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A study on the dimension of global sections of adjoint bundles
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Abstract. Let X be a smooth complex projective variety of dimension n and let

L be an ample line bundle on X. In our previous paper, in order to investigate the

dimension of H0(KX + tL) more systematically, we introduced the invariant Ai(X, L)

for every integer i with 0 ≤ i ≤ n. Main purposes of this paper are (1) to study a

lower bound of Ai(X, L) for the following two cases: (1.a) the case where L is merely

ample and i ≤ 3, (1.b) the case of h0(L) > 0, and (2) to evaluate a lower bound for

the dimension of H0(KX + tL) by using Ai(X, L).

Key words: Polarized manifold, adjoint bundles, the i-th sectional H-arithmetic genus,

the i-th sectional geometric genus.

1. Introduction

Let X be a projective variety of dimension n defined over the field of
complex numbers, and let L be an ample line bundle on X. Then (X, L)
is called a polarized variety. If X is smooth, then we say that (X, L) is a
polarized manifold.

This paper is the continuation of [20]. In this paper, we consider the di-
mension of H0(KX +tL). In [3, Conjecture 7.2.7], Beltrametti and Sommese
proposed the following conjecture.

Conjecture 1.1 Let (X, L) be a polarized manifold of dimension n. As-
sume that KX + (n− 1)L is nef. Then h0(KX + (n− 1)L) > 0.

At present, there are some answers for Conjecture 1.1. For example, it
is known that this conjecture is true if dim Bs|L| ≤ 0 ([3, Corollary 7.2.8],
[12, Theorem 3.5]), dimX ≤ 3 ([3, Theorem 7.2.6], [18, Theorem 2.4], [6])
or h0(L) > 0 ([21, 1.2 Theorem]). (Here we note that in [21, 1.2 Theorem]
Höring proved the following: If X is a normal projective variety of dimension
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n ≥ 2 with at most rational singularities and L is a nef and big line bundle
on X such that KX +(n−1)L is generically nef, then there exists an integer
j with 1 ≤ j ≤ n−1 such that h0(KX +jL) > 0.) But it is unknown whether
this conjecture is true or not in general. (Here we note that Conjecture 1.1
does not follow from [21, 1.2 Theorem] in general.) The following conjecture
is a generalization of Conjecture 1.1.

Conjecture 1.2 (Ionescu [26, Open problems, p. 321], Ambro [1], Kawa-
mata [23]) Let (X, L) be a polarized manifold of dimension n. Assume
that KX + L is nef. Then h0(KX + L) > 0.

At present, there are some partial answers for this conjecture (for ex-
ample, [19, Theorem 3.2], [5, Théorème 1.8]). Recently Höring [21, 1.5
Theorem] gave a proof of Conjecture 1.2 for the case of n = 3. (More gener-
ally, in [21, 1.5 Theorem], Höring proved that h0(KX +L) > 0 holds if X is a
normal projective threefold with at most Q-factorial canonical singularities
and L is a nef and big line bundle on X such that KX + L is nef.) But we
don’t know whether this conjecture is true or not for the case of n ≥ 4.

These conjectures motivated the author to begin investigating h0(KX +
tL) for a positive integer t. Our aim is not only to know the positivity of
h0(KX + tL) but also to evaluate a lower bound for h0(KX + tL). In [20], in
order to investigate h0(KX + tL) systematically, we introduced an invariant
Ai(X, L) for every integer i with 0 ≤ i ≤ n, which is called the i-th Hilbert
coefficient of (X, L) (see Definition 2.2 below). From the following theorem
which shows a relationship between h0(KX + tL) and Ai(X, L), we see that
it is important to study the value of Ai(X, L) in order to know the value of
h0(KX + tL).

Theorem 1.1 ([20, Corollary 3.1]) Let (X, L) be a polarized manifold of
dimension n, and let t be a positive integer. Then we have h0(KX + tL) =∑n

j=0

(
t−1
n−j

)
Aj(X, L).

In [20] we studied the invariant Ai(X, L) in the case where L is ample
and spanned by global sections. In particular we proved that Ai(X, L) ≥ 0
for every integer i with 0 ≤ i ≤ n. And we obtained a lower bound of
h0(KX + tL) by using some properties of Ai(X, L) (see [20]).

Main purposes of this paper are (i) to investigate Ai(X, L) for the fol-
lowing two cases: (i.1) the case where L is merely ample, (i.2) the case of
h0(L) > 0, and (ii) to evaluate a lower bound for h0(KX + tL) by using
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some properties of Ai(X, L).
In [20, Conjecture 5.1] we proposed the following conjecture.

Conjecture 1.3 Let (X, L) be a polarized manifold of dimension n. Then
Ai(X, L) ≥ 0 holds for every integer i with 0 ≤ i ≤ n.

In this paper, first, in Section 3, we will study a lower bound of Ai(X, L)
for the case where L is merely ample and i ≤ 3 (see Theorem 3.1.1) and the
case where h0(L) > 0 (see Theorem 3.2.2). In particular we get a partial
answer of this conjecture. As an application of the study of Ai(X, L), we will
investigate h0(KX + tL). First we will consider the case where h0(L) > 0.
Then we can prove that h0(KX + (n− 2)L) > 0 if κ(X) ≥ 0 and h0(L) > 0
(see Theorem 4.1.1). Furthermore we will give a lower bound of h0(KX +tL)
for (X, L) with dimX = 3 and h0(L) ≥ 2 by using Theorem 1.1 above (see
Theorem 4.1.2). Next we will investigate the case where dimBs|L| = 0 or
1, and we will provide a lower bound of h0(KX + tL) (see Theorems 4.2.1
and 4.2.2). Finally we will give a partial answer to a question of Tsuji for
dimX ≤ 4 (see Theorem 4.3.1).

In this paper, varieties are always assumed to be defined over the field of
complex numbers. We use the standard notation from algebraic geometry.

κ(D): the Iitaka dimension of a Cartier divisor D on X.
κ(X): the Kodaira dimension of X.
Pn: the projective space of dimension n.

OPn(1): the invertible sheaf defined by a hyperplane of Pn.
Qn: a quadric hypersurface in Pn+1.

OQn(1): the restiction of OPn+1(1) to a quadric hypersurface Qn in Pn+1.
PX(E): the projective space bundle associated with a vector bundle E on

X.
H(E): the tautological line bundle on PX(E).

For a real number m and a non-negative integer n, let

[m]n :=

{
m(m + 1) · · · (m + n− 1) if n ≥ 1,

1 if n = 0,

[m]n :=

{
m(m− 1) · · · (m− n + 1) if n ≥ 1,

1 if n = 0.



254 Y. Fukuma

Then for n fixed, [m]n and [m]n are polynomials in m whose degree are n.
For any non-negative integer n, we set

n! :=

{
[n]n if n ≥ 1,

1 if n = 0.

Assume that m and n are integers with n ≥ 0. Then we put
(
m
n

)
:= [m]n

n! .
We note that

(
m
n

)
= 0 if 0 ≤ m < n, and

(
m
0

)
= 1.

2. Preliminaries

Notation 2.1 Let X be a projective variety of dimension n and let L be
a line bundle on X. Then χ(tL) is a polynomial in t of degree at most n,
and we can write χ(tL) as χ(tL) =

∑n
j=0 χj(X, L)

(
t
j

)
.

Definition 2.1 ([14, Definition 2.1], [17, Definition 2.1]) Let X be a pro-
jective variety of dimension n and let L be a line bundle on X. For every
integer i with 0 ≤ i ≤ n, the ith sectional geometric genus gi(X, L) and
the ith sectional H-arithmetic genus χH

i (X, L) of (X, L) are defined by the
following.

gi(X, L) = (−1)i(χn−i(X, L)− χ(OX)) +
n−i∑

j=0

(−1)n−i−jhn−j(OX),

χH
i (X, L) = χn−i(X, L).

Remark 2.1

(1) Since χn−i(X, L) ∈ Z, we see that χH
i (X, L) and gi(X, L) are integer.

(2) If i = n, then gn(X, L) = hn(OX) and χH
n (X, L) = χ(OX).

(3) If i = 0, then g0(X, L) = Ln and χH
0 (X, L) = Ln.

(4) If i = 1, then g1(X, L) = g(L), where g(L) is the sectional genus of
(X, L). If X is smooth, then the sectional genus g(L) is written as
g(L) = 1 + 1

2 (KX + (n− 1)L)Ln−1.

Definition 2.2 ([20, Definition 3.1 and Definition 3.2]) Let (X, L) be a
polarized manifold of dimension n.

(1) Let t be a positive integer. Then set
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F0(t) := h0(KX + tL)

Fi(t) := Fi−1(t + 1)− Fi−1(t) for every integer i with 1 ≤ i ≤ n.

(2) For every integer i with 0 ≤ i ≤ n, the ith Hilbert coefficient Ai(X, L)
of (X, L) is defined by Ai(X, L) = Fn−i(1)

Remark 2.2

(1) If 1 ≤ i ≤ n, then Ai(X, L) can be written as follows (see [20, Proposi-
tion 3.2]).

Ai(X, L) = (−1)iχH
i (X, L) + (−1)i−1χH

i−1(X, L)

= gi(X, L) + gi−1(X, L)− hi−1(OX).

(2) By Definition 2.2 and [20, Proposition 3.1 (2)], we have the following:
(2.1) Ai(X, L) ∈ Z for every integer i with 0 ≤ i ≤ n.
(2.2) A0(X, L) = Ln.
(2.3) An(X, L) = h0(KX + L).

Theorem 2.1 Let (X, L) be a polarized manifold of dimension n and let
t be a positive integer. Then for every integer i with 0 ≤ i ≤ n we have

Fn−i(t) =
i∑

j=0

(
t− 1
i− j

)
Aj(X, L).

Proof. See [20, Theorem 3.1]. Here we note that if i = n, then this result
is Theorem 1.1 in Introduction. ¤

Definition 2.3 (1) Let X (resp. Y ) be an n-dimensional projective man-
ifold, and L (resp. H) an ample line bundle on X (resp. Y ). Then (X, L)
is called a simple blowing up of (Y, H) if there exists a birational morphism
π : X → Y such that π is a blowing up at a point of Y and L = π∗(H)−E,
where E is the π-exceptional effective reduced divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and L

(resp. A) an ample line bundle on X (resp. M). Then we say that (M, A) is
a reduction of (X, L) if there exists a birational morphism µ : X → M such
that µ is a composition of simple blowing ups and (M, A) is not obtained
by a simple blowing up of any other polarized manifolds.
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Remark 2.3 Let (X, L) be a polarized manifold and let (M, A) be a
reduction of (X, L). Let µ : X → M be the reduction map, and let γ be the
number of simple blowing ups of its reduction. Then by [14, Proposition
2.6] and [17, Remark 2.1 (5)]

gi(X, L) =

{
gi(M, A) if 1 ≤ i ≤ n,

An − γ if i = 0,

χH
i (X, L) =

{
χH

i (M, A) if 1 ≤ i ≤ n,

An − γ if i = 0.

Hence

Ai(X, L) =

{
Ai(M, A) if 2 ≤ i ≤ n,

Ai(M, A)− γ if i = 0, 1.

Definition 2.4 Let (X, L) be a polarized manifold of dimension n. We
say that (X, L) is a scroll (resp. quadric fibration) over a normal projective
variety Y with dimY = m ≥ 1 if there exists a surjective morphism with
connected fibers f : X → Y such that n > m and KX +(n−m+1)L = f∗A
(resp. KX + (n−m)L = f∗A) for some ample line bundle A on Y .

Definition 2.5 Let (X, L) be a polarized manifold of dimension n ≥ 2
and let Y be a normal projective variety of dimension m ≥ 1. Then (X, L)
is called a classical scroll over Y with dimY = m ≥ 1 if n > m and X is a
Pn−m-bundle over Y and LF = OPn−m(1) for every fiber F .

Remark 2.4 We note that if m = 1, then (X, L) is a classical scroll over
Y if and only if (X, L) is either a scroll over Y in the sense of Definition
2.4 or (P1 × P1, p∗1OP1(1) ⊗ p∗2OP1(1)), where pi : P1 × P1 → P1 is the ith
projection for i = 1, 2. (If (X, L) is (P1 × P1, p∗1OP1(1) ⊗ p∗2OP1(1)), then
(X, L) ∼= (Q2,OQ2(1)).)

We also note that if m = 2 and (X, L) is a scroll over Y , then Y is
smooth and (X, L) is a classical scroll over Y (see [4, (3.2.1) Theorem] and
[8, (11.8.6)]).

Definition 2.6 A polarized manifold (X, L) is called a hyperquadric fi-
bration over a smooth curve C if (X, L) is a quadric fibration over C such
that every fiber is irreducible and reduced.
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Remark 2.5 Assume that (X, L) is a quadric fibration over a smooth
curve C with dimX = n ≥ 3. Let f : X → C be its morphism. By [4,
(3.2.6) Theorem] and the proof of [22, Lemma (c) in Section 1], we see that
(X, L) is one of the following:

(a) f is the contraction morphism of an extremal ray, and every fiber of f

is irreducible and reduced. Namely (X, L) is a hyperquadric fibration
over C in this case.

(b) X is a P1-bundle over a smooth surface and L|F = OP1(1) for every
fiber F .

So if (X, L) is not a hyperquadric fibration but a quadric fibration over C,
then we may assume that there exists an ample vector bundle F of rank
2 on a smooth projective surface S such that (X, L) ∼= (PS(F),H(F)). In
particular dimX = 3 in this case.

Theorem 2.2 Let (X, L) be a polarized manifold with n = dim X ≥ 3.
Then (X, L) is one of the following types.

(1) (Pn,OPn(1)).
(2) (Qn,OQn(1)).
(3) A scroll over a smooth curve.
(4) KX ∼ −(n− 1)L, that is, (X, L) is a Del Pezzo manifold.
(5) A hyperquadric fibration over a smooth curve.
(6) A classical scroll over a smooth projective surface S. Namely (X, L) ∼=

(PS(E),H(E)), where E is an ample vector bundle of rank n− 1 on S.
(7) Let (M, A) be a reduction of (X, L).

(7.1) n = 4, (M, A) = (P4,OP4(2)).
(7.2) n = 3, (M, A) = (Q3,OQ3(2)).
(7.3) n = 3, (M, A) = (P3,OP3(3)).
(7.4) n = 3, M is a P2-bundle over a smooth curve C and (F, A|F ) ∼=

(P2,OP2(2)) for any fiber F of it.
(7.5) KM + (n− 2)A is nef.

Proof. See [3, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2 and Theo-
rem 7.3.4]. See also [8, (11.2) Theorem, (11.7) Theorem and (11.8) Theorem]
and [22, Theorem in Section 1]. ¤

Remark 2.6 Let (X, L) be a polarized manifold with dimX = n ≥ 3.
Then κ(KX +(n− 2)L) = −∞ if and only if (X, L) is one of the types from
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(1) to (7.4) in Theorem 2.2.

Proposition 2.1 Let (X, L) be a polarized surface. Assume that h0(L) ≥
2 and g1(X, L) = h1(OX). Then (X, L) is one of the following :

(1) (P2,OP2(1)).
(2) (P2,OP2(2)).
(3) A classical scroll over a smooth curve.

Proof. By [9, Lemma 1.2], we have g1(X, L) − h1(OX) = h0(KX + L) −
h0(KX). If h0(KX) > 0, then by [24, 15.6.2 Lemma] or [14, Lemma 1.12] we
have h0(KX + L)− h0(KX) ≥ h0(L)− 1 ≥ 1 and this is impossible because
g1(X, L) = h1(OX). Therefore h2(OX) = h0(KX) = 0. If κ(X) ≥ 0, then
χ(OX) ≥ 0. So we get h1(OX) ≤ 1 and g1(X, L) = h1(OX) ≤ 1. But in this
case KXL < 0 and this is impossible because κ(X) ≥ 0 and L is ample. So
we have κ(X) = −∞. By [9, Theorem 3.1], we get the assertion. ¤

3. A lower bound of Ai(X, L)

3.1. The case where L is merely ample and i ≤ 3
In this subsection we consider Conjecture 1.3 for the case where L is

merely ample and i ≤ 3.

Theorem 3.1.1 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Let (M, A) be a reduction of (X, L). Then the following hold :

(1) A1(X, L) ≥ 0 holds.
(1.1) A1(X, L) = 0 if and only if (X, L) ∼= (Pn,OPn(1)).
(1.2) A1(X, L) = 1 if and only if (X, L) is one of the following three

types:
(1.2.1) (Qn,OQn(1)).
(1.2.2) A scroll over a smooth elliptic curve with Ln = 1.
(1.2.3) A Del Pezzo manifold with Ln = 1.

(2) Assume that n = 2 or 3. Then the following hold :
(2.1) A2(X, L) ≥ 0 holds.
(2.2) Assume that n = 2. Then A2(X, L) = 0 if and only if (X, L) is

one of the following :
(2.2.1) (P2,OP2(1)).
(2.2.2) (P2,OP2(2)).
(2.2.3) A classical scroll over a smooth curve.
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(2.3) Assume that n = 2. Then A2(X, L) = 1 if and only if (X, L) is
one of the following :
(2.3.1) κ(X) = 0, 1, χ(OX) = 0 and g1(X, L) = 2.
(2.3.2) κ(X) = −∞ and g1(X, L) = h1(OX) + 1.

(2.4) Assume that n = 3. Then A2(X, L) = 0 if and only if (X, L) is
one of the following :
(2.4.1) (P3,OP3(1)).
(2.4.2) (Q3,OQ3(1)).
(2.4.3) A scroll over a smooth curve.

(2.5) Assume that n = 3. Then A2(X, L) = 1 if and only if (X, L) is
one of the types in [18, Theorem 2.4].

(2.6) Assume that n = 3 and h0(L) ≥ 2. Then

A2(X, L) ≥
{

h2(OX) if κ(X) = −∞,

h1(OX) if κ(X) ≥ 0.

(3) If n ≥ 3 and κ(X) ≥ 0, then

A2(X, L) ≥ g1(X, L)− 1 +
(n− 2)(n2 − n− 1)

12n
An

+
(n− 2)(n + 1)

12n
KMAn−1.

In particular A2(X, L) ≥ 2. Furthermore, if n ≥ 4 and κ(X) ≥ 0, then
A2(X, L) ≥ 3.

(4) If n ≥ 3 and κ(X) ≥ 0, then

A3(X, L) ≥ (n− 1)(n− 2)(2n− 1)
24n

An +
2n− 3

24
KMAn−1 > 0.

Proof. (1) First we note that A1(X, L) = g1(X, L) + Ln − 1 by Remark
2.2 (1). Since g1(X, L) ≥ 0 and Ln ≥ 1, we have A1(X, L) ≥ 0. Assume
that A1(X, L) = 0. Then we see that g1(X, L) = 0 and Ln = 1. By [8,
(5.10) Theorem and (12.1) Theorem], [22, Corollary 8] or [3, Proposition
3.1.2 and Theorem 3.1.3], we see that (X, L) ∼= (Pn,OPn(1)). Conversely if
(X, L) ∼= (Pn,OPn(1)), then we can easily check that A1(X, L) = 0.

Assume that A1(X, L) = 1. Then (g1(X, L), Ln) = (0, 2) or (1, 1) be-
cause Ln ≥ 1 and g1(X, L) ≥ 0. If (g1(X, L), Ln) = (0, 2) (resp. (1, 1)),
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then (X, L) is the type (1.2.1) (resp. either (1.2.2) or (1.2.3)) by the classifi-
cation of (X, L) with g1(X, L) = 0 (resp. 1) (see [8, (5.10) Theorem, (12.1)
Theorem and (12.3) Theorem]).

If (X, L) is one of the types (1.2.1), (1.2.2) and (1.2.3), then we see
A1(X, L) = 1.

(2.1) We are going to investigate the non-negativity of Ai(X, L). First we
consider the case where n = 2. Since A2(X, L) = h0(KX + L) by Remark
2.2 (2.3), we have A2(X, L) ≥ 0.

Next we consider the case where n = 3. We note that A2(X, L) =
χH

2 (X, L)− χH
1 (X, L) = g2(X, L) + g1(X, L)− h1(OX) by Remark 2.2 (1).

(A) If κ(KX + L) ≥ 0, then by [17, Remark 2.1 (3), Theorem 3.2.1 and
Theorem 3.3.1 (2)] we have χH

2 (X, L) > 0, that is, g2(X, L) ≥ h1(OX).
Therefore A2(X, L) ≥ g1(X, L). Since κ(KX + L) ≥ 0, we have
g1(X, L) ≥ 1 + (1/2)L3. Therefore A2(X, L) ≥ 2 because A2(X, L)
is an integer.

(B) Assume that κ(KX + L) = −∞. If h1(OX) = 0, then A2(X, L) ≥ 0
because g2(X, L) ≥ 0 by [16, Corollary 2.4] and g1(X, L) ≥ 0. So
we may assume that h1(OX) > 0. Furthermore we may assume that
(X, L) is a reduction of iteself by Remark 2.3. Then by Theorem 2.2
and Remark 2.6 (X, L) is one of the following types:
(B.1) A scroll over a smooth curve C.
(B.2) A hyperquadric fibration over a smooth curve C.
(B.3) (PS(E),H(E)), where S is a smooth projective surface and E is

an ample vector bundle of rank 2 on S.
(B.4) X is a P2-bundle over a smooth curve C and L|F ∼= OP2(2) for

any fiber F .
(B.I) If (X, L) is the type (B.1), (B.2) or (B.4), then g(C) = h1(OX).

On the other hand, g1(X, L) ≥ g(C) by [10, Theorem 1.2.1].
Therefore A2(X, L) ≥ 0 because g2(X, L) ≥ 0 by [16, Corollary
2.4].

(B.II) Assume that (X, L) is the type (B.3). Let f : X → S be its
projection. Then g2(X, L) = h2(OX) = h2(OS) by [14, Example
2.10 (8)].

(B.II.1) If κ(S) ≥ 0, then χ(OS) ≥ 0. We note that
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A2(X, L) = g2(X, L) + g1(X, L)− h1(OX)

= h2(OS) + g1(X, L)− h1(OS)

= g1(X, L)− 1 + χ(OS).

On the other hand, g1(X, L) ≥ 2 in this case because
g1(X, L) = g1(S, c1(E)) and κ(S) ≥ 0. So we get A2(X, L) ≥ 1.

(B.II.2) If κ(S) = −∞, then there exists the Albanese map α : S → B

such that h1(OS) = h1(OB), where B is a smooth curve. Then
α ◦ f : X → S → B is a fiber space. Therefore g1(X, L) ≥
h1(OB) by [10, Theorem 1.2.1] and A2(X, L) ≥ g1(X, L) −
h1(OX) = g1(X, L)−h1(OB) ≥ 0 because g2(X, L) ≥ 0 by [16,
Corollary 2.4]. Hence we get the assertion of (2.1).

(2.2) Next we consider the assertion of (2.2). Assume that n = 2 and
A2(X, L) = 0. Then h0(KX + L) = 0 by Remark 2.2 (2.3). Hence by
[25, 3.5 Proposition], (X, L) is either (P2,OP2(1)), (P2,OP2(2)) or a classical
scroll over a smooth curve. Conversely if (X, L) is one of these types, then
we can easily check A2(X, L) = 0.

(2.3) Assume that n = 2 and A2(X, L) = 1. Then A2(X, L) = g1(X, L) +
h2(OX)− h1(OX) = g1(X, L) + χ(OX)− 1 by Remark 2.1 (2) and Remark
2.2 (1).

(2.3.a) If κ(X) ≥ 0, then χ(OX) ≥ 0 and g1(X, L) ≥ 2. Hence A2(X, L) ≥
1. Therefore if A2(X, L) = 1, then χ(OX) = 0 and g1(X, L) = 2.
Since χ(OX) = 0, we have κ(X) = 0 or 1, and we get the type
(2.3.1).

(2.3.b) If κ(X) = −∞, then h2(OX) = 0 and A2(X, L) = g1(X, L) −
h1(OX). Hence we get the type (2.3.2).

Next we consider the case of (2.4) and (2.5). Assume that n = 3 and
A2(X, L) ≤ 1. If κ(KX + L) ≥ 0, then g2(X, L) ≥ h1(OX) by [17, Remark
2.1 (3), Theorem 3.2.1 and Theorem 3.3.1 (2)]. Hence g1(X, L) ≤ 1 because
A2(X, L) = g1(X, L)+ g2(X, L)−h1(OX). But then κ(KX +L) = −∞ and
this is a contradiction. Therefore we get κ(KX + L) = −∞. In particular
h0(KX + L) = 0. Hence A3(X, L) = 0 and A2(X, L) = h0(KX + 2L) by
Theorem 1.1 and Remark 2.2 (2.3).

(2.4) Assume that A2(X, L) = 0. Then h0(KX + 2L) = 0 and by [18,
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Theorem 2.4] KX + 2L is not nef. Hence (X, L) is one of the types in
(2.4) above. If (X, L) is one of the types in (2.4) above, then we see that
A2(X, L) = 0.

(2.5) Assume that A2(X, L) = 1. Then h0(KX + 2L) = 1. Here we note
that if KX + 2L is not nef, then (X, L) is either (1), (2) or (3) in Theorem
2.2 and h0(KX + 2L) = 0. Hence KX + 2L is nef in this case. Therefore
by [18, Theorem 2.4] we see that (X, L) is one of the types in [18, Theorem
2.4]. Conversely if (X, L) is one of the types in [18, Theorem 2.4], we can
easily see that A2(X, L) = 1.

(2.6) By the assumption that n = 3 and h0(L) ≥ 2 and by [13, Theorem 2.1],
we have g1(X, L) ≥ h1(OX). If κ(X) = −∞ (resp. ≥ 0), then g2(X, L) ≥
h2(OX) (resp. ≥ h1(OX)) by [16, Corollary 2.4]. Hence we get the assertion
of (2.6).

(3) By the proof of [16, Theorem 2.3.2], we have

g2(X, L) ≥ −1 + h1(OX) +
(n− 2)(n2 − n− 1)

12n
An

+
(n− 2)(n + 1)

12n
KMAn−1,

where (M, A) is a reduction of (X, L). Since A2(X, L) = g2(X, L) +
g1(X, L) − h1(OX) by Remark 2.2 (1), we get the first assertion of (3).
Here we note that g1(X, L) ≥ 2 since κ(X) ≥ 0 and n ≥ 3. So we have
A2(X, L) ≥ 2.

Assume that n ≥ 4. Since κ(X) ≥ 0, we have KXLn−1 ≥ 0. Hence
g1(X, L) ≥ 3 because n ≥ 4 and g1(X, L) is an integer. Therefore we get
the assertion of (3).

(4) By [19, Theorem 3.1], the assertion of (4) holds. ¤

Remark 3.1.1 By [2, Theorem 1.5 and Theorem 2.7] (resp. [11, Theorem
A.1 in Appendix]), we get a classification of (X, L) with the type (2.3.1)
(resp. (2.3.2)) in Theorem 3.1.1.

3.2. The case of h0(L) > 0
Notation 3.2.1 Let (X, L) be a polarized manifold of dimension n. Then
we put b(L) := dim Bs|L|. If Bs|L| = ∅, then we put b(L) = −1.
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Proposition 3.2.1 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that b(L) ≤ n− 2. If i ≥ b(L) + 1, then gi(X, L) ≥ hi(OX).

Proof. If i = n, then by Remark 2.1 (2) this is true. For b(L)+1 ≤ i ≤ n−1,
see [15, Corollary 2.8]. ¤

Proposition 3.2.2 Let (X, L) be a polarized manifold of dimension n ≥ 2.

(1) If b(L) ≤ n− 2 and i ≥ b(L) + 2, then Ai(X, L) ≥ hi(OX) ≥ 0.
(2) Assume that b(L) ≤ 1. Then Ai(X, L) ≥ hi(OX) ≥ 0 for every integer

i with 0 ≤ i ≤ n.

Proof. (1) By Proposition 3.2.1 and Remark 2.2 (1) we get the first asser-
tion.
(2) If n = 2, then g2(X, L) = h2(OX) by Remark 2.1 (2). If n ≥ 3,
then by Proposition 3.2.1, we have gi(X, L) ≥ hi(OX) for every integer
i with 2 ≤ i ≤ n. Of course, we have g0(X, L) ≥ 1 = h0(OX) because
g0(X, L) = Ln. Next we will show that g1(X, L) ≥ h1(OX).

If b(L) < 0 (resp. b(L) = 0), then by [3, Theorem 7.2.10] (resp. [12,
Theorem 3.2]) we have g1(X, L) ≥ h1(OX). So we may assume that b(L) =
1.

Claim 3.2.1 If b(L) = 1, then g1(X, L) ≥ h1(OX) holds.

Proof. If n = 2, then this is true by [9, Lemma 1.2] because h0(L) > 0.
So we may assume that n ≥ 3. By [15, Proposition 1.12 (2)] there ex-
ists an (n − 3)-ladder X ⊃ X1 ⊃ · · · ⊃ Xn−3 such that Xj is a normal
Gorenstein variety of dimension n − j and Xj ∈ |Lj−1| for every j.
Here we set Lj := L|Xj for every integer j with 1 ≤ j ≤ n − 3 and
L0 := L. Then Ln−3 is ample on Xn−3 such that dim Bs|Ln−3| ≤ 1.
Let µ : X̃n−3 → Xn−3 be a resolution of singularities of Xn−3. Then
µ∗Ln−3 is nef and big on X̃n−3 and h0(µ∗(Ln−3)) = h0(Ln−3). On the
other hand since b(Ln−3) ≤ 1, we have h0(Ln−3) ≥ 2. Hence by [13,
Theorem 2.1] we have g1(X̃n−3, µ

∗(Ln−3)) ≥ h1(O eXn−3
). Moreover we see

that g1(X, L) = g1(Xn−3, Ln−3) = g1(X̃n−3, µ
∗(Ln−3)) and h1(O eXn−3

) ≥
h1(OXn−3) = h1(OX). Therefore we get g1(X, L) ≥ h1(OX). ¤

Therefore by Remark 2.2 (1) we can show that Ai(X, L) ≥ hi(OX) ≥ 0
for every integer i with 0 ≤ i ≤ n. ¤
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Here we consider [20, Conjecture 5.1 (2)]. By Propositions 3.2.1 and
3.2.2 (1) and [20, Remark 5.1 (1), (2), (3) and (4)] we get the following.

Theorem 3.2.1 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that b(L) ≤ n−2. If i is an integer with i ≥ b(L)+1, then Conjecture
5.1 (2) in [20] is true.

Proposition 3.2.3 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that b(L) ≤ n−2. If b(L)+1 ≤ i ≤ n−1 and h0(L) ≥ n+si +1− i,
then gi+1(X, L) = 0. (Here we set si := gi(X, L)− hi(OX).)

Proof. By [15, Proposition 1.12 (2)], there exists an (n− b(L)− 2)-ladder
X ⊃ X1 ⊃ · · · ⊃ Xn−b(L)−2 such that Xj is a normal and Gorenstein
variety of dimension n− j and h0(Ln−b(L)−2) > 0. Here we set Lj := L|Xj

for every integer j with 1 ≤ j ≤ n− b(L)− 2. By [15, Propositions 2.1 and
2.3], we have si = gi(X, L) − hi(OX) = gi(Xn−i−1, Ln−i−1) − hi(OXn−i−1)
for b(L) + 1 ≤ i ≤ n − 1. From [15, Claim 2.1.1 and Theorem 1.3 (1)]
and the Serre duality we also see that gi(Xn−i−1, Ln−i−1)− hi(OXn−i−1) =
h0(KXn−i−1 + Ln−i−1)− h0(KXn−i−1).

Assume that h0(KXn−i−1) > 0. Then

h0
(
KXn−i−1 + Ln−i−1

)− h0
(
KXn−i−1

) ≥ h0(Ln−i−1)− 1

by [24, 15.6.2 Lemma] or [14, Lemma 1.12]. On the other hand, by assump-
tion, we see that h0(Ln−i−1) ≥ h0(Ln−i−2)−1 ≥ · · · ≥ h0(L)− (n− i−1) ≥
si + 2. Hence gi(X, L) − hi(OX) ≥ si + 1. But this is impossible be-
cause of the definition of si. Therefore we get h0(KXn−i−1) = 0. Since
gi+1(X, L) = hi+1(OXn−i−1) = h0(KXn−i−1) by [15, Remark 1.2.1 (2) and
Propositions 2.1 and 2.3] and the Serre duality, we get the assertion. ¤

Corollary 3.2.1 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that b(L) ≤ n− 2. If b(L)+ 1 ≤ i ≤ n− 1 and gi(X, L)−hi(OX) ≤
i− 1− b(L), then gi+1(X, L) = 0. In particular if b(L) + 1 ≤ i ≤ n− 1 and
gi(X, L) = 0, then gi+1(X, L) = 0.

Proof. We note that h0(L) ≥ n − b(L) in this case (see e.g. [7, (1.7)
Lemma]). If gi(X, L)−hi(OX) ≤ i−1− b(L), then n− b(L) ≥ n+si +1− i,
where si := gi(X, L) − hi(OX). Hence we have h0(L) ≥ n + si + 1 − i and
we get the assertion by Proposition 3.2.3. ¤
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Notation 3.2.2 Let (X, L) be a polarized manifold of dimension n and
let

p(X, L) := min{t > 0 | t ∈ Z, h0(KX + tL) 6= 0}.

Theorem 3.2.2 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that b(L) ≤ n− 2. Then we get the following :

(1) Aj(X, L) = 0 if j ≥ n− p(X, L) + 2.
(2) An−p(X,L)+1(X, L) ≥ hn−p(X,L)+1(OX)+1 if n−p(X, L)+1 ≥ b(L)+2.
(3) An−p(X,L)(X, L) ≥ hn−p(X,L)(OX)+n−p(X, L)−b(L) if n−p(X, L) ≥

b(L) + 2.
(4) Ak(X, L) ≥ hk(OX) + 2k− 2b(L)− 1 if b(L) + 2 ≤ k ≤ n− p(X, L)− 1.

Proof. First we are going to consider (1). In this case we may assume
that p(X, L) ≥ 2 because we study Aj(X, L) with j ≥ n − p(X, L) + 2. If
1 ≤ t < p(X, L), then

(
t−1
n−j

)
= 0 for every j with 0 ≤ j ≤ n − p(X, L) + 1.

Hence by Theorem 1.1, we have

h0(KX + tL) =
n∑

j=n−p(X,L)+2

(
t− 1
n− j

)
Aj(X, L).

Moreover by the definition of p(X, L) we have h0(KX + tL) = 0 if 1 ≤
t < p(X, L). Hence we get the first assertion (1). Here we note that if
n − p(X, L) + 2 ≥ b(L) + 2, then by Proposition 3.2.1 and Remark 2.2 (1)
we have

gj(X, L) = 0 if j ≥ n− p(X, L) + 2 ≥ b(L) + 2 (3.1)

and

gn−p(X,L)+1(X, L) = hn−p(X,L)+1(OX)

if n− p(X, L) + 2 ≥ b(L) + 2. (3.2)

Next we consider the value of An−p(X,L)+1(X, L) if n − p(X, L) + 1 ≥
b(L) + 2. Since h0(KX + p(X, L)L) > 0, we have An−p(X,L)+1(X, L) ≥ 1 by
Theorem 1.1 and by (1) above. Here we note that the following:
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Claim 3.2.2

gn−p(X,L)(X, L)− hn−p(X,L)(OX) ≥ 1

if b(L) + 2 ≤ n− p(X, L) + 1. (3.3)

Proof. Assume that gn−p(X,L)(X, L) = hn−p(X,L)(OX). Then since b(L)+
1 ≤ n − p(X, L) ≤ n − 1 by assumption, we have gn−p(X,L)+1(X, L) = 0
by Corollary 3.2.1. But since An−p(X,L)+1(X, L) = gn−p(X,L)+1(X, L) +
gn−p(X,L)(X, L) − hn−p(X,L)(OX), we get An−p(X,L)+1(X, L) = 0 and this
is a contradiction. ¤

Hence by (3.2), (3.3) and Remark 2.2 (1), we get the assertion of (2).
Finally we consider the value of Ak(X, L) if b(L)+2 ≤ k ≤ n−p(X, L).

By Claim 3.2.2 and Corollary 3.2.1 we have

gj(X, L)− hj(OX) ≥ j − b(L) if b(L) + 1 ≤ j ≤ n− p(X, L)− 1. (3.4)

Hence by Remark 2.2 (1) and Claim 3.2.2 we get An−p(X,L)(X, L) ≥
hn−p(X,L)(OX) + 1 + n − p(X, L) − 1 − b(L) = hn−p(X,L)(OX) + n −
p(X, L) − b(L) and Ak(X, L) ≥ hk(OX) + k − b(L) + (k − 1) − b(L) =
hk(OX) + 2k − 2b(L)− 1. Therefore we get the assertion of (3) and (4). ¤

Remark 3.2.1 Assume that b(L) ≤ n − 2. Then by (3.1), (3.2), (3.3),
(3.4) in the proof of Theorem 3.2.2, we get the following.

(1) gj(X, L) = 0 if j ≥ n− p(X, L) + 2 ≥ b(L) + 2.
(2) gn−p(X,L)+1(X, L) = hn−p(X,L)+1(OX) if b(L) + 1 ≤ n− p(X, L) + 1.
(3) gn−p(X,L)(X, L) ≥ hn−p(X,L)(OX) + 1 if b(L) + 1 ≤ n− p(X, L).
(4) gj(X, L) ≥ hj(OX) + j − b(L) if b(L) + 1 ≤ j ≤ n− p(X, L)− 1.

4. On the dimension of global sections of KX + tL

Here we will give some results about the dimension of global sections of
adjoint bundles, which are obtained by using Theorems 1.1, 3.1.1 and 3.2.2,
and Remark 3.2.1.

4.1. The case where h0(L) > 0.
In this subsection, we consider a lower bound of the global sections of

adjoint bundles under the assumption that h0(L) > 0.
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First we are going to investigate the positivity of h0(KX + (n − 2)L)
under the assumption that κ(X) ≥ 0 and h0(L) > 0.

Theorem 4.1.1 Let (X, L) be a polarized manifold of dimension n ≥ 3.
Assume that κ(X) ≥ 0 and h0(L) > 0. Then h0(KX + (n− 2)L) > 0.

Proof. (1) Assume that n ≥ 4. If h0(KX + tL) 6= 0 for some integer t

with 1 ≤ t ≤ n − 3, then by [24, 15.6.2 Lemma] or [14, Lemma 1.12] we
obtain h0(KX + (n − 2)L) > 0 since h0(L) > 0. So we may assume that
h0(KX + tL) = 0 for any integer t with 1 ≤ t ≤ n− 3.

(1.1) Assume that n = 4. Since h0(KX +L) = 0, we have F1(1) = h0(KX +
2L). (Here we use notation in Definition 2.2 (1).) But then F1(1) =
A3(X, L) by Theorem 2.1 and we see that h0(KX + 2L) > 0 because
A3(X, L) > 0 by Theorem 3.1.1 (4).

(1.2) Assume that n ≥ 5. Since F1(t) = 0 for every integer t with 1 ≤ t ≤
n − 4, by Theorem 2.1 we see that An−1(X, L) = 0, . . . , A4(X, L) =
0 and F1(n − 3) =

∑n−1
j=0

(
n−4

n−1−j

)
Aj(X, L) = A3(X, L). Therefore

F1(n− 3) = A3(X, L) > 0 by Theorem 3.1.1 (4) and we get h0(KX +
(n− 2)L) > 0.

(2) Assume that n = 3. Then by [19, Theorem 3.2] we have already obtained
h0(KX+L) > 0. (In this case we don’t need the assumption that h0(L) > 0.)
Therefore we get the assertion. ¤

Remark 4.1.1 We note that [21, 1.2 Theorem] does not imply Theorem
4.1.1 above.

Next we are going to study h0(KX + tL) under the assumption that
dimX = 3 and h0(L) ≥ 2.

Theorem 4.1.2 Let (X, L) be a polarized manifold of dimension 3. As-
sume that h0(L) ≥ 2. Then for every positive integer t we have the following
inequality :

h0(KX + tL)

≥
{

(t− 1)h2(OX) +
(
t−1
2

)
h1(OX) +

(
t−1
3

)
if κ(X) = −∞,

(
t
2

)
max{2, h1(OX)}+

(
t−1
3

)
if κ(X) ≥ 0.
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Proof. First we note that by Remark 2.2 (2.2) and (2.3)

A3(X, L) = h0(KX + L) ≥ 0, (4.1)

A0(X, L) = L3 ≥ 1. (4.2)

Next we consider a lower bound for A1(X, L). Since L3 ≥ 1, we have

A1(X, L) = g1(X, L) + L3 − 1 ≥ g1(X, L). (4.3)

By assumption and [13, Theorem 2.1], we have

g1(X, L) ≥ h1(OX). (4.4)

On the other hand if κ(X) ≥ 0, then g1(X, L) ≥ 1 + L3 ≥ 2. Therefore if
κ(X) ≥ 0, then by (4.4)

g1(X, L) ≥ max{2, h1(OX)}. (4.5)

Hence by (4.3), (4.4) and (4.5)

A1(X, L) ≥
{

h1(OX) if κ(X) = −∞,

max{2, h1(OX)} if κ(X) ≥ 0.
(4.6)

Finally we consider a lower bound for A2(X, L). If κ(X) = −∞, then
by [16, Corollary 2.4] we have g2(X, L) ≥ h2(OX). Hence by (4.4)

A2(X, L) = g2(X, L) + g1(X, L)− h1(OX) ≥ h2(OX). (4.7)

If κ(X) ≥ 0, then by [16, Corollary 2.4] we get g2(X, L) ≥ h1(OX). Hence
by (4.5)

A2(X, L) = g2(X, L) + g1(X, L)− h1(OX)

≥ g1(X, L) ≥ max{2, h1(OX)}. (4.8)

On the other hand by Theorem 1.1 or Theorem 2.1



A study on the dimension of global sections of adjoint bundles, II 269

h0(KX + tL) = A3(X, L) + (t− 1)A2(X, L)

+
(

t− 1
2

)
A1(X, L) +

(
t− 1

3

)
A0(X, L).

Therefore we get the assertion by (4.1), (4.2), (4.6), (4.7) and (4.8). ¤

4.2. The case of dimBs|L| = 0 or 1
Here we use Notation 3.2.1 and Notation 3.2.2.
In [20], we studied a lower bound of h0(KX + tL) for the case where

Bs|L| = ∅. In this subsection, we consider the case where dimBs|L| = 0 or
1. First we prove the following.

Proposition 4.2.1 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that 0 ≤ b(L) ≤ 1. Then p(X, L) ≤ n. Moreover if b(L) = 0, then
p(X, L) = n if and only if (X, L) is a scroll over a smooth curve.

Proof. First we note that by Proposition 3.2.2 (2) we have Ai(X, L) ≥ 0
for every i with 1 ≤ i ≤ n and A0(X, L) > 0 in this case.

Assume that p(X, L) ≥ n + 1. Then h0(KX + nL) = 0. Hence we see
that Ai(X, L) = 0 for every integer i with 1 ≤ i ≤ n by Theorem 1.1. In
particular, A1(X, L) = 0 implies (X, L) ∼= (Pn,OPn(1)) by Theorem 3.1.1
(1.1). But this is impossible because here we assume that b(L) = 0 or 1.
Hence p(X, L) ≤ n.

Assume that b(L) = 0 and p(X, L) = n. Then h0(L) ≥ n ≥ 2 and
h0(KX + (n − 1)L) = 0. So by Theorem 1.1 and Proposition 3.2.2 (2), we
see that Ai(X, L) = 0 for every integer i with 2 ≤ i ≤ n. In particular,
A2(X, L) = 0 implies that g2(X, L) = 0 and g1(X, L) = h1(OX). If n = 2
and g1(X, L) = h1(OX), then by Proposition 2.1 we see that (X, L) is either
(P2,OP2(1)), (P2,OP2(2)) or a classical scroll over a smooth curve. If n ≥ 3
and g1(X, L) = h1(OX), then by [12, Theorem 3.2], we see that (X, L) is
either (Pn,OPn(1)), (Qn,OQn(1)) or a scroll over a smooth curve. But since
b(L) = 0, we see that (X, L) is a scroll over a smooth curve. Conversely
if (X, L) is a scroll over a smooth curve, then we can easily check that
p(X, L) = n. This completes the proof. ¤

(I) The case of b(L) = 0.
By Proposition 4.2.1, we see that if p(X, L) = n, then (X, L) is a scroll

over a smooth curve, and in this case we can compute h0(KX + tL). In this
case by [14, Example 2.10 (8)] we have A0(X, L) ≥ 1, A1(X, L) ≥ h1(OX)
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and Aj(X, L) = 0 for every j with j ≥ 2. Hence

h0(KX + tL) ≥
(

t− 1
n

)
+

(
t− 1
n− 1

)
h1(OX).

So, as the next step, we consider a lower bound of h0(KX + tL) for the
case where p(X, L) ≤ n− 1.

Theorem 4.2.1 Let (X, L) be a polarized manifold of dimension n ≥ 2.
Assume that b(L) = 0 and p(X, L) ≤ n− 1. Then

h0(KX + tL)

≥





(
t−1
n

)
+

(
t−1
n−1

)
(h1(OX) + 1) +

(
t−1
n−2

)
(h2(OX) + 1)

if p(X, L) = n− 1,

(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX) + 1, 2}+

(
t−1
n−2

)
(h2(OX) + 2)

+
(

t−1
n−3

)
(h3(OX) + 1) if p(X, L) = n− 2,

(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX) + 1, 2}

+
(

t−1
p(X,L)−1

)
(hn−p(X,L)+1(OX) + 1)

+
(

t−1
p(X,L)

)
(hn−p(X,L)(OX) + n− p(X, L))

+
∑n−p(X,L)−1

j=2

(
t−1
n−j

)
(hj(OX) + 2j − 1)

if 1 ≤ p(X, L) ≤ n− 3.

Proof. First we note that by Theorem 3.2.2 (1) we have

h0(KX + tL) =
n∑

j=0

(
t− 1
n− j

)
Aj(X, L) =

n−p(X,L)+1∑

j=0

(
t− 1
n− j

)
Aj(X, L).

First we note that A0(X, L) = Ln ≥ 1. If p(X, L) = n − 1, then by
Theorem 3.2.2 (2) we see that A2(X, L) ≥ h2(OX) + 1. Here we note that
by Remark 3.2.1 (3) we have A1(X, L) = g1(X, L) + Ln − 1 ≥ h1(OX) + 1.

Next we consider the case where p(X, L) ≤ n − 2. Then we note that
n ≥ 3 in this case.
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If p(X, L) = n−2, then we have A2(X, L) ≥ h2(OX)+2, and A3(X, L) ≥
h3(OX) + 1 by Theorem 3.2.2 (2) and (3). Moreover by Remark 3.2.1 (4)
we have A1(X, L) ≥ h1(OX) + 1. Moreover by Theorem 3.1.1 (1) we have
A1(X, L) ≥ 2 because we assume p(X, L) = n − 2. Hence A1(X, L) ≥
max{h1(OX) + 1, 2}.

Assume that p(X, L) ≤ n − 3. In this case by the same reason
as above we have A1(X, L) ≥ max{h1(OX) + 1, 2}. By Theorem 3.2.2
we have An−p(X,L)+1(X, L) ≥ hn−p(X,L)+1(OX) + 1, An−p(X,L)(X, L) ≥
hn−p(X,L)(OX) + n − p(X, L) and Ak(X, L) ≥ hk(OX) + 2k − 1 if 2 ≤ k ≤
n− p(X, L)− 1.

From Theorem 1.1 and the above argument we obtain the inequalities
in Theorem 4.2.1. ¤

(II) The case of b(L) = 1.
Next we consider the case where b(L) = 1. In this case we assume that

n ≥ 3 and p(X, L) ≤ n.

Theorem 4.2.2 Let (X, L) be a polarized manifold of dimension n ≥ 3.
Assume that b(L) = 1 and p(X, L) ≤ n. Then the following inequalities
hold.

h0(KX + tL)

≥





(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX), 2} if p(X, L) = n,

(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX), 2}+

(
t−1
n−2

)
h2(OX) if p(X, L) = n− 1,

(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX), 2}+

(
t−1
n−2

)
(h2(OX) + 1)

+
(

t−1
n−3

)
(h3(OX) + 1) if p(X, L) = n− 2,

(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX), 2}+

(
t−1
n−2

)
(h2(OX) + 1)

+
(

t−1
n−3

)
(h3(OX) + 2) +

(
t−1
n−4

)
(h4(OX) + 1) if p(X, L) = n− 3,

(
t−1
n

)
+

(
t−1
n−1

)
max{h1(OX), 2}+

(
t−1

p(X,L)−1

)
(hn−p(X,L)+1(OX) + 1)

+
(

t−1
p(X,L)

)
(hn−p(X,L)(OX) + n− p(X, L)− 1)

+
∑n−p(X,L)−1

j=2

(
t−1
n−j

)
(hj(OX) + 2j − 3) if 1 ≤ p(X, L) ≤ n− 4.
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Proof. As we said in Theorem 4.2.1, by Theorem 3.2.2 (1) we have

h0(KX + tL) =
n∑

j=0

(
t− 1
n− j

)
Aj(X, L) =

n−p(X,L)+1∑

j=0

(
t− 1
n− j

)
Aj(X, L).

First we note that A0(X, L) = Ln ≥ 1, and A1(X, L) ≥ h1(OX) by
Claim 3.2.1. Here we note that if A1(X, L) ≤ 1, then by Theorem 3.1.1 (1)
we see that (X, L) is a scroll over a smooth elliptic curve C with Ln = 1
because b(L) = 1. Then there exists an ample vector bundle E on C such
that X = PC(E) and L = H(E). Since c1(E) = Ln = 1, by [3, Lemma
3.2.5] we have h0(L) = h0(E) = 1. Since b(L) = 1, we have h0(L) ≥ n − 1.
Hence n ≤ 2 holds. But this contradicts the assumption. Therefore we have
A1(X, L) ≥ 2. Hence

A1(X, L) ≥ max{h1(OX), 2}.

Hence if p(X, L) = n, then we get

h0(KX + tL) ≥
(

t− 1
n

)
+

(
t− 1
n− 1

)
max{h1(OX), 2}.

Next we assume that p(X, L) ≤ n − 1. Then we consider the value of
Aj(X, L) for j ≥ 2.

If p(X, L) = n − 1, then by Remark 3.2.1 (2) and Claim 3.2.1 we see
that A2(X, L) ≥ h2(OX).

Assume that p(X, L) ≤ n − 2. We note that n ≥ 3. If p(X, L) =
n−2, then by Theorem 3.2.2 (2), Remark 3.2.1 (3) and Claim 3.2.1 we have
A2(X, L) ≥ h2(OX) + 1, and A3(X, L) ≥ h3(OX) + 1.

Assume that p(X, L) = n − 3. By Theorem 3.2.2 (2) and (3) we have
A3(X, L) ≥ h3(OX) + 2 and A4(X, L) ≥ h4(OX) + 1. By Remark 3.2.1
(4) we have g2(X, L) − h2(OX) ≥ 1. So we have A2(X, L) = g2(X, L) +
g1(X, L)− h1(OX) ≥ h2(OX) + 1 by Claim 3.2.1.

Assume that p(X, L) ≤ n − 4. By Remark 3.2.1 (4) and Claim 3.2.1
we have A2(X, L) ≥ h2(OX) + 1. Moreover by Theorem 3.2.2 (2), (3) and
(4) we have An−p(X,L)+1(X, L) ≥ hn−p(X,L)+1(OX) + 1, An−p(X,L)(X, L) ≥
hn−p(X,L)(OX) + n − p(X, L) − 1, and Ak(X, L) ≥ hk(OX) + 2k − 3 if
3 ≤ k ≤ n− p(X, L)− 1.
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Therefore by using Theorem 1.1 we obtain the inequalities in Theorem
4.2.2. ¤

4.3. On the difference between h0(KX +mL) and h0(KX +(m−
1)L)

The following Theorem 4.3.1 is a partial answer of the following problem
proposed by H. Tsuji [27, Problem 1] for dimX ≤ 4.

Problem 4.3.1 Let (X, L) be a polarized manifold of dimension n. Then
is it true that h0(KX + mL) ≥ h0(KX + (m− 1)L) for every integer m with
m ≥ 2 ?

Theorem 4.3.1 Let (X, L) be a polarized manifold of dimension n.

(1) If n = 2, then for every integer m with m ≥ 2 we have

h0(KX + mL)− h0(KX + (m− 1)L) ≥ m− 2.

Moreover this equality holds if and only if (X, L) ∼= (P2,OP2(1)).
(2) If n = 3, then for every integer m with m ≥ 2 we have

h0(KX + mL)− h0(KX + (m− 1)L) ≥
(

m− 2
2

)
.

Moreover the following hold.
(2.1) h0(KX + 2L) − h0(KX + L) = 0 if and only if (X, L) is one of

the following :
(2.1.1) (P3,OP3(1)).
(2.1.2) (Q3,OQ3(1)).
(2.1.3) A scroll over a smooth curve.

(2.2) For m ≥ 3, h0(KX + mL)− h0(KX + (m− 1)L) =
(
m−2

2

)
if and

only if (X, L) ∼= (P3,OP3(1)).
(3) If n = 4 and κ(X) ≥ 0, then for every integer m with m ≥ 2 we have

h0(KX + mL)− h0(KX + (m− 1)L) ≥
(

m + 1
3

)
> 0.

Proof. We consider (1) (resp. (2)). Then dimX = 2 (resp. 3). So by
Theorem 2.1 we have
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F1(m− 1) = (m− 2)A0(X, L) + A1(X, L)
(

resp. F1(m− 1) =
(

m− 2
2

)
A0(X, L) + (m− 2)A1(X, L) + A2(X, L)

)
.

Here we note that F1(m − 1) = h0(KX + mL) − h0(KX + (m − 1)L) and
A0(X, L) = Ln ≥ 1. Hence by Theorem 3.1.1 (1) (resp. Theorem 3.1.1 (1)
and (2.1)), we have

h0(KX + mL)− h0(KX + (m− 1)L) ≥ m− 2
(

resp. h0(KX + mL)− h0(KX + (m− 1)L) ≥
(

m− 2
2

))
.

Next we consider the case where dim X = 2 and h0(KX + mL)− h0(KX +
(m − 1)L) = m − 2. Then by the above proof, we see that A1(X, L) = 0.
By Theorem 3.1.1 (1.1) we see that (X, L) ∼= (P2,OP2(1)). Conversely if
(X, L) ∼= (P2,OP2(1)), then we can easily check that h0(KX+mL)−h0(KX+
(m− 1)L) = m− 2.

Assume that n = 3, m = 2 and h0(KX + 2L)− h0(KX + L) = 0. Then
by the above proof we see that A2(X, L) = 0. By Theorem 3.1.1 (2.4),
(X, L) is either (2.1.1), (2.1.2) or (2.1.3) in the statement of Theorem 4.3.1.
Conversely if (X, L) is one of these types, then we see that h0(KX + 2L)−
h0(KX + L) = 0.

Assume that n = 3, m ≥ 3 and h0(KX + mL)− h0(KX + (m− 1)L) =(
m−2

2

)
. Then A1(X, L) = 0 and A2(X, L) = 0 hold. Hence by Theorem

3.1.1 (1.1) and (2.4) we get (X, L) ∼= (P3,OP3(1)). Conversely if (X, L) ∼=
(P3,OP3(1)), then we can easily check that h0(KX + mL)− h0(KX + (m−
1)L) =

(
m−2

2

)
.

Next we consider (3). Then we assume that dim X = 4 and κ(X) ≥ 0.
By Theorem 2.1,

h0(KX + mL)− h0(KX + (m− 1)L)

=
(

m− 2
3

)
A0(X, L) +

(
m− 2

2

)
A1(X, L)

+ (m− 2)A2(X, L) + A3(X, L). (4.9)

Since dim X = 4 and κ(X) ≥ 0, we have g1(X, L) = 1+(1/2)(KX +3L)L3 ≥
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3 and L4 ≥ 1. So we get A1(X, L) = g1(X, L) + L4− 1 ≥ 3. Hence by (4.9),
Theorem 3.1.1 (1), (3) and (4), we have

h0(KX + mL)− h0(KX + (m− 1)L)

≥
(

m− 2
3

)
+ 3

(
m− 2

2

)
+ 3(m− 2) + 1 =

(
m + 1

3

)
.

This completes the proof. ¤

Remark 4.1 In [19, Theorem 3.5] we proved Conjecture 1.1 for the case
of dimX = 4 and κ(X) ≥ 0. We note that also by using Theorem 4.3.1 (3)
and [21, 1.2 Theorem] we can prove that Conjecture 1.1 is true if dimX = 4
and κ(X) ≥ 0.
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rieties with many lines and their applications to adjunction theory (with

an appendix by M. C. Beltrametti and A. J. Sommese), in Complex Alge-

braic Varieties, Bayreuth 1990, ed. by K. Hulek, T. Peternell, M. Schneider,

and F.-O. Schreyer, Lecture Notes in Math. 1507 (1992), 16–38, Springer-

Verlag, New York.

[ 5 ] Broustet A., Non-annulation effective et positivité locale des fibrés en
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[ 6 ] Broustet A. and Höring A., Effective non-vanishing conjectures for projec-

tive threefolds. Adv. Geom. 10 (2010), 737–746.

[ 7 ] Fujita T., Theorems of Bertini type for certain types of polarized manifolds.

J. Math. Soc. Japan 34 (1982), 709–718.

[ 8 ] Fujita T., Classification Theories of Polarized Varieties. London Math. Soc.

Lecture Note Series 155 (1990).

[ 9 ] Fukuma Y., A lower bound for the sectional genus of quasi-polarized sur-



276 Y. Fukuma

faces. Geom. Dedicata 64 (1997), 229–251.

[10] Fukuma Y., A lower bound for sectional genus of quasi-polarized manifolds.

J. Math. Soc. Japan 49 (1997), 339–362.

[11] Fukuma Y., On polarized surfaces (X, L) with h0(L) > 0, κ(X) ≥ 0 and

g(L) = q(X) + 1. Geom. Dedicata 69 (1998), 189–206.

[12] Fukuma Y., On the nonemptiness of the linear system of polarized mani-

folds. Canad. Math. Bull. 41 (1998), 267–278.

[13] Fukuma Y., On sectional genus of quasi-polarized 3-folds. Trans. Amer.

Math. Soc. 351 (1999), 363–377.

[14] Fukuma Y., On the sectional geometric genus of quasi-polarized varieties,

I. Comm. Algebra 32 (2004), 1069–1100.

[15] Fukuma Y., On the sectional geometric genus of quasi-polarized varieties,

II. Manuscripta Math. 113 (2004), 211–237.

[16] Fukuma Y., A lower bound for the second sectional geometric genus of

polarized manifolds. Adv. Geom. 5 (2005), 431–454.

[17] Fukuma Y., On the second sectional H-arithmetic genus of polarized man-

ifolds. Math. Z. 250 (2005), 573–597.

[18] Fukuma Y., On a conjecture of Beltrametti-Sommese for polarized 3-folds.

Int. J. Math. 17 (2006), 761–789.

[19] Fukuma Y., On the dimension of global sections of adjoint bundles for

polarized 3-folds and 4-folds. J. Pure Appl. Alg. 211 (2007), 609–621.

[20] Fukuma Y., A study on the dimension of global sections of adjoint bundles

for polarized manifolds. J. Algebra. 320 (2008), 3543–3558.
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