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Singularities for projections of contour lines of
surfaces onto planes

Yasuhiro KUROKAWA

(Received May 13, 1999; Revised July 3, 2000)

Abstract. We study semi-local patterns of the visions for contour lines of a surface
when one looks at it from a distant view in any direction. The study of such a landscape
(i.e. s0-called “topography”) is reduced to the study of a certain divergent diagram of
smooth mappings \mathbb{R}arrow Marrow \mathbb{R}^{2} , where M is a smooth surface. We give a generic
semi-local classification of such divergent diagrams.

Key words: singularity, vision, divergent diagram, semi-local, web structure.

1. Introduction

A contour line of a surface S in \mathbb{R}^{3}=\{(x, y, z)\} is a set S\cap\{z=

constant}. In this paper we study semi-local patterns of the viewing image
(i.e. topography) when one looks at a surface with its contour lines from
a distant point in \mathbb{R}^{3} . We give a generic semi-local classification for the
singularities of orthogonal projections of contour lines of surfaces onto the
plane.

There are many studies of certain visual images from the viewpoint
of singularity theory started by Koenderink and Doom [KD] (see also [K],
[W], [B], [BG], [P], [A], [DT] ) . In particular Dufour and Tueno [DT] have
investigated local and semi-local generic types of photographs (i.e. equal
illumination curves) of lighted surfaces. In [DT] the generic classification
of divergent diagrams (\mathbb{R}, 0) – (\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) due to ArnoPd [A] and
Dufour [D4] was applied. However normal forms of the semi-local case were
not given.

In this paper, we give more detailed classification of topographies in
the semi-local case. In particular, we give the normal forms of generic
types, which contain “functional moduli” These results will be used to
show the s0-called “topological rigidity theorem” in the semi-local case of
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topographies in the forthcoming paper jointed with Dufour [DK], which is
a generalization of Dufour’s result in the local case [D4] (see Remark 1.4
below).

We now formulate our theorems. Throughout this paper we shall sup-
pose that all mappings, map germs and manifolds are of class C^{\infty} .

Let M be a surface in \mathbb{R}^{3}=\{(x, y, z)\} . We denote by Emb(M, \mathbb{R}^{3}) the
space of all embeddings Marrow \mathbb{R}^{3} endowed with the Whitney C^{\infty} -topology.
Let E_{d} be a hyperplane in \mathbb{R}^{3} with the normal direction d such that E_{d}\cap

M=\phi and let \pi_{d} : \mathbb{R}^{3}
– E_{d} be the orthogonal projection along the

direction d .
Let i\in Emb\{M ,\mathbb{R}^{3} ). If one looks at a contour line on i(M) from a

distant view in a direction d , then one will get \pi_{d}(i(M)\cap\{z=c\}) as the
viewing image. Our subject is a semi-local classification of singularities
for one parameter families \{\pi_{d}(i(M)\cap\{z=c\})\}_{c\in \mathbb{R}} , called the topography
of i(M) with respect to a direction d . Without loss of generality we can
suppose that d= (0, cos \xi , sin \xi ) \in S^{2}\cap\{x=0\} where 0< \xi\leqq\frac{\pi}{2} . For a
direction d , by the transformation of \frac{\pi}{2}-\xi rotation around x-axis in \mathbb{R}^{3} ,
we choose new coordinates (u, v, w) . Then the direction d becomes (0, 0, 1)
and the height function z is expressed by -v sin ( \frac{\pi}{2}-\xi)+w cos ( \frac{\pi}{2}-\xi) in the
new coordinates. Let \pi : \mathbb{R}^{3}arrow \mathbb{R}^{2} be the projection defined by \pi(u, v, w)=

(u, v) . We call the following divergent diagram of mappings a topographic
diagram of i(M) :

\mu[i,\xi] g[i]
1R M \mathbb{R}^{2} ,

where \mu[i, \xi]=-v\circ i sin ( \frac{\pi}{2}-\xi)+w\circ i cos ( \frac{\pi}{2}-\xi) and g[i]=\pi\circ i .
Since our concern is to describe the discriminant set of g[i] (the outline

of i(M)) and the bifurcation of g[i](\mu[i, \xi]^{-1}(c)) along the parameter c\in

IR in the semi-local situation, we introduce the following definitions. Let
\{p_{1}, . , p_{r}\} be a subset of M whose elements are all distinct points in M
such that \pi\circ i(p_{1})= \cdot . =\pi\circ i(p_{r}) , where r is a positive integer. Then
the multigerm of a topographic diagram at \{p_{1}, \ldots,p_{r}\} which is denoted by
rTi) \xi] (or briefly rTi ) is called a topographic multigerm of i :
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(\mathbb{R}, 0)

\mu_{1}

(\mathbb{R}^{2},0)

(\mathbb{R}, 0)

\mu_{2}

(\mathbb{R}^{2},0)

.\cdot.

.

(\mathbb{R}, 0)

\mu_{r}

(\mathbb{R}^{2},0)

where \mu_{k} , g_{k} are germs of \mu[i, \xi] , g[i] at p_{k} (k=1, . , r) respectively. Let
rT[i, \xi] and rT[i’, \xi’] be topographic multigerms, then they are said to be
equivalent if there exist diffeomorphism germs \lambda_{k} : (\mathbb{R}, 0) – (\mathbb{R}, 0) , \psi_{k} :
(\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) and \Phi : (\mathbb{R}^{2},0)arrow(\mathbb{R}^{2},0) such that \lambda_{k}\circ\mu_{k}=\mu_{k}’0\psi_{k} ,
\Phi og_{k}=g_{k}’o\psi_{k} for k=1 , \ldots , r .

We shall state our theorems of a genericity and their normal forms for
topographic multigerms. Denote by S_{g} the singular set of a mapping g .
Denote by \mathcal{E}_{x_{1},\ldots,x_{n}} the ring of all smooth function germs on \mathbb{R}^{n} at 0 with
coordinates (x_{1}, \ldots, x_{n}) and denote by \mathcal{M}_{x_{1},\ldots,x_{n}} the unique maximal ideal
of \mathcal{E}_{x_{1}} ,... , x_{n} .

Theorem A Let r=1,2 . There exists a residual subset (hence dense) rO
in Emb(\lambda T, \mathbb{R}^{3}) such that for any i\in rO and any \xi\in(0, \frac{\pi}{2}] the topographic
multigerms rT[i, \xi] is one of the following types:

In the case of r=1
(I) \mu_{1} is a submersion and g_{1} is regular.

(II) \mu_{1} is of Morse type and g_{1} is regular.

(III) \mu_{1} is a submersion, g_{1} is a fold, \mu_{1}|s_{g_{1}} is regular
and (\mu_{1}, g_{1}) : (\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0) is regular.

(IV) \mu_{1} is a submersion, g_{1} is a fold, \mu_{1}|s_{g_{1}} is of Morse type
and (\mu_{1}, g_{1}) : (\mathbb{R}^{2},0) – (\mathbb{R}^{3},0) is regular.

(V) \mu_{1} is a submersion, g_{1} is a fold, (\mu_{1}, g_{1}) : (\mathbb{R}^{2},0) – (\mathbb{R}^{3},0) is a Whit-
ney umbrella whose line of double points is transversal at 0 to the
direction {0} \cross \mathbb{R}^{2} in \mathbb{R}^{3} .

(VI) \mu_{1} is a submersion, g_{1} is a cusp and (\mu_{1}, g_{1}) : (\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0) is
regular.

In the case of r=2
(I, I)_{0} , (I, I)_{1} , (I, I)_{2} : (\mu_{1}, g_{1}) , (\mu_{2}, g_{2}) are both of type (I)
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and (\mu_{1}og_{1}^{-1-1} : (\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) is regular, a fold,
a cusp respectively.

( II , I) : (\mu_{1}, g_{1}) is of type (II), (\mu_{2}, g_{2}) is of type (I)
and (\mu_{1}og_{1}^{-1-1}, \mu_{2}og_{2}) : (\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) is a fold,

(Ill, I)^{0} . (Ill, I )^{1} : (\mu_{1}, g_{1}) is of type (III), (\mu_{2}, g_{2}) is of type (I)
and respectively g_{1}(S_{g_{1}})\overline{h}g_{2}(\mu_{2}^{-1}(0)) , g_{1}(S_{g_{1}})\overline{fl}tg_{2}(\mu_{2}^{-1}(0))

with too point contact.

(IV , I) : (\mu_{1}, g_{1}) is of type (IV), (\mu_{2}, g_{2}) is of type (I)
and g_{1}(S_{g_{1}})\Uparrow g_{2}(\mu_{2}^{-1}(0))- .

(V , I) : (\mu_{1}, g_{1}) is of type (II), (\mu_{2}, g_{2}) is of type (I)
and g_{1}(S_{g_{1}})r\overline{h}g_{2}(\mu_{2}^{-1}(0)) .

(I) I) : (\mu_{1}, g_{1}) is of type (II), (\mu_{2}, g_{2}) is of type (I)
and the tangent cone of g_{1}(S_{g_{1}})r\overline{\Uparrow}g_{2}(\mu_{2}^{-1}(0)) .

(Ill, III) : (\mu_{1}, g_{1}) , (\mu_{2}, g_{2}) are both of type (III) and g_{1}(S_{g_{1}})r\overline{h}g_{2}(S_{g_{2}}) .

Remark 1.1 In the case of r=2, the generic condition of (I, I)_{1} (resp.
(I, I)_{2}) means that g_{1}(\mu_{1}^{-1}(0)) and g_{2}(\mu_{2}-1(0)) have second (resp. third)
order contact.

Remark 1.2 In the case of r=3 , the generic types except the following
three types are essentially the same as the case of r=2 :
(I, I, I)_{1,1} : (\mu_{j}, g_{j} ; \mu_{k}, g_{k}) is of type (I, I)_{1} for 1\leq j<k\leq 3 .

( Ill, I , I)_{1}^{0,0} : (\mu_{1}, g_{1} ; \mu_{2}, g_{2}) is of type (III, I)^{0} and (\mu_{2}, g_{2}; \mu_{3}, g_{3})

is of type (I, I)_{1} .

( Ill, III, I)^{0,0} : (\mu_{1}, g_{1} ; \mu_{2}, g_{2}) is of type (III, III) and (\mu_{j}, g_{j}; \mu_{3}, g_{3})

is of type (III, I)^{0} for j=1,2 .
That is, except the above three types, we can add only type (I) to the case
of r=2 such that (\mu_{j}, g_{j} ; \mu_{3}, g_{3}) , j=1,2 , are non-degenerate in the case
of r=2 , namely are not (I, I)_{1} , (I, I)_{2} and (III, I )^{1} In the same sense, for
the case r\geq 4 all of the generic types are essentially the same as the case
of r=3.

Theorem B Normal forms of the topographic multigerms of the each
generic type are the following:

In the case of r=1 .
(I) \mu_{1}=y_{1} , g_{1}=(x_{1}, y_{1}) .
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(II) \mu_{1}=x_{1}^{2}\pm y_{1}^{2} , g_{1}=(x_{1}, y_{1}) .
(III) \mu_{1}=x_{1}+y_{1} , g_{1}=(x_{1}, y_{1}^{2}) .
(IV) \mu_{1}=x_{1}^{2}+y_{1} , g_{1}=(x_{1}, y_{1}^{2}) .

(V) \mu_{1}=x_{1}+x_{1}y_{1}+y_{1}^{3} , g_{1}=(x_{1}, y_{1}^{2}) .
(II) \mu_{1}=y_{1}+\alpha\circ g_{1} , g_{1}=(x_{1}, y_{1}^{3}+x_{1}y_{1}) , where \alpha\in \mathcal{M}_{u,v} .

In the case of r=2 .
(I, I)_{0} \mu_{1}=y_{1} , g_{1}=(x_{1}, y_{1}) ;

\mu_{2}=x_{2} , g_{2}=(x_{2}, y_{2}) .

(I, I)_{1} \mu_{1}=y_{1} , g_{1}=(x_{1}, y_{1}) ;
\mu_{2}=x_{2}^{2}+y_{2} , g_{2}=(x_{2}, y_{2}) .

(I, I)_{2} \mu_{1}=y_{1} , g_{1}=(x_{1}, y_{1}) ;
\mu_{2}=x_{2}^{3}+x_{2}y_{2}+y_{2} , g_{2}=(x_{2}, y_{2}) .

(II , I) \mu_{1}=x_{1}^{2}\pm y_{1}^{2} , g_{1}=(x_{1}, y_{1}) ;
\mu_{2}=x_{2} , g_{2}=(x_{2}, y_{2}) .

(III, I)^{0} \mu_{1}=x_{1}+y_{1} , g_{1}=(x_{1}, y_{1}^{2}) ;
\mu_{2}=x_{2}+\theta(x_{2}, y_{2}) , g_{2}=(x_{2}, y_{2}) ,
where \theta\in \mathcal{M}_{x_{2},y_{2}} with \theta(x_{2},0)=0 .

(III, I)^{1} \mu_{1}=x_{1}+y_{1} , g_{1}=(x_{1}, y_{1}^{2}) ;
\mu_{2}=x_{2}^{2}+\theta(x_{2}, y_{2}) , g_{2}=(x_{2}, y_{2}) ,
where \theta\in \mathcal{M}_{x_{2},y_{2}} wilh \theta(x_{2},0)=0 , \frac{\partial\theta}{\partial y_{2}}(0)\neq 0 .

( IV , I) \mu_{1}=x_{1}^{2}+y_{1} , g_{1}=(x_{1}, y_{1}^{2}) ;
\mu_{2}=x_{2}+\theta(x_{2}, y_{2}) , g_{2}=(x_{2}, y_{2}) ,
where \theta\in \mathcal{M}_{x_{2},y_{2}} with \theta(x_{2},0)=0 .

(V , I) \mu_{1}=x_{1}+x_{1}y_{1}+y_{1}^{3} , g_{1}=(x_{1}, y_{1}^{2}) ;
\mu_{2}=x_{2}+\theta(x_{2}, y_{2}) , g_{2}=(x_{2}, y_{2}) ,
where \theta\in \mathcal{M}_{x_{2},y_{2}} with \theta(x_{2},0)=0 .

(VI , I) \mu_{1}=y_{1}+\alpha og_{1} , g_{1}=(x_{1}, y_{1}^{3}+x_{1}y_{1}) ;
\mu_{2}=x_{2}+\theta(x_{2}, y_{2}) , g_{2}=(x_{2}, y_{2}) ,
where \alpha\in \mathcal{M}_{u,v} , \theta\in \mathcal{M}_{x_{2},y_{2}} with \theta(x_{2},0)=0 .

(III, (II) \mu_{1}=y_{1}+\alpha_{1}og_{1} , g_{1}=(x_{1}, y_{1}^{2}) ;
\mu_{2}=x_{2}+\alpha_{2}\circ g_{2} , g_{2}=(x_{2}^{2}, y_{2}) ,

where \alpha_{1} , \alpha_{2}\in \mathcal{M}_{u,v} with \frac{\partial\alpha_{1}}{\partial u}(0)\neq 0 , \frac{\partial\alpha_{2}}{\partial v}(0)\neq 0 .
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Remark 1.3 In order to understand our classification of topographies ge-
ometrically, let us describe the level curves \{g_{k}(\mu_{k}-1(c))\} and the discrim-
inant set of g_{k} , 1\leq k\leq r(r=1,2) for each type.

(IV)

(I)

(II) (W)

(V)
(VI)

(I, I)_{0}
(I, I)_{1} (I, I)_{2}
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(II , I)
(II, I)

(VI, I)^{0}

(IV, I) N, I)

(VI. I)

(m.m)
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Remark 1.4 (Functional moduli) The normal forms in Theorem B de-
pend on arbitrary functions with some conditions, that is s0-called “func-
tional moduli” For the type (VI) the functional moduli have been char-
acterized and the complete invariant has been detected ([D5], [IK]). In a
semi-local case of r=2 without functional moduli, that is types (I, I)_{k}(k=

0,1 , 2), (II, I) have been studied by Dufour [Dl, 2, 3] from the viewpoint of
“bi-stability” and their normal forms have been obtained.

Remark 1.5 (Web structures) In topographies a “d-web structures) (a
configuration of d foliations) appears. In the local case (r=1) Dufour
[D4] showed that the topological classification and the C^{\infty} classification of
(topographic) germs (\mathbb{R}, 0)arrow(\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) are generically the same by
investigating the web structures. Such property is called topological rigidity.
Also in [DK] it has been shown that for the case of r=2 topological rigidity
generically holds.

2. Proof of Theorem A

2.1. Preliminary
In order to describe the genericity we shall prepare a transversality

lemma. Let M^{(r)}= { (p_{1} , , p_{r})\in M^{r}|p_{j}\neq p_{k} for 1\leq j<k\leq r},
where M^{r} is the r-fold product of M and let rJ^{l}(M, \mathbb{R}^{3}) denote the multi
jet space from M to \mathbb{R}^{3} of multiplicity r and order l . For a map f : M -

\mathbb{R}^{3} , denote by rj^{l}f : M^{(r)}
– rJ^{l}(M, \mathbb{R}^{3}) the multi l-extension of f . Denote

by rJ_{emb}^{l}(M, \mathbb{R}^{3}) the set of all multi jets of i\in Emb(M, \mathbb{R}^{3}) . Note that
rJ_{emb}^{l}(M, \mathbb{R}^{3}) is open in rJ^{l}(M, \mathbb{R}^{3}) . We suppose that l is a positive integer
with l\geqq 3 .

Consider the map r\Phi : rJ_{emb}^{l}(M, \mathbb{R}^{3})arrow rJ_{emb}^{l}(M, \mathbb{R}^{3}) defined by

r\Phi(j^{l}i(p_{1}), . , j^{l}i(p_{r}))=(j^{l}T_{i}(p_{1}), \ldots,j^{l}T_{i}(p_{r})) ,

where T_{i}=(\mu_{i}, \pi\circ i)\in Emb(M, \mathbb{R}^{3}) defined in Section 1. We can easily see
that the map r\Phi is a diffeomorphism. Then by the multi jet transversality
theorem we easily have

Lemma 2.1 Let S be a submanifold of rJ_{emb}^{l}(M, \mathbb{R}^{3}) . If co\dim S >2r ,

O_{S}:=\{i\in Emb(M, \mathbb{R}^{3})|_{r}j^{l}T_{i}(M^{(r)})\cap S=\phi\}

is residual in Emb(M, \mathbb{R}^{3}) .
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According to Dufour [D4], we now define subvarieties of J^{l}(2,3) as
follows.

\Sigma_{a}=Closure\{j^{3}(\mu, g)(0)|g is a fold map at 0 and \mu|s_{g} is degenerate
at 0},

\Sigma_{b}=Closure\{j^{3}(\mu, g)(0)|g is a fold map at 0 and (\mu, g) is a Whitney
umbrella whose line of double points is non-transversal at 0 to
the direction {0} \cross \mathbb{R}^{2} in \mathbb{R}^{3} },

\Sigma_{C}=Closurej^{3}(\mu, g)(0)|g is a cusp at 0 and (\mu, g) is singular at 0},
\Sigma_{d}=Closurej^{3}(\mu, g)(0)|\mu is singular and degenerate at 0},

where \mu : \mathbb{R}^{2}.0arrow \mathbb{R} , 0, g : \mathbb{R}^{2},0 - \mathbb{R}^{2},0 .
By its definition, \Sigma_{d} is a subvariety of codimension 3 in J^{l}(2,3) .

Lemma 2.2 ([D4]) \Sigma_{a} , \Sigma_{b} , \Sigma_{c} are subvarieties of codimension 3 in
J^{l}(2,3) .

2.2. Proof of Theorem A.
In the case of r=1 , as was shown in [D4], by Lemma 2.1 and Lemma 2.2

we have Theorem A.
In the case of r=2. Denote by r\triangle the diagonal set in the r-fold

product of \mathbb{R}^{2} . Then r\triangle is a codimension 2r-2 submanifold of \mathbb{R}^{2}\cross\cdot 1
\cross

\mathbb{R}^{2} (r-times). Let

S_{*}=\mathbb{R}^{2(2)}\cross \mathbb{R}\cross \mathbb{R}\cross 2\triangle\cross\Sigma_{*}\cross J^{l}(2,3) ,

these being algebraic sets in 2J^{l}(\mathbb{R}^{2}, \mathbb{R}^{3})=\mathbb{R}^{2(2)}\cross \mathbb{R}\cross \mathbb{R}\cross(\mathbb{R}^{2}\cross \mathbb{R}^{2})\cross

J^{l}(2,3)\cross J^{l}(2,3) , where *=a, b , c , d and \Sigma_{*} is as above. By Lemma 2.2,
co\dim S_{*}>4 . Hence, by Lemma 2.1 a residual subset O_{0}=O_{S_{a}}\cup O_{S_{b}}\cup

O_{S_{c}}\cup O_{S_{d}} in Emb(M, \mathbb{R}^{3}) has the following property: for any i\in O_{0} , (\mu_{1}, g_{1})

is one of the types (I), . . . , (VI), (\mu_{2}, g_{2}) is of type (I).
We need the following to see relations between type (I), . . . ’ (VI) and

type (I).

Proposition 2.3 There exist residual subsets O_{(\nu,I)} in Emb(M, \mathbb{R}^{3}) such
lhat for any i\in O_{(\nu,I)} , 2Ti is of type (\nu, I) , where lJ =I , . , VI . Here (I, I)

consists of three types (I, I)_{0} , (I, I)_{1} and (I, I)_{2} , and similarly (III, I) consists
of (III, I)^{0} and (III, I )^{1}

Proof. We shall give the proof only the case \nu=III . Define \Sigma f^{old}\subset J^{l}(2,2)

by \Sigma_{fold}= {j^{l}g(0)|g is a fold map at 0}. It is a well-known fact that \Sigma_{fold}
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is a codimension 1 subvariety in J^{l}(2,2) . Let g : M –
\mathbb{R}^{2} and let p_{1},p_{2}\in

M with g(p_{1})=g(p_{2}) . Suppose that p_{1} is a fold point of g . Take local
coordinates (x_{1}, y_{1}) at p_{1} and (u, v) at g(p_{1}) such that g(x_{1}, y_{1})=(x_{1}, y_{1}^{2}) .
Then, to describe the contact of the discriminant set g_{1}(S_{g_{1}}) and the curve
g_{2}(\mu_{2}^{-1}(0)) , we define a function germ K : (\mathbb{R}, 0) – (\mathbb{R}, 0) by K(u)=\mu_{2}0

g_{2}^{-1}(u, 0) .
Define an algebraic set S_{(III,I)} in 2J^{l}(\mathbb{R}^{2}, \mathbb{R}^{3}) by

S_{(III,I)}=\mathbb{R}^{2(2)}\cross \mathbb{R}\cross \mathbb{R}\cross 2\triangle\cross(J^{l}(2,1)\cross\Sigma_{fold})

\cross\{\frac{dK}{du}(0)=\frac{d^{2}K}{du^{2}}(0)=0\}

Since obviously codim S_{(III,I)}=5 , by Lemma 2.1 2Ti is of type (III, I)
for any i in the residual set O_{S_{(III,I)}} . This completes the proof for the case
\nu=III .

By the same argument we can prove the other case. \square

Next we shall prove the genericity of type (III, III). The following lemma
is obtained by a theorem of Whitney and Lemma 2.1.

Lemma 2.4 There exists a residual set O_{1} in Emb(M, \mathbb{R}^{3}) such that for
any i\in O_{1} , the singularity of the topographic multigerm 2Ti is one of the
following types: g_{1} and g_{2} are both fold map germs such that the discrimi-
nant sets of g_{1} , g_{2} are transversal at 0 each other; g_{1} is a cusp map germs
and g_{2} is non-singular.

Proposition 2.5 There exists a residual set O_{(III,III)} in Emb(M, \mathbb{R}^{3}) such
that for any i\in O_{(III,III)} , 2Ti is of type (III, III).

Proof We set \Sigma_{sing}:=\{j^{l}(\mu, g)(0)|\mu|s_{g} is singular at 0 or (\mu, g) is singular
at 0, where g is a fold map at 0}. Note that in the case when g=(x_{1}, x_{2}^{2}) ,
these conditions are written as \frac{\partial\mu}{\partial x_{1}}(0)=0 or \frac{\partial\mu}{\partial x_{2}}(0)=0 . So we can define
an algebraic set S in 2J^{l}(\mathbb{R}^{2}, \mathbb{R}^{3}) by

S=\mathbb{R}^{2(2)}\cross \mathbb{R}\cross \mathbb{R}\cross 2\triangle\cross\Sigma_{sing}\cross(J^{l}(2,1)\cross\Sigma_{fold}) .

Since the codimensions of S is obviously five, from Lemma 2.1 and Lemma
2.4 O_{(III,III)}:=O_{S}\cap O_{1} has the required properties. \square

Proof of Theorem A in the case of r=2 . Set O= \bigcup_{\iota/=I}^{VI}(O_{(\nu,I)}\cap O_{0})\cup

O_{(III,III)} . Then by Proposition 2.3 and 2.5, O has the required properties in
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Theorem A. \square

3. Proof of Theorem B

In the case of r=1 , the normal forms except type (II) have been
obtained in [D4]. For type (II) it is clear by Morse’s lemma.

In the case of r=2 , we shall detect normal forms as follows.

Case of type (III, I)^{0} , (III, I )^{1} By the result of the case r=1 we can
suppose that

\mu_{1}=x_{1}+y_{1} , g_{1}=(x_{1}, y_{1}^{2});(\mu_{2}, g_{2}) is of type (I).

By the coordinate change g_{2}^{-1} in the source space of g_{2} and \mu_{2} , we may
suppose that g_{2}=id_{\mathbb{R}^{2}} .

For the case (III, I)^{0} the generic condition about transversality means
that \frac{\partial\mu_{2}}{\partial x_{2}}(0)\neq 0 . In the target space of \mu_{2} , by the coordinate change
\mu_{2}(x_{2},0)^{-1} which is the inverse function germ of \mu_{2}(x_{2},0) , we have
\mu_{2}(x_{2},0)=x_{2} . Thus we obtain the normal form of (III, I)^{0}

For the case (III, I )^{1} the generic condition means that \frac{\partial\mu_{2}}{\partial x_{2}}(0)=0 ,

\frac{\partial\mu_{2}}{\partial y_{2}}(0)\neq 0 and \frac{\partial^{2}\mu_{2}}{\partial x_{2}^{2}}(0)\neq 0 . Hence \mu_{2}(x, 0)=\pm h(x)^{2} for some diffe0-
morphism germ h on (\mathbb{R}, 0) .

We now need the following obvious lemma.

Lemma 3.1 Let g=(x, y^{2}) : (\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) be a fold map germ and
let H : (\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) , K : (\mathbb{R}^{2},0) – (\mathbb{R}^{2},0) be diffeomorphism germs
defined by

H=(\alpha\circ g, y\beta og) , K=(\alpha, v\beta^{2}) ,

where \alpha , \beta\in \mathcal{E}_{u,v} with \alpha(0)=0 , \frac{\partial\alpha}{\partial u}(0)\neq 0 , \beta(0)\neq 0 . Then g\circ H=K\circ g

holds.

Remark The converse of Lemma 3.1 is little bit weak. That is, the con-
verse is true if K =(\overline{\alpha}, v\overline{\beta}^{2}) , where \overline{\alpha}=\alpha and \overline{\beta}=\pm\beta on {v \geq 0\} .

We can write h(x_{1}+y_{1})=\alpha(x_{1}, y_{1}^{2})+y_{1}\beta(x_{1}, y_{1}^{2}) for some \alpha , \beta\in \mathcal{E}_{u,v} .
Then we can define diffeomorphism germs H , K as in Lemma 3.1. Applying
the following coordinate changes we obtain the normal form of (III, I )^{1} :
h , H. K , K , \pm id_{(\mathbb{R},0)} , respectively in the target of \mu_{1} , in the source of g_{1} ,
in the target of g_{1} , in the source of \mu_{2} , in the target of \mu_{2} .
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Case of type (IV, I) , (V, I) , (VI, I) . By the same argument as the case
(III, I)^{0} , we obtain the normal forms in Theorem B.

Case of type (III, III). We need the following two lemmas. The first lemma
is well-known and the second one is obvious, so their proofs are omitted.

Lemma 3.2 Let (\mathbb{R}^{2},0)arrow g_{1}(\mathbb{R}^{2},0)\underline{g_{2}}(\mathbb{R}^{2},0) be a bi germ such
that g_{1} , g_{2} are both fold map germs and that the discriminant sets of g_{1} , g_{2}

are transversal at 0 each other. Then we can express the bi-germ for some
coordinates as follows:

g_{1}(x_{1}, y_{1})=(x_{1}, y_{1}^{2}) , g_{2}(x_{2}, y_{2})=(x_{2}^{2}, y_{2}) .

Lemma 3.3 Let (\mathbb{R}^{2},0)arrow g_{1}(\mathbb{R}^{2},0)arrow g_{2}(\mathbb{R}^{2},0) be a bi germ such
that g_{1}(x_{1}, y_{1})=(x_{1}, y_{1}^{2}) , g_{2}(x_{2}, y_{2})=(x_{2}^{2}, y_{2}) . Let H_{1} , H_{2} , K : (\mathbb{R}^{2},0) -

(\mathbb{R}^{2},0) be diffeomorphism germs defined by

H_{1}(x_{1}, y_{1})=(x_{1}\alpha^{2}\circ g_{1}, y_{1}\beta og_{1}) ,

H_{2}(x_{2}, y_{2})=(x_{2}\alpha\circ g_{2}, y_{2}\beta^{2}og_{2}) ,
K(u, v)=(u\alpha^{2}, v\beta^{2}) ,

where \alpha , \beta\in \mathcal{E}_{u,v} with \alpha(0)\neq 0 , \beta(0)\neq 0 . Then g_{1}\circ H_{1}=K\circ g_{1} and
g_{2}\circ H_{2}=K\circ g_{2} hold.

Remark The converse of Lemma 3.3 is true if we replace \alpha , \beta in H_{1} , H_{2} ,
K with \alpha_{1} , \beta_{1} in H_{1} , \alpha_{2} , \beta_{2} in H_{2},\overline{\alpha},\overline{\beta} in K, where \alpha_{1}=\alpha_{2} (or resp. -\alpha_{2} )
on \{u\geq 0\}\cap\{v\geq 0\},\overline{\alpha}=\pm\alpha_{1} (resp. \pm\alpha_{1} ) on \{v\geq 0\},\overline{\alpha}=\pm\alpha_{2} (resp.
\mp\alpha_{2}) on \{u\geq 0\} .

We now detect a normal form of type (III, III). Let (\mu_{1}, g_{1} ; \mu_{2}, g_{2}) be
of type (III, III). By Lemma 3.2, we can suppose that g_{1}(x_{1}, y_{1})=(x_{1}, y_{1}^{2}) ,
g_{2}(x_{2}, y_{2})=(x_{2}^{2}, y_{2}) . Applying the Malgrange preparation theorem, \mu_{1} , \mu_{2}

have the following forms:

\mu_{1}=A_{1}og_{1}+y_{1}B_{1}og_{1} , \mu_{2}=A_{2}og_{2}+x_{2}B_{2}\circ g_{2} ,

where A_{k} , B_{k}\in \mathcal{E}_{u,v}(k=1,2) . Note that B_{k}(0)\neq 0(k=1,2) because the
map germ (\mu_{k}, g_{k}) is non-singular. Thus we can define coordinate transfor-
mations H_{1} , H_{2} , K by

H_{1}(x_{1}, y_{1})=(x_{1}B_{2}^{2}\circ g_{1}, y_{1}B_{1}\circ g_{1}) ,
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H_{2}(x_{2}, y_{2})=(x_{2}B_{2}og_{2}, y_{2}B_{1}^{2}og_{2}) ,

K(u, v)=(uB_{2}^{2}, vB_{1}^{2}) .

Taking new coordinates by H_{1} , H_{2} , K , from Lemma 3.3 (\mu_{1}, g_{1} ; \mu_{2}, g_{2}) is
equivalent to (\mu_{1’}, g_{1} ; \mu_{2’}, g_{2}) which is given by

\mu_{1’}(x_{1’}, y_{1’})=\alpha_{1}\circ g_{1}(x_{1’}, y_{1’})+y_{1’} ,
(**)

\mu_{2’}(x_{2’}, y_{2’})=\alpha_{2}\circ g_{2}(x_{2’}, y_{2’})+x_{2’} ,

where \alpha_{k}=A_{k}\circ K^{-1}\in \mathcal{M}_{u,v}(k=1,2) .
Since \mu_{1’}|s_{g_{1}} is non-singular, we have \frac{\partial\alpha_{1}}{\partial u}(0)\neq 0 . Similarly \frac{\partial}{\partial}\alpha Zv(0)\neq 0 .

Conversely, for any \alpha_{1} , \alpha_{2}\in \mathcal{M}_{u,v} with \frac{\partial\alpha_{1}}{\partial u}(0)\neq 0 , \underline{\partial}\alpha\partial vA(0)\neq 0 , a germ
whose form is given by (**) is of type (III, III). Therefore we obtain the
normal form of type (III, III).

Case of (I, I)_{0} , (I, I)_{1} , (I, I)_{2} , (II, I) . The normal forms of these case have
been detected essentially in [Dl, 2, 3], however we shall give a process
of detecting the normal forms which is more easy method by using the
versal deformation theory (cf. [AGV]). Let (\mu_{1}, g_{1} ; \mu_{2}, g_{2}) be a topographic
multigerm. Since g_{k}(k=1,2) is a diffeomorphism, we can suppose that
g_{k}=id_{\mathbb{R}^{2}}(k=1,2) . We only consider the coordinate transformations
preserving both g_{k}=id . Hence it is sufficient to detect normal forms of the
following divergent diagrams up to coordinate transformations:

(\mathbb{R}, 0)arrow F(\mathbb{R}^{2},0)arrow G(\mathbb{R}, 0) .

For type (I, I)_{0} it is clear. For types (I, I)_{1} (resp. (I , I ) , (II, I) ) by using
R-versal (resp. R^{+} -versal) deformation theory (cf. [AGV]) we shall obtain
the normal forms. Here we describe only (I, I)_{2} using Theorem of bi-stability
of cusps ([D1]).

In the case (I, I)_{2} : We may suppose that G(x, y)=y . The generic
condition on this type means that

\frac{\partial F}{\partial x}(0)=\frac{\partial^{2}F}{\partial x^{2}}(0)=0 , \frac{\partial^{3}F}{\partial x^{3}}(0)\neq 0 , \frac{\partial^{2}F}{\partial x\partial y}(0)\neq 0 ; \frac{\partial F}{\partial y}(0)\neq 0 .

Hence F(x, 0) has A_{2}-singularity. So that let \psi : (\mathbb{R}, 0) - (\mathbb{R}, 0) be the dif-
feomorphism germ such that F(\psi(x), 0)=\pm x^{3} . Then trivially the diagram
(F, y) is equivalent to (F’, y)’ , where F’(x’, y’)=\pm F(\psi(x’), y’) . Due to the
condition \frac{\partial^{2}F}{\partial x\partial y}(0)\neq 0 , we can easily verify that F’ is an R^{+} -infinitesimally
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versal (hence R^{+} -versal) deformation of x^{\prime 3} On the other hand, x^{3}+xy is
also an R^{+} -versal deformation of x^{3} . Therefore by the uniqueness of versal
deformation, the diagram (F’, y)’ is equivalent to

(x^{3}+xy+\alpha(y), y)

for some \alpha\in \mathcal{M}_{y} . For our case \alpha must be non-singular and we may suppose
that \frac{d\alpha}{dy}(0)=1 . Here we need the following crucial result by Dufour [D1].

Lemma 3.4 For any \alpha\in \mathcal{M}_{y} , the diagram (x^{3}+xy+y+y^{2}\alpha(y), y) is
equivalent to (x^{3}+xy+y, y) .

That is, we obtain the normal form of (I, I)_{2} .
This completes the proof of Theorem B in the case of r=2 . \square
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