . Therefore \Gamma_{sol}(P\Omega_{8}^{-}(2)) is not
complete by Atlas [2].
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[5] G=P\Omega_{2n+1}(q)(n\geq 3) .
By Lemma 7 and 8, \Gamma_{sol}(P\Omega_{2n+1}(q)) is not complete if n\geq 4 . We may

assume G=P\Omega_{7}(q) and q is odd. Let G_{1}=O_{7}(q) , which is a subgroup of
O_{8}^{+}(q) . Note that h_{6}(q)\neq 1 and h_{4}(q)\neq 1 . For primes r and s such that
r|h_{6}(q) and s|h_{4}(q) , r and s are not joined in \Gamma_{sol}(P\Omega_{8}^{+}(q)) . h_{6}(q)h_{4}(q)||G_{1}|

implies that r and s are not joined in \Gamma_{sol}(P\Omega_{7}(q)) by Lemma 2. Thus the
theorem holds for P\Omega_{2n+1}(q)) for n\geq 3 .

[6] G=PSUn(4) (n\geq 3 and (q , n)\neq(2,3) )

Let G_{0}=GL_{n}(q^{2}) and G_{1}=U_{n}(q) . Then G_{1} is a subgroup of G_{0} . Sup-
pose that n is odd. h_{n}(q^{2})||G| and Lemma 7 yield that the incompleteness
of \Gamma_{sol}(G) if p \int n . Suppose p|n . If n\geq 5 , Lemma 7 yields that r and s are
not joined in \Gamma_{sol}(G) for primes r and s such that r|h_{n}(q) and s|h_{n-2}(q) .
Hence we may assume that G=PSU_{3}(3^{t})((q, n)\neq(2,3)) for a positive
integer t . Since r and 2 are not joined in \Gamma_{sol}(PSL_{3}(3^{2t})) , the theorem holds
for n=odd. Suppose that n is even. If n\geq 6 , then Lemma 8 implies the
incompleteness of \Gamma_{sol}(G) .

Let G=PSU_{4}(q) , G_{0}=GL_{4}(q^{2}) and V a vector space over F_{q^{2}} of
dimension 4.

Suppose that r and s are joined in \Gamma_{sol}(G) for primes r and s such
that r|h_{3}(q^{2}) and s|(q^{2}+1)/(q^{2}+1,2) . Then there exists a subgroup H
of G such that \pi(H)=\{r, s\} . Let R be a Sylow r-subgroup of G and
S a Sylow s-subgroup of G . There exists a subgroup H_{0} of G_{0} such that
H_{0}\simeq GL_{2}(q^{2})\cross GL_{2}(q^{2}) and Sy1_{r}(H_{0})\subseteq Sy1_{r}(G_{0}) . Since H is conjugate to

\{ (Z_{1} Z_{2}) |Z_{1} , Z_{2}\in GL_{2}(q^{2}) , o(Z_{1}) , o(Z_{2})|(q^{2}+1)/(q^{2}+1,2)\} ,

there exist S-modules W_{i}(i=1,2) such that V=W_{1}\oplus W_{2} , dim W_{i}=2

(i=1,2) and that at least one of W_{i}(i=1,2) is S-irreducible. By the
same observations for R, there exist S-modules W_{i}(i=3,4) such that
V=W_{3}\oplus W_{4} , dim W_{3}=3 , dim W_{4}=1 and that W_{i}(i=3,4) is R-
irreducible. The same argument for \Gamma_{sol}(P\Omega_{8}^{+}(q)) gives a contradiction.
The theorem holds for G=PSUn(4) (n\geq 3 and (q , n)\neq(2,3) ).

The theorem is proved for every classical simple group.
Case: G =other simple groups of Lie type.

Let G be a simple group of Lie type which is not a classical simple
group. Suppose G is not 3D_{4}(q) nor 2F_{4}(2)’ .
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Table 3. Hall abelian subgroups

group |H| |N_{G}(H) : H|

2B_{2}(q) q-1

q+m+1
q-m+1

2

2^{2}

2^{2}

q=2^{2k+1} (k\geq 1) ,
m=2^{k+1}

3D_{4}(q) q^{4}-q^{2}+1 2^{2}

E_{6}(q) (q^{6}+q^{3}+1)/(3, q-1)

(q^{4}+q^{3}+q^{2}+q+1)/(5, q-1)

q^{4}-q^{2}+1

(q^{4}+1)/(2, q-1)

3^{2}

2 . 5
2^{2} . 3
2^{2}

\neg 3
2E_{6}(q) (q^{6}-q^{3}+1)/(3, q+1)

(q^{4}-q^{3}+q^{2}-q+1)/(5, q+1)

q^{4}-q^{2}+1

(q^{4}+1)/(2, q-1)

3^{2}

2 . 5
2^{2} . 3
2^{2} . 3

E7 (q) (q^{6}+q^{3}+1)(q+1)

(q^{6}-q^{3}+1)(q-1)
2 . 3^{2}

2 . 3^{2}

E_{8}(q) (q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1)

(q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1)

q^{8}-q^{4}+1

2 . 3 . 5
2 . 3 . 5

2^{2} . 3

q\equiv 2 , 3(5)

E_{8}(q) (q^{8}+q^{7}+q^{5}+q^{3}-q+1)

(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1)

(q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1)

q^{8}-q^{4}+1

2 . 3 . 5
2 . 3 . 5
2 . 3 . 5

2^{2} . 3

q\equiv 0 , 1, 4(5)

F_{4}(q) q^{4}+1

q^{4}-q^{2}+1

2^{3}

2^{2} . 3
2|q

2F_{4}(q) q^{2}+qm+q+m+1

q^{2}-qm+q+m+1

2^{3}

2^{2} . 3

q=2^{2k+1} (k\geq 1) ,
m=2^{k+1}

2F_{4}’(2) 13 2 . 3
G_{2}(q) q^{2}+eq-1

q^{2}+eq+1/3
2 . 3
2 . 3

q\equiv e(3) , e=\pm 1

G_{2}(q) q^{2}+q-1
q^{2}-q+1

2 . 3
2 . 3

q\equiv 0(3)

2G_{2}(q) q+3m+1

q-3m+1

2 . 3

2 . 3

q=3^{2k+1} (k\geq 1) ,
m=3^{k}
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G includes two cyclic subgroups H_{i}(i=1,2) by Table 3. H_{i} has the
following properties:

(PI) H_{i} includes a non trivial Hall cyclic subgroup H_{i}^{0} of G , such that
\pi(H_{1})\cap\pi(H_{2}^{0})=\emptyset and \pi(H_{2})\cap\pi(H_{1}^{0})=\emptyset ,

(P2) C_{G}(x)=H_{i} for x\in(H_{i}^{0})\# ,
(P3) (|N_{G}(H_{1}^{0}) : H_{1}|, |H_{2}|)=(|N_{G}(H_{2}^{0}) : H_{2}|, |H_{1}|)=1

(P4) H_{i}^{0} is a T.I . set of G
Suppose that r and s are joined in \Gamma_{sol}(G) for r\in\pi(H_{1}^{0}) and s\in

\pi(H_{2}^{0}) . Then there exists a subgroup M of G such that \pi(H_{1})=\{r, s\} . For
R\in Sy1_{r}(M) and S\in Sy1_{s}(M) , Sylow’s theorem allows H_{1} to include R.
Suppose R\neq N_{M}(R) . Then there exists an s-element x in N_{M}(R) . R^{x}=R
and (P4) imply x\in N_{G}(H_{1}^{0}) , which contradicts (P3). R=N_{M}(R) yields
that S is a normal subgroup of M by Burnside’s transfer theorem. The
same argument shows that R is a normal subgroup of Mr Then M is an
abelian subgroup. This contradicts (PI) and (P2). Therefore r and s are
not joined in \Gamma_{sol}(G) .

\Gamma_{sol}(^{2}F_{4}(2)’) is not complete as drawn below by Atlas [2]:

Let G=3D_{4}(q) . Let q=p^{a} . By Kleidman [6], a subgroup H of G such
that (h_{12a}(p), |H|)\neq 1 is isomorphic to a subgroup of (q^{4}-q^{2}+1) : 4. This
implies that a prime divisor of h_{12a}(p) is joined only to 2. Therefore the
theorem holds for G .

Case: G =one of 26 sporadic simple groups.
Atlas [2] yields the theorem for G .
The proof of the theorem is completed.

Theorem 3 Let G be a finite group and p, q\in\pi(G) . p and q are not
joined in \Gamma_{sol}(G) if and only if there exists a series of normal subgroups of
G

G\underline{\triangleright}N\underline{\triangleright}M\underline{\triangleright}1 ,

such that G/N and M are \{p, q\}’ -group and N/M is a non abelian simple
group such that p and q are not joined in \Gamma_{sol}(N/M) .
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Proof. We will prove our theorem by induction on the order of G . Suppose
that p and q are not joined in \Gamma_{sol}(G) . If G is a non ableian simple group,
then our theorem obviously holds. Let M_{1} be a minimal normal subgroup of
G. By Lemma 2, one of the following two cases happens; (1) p , q\not\in\pi(M_{1}) ,
(2) p , q\in\pi(M_{1}) and p, q\not\in\pi(G/M_{1}) .

Case (1): By Lemma 2, p and q are not joined in \Gamma_{sol}(G/M_{1}) . By the
assumption of induction, our theorem holds for G/M_{1} . Then there exists a
series of normal subgroups of G/M_{1}

G/M_{1}\underline{\triangleright}\tilde{N}/M_{1}\underline{\triangleright}\tilde{M}/M_{1}\underline{\triangleright}1 ,

such that (G/M_{1})/(\tilde{N}/M_{1}) and \tilde{M}/M_{1} are \{p, q\}’ group and (\tilde{N}/M_{1})/

(\tilde{M}/M_{1}) is a non abelian simple group such that p and q are not joined
in \Gamma_{sol}(\tilde{N}/M_{1})/(\tilde{M}/M_{1}) . This implies the theorem holds for G.

Case (2): If M_{1} is isomorphic to the direct product of n copies of a cyclic
group of order r for a prime r . Since r is the only prime which divides |M_{1}| .
This contradicts p , q\in\pi(M_{1}) . Therefore M_{1} is isomorphic to the direct
product of n copies of a non abelian simple group S. Suppose n\geq 2 . Then
\Gamma_{sol}(G) should be a complete graph. Hence n=1 and our theorem holds
for G.

We will show the converse. Suppose that p and q are joined in \Gamma_{sol}(G) .
Then there exists a subgroup H of G such that \pi(H)=\{p, q\} . Since
HM/M\simeq H/(H\cap M) is a subgroup of G/M such that \pi(HM/M)=\{p, q\} .
Any p- and q-elements of G/M are contained in N/M since p, q\not\in\pi(N/M) .
Therefore p and q are joined in \Gamma_{sol}(N/M) . This is a contradiction. The
proof is complete. \square

4. Applications

Let X_{n}=\{i\in \mathbb{N}|1\leq i\leq n\} . We say that X_{n} is consecutive up to n .
The following theorems are shown as applications of prime graphs.

Theorem 4 (Brandl-Shi) [1] Let G be a finite group. If Ord_{cyc}(G) is
consecutive up to n , Then n\leq 8 and G can be classified.

Using the argument in Brandl-Shi [1], the similar result for Ord_{abel}(G)

was shown by N. Chigira.
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Theorem 5 Let G be a finite group. If Ord_{sol}(G) is consecutive up to n ,
Then G\simeq \mathbb{Z}_{2} or 1.

Proof. Suppose n\geq 3 . Then there exists a prime p such that n/2<
p\leq n . Since \Gamma_{sol}(G) is connected for a finite group by Theorem 1, p is
joined to another prime q\in X_{n} . But n<pq\in X_{n} , which contradicts the
maximumness of n in X_{n} . Therefore n=1,2 . The proof of our theorem is
complete. \square

Lemma 9 Let Ord_{sol}^{*}(G) be consecutive up to n . Then n\leq 4 .

Proof. Suppose n>4 . Then there exists a prime p such that n/2<p\leq n

which is isolated in \Gamma_{sol}^{*}(G) , namely p is not joined to no other vertices. So
\Gamma_{sol}^{*}(G) is disconnected. By Lemma 1(3), |\pi(G)|\leq 2 holds. Thus \pi(G)\subseteq

\{2, 3\} and n\leq 4 . \square

Theorem 6 If Ord_{sol}^{*}(G) is consecutive up to n , Then n\leq 4 and

G\simeq A_{4} (n=4) ,
\simeq S_{3} , \mathbb{Z}_{6} (n=3) ,
\simeq \mathbb{Z}_{2}\cross \mathbb{Z}_{2} , \mathbb{Z}_{4} (n=2) ,
\simeq 1 , \mathbb{Z}_{p} (n=1) ,

for any prime p .

Proof. By lemma 9, \pi(G)=\{2,3\} and |G|=12 if n=4. By Lemma 10,
G\simeq A_{4} . Since 6 is not contained in Ord_{sol}^{*}(G) , 2 and 3 are not joined in
\Gamma_{cyc}(G) . This implies com(G)\geq 2 . G is a Frobenius group or 2-Fr0benius
group by Kegel-Gruenberg [8]. So G\simeq A_{4} . It is easy to check the rest of
cases. \square
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