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The variational formulas of the volume function
in the equiaffine geometry

Naoyuki KOIKE
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Abstract. We obtain the first and second variational formulas for the volume function
over the space of all equiaffine immersions. By using the first variational formula, we
define some kinds of volume functions over the space of all non-degenerate immersions
and obtain the Euler-Lagrange equation for those volume functions. Also, in the case
where the ambient space is flat, we obtain the second variational formulas for special
ones of those volume functions.

Key words: equiaffine immersion, non-degenerate immersion, Tchebychev tensor field,
volume ratio function.

1. Introduction

Let D be a relatively compact domain with smooth boundary of an n-
dimensional manifold M. Let f be a non-degenerate immersion of M into
the (n + 1)-dimensional equiaffine space (R"*1, v, w), where V is the affine
connection defined by 66/336@/836]' =0(1<4i,j<n+1)and @ is the
volume element defined by &(9/dz!,...,8/0z""!) = 1 in terms of the nat-
ural coordinate (z!,...,2"*1) of R"*!. The immersion f admits uniquely
a pair (N, 04) of its transversal bundle N and its transversal volume ele-
ment @+ such that (f, N,61) is an equiaffine immersion with 8 = w;, (i.e.,
a Blaschke immersion), where 6 is the induced volume element and wy, is the
volume element determined by the affine fundamental form A. The volume
element 0 is called the affine volume element. In 1989, L. Verstraelen and
L. Vrancken [VeVr] obtained the first and second variational formulas for
the volume function Vol (for the affine volume element) over the whole of
the restriction f|p to D of a non-degenerate immersion f of M into the
equiaffine space (R"1, %,CB) satisfying f|ynp = ¢, where ¢ is a fixed non-
degenerate immersion of M \ D into (R™*!,V,&). Note that they treat
only transversal variations. They showed that the affine mean curvature

d Vol(f¢|p) = 0 for any transversal

of f vanishes on D if and only if aili—o
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variation f; of f (fo = f) consisting of non-degenerate immersions with
felanp = ¢

Remark 1.1 In 1982, E. Calabi [C] has already obtained the first and
second variational formulas for the same Volumg function over the whole of
locally strongly convex immersion into (R"*1, V., @).

In 2002, M. Wiehe [Wi] treated regular (non-degenerate in the sense of
this paper) immersions of general codimension into the equiaffine space
(R””,%,@). Such an immersion f admits uniquely a pair (N,6+) of
its transversal bundle N and its transversal volume element # such that
(f, N,0%) is an equiaffine immersion with 6 = wy, and T' = 0, where 6 is the
induced volume element, wy, is the volume element defined from the affine
fundamental form h and T is the Tchebychev tensor field. We call the vol-
ume element 6 the affine volume element. Such an equiaffine immersion
is interpreted as the higher codimension version of a Blaschke immersion.
Hence we call such an immersion a Blaschke immersion of general codimen-
sion. He obtained the first variational formula for the volume function Vol
(for the affine volume element) over the whole of the restriction f|p to D of
such an immersion f of M into (R”’L’”,%,J)) satisfying f|ynp = ¢, where
D and ¢ are as above. He showed that the affine mean curvature function
of such an immersion f vanishes on D if and only if %‘ o Vol(ft|lp) = 0
holds for any variation f; of f (fo = f) consisting of such immersions.

Remark 1.2 In 1994, F. Dillen, G. Mys, L. Verstraelen and L. Vrancken
[DMVYV] treated certain kind of equiaffine immersions of codimension two
into (R*,V,&). It is shown that the equiaffine immersions are Blaschke
immersion of codimension two. They obtained the first variational formula
for a certain kind of volume function over the whole of such immersions. It
is shown that the volume function coincides with one for the affine volume
element. Thus the result of [Wi] includes that of [DMVV].

In this paper, we treat general equiaffine immersions into a general
equiaffine manifold. For each immersion f of a manifold M into an equiaffine
manifold (M , %, 5), there exist infinitely many pairs (IV, 0+) of its transver-
sal bundle N and its transversal volume element 6+ such that (f, N,6%)
is an equiaffine immersion. To each equiaffine immersion (f, N, GL),Nan

immersion of M into the exterior product bundle /\T(TM ) (r:=dim M —
dim M) of degree r of the tangent bundle TM satisfying some conditions
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corresponds bijectively (See Section 2). Hence we can define an equiaffine
immersion into (M V,0) as such an immersion into A"(TM). When we
consider the variational problem of equiaffine immersions, we had better
define an equiaffine immersion as such an immersion into \"(T'M) rather
than the triple (f, N,6+) because the variation vector field is then catched
as a vector field along the immersion. Hence we shall define an equiaffine
immersion as such an immersion. We first obtain the first and second vari-
ational formulas for the volume function over the space of all equiaffine
immersions (see Theorem 3.1). Next we investigate some classes consist-
ing of non-degenerate equiaffine immersions (see Theorem 4.1) and obtain
the first variational formulas for the volume functions over the classes (see
Theorem 5.1). According to the first variational formula, some volume func-
tions are well-defined over the space of all non-degenerate immersions. We
obtain the Euler-Lagrange equations for those volume functions (see Theo-
rem 5.4). In particular, we can obtain the Euler-Lagrange equation for the
volume function over the space of all c-Blaschke immersions. See Section 4
about the notion of a c-Blaschke immersion. In the case where the ambient
space is flat, the Euler-Lagrange equation is reduced to H = 0 (H: the affine
mean curvature). Furthermore, we obtain the second variational formula
for the volume function over the space of all c-Blaschke immersions into
a flat equiaffine space (see Theorem 5.7).

2. The definition of an equiaffine immersion in a new style

In [K], we defined the notion of an equiaffine immersion of general
codimension. We consider a variation of the immersions. For its purpose,
we had better define the notion in a new style as follows. Let (M V. 0)
be an (n + r)-dimensional equiaffine manifold and M be an n-dimensional
manifold. Let A" TM (resp. \" ™M M) be the exterior product bundle of
degree r of the tangent bundle TM (resp. the dual bundle 7" M ) Denote
the bundle projections of N TM and /\ T*M by the same symbol 7. We
define the set Cj(M, M) (resp. Cp- (M, M)) by

Ch(M, M) :={F € C®(M, N'TM) |II(F(z)) ® (7 0 F). (T, M)
= Tiror) ()M (x € M)}
(resp. Cp=(M, M) := {F € C™°(M, N"T*M) | Ker F(z)
= (1o F)u(TxM) (z € M)}),
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where II is the natural projection of N TM removed the zero section onto
the Grassmann bundle G, (T'M) of r-dimensional subspaces. Also, define
a submersion ®: C\(M, M) — Cp«(M, M) by ®(F)(x)(F(z)) = 1 and
Ker®(F)(x) = (mo F)(TyM) (x € M). For F € Cr\(M, M), we set f :=
moF, v := ®F) and N, := II(F(z)) (z € M). We call v a transversal
volume element map of F.

Remark 2.1 In the case where the ambient space (M ,V,0) is an equi-
affine space (R"™",V,®), the tansversal volume element map v coincides

with a transversal volume element map (of F') defined in [KT] under the
identification of A" T R”J”” (x € M) with A"(R"")* (see Fig. 2).

Denote by prp (resp. pry) the projection of f*TM onto f.,TM (resp. N).
We define a connection V on M and a N-valued symmetric (0, 2)-tensor
field h on M by f.(VxY) = prp(Vxf.Y) and h(X,Y) = pry(Vx fY)
(X, Y € TM), respectively. The quantities V (resp. h) is called the connec-
tion induced from V by F (resp. the affine fundamental form of F'). Then
we call F an affine immersion of (M,V) into (M,V). Also, we define
a section A of the tensor bundle N* ® T"M @ T'M and a connection vt
of N by fi(AeX) = —prp(Vx€) and Vi€ = pry(Vx€) (X € TM, £ € N),
respectively. The quantities A (resp. V1) is called the affine shape ten-
sor (resp. the transversal connection) of F. Define a section H of N* by
H(¢) = (1/n)tr A¢ (€ € N). The section H is called the affine mean cur-
vature function of F. Set o+ = V|Nx...xN, which is called the transversal
volume element of F. Define a volume element § on M by

g(f*Xh"'7f*Xn7§17"'757’)

0(X1,....Xn)= (X1,...,X, €TM),

0+(&, .-, 6)
where (§1,...,§,) is an arbitrary frame of N. This volume element 6 is
called the induced volume element of F. Define a section 7 of f* \" T*M
by 7o fi' = 6 and Ker7 = N, where f' := f. X -+ x f, (n-times). We

call T a tangential volume element map of F'. If VO = 0, then we call F' an
equiaffine immersion of (M,V,0) into (M V.0).

Remark 2.2 Let (f,N,6%) be an equiaffine immersion of an equiaffine
manifold (M, V,6) into another equiaffine manifold (M, V,8) in the sense
of [K], where N is the transversal bundle and 6+ is the transversal vol-
ume element (hence 8+ € T(A” N*) (r := dim M — dim M)). Then an
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immersion F: M — A" TM is defined by F(z) ==& N NE (x € M),
where (&F,...,&7) is a frame of N, with Gj(ﬁi. ..,&7) = 1. This map F'
is an equiaffine immersion of (M, V,#) into (M, V,0) in the above sense.
In particular, if (f,€): (M,V,0) — (M,%,g) is an equiaffine immersion
of codimension one (¢: the equiaffine transversal vector field), then an im-
mersion F: M — TM defined by F(z) := & (z € M) is an equiaffine



724 N. Koike

immersion in the above sense.

Let E(M, (M, V,0)) := {F € CA(M, M) | F: equiaffine (i.e., V6 = 0)}.
For simplicity, we denote this set by E(M). Let F' € E(M). Take a frame
(€1,...,&) of N with 6+(&,...,&) =1 and let h = h? ® £,, where p runs
{1,...,r} and we use the Einstein’s rule. In the sequel, we use this rule.
Define a (0, 2r)-tensor field i on M by

h(Xh Xoy ooy Xop—1, XQT)
= (Spl..,prhpl (Xl, XQ) s hpT(XQT_l, X2T>

for Xi,..., X9, € TM, where 6,,...,, is given by

Pr
0 (o1, o} #4{L,...,r}).

It is easy to show that his well-defined, that is, it is independent of the
choice of a frame (£1,...,&,) of N with 6+(¢1,...,&) = 1. An n-form wy,
on M is defined by

sen( 40 1) e =)

P1Pr =

1 i1....n i1 in 3 ~ 1/(21”)
wp(B1,...,00) = ’n'(sh'--h c Sl R

<_ 1/(2r)>

where (91, ..., 8,) is the natural base of a local coordinate (2!, ..., z") of M
which is positive with respect to 0. h; (j =1,...,n) are components
1 2r

1 on el o~
il il g . .
5 2 2 ... 6 2r QThIi%'”Z.%T . e hnlg"'l%-

of h with respect to (z!,...,2") and

s sgn(% o Z%) ({7}, ={1,...,n})
0 ({ij, - #{1,...,n}).

It is easy to show that wy is well-defined, that is, it is independent of the
choice of a local coordinate (x!,...,2™) of M which is positive with respect
to 6. If wy is a volume element on M, that is, it does not vanish at each
point of M, then we call F' a non-degenerate equiaffine immersion. Denote
by Enp(M) the set of all non-degenerate equiaffine immersions of M into

(M,V,0). Let f be an immersion of M into (M, V,0). If there exists F €
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Enp(M) with mo F = f, then f is called a non-degenerate immersion.
Then, for any F' € E(M) with mo F' = f, we have F' € Eyp(M). Denote
by ND(M) the set of all non-degenerate immersions of M into (M, V, 5)
Define a (2r,0)-tensor field ! on M by

= !
’ (n—l)!wh(al,...,an)27“
X ﬁ -1, . ‘%j'{z—l...jézT—l 61'1 ® o ® 874'21",

J1 "j%r

.. n—1 .. n—1
§iItdt T L gierdaeis,

where %j{“mjé (k=1,...,n — 1) are the component of h with respect to

(z1,...,2™). Tt is easy to show that h~! is well-defined. Denote by hitzr
the component of h~! with respect to a local coordinate (z!,...,2"). This
tensor field A1 is called the pseudo-inverse of h. Also, define a section b
of the tensor bundle N* @ TM ® T'M by

_ P2 pPr Tijksks--kor_1kor 5. .
B(6p) = TOppapn b2, - W2 1k 9, © 9,

where hf, is defined by h(dy, d;) = hf,&,. It is easy to show that b is well-
defined. This section § is called the pseudo-inverse of h. Denote by f),ioj the
component of h with respect to (01,...,9,) and (§1,...,& ). We prepare
the following lemma.

Lemma 2.1 For components hfj (resp. hf,j) of h (resp. ) with respect to

(01,...,0n) and (&1,..., &), we have hf 49 = ns? and hfjhzk = 7"5?.

See Lemma 4.13 of [Wi] about the proof of this lemma. Denote by V the
connection of N*®@TM & T'M induced from V and V1. Define a section T
of N* ® TM by T;; = (ﬁjf))ff. For each section £ of N, the tangent vector
field T'(€) of M is called the Tchebychev vector field of F. We call T the
Tchebychev tensor field of F. Define a 1-form T on M by f(ﬁj) = Tpihfj.
We call T the Tchebychev form of F. Also, we define a section T°¢ of
ffT*M @ TM by T¢|y = T and T¢|s,rm = 0. We call T¢ the extended

Tchebychev tensor field of F.

Proposition 2.2 For F € Exp(M), we have T = 2rdlog <+ In partic-
ular, the form T is exact.

Proof.  This relation directly follows from (5.2) of [Wi] and the equiaffinity
of F. g
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3. The variational formulas for the volume function over the
space of all equiaffine immersions

Let E(M) be the space of all equiaffine immersions of a manifold M
into an equiaffine manifold (M ,6,5). Let m be the bundle projection of
A"(TM). For an immersion ¢ of M \ D (D: a relatively compact domain
with smooth boundary of M) into M, we set E(M)y :={F € E(M)|mo
F=¢on M\D} and E(M)g|p :={F|p|F € E(M)g}. Define the volume
Vol(F) of F € E(M)y|p by Vol(F) = [0, where § is the induced volume
element of F. Let K be the connection map of the connection (which is
also denote by V) on A" T*M induced from V, that is, the element of

D(T*(N"T*M M) ® V) defined by

(K(OCZT/Z t:o) - %ﬂ*(%\tzo)'u

for each curve p: (—¢,e) — A" T “M, where V is _the vertical distribution
of \" T*M 7 is the bundle projection of A" T*M and we identify V),

with the fibre A" T;(u(o))M . First we prove the following first and second
variational formulas.

Theorem 3.1 Let dim M = n, dim M =n+ r, D be a relatively compact
domain with smooth boundary of M and ¢ be an immersion of M\ D into M.
Let F € E(M)g|p, Fy (—e <t < ¢) be a variation of F in E(M)4|p and

1 be the transversal volume element map of Fy. Let v := dFt
dl/t

£ li=o

1o
(i) We have the following first variational formula:

dt’ Vol(F}) = /D (nH((m0)x) + K (0,)(0-(1)))6,

where H is the affine mean curvature function of F, © is the bundle
projection of /\T(TM), (mv) N is the N-component of mov (N: the trans-
versal bundle of F) and K(v,)(0+71(1)) implies K(v,)(&1,...,&)

0+ (&,...,&6) =1.
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(ii) We have the following second variational formula:

d2
ﬁ o VOI(Ft)
— [ () + K)o )’
— 2divy ((mw)r) (nH () n) + K (0,)(6771(1)))
—trTR( 7T*U)7r*v—tr((A(7r N~ (W*U)T)Q)
+ (divy ((mv)T))” + (711/)(19l H1))?
d d _ ~
- 1;(<dt‘t:01r(<C;’D)(eL Y1) - nH((VathocS*@t)N))O,
Here R is the curvature tensor of V, trr R( «U)Tv is the trace of
prp OE(-,T[‘*’U)TI‘*’UU*TM (f:=moF), A (resp. V) is the affine shape tensor
(resp. the induced connection) of F, (m«v)r := prp(mv) and 0 is a map

of D x (—¢,¢) into M defined by 6(x,t) := (7 o Fy)(w), where pry is the
projection of f*T'M onto f.'T M with respect to the decomposition f*T'M =
[+TM @ N.

Proof. Let Ny, 03, 0, hy, A*, V! and V¢ be the quantities for F;. Take
a local coordinate (U, (z',...,2")) of M with U C D. For simplicity, set
0;:=0/0x" (i=1,...,n). Let (¢!,... &) be a local frame field of N; on U
with 0 (¢4,...,€L) = 1. Set 6(¢,z) := fi(z) (x € M). Denote by the same
symbol V the connection of §*TM induced from V by 4. Let (ﬁatff)) N, =
75 €},- Then we have

dt‘ NG S

dt‘fo ft*al)'"7ft*8n7§§7""£7t*)

_Za FeOry ey (V29,0200 |i=0y - - s Oy €0, €9)
+Tpe(al,...,an). (3.1)

Also, we have

((V9,0400)l1=0) 7 = (Vo,mu0) 7 = — Aoy i + Vo, (mev)r,  (3.2)
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AN TM
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where ()7 implies the element of T'M such that f.((-)r) is equal to the
f«*T M-component of (-). From (3.1) and (3.2), we have

d
=|oon. 00

NE

0(01,..., —A(W*U)Nai + VQi(T('*’U)T, ceeyOp) + ?59(81, cevsOn)
=1
= (—TLH((W*’U)N) + divy (ﬂ'*U)T + ?5)9(81, - ,8n), (3.3)

.

where divy (mv)7 is the divergence of (m.v)r with respect to V. Also, we
have

Ohli=00;i (&1, ... &) = Otli—om (&, ..., &)
= K(vy)(ﬁj‘fl(l)) + 77[',0,

which vanishes because of 6;-(¢%,...,¢!) = 1. That is, we have 75 =

~K(v,)(0+71(1)). From VO = 0 and (mwv)rlpp = 0, it follows that
Jpdivy(mw)rf = 0 (see Lemma 6.1 and (2.11) of [Wi]). By integrat-
ing (3.3) and using these relations, we can obtain the desired first variational
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formula in the statement (i).
Next we shall show the second variational formula in (ii). We have

d2
| 0,(81,...,0)
iz |,_,
d? 7, t t
:@ g(ft*ala“"ft*anaélﬂ"'agr)
t=0
=2 Y O0(fudr, ... Ve, 0.0i1=0, .- Vi, 0:0;l1=0, - , fuOn &1, €D)
1<i<j<n

+) 0(£e01, .. Vo, Vo, 0200, -, [10n, 7. €D)
=1

+2 Z g(f*ala---7f*an7£(1]7"'aﬁatgf)h:()v'“7%8t£,a|t:07-",£79)

1<p<u<r
+Z§(f*alaaf*an7£(1)a 7%6t%8t£f)|t=07"'>£79)
p=1
+2225(f*817"'76@5*872’15:0)“'7f*8n7‘£(1)7"' 7€6t§f)|t=07"'a§79)‘
i=1 p=1

(3.4)
The first term (*;) in the right-hand side of (3.4) is rewritten as follows:

(#1) = {n*H((m0) ) = tr((A(m,)y)?) = 20H ((me0) ) tr V(o)
+ 2tr(A(r, )y © V(Tev)7) + (tr V(m0)7)?
- tr((V(mv)T)Q)}G(@l, ooy On). (3.5)

The second term (x2) in the right-hand side of (3.4) is rewritten as follows:

(%2)=>_0(01,.-,(Va,y Vo, 0:00)7 .. ,On)
i=1

=Y 0(01,..., —(R(f20;, mv)ma0)1 + (Va, Vay o5 0)T - - -, D)
=1
= —(trp R(-, ) m,0)0(01, - . ., On)

D001 A, 500,01 Vo (Vo ,y5xD)T, - On)
i=1
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= (—try R(-, m0) v — nH((%at‘t:O(S*at)N)
+divy (Vo 0:9)7)0(D1, ..., Op). (3.6)

The sum (*34) of the third term and the fourth one in the right-hand side
of (3.4) is rewritten as follows:

(*34) = (2 Z V(f[l)v"'aﬁatgf)h:o""7%&5&-,3“:07"'7570‘)

1<p<p<r

+ > €., Vo, Vo, Ehli=o, - - @2))9(@ .. On)
p=1
= <_(6at|t_0 (%@Vt))(flv ce 757”)

_9 Z(%\tzow)(&a ey Vagesobly - ,gT))e(al, . 0n)
p=1

_ <_K<ZLZOK<‘$>>(9M(1)) + 2K(vy)(eL1(1))2>
0(6n, ..., 0n), (37)

where we use %!tzoyt(ff, .., &) = 0. The fifth term (*5) in the right-hand
side of (3.4) is rewritten as follows:

(#5) = 2K (v,)(01 (1)) (nH ((mv)n) — dive (mv)r)

0(0r,...,0n). (3.8)
These relations (3.4)~(3.8) together with the arbitrariness of (U, (z!,...,2"))
deduces the desired second variational formula. ]

Remark 3.1 The relation (3.3) is equivalent to (6.5) of [Wi].
Now we state the following two facts.

Proposition 3.2 If (6,67) ] thgvequiaﬁﬁne structure associated with
a pseudo-Riemannian metric g of M and Fy is a variation consisting of
isometric immersions with respect to g, then we have K(v,)(0+~1(1)) = 0.

Proof. Let (£%,...,&) be an orthonormal normal base of f; at z. Then we
have Fy(x) = & A -+ A €L and hence
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K (v,)(0+71(1) Zg =, £5,€0) =

O
Proposition 3.3 The volume function over E(M)g|p has no critical point.

Proof. Take an arbitrary F' € E(M)g|p. Define a variation F; of F
by Fi(x) = (t + 1)F(x) (xr € D). Since F is equiaffine and the coeffi-
cient (¢ + 1) of the right-hand side is independent of the choice of = € D,
F; is also equiaffine. Hence we have F; € E(M)g|p. Easily we can show
414—0 Vol(F;) > 0. Hence F is not a critical point of the volume function
over E(M). This completes the proof. O

When the variation consists of isometric immersions, the quantity
K(% ‘t:OK(%)) (6+~1(1)) in the second variational formula of (ii) of The-
orem 3.1 is described as follows.

Proposition 3.4 If (%,5) is the_equiaffine structure associated with
a pseudo-Riemannian metric g of M and F; is a variation consisting of
isometric immersions, then we have

2

# (Gl () )0 = 19 s

90

where || - || is the norm of (-) with respect to g.

Proof. Define a map 7 of M x (—¢,e) into A" T*M by (z,t) = ()
((x,t) € M x(—¢,¢)), where 14 is the transversal volume element map of Fj.
Let (7, ...,&) be an orthonormal frame field of N; and &Gi=1,...,r) be
a section of 6*TM defined by & (z,t) := (€ ((z,t) € D x (—¢ )) Then

we have
k(] () e

(vat\t o(vatg))(gla B 7§7’)
= V8t|t 0((V8117)(£{7 s 786‘))

_Z vat‘t 0 515 'aﬁat‘t:()gp""afr)
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= S (K (%) 00
_Z <d”t‘ )gl,...,ﬁaﬂt_ogp,..-,ST)-

Since F} (—e <t<¢) are isometric immersions, we have K( t)(1(1))=0.
Hence we have

K(i‘t_OKCZt))(@l_l(l))
=—Z (5] 2y )6 G 60 (3.9

The right-hand side (*) of this relation is rewritten as follows:

T

(*) - = Z(eat\tzog)(glu SRR (66t|t=ogﬂ)T7 s 757‘)

p=1

= Z V(gh SRR 6Bz|t:0((€<9tgp)T)7 cee 7§r)

= Z g(%at\t:o ((%Btgp)T)a fp)

p=1
== G((Vayo&p) s (Var)msbp)T)
p=1
== 1(Vay_o&p)rl2- (3.10)
p=1

Let (ef, ..., el,) be an orthonormal frame field of fi,TM and & (i = 1,...,n)
be a section of 6*TM defined by &;(z,t) = (e et)y ((z,t) € D x (— 5,5)). On
the other hand, we have

(%&lt:ogﬂ)T = Z g(%aﬂt:og/’? 6,’)62'
=1

= - Z §(§p7 ﬁat‘t:()gl')e’i

=1
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= =D 5(&p, Vemev + (0,00, E]li=0)es

i=1

It is easy to show that [0.0;, €]|t=0 € f«T M. Hence we have

(vat\t 050 Zg &, hlei, (m0)7) + Vi (mav)n)e;.
From (3.9), (3.10) and this relation, the desired relation is deduced. O

4. Some classes consisting of non-degenerate equiaffine
immersions

In this section, we treat non-degenerate equiaffine immersions into
a general equiaffine manifold. Note that the non-degeneracy in the sense of
this paper is a property stricter than the non-degeneracy and the strictly
non-degeneracy in the sense of [KT|. Let Exp(M) be the space of all
non-degenerate equiaffine immersions (in the sense of this paper) of a man-
ifold M into an equiaffine manifold (]\7, V,0). For ecach F € Exp(M), we
define a function VR over M by w, = VR g8, where 6 is the induced volume
element of F' and wy, is the volume element defined from the affine funda-
mental form A of F'. Note that this function VR is positive-valued by the
definition of wy. We call this function VR g the volume ratio function of F.
For each positive function ¢ over M, we denote {F' € Exp(M)|VRr = ¢}
by VR™(¢)). Also, for each positive function v over M, we denote
{F € Exp(M)|Tr = dlog ¢} by T~1(1)), where T is the Tchebychev form
of F. Denote by ND(M) the space of all non-degenerate immersions of M
into (M, V,6) in the sense of this paper. Define a map 7 of Exp(M) onto
ND(M) by #(F) := wo F, where 7 is the bundle projection of A" (TM).
For f € ND(M), denote by Fo(f*T*M ® TM) the set of all sections of
f*T*M RTM vamshlng on f*TM For ¥ € Fo(f*T*M ® TM), we denote
{Fer l(f) \TF = U} by T- L(W), where T is the extended Tchebychev
tensor field of F'. For these classes, we prove the following facts.

Theorem 4.1 Let dimM = n, dimM = n + r, f € NDM), ¢ €
C®(M)y and ¥ € To(f*T*M ® TM). Then the following statements
(i)~(vi) hold:

) T7' W) = U VR (e!/?).

ceER 4

(i) 771 () NVR™(v) #0,
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(iii) Let Go(VR™Y(¢)) == {(Np)s | F € 77 1(f) N VR™Y()}, where
Np is the transversal bundle of F. Then G (VR (1)) are connected and
of dimension at most n(r — 1) in the following sense:

For any n(r — 1) + 1-dimensional topologically embedded sub-
manifold L in the Grassmannian manifold Gr(Tf(z)M) of
r-dimensional subspaces in Tf(m)M, LN G (VR™(¢)) has no
interior point as subsets of L.

(iv) For arbitrary two points F and G of 77 1(f) N VR™(¢)), there
exists a variation Fy (0 <t < 1) in 771 (f) N VR (¢) with Fy = F and
I =G.

(v) T7H(¥) # 0 and the set G (T~ (V) := {(Ng). | F € T"1 (D)} is
an one-point set.

(vi) There exists 1o € C>°(M) satisfying

{T @)V R (W) = {1 e
0 (¢ ¢ Ray).

In particular, we have
jj(f_l(()) NVR(c)) =1 (c: a positive constant)
ﬁ(f‘l(O) NVR(¢)) =0 (¢ anon-constant positive function),

where 0 is the zero element of Fg(f*TM@ TM).

Proof. According to Proposition 2.2, we have T =2r dlog < for each F' €
Exp(M), where T, 6 and w), are the quantities for F. Hence we have the
relation of (i). Next we shall show the statements (ii)~(iv). Let F' € 77 1(f).
Take another element F offrfl(f). Let h, VL, 0, T and T be the quantities
for F and h, V+, 8, T and 7" be the quantities for F. Let U be a contractible
open set of M. On U, we can express F and F as F = & A --- A&, and
F = (fiX1+n&) A A(fu X + 1€ in terms of a frame field (&1, ...,&)
of Nr on U and tangnet vector fields Xi,..., X, on U and n € C*°(U),..
Set &, := fi X, + 1y (p=1,...,7). From (2.7) of [KT], we have 7} = 7} +
n~H(h?(X,, ) +7dn), where 7, (resp. 7, ) is defined by V¢, = 7] ®¢&, (resp.
Ve, = 7) ®@&,) and h” is defined by h = h* @ £,. From the equiaffinities
of F and F, we have 75 = 75 = 0. Hence we have

hP(Xp,-) = —rdn. (4.1)
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Since F' is non-degenerate, we may assume that h? (p = 1,...,r) are
non-degenerate by retaking (&i,...,&,) if necessary. Hence, for each 7,
there exist tangent vector fields Xi,..., X, on U satisfying (4.1). On the
other hand, we have wy, /0 = n~("+27)/2 %, /6 (see the proof of Lemma 5.2
in [Wi]). Hence F € VR™(¢) if and only if = ¢=2/(n+21) x x (wp/0) 2/(nt2r)
and (4.1) hold. From these facts, it follows that the statements (ii), (iii) and
(iv) hold for f|y;. Hence these statements hold for f, where we note that the
simply connectedness of M does not need to be assumed because it follows
from the above investigation that {F(z)|F € 77 Y(f)NVR(x)} (x € M)
is connected. Next we shall show the statement (v). Let F' € 7 1(f). Take
another F' € 771(f). Let U, o, fp, X, (p=1,...,r) and n be as in the
proof of (ii), (iii) and (iv). From the equiaffinities of F' and F, we have the
relation (4.1). From (5.3) of [Wi], F' € Ty holds if and only if

n(Ty+(n+r) X, +h] WDIXE) =W = Ut
that is,
(n+7) X, + Bl by XE = w! —T7, (4.2)

where X’ hfj, i \Iﬂ and Ti are the components of X,, h, b, ¥ and T with

respect to a local coordmate ( S2")onU and (&1, ...,&). Since (4.2) is
a simultaneously linear equatlon Wlth respect to nr pieces of unknown vari-
ables Xf) (p=1,...,r,1=1,...,n) consisting nr pieces of equations, it has
at least one solution. For each solution X, of (4.2), there exists a positive

function 7 on U satisfying (4.1). These facts imply T-1(¥|y) # 0. Hence
T=Y(W) # 0 follows. Assume that F, F € T-1(¥). From (5.3) of [Wi], we

have

T —nT, = n((n+r)X,+h),b7 XE).
On the other hand, we have

T, =0T, =T(E) —T(né)" = (&, —n&)" = V(£ X,)' =0
Hence we have

(n+7r)X, + 1 b XF =0, (4.3)
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that is, X! = —(1/(n+ r))h}khﬁ,jXé:. Furthermore, we have

. g . g 1
(4 1) X5+ I XE = (n+ 1) X)+ 1,07 (——— ) hf, B X

r

=(n+rX, - - bing X =0,
that is, (n + r) X}, — (r/(n + r))h}khﬁ;ij; = 0. This together with (4.3)

deduces X, = 0, which implies N = N. Thus nyx(f_l(\ll)) is a one point
set.

Next we shall show the statement (vi). Take ¢ € C*°(M). Assume that
F, F e T"YU)NVR (). By (v), wehave N = N. Since F, F € VR™(¢),
we have wy, /0 = wy, /0 (= 1). These facts imply § = 0, that is, F' = F. Hence
we have #(T~1(¥) N VR~ () < 1. Tt is clear that #(T(¥) N VR (1))
=1 for some ¢y € C*°(M)y. Assume that ﬁ(f‘l(\ll) NVR (1)) =1 for
another 1 € C°(M),. Let F; € T-Y¥) N VR Y(¢y) (i = 0, 1). Also,
let N; (resp. 0;-) be the transversal bundle (resp. the transversal volume
element) of F;. By (v), we have Ny = Nj. Hence it follows from the
equiaffinities of F; (i = 0, 1) that HOL = 091L for some positive constant c.
This implies that 1o = ¢(™27)/(2") ;. Hence we have

1 (¢ € Ray)

T—1 —1 o
HIT D NVE W) = {0 (¥ ¢ Rao).

It is clear that
T7H0)NVR () ={F €7 (f)NVR ' (¥)|Tr = 0},

where T is the Tchebychev tensor field of F. Hence, if T-1(0)NV R () #
(), then we have dlog v = 0 by Proposition 2.2. That is, 1 is constant. Hence
we have ﬁ(Tv_l(O) NVR !(c)) =1 and jj(j:_l(()) NVR(y)) = 0 for each
non-constant positive function 1. O

According to (vi) of this theorem, there exists the only element of
VR (c) N771(f) having vanishing Tchebychev tensor field for each f €
ND(M) and each positive constant ¢c. We denote this element by f.p and
call it a c-Blaschke immersion (associated with f). In particular, when
¢ = 1, we denote it by fp and call it the Blaschke immersion (associ-
ated with f). For example, for any homogeneous isometric embedding with
parallel second fundamental form (i.e., the inclusion map of homogeneous
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pseudo-Riemannian submanifold with parallel second fundamental form)
f: M < M, an immersion F: M < A" TM defined by F(z) = &FA---NEF
((&F,...,&): an orthonormal normal base of f at z) for € M is c-Blaschke
one for some ¢ > 0.

5. The variational formulas for some volume functions over the
space of all non-degenerate immersions

For an immersion ¢ of M \ D (D: a relatively compact domain with
smooth boundary of M) into M, we define Enp(M)ylp, VR (¢)s|D,
T ()p|p and T71(W)4|p in similar to E(M)e|p.

Theorem 5.1 Let F € VR (¢)y|p, Fi (—e <t < ¢) be a variation of F
in VR™Y(¢)s|p and vy be the transversal volume element map of Fy, where
1 is a positive function on M and ¢ is a non-degenerate immersion ofM\ﬁ
(D: a compact domain of M) into AT(TM) Let v := dFt
have

}t o Then we

% | Vel(R)
== j 5 /D (n(n +r)H((mv)N) — Hgb(ﬁ*v)

+ 2r(dlog ) ((mew) ) + tr(T o VL(W*U)N))Q.

Here 0 is the induced volume element of F', H is the affine mean curvature
function of F, T is the Tchebychev tensor field of F, V' is the transversal
connection of F', h is the affine fundamental form of F' and w is the bundle
projection of \" TM, ()7 (resp. (-)n) is the tangential (resp. transversal)
component of (-) and Wy S a section of f*T*M defined by Mé,h(') =
tr ﬁ(, f0;, [:0;)ND™ in terms of a local coordinate (xl,...,2") of M, where
R is the curvature tensor of V, f := wo F, 9; := 0/0x' and h(-) =
hY(-)0; ® 9; (h: the pseudo—inverse of h).

Proof. Let F, F; (—e < t < ¢) and v be as in the statement. Let IV,
hy, Et, be, 0; and th be the quantities for F;. In particular, set N := Ny,
h = hog, h = hy, b= ho, 0 := Op and 6+ := 05. Let (U,(z,...,2")) be
a local coordinate of M with U C D and (&,...,£L) be a local frame field
of Ny over U such that 6;(¢f,...,&) = 1 and that & (i = 1,...,7) are

smooth with respect to t. Let hy(0;,0;) = hi;(t)€, and by (¢)) = by (t)9; ©0;
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(i,7 =1,...,n). Also, let 9, = 9/0t. According to the proof of (iii) of
Lemma 4.13 of [Wi], we have

8t\t:0wht(81, e ,8n)2r = (8t\t:0hfj)hfj(0)wh(81, . ,an)% (5.1)

and hence
1 y
6t|t:0wht(81, Ce ,8n) = g(ﬁth:oh%)hg’wh(@l, Ce. ,0n) (5.2)
Define a section wf of ffT*M by wy (&) = 05 and Kerwf = fu.TM. Ac-
cording to (6.6) of [Wi], we have
Otle=ohf; = —hJj0” (Viyjuzo€s) = T (Vi1 040k)
Vo:8:0;), (5.3)

where w” := w{ and I’fj is defined by V@iﬁj‘ = Ffj@k. Let Br,, =

h((mwv)r, -) + VE(mw)y and define By, by B, , = [)Zj(O)(BmU)?. From
(5.2) and (5.3), we have

+w” (%az

[t=0

21 O¢|¢=0 logwp, (01, . ..,0n)
= (=hfw (Vay,_o&h) — THw (Va, o 0+0k) + @ (Vo |,y Vi, 0405) ) b
=nK (v,) (0" (1)) = bY T (Brow)]

+b¥wY (R(myv, £.0;) £.0; + Vi, V,0.0;).

By somewhat long calculations, it is shown that the sum of the second and
third terms is equal to

rdivy (mv)r — nrH((mv)n) + divy By,

—tr(T o Br,y) + ,uﬁ’h(ﬂ*’u).
Hence we have

6t|t:0Wht (81, . ,8n)

1 _ .
=5 (nK (v,) (071 (1)) +rdive (mv)r —nr H((m0) N)
+divy B,y — tr(T 0 Br,y) + uéb(ﬂ'*v))wh(@l, coyOn). (5.4)

On the other hand, we have

Olt=00: (01, - .., 0p) = — (K (v,) (071 (1)) + nH((mv) )
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— divy ((mv)7)) (1, - -, On) (5.5)
(see the proof of (i) of Theorem 3.1). Also, we have
w
Ohli—own, (01, ..., 0n) = ?’1 Oli—00:(01, . .., On) (5.6)
because 0 |t=owp, /0 = 0 by the assumption. From (5.4)~(5.6), we have
_ 1 .
K(v,)(0+71(1)) = o {rdivy(mww)r — nrH((mv)N)

— divy Br,y + tr(T 0 Br,y) — i h(mv)}. (5.7)

Also, we have tr(T o By.,) = T((mw)r) + tr(T o VX (mv)n). By sub-
stituting (5.7) and this relation into the first variational formula in (i) of
Theorem 3.1, we obtain the desired relation, where we also use Proposi-
tion 2.2. [l

For an immersion ¢ of M \ D (D: a relatively compact domain with
smooth boundary of M) into M, we set NDM)y :={fe NDIM)|f=¢
on M\ D} and ND(M)4|p :={f|lp|f € ND(M)y}. We define the function
Vol.g,p on ND(M)4|p by

VOICB,D(f) = VOl(fCB) (f S ND(M)¢|D)

In particular, we have the following first variational formula for c-Blaschke
immersions.

Corollary 5.2 Let f € ND(M)y|p, fi (—e <t < ¢) be a variation of f

in ND(M)g|p and v := %ftth:[). Then we have

1
n+ 2r

Volosp(f) = =g [ (o) Hlon) =z ()9,

where H and §) are the quantities for f.p.

dt lt=0

Remark 5.1 (i) The above first variational formula for the case of
(]/\\4/,%,5) = (R™",V,3) coincides with (the equiaffine case of) the for-
mula (6.10) of [Wi].

(ii) in case of R(f.,TM, f,TM)f,TM C f,TM, we have ) =
Mﬁ,b(vN)' Hence, according to the above first variational formula, in the
case where f is a critical point of the volume function Vol.p p, the index
of the critical point f is analyzed by investigating 5—;| o Voleg p(ft) for
transversal variations f; of f in ND(M)4|p.
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From the first variational formula of Theorem 5.1 and (iv) of Theo-
rem 4.1, the following fact follows.

Theorem 5.3 Let F, G € VR (¢)y|p. If To F = 710G, then Vol(F) =
Vol(G) holds.

Proof. Assume that Tto FF = mo G. Let f := mo F. According to the
statement (iv) of Theorem 4.1, there exists a variation F; (0 < ¢ < 1) in
T U ) NVR(Y)y|p with Fy = F and Fy = G. From Theorem 5.1, it
follows that (d/dt) Vol(F;) = 0 because mo Fy = f (0 <t < 1). Hence we
have Vol(F') = Vol(G). O

According to Theorem 5.3, for each positive function ¥ over M and each
relatively compact domain D with smooth boundary of M, a function over
ND(M)y|p is well-defined by assigning Vol(F|p) to each f € ND(M)y|p,
where F is an arbitrary element of V R™!(¢)) with (mo F)|p = f. We denote
this function by Voly, p. Here we note that Vol. p coincides with the above
Vol.g,p. The following fact for Voly, p directly follows from Theorem 5.1.

Theorem 5.4 Let f € ND(M)y|p. Then f is a critical point of Voly p
if and only if the following conditions (a)~(c) hold on D:

(a) n(n+7r)H — pg v =0,

(b) gy o fo = 2 diog,

(c) tr(VT) =0,
where N, Iy H and T are the quantities for an arbitrary element F of
VR (Y)plp with mo F = f and V := V ® V1* (V, V1 the quantities
for F).

Proof. Let f and F be as in the statement. According to the first varia-
tional formula of Theorem 5.1, f|p is a critical point of Vol p if and only
if for any w € I'(f*T'M ) with suppw C D,

/D (n(n+r)H(wy)—pg o (w)+2r(dlogy) (wr)+tr(ToV+twy))o

vanishes. Furthermore this holds if and only if the conditions (a) and (b)
in the statement of Theorem 5.4 and the following condition (¢’) hold:

() / tr(T o V+€)d =0 for any ¢ € I'(N) with suppé C D.
D

We show that the condition (¢’) is equivalent to the condition (¢) in the
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statement. For n € I'(N), we have
tr(T o V1n) = divy T(n) — tr(VT)(n). (5.8)

Hence, by using the Green’s theorem, it is shown that the condition (¢)
implies the condition (¢’). We show the converse. Suppose tr(VT),, # 0
for some x¢g € D. Take a local section & of N over a sufficiently small
neighborhood U of xp in D such that tr(VT)(£) has no zero point on U.
Let p be a positive function on M with p(z¢) = 1 and suppp C U. Clearly
we have [}, ptr(VT)(€)8 # 0. On the other hand, from the condition (¢’),
we have [ tr(T o V*(p€))0 = 0. This together with (5.8) and the Green’s
theorem deduces [, ptr(VT)(£) = 0. Thus a contradiction arises. Hence
it follows that tr(VT) = 0 on D. Thus the condition (¢’) implies the
condition (c). This completes the proof. O

From this theorem, we have the following corollaries.

Corollary 5.5 Assume that M is flat. Let f € ND(M)y|p. Then f is
a critical point of Vol p (c: a positive constant) if and only if H = 0 holds
on D, where H is the affine mean curvature function of f.p.

Corollary 5.6 Assume that M is flat. If ¢ is not constant on D, then
Vol p has no critical point.

Remark 5.2 According to Corollary 5.6, in the case where M is flat,

we should treat Vol, p’s (c: a positive constant) as a volume function over
ND(M)y|p-

Also, we prove the following second variational formula.

Theorem 5.7 Assume that M is flat. Let f be a critical point of Vol.p.
Then, for a transversal variation f; (—e <t <€) of f in ND(M)g|p, we
have

d? ~1 1
— 1. = tr(A2%) — Apv)?
|, Voot = 5 [ {nenead) - o
—tr(Ay 0 VB,) 4 (n + 1) tr(Q, o V40)
+ t2(Qu o h(By, )},
where v = % 0 A, h, b, 0, V and V' are the quantities for f.g,

Ayv is defined by Ngv = hy (VaLi(VaJ;U) - Véa.ajv)p in terms of the local
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expression, B, is the tangent vector field of D defined by Bl := hﬁ)jVj-v” mn
terms of the local expression and Q. is a section of the bundle N* @ T M
(N: the transversal bundle of f.p) defined as below.

Let f, fi, v and N be as in the statement of Theorem 5.7. Define
a map 0 of D x (—¢,¢) into M by d(x,t) = fi(x). Take £ € N,. Let & be

a vector field along t — d(x,t) with §o = & and & € (IVy),, where Ny is the
transversal bundle of (f;).p. Then we define Q,(£) by Qv (&) == (Va,|,_&)1s

which is independent of the choices of the variation f; with % =

th Gl
(because f is a critical point of Vol. p) and the extension ¢ of &, that is,
determined by only v and £. Thus a section @, of N* ® T'M is well-defined

by assigning @, (&) to each £ € N.

Proof of Theorem 5.7. Since f is a critical point of Vol. p, f; is a transver-
sal variation of f and M is flat, it follows from (ii) of Theorem 3.1 and
Theorem 5.4 that H vanishes and

2
o ) = T (OL1(1))2 — tr(A2
_ veloo() = [ {er@ WP -

dt?|,_
K <jt L:OK (‘Z’;) ) (0+1(1)) }9, (5.9)

where H, A, 6 and 6+ are the quantities for f.z, v := % o and v, 1=
%‘ 1o (V2 the transversal volume element map of (f;)cp). From (5.7), we
have

K@)0771(1) = =, dive B,
and

k(G ) et

1 . . =
= (rdivy: (0,:0;)r — nr Hy((6.0¢) n) — divee Bfp,),  (5.10)

n

where § is a map of D x (—¢,¢) into M defined by §(z,t) := fi(x), and VY,
H; and B! are the quantities for (f;).p. Since Apv = divy B,, we have
1

K(@,)0 (1) = ———

Ay (5.11)
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Let (€1,..., &%) be a frame field of Ny with 6;-(&t, ..., &L) = 1. Then we have
d th 1-1
—| K 0
dt‘ (dt)< (1)
dvy 1-1
— k(2| K(ZH))ea
<dt t=0 (dt>>( 1)

+ZK% V&L (Voo EN, - &)

—I-ZKU,, (€ es (Voo - - &)

- K(ﬁ)tZOK@?))wL—lu)) K@) (1)

—+ ZK(E,)(&L o 'an(gp)v ce 75’”)
p=

= (] () ey - kG
—tr(Qy o V40). (5.12)

Also, since (6,0;)7|i—o = vy = 0, we have
divye (8,0;)7
‘ {Z 7(8:01, .., 0, (V5 (8.00)1), .. ,5*an)}
~ dtli=o . 7(0,01, . .., 6,0n)
_ Z T(f201, - -, (Vayu_o0x (V4 (8:0)7))1, - - -, fuOn)

(f*ala" af*a’n)

_ Z T(f201, -+ FVo, (Voo (0:0)T)T)s - - - fOn)
T(f«O1, ..., fOn)

= dlvv(vat‘tzo (6:0))1)T, (5.13)

e
dt lt=

where 7 is the tangential volume element map of (ft)eB- Also, since H = 0,
(040¢)T|t=0 = 0 and M is flat, we have

d

ne| H(@G.0)N)
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’ E": 71(8,01, . .., Vo (.0)N); - - -, 6505)
(8,01, ..., 0.0p)

=1

= EK@)(fu0h, -, Vo, - fuOh)
B Z; 001, ...,0n)
33T ((A)i(Aw) — (Av)i(AL)])

i=1 j#i

- T(f*al’ ctt %8t‘t:0%ai((6*8t)]v)7 ceey f*an)
*Z 0(01,...,8)

- T(f*al,... f*
+; TN dt‘t— (0,01, 0.0n)

— nH()K(5)(f.07"(1)) — 0’ H(v)? + tr(A2)

L T(fa0h, -, Qu(Vg ), fuOn)
> TG

=1

_ZT [0, ... vam @ o) i
+ Vai(v(at‘t:o (5*8t)N)T, ... ,f*an)
—nH _ _
< G (K (5167 (1) = nH ()
= t1(Qy 0 V) + tr(A2) — divy (Va,|,_o (6:00) ) 1 (5.14)

where (Av)g is the component of A, with respect to (01, ...,d,). Also, since
H =0 and M is flat, we have

dint B(ts Oy
71(8,01,...,V,0.B% 4, ..., 0:0n)
dt’t 0 2 7(0,01, ..., 6.0n)

iK f*alw'w%aif*-év?'")f*an)
0(01,...,0n)

d
o

=1

3

— (A0){(VB,))

i=1 jyéz
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n zn: T(f*al, ey Vath:ovaz‘é*Bg*Bt? Ce ,f,ﬂn)
0(817 s 7871)

=1

"7 (fs0n, ..., fVo, By, ..., fOn)
+; 001, ....0n)

g
dt lt=0

— (divy B,)K(5,)(f.67(1)) - nH(v) div B, + tr(A, 0 VB,)

T (fi01, .., Qu(h(By, 3)), . . ., fxOn)
_; 0(01,...,0n)

(6.0, .., 8,05)

=+ din(%@dt:O&*Bg*&)T — nH((@aﬂt:Oé*Bg*&)N)
~ divy By(K(5,)(f-671(1)) — nH(v))

= tI‘(Av © VBU) + diVV(eath:o(s*Bg*at)T - tr(Qv © h(Bm ))
(5.15)

From (5.10)~(5.15), we have
k(G () et

1 1
= Npv)? 2r) tr(Q, o V-
o e O+ (4 2) (@ oV

+r din(ﬁaAt:O((s*at)T)T —rtr(Qy, o V1u)
+t1(Qu 0 h(Buy, ) — rtr(A2) + 1 dive (Va,|,_, (6:8:) 8T

_ tl“(AU o VBU) — divv(%ath—oé*Bg*at)T}' (516)

By substituting (5.11) and (5.16) into (5.9) and using the Green’s theorem,
we have the desired variational formula. O

Let f be a critical point of Vol. p. Assume that there exists a parallel
normal vector field v of F such that h(v) has the inverse, that is, the matrix
(h(v)¥) consisting of the components of h(¥) is non-singular. Let 1 be
a positive function over M whose support is contained in the closure D
of D. Then we have the following second variational formula in terms of
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Theorem 5.7.

Corollary 5.8 Let f; (—e < t < €) be a transversal variation of f in
ND(M)g|p having nv as the variational vector field. Then we have
d2

dt?

VOlc,D (ft)
t=0

n+r 9 9 1 —
= — tr(Az dn(L
n+2T/D{77 t v>+n—|—2r(n(

_ trz_l(a)((dn 0 Aj) ® dn)}@,

() + A1 mym) Loy

where A and b are the quantities for f.p and E_l, f_l, Af—l(@)n; AN

and tri,l(ﬁ)((dn o Ay) ® dn) are the quantities defined as below.

Remark 5.3 In the case where » = 1 and v is the affine normal of f, we

have LJ} = (LYY = 65, (717 = p% and (L) = V;h¥ = T' = 0,
where (h¥/) = (h;;)~1. Hence this second variational formula is as follows:

d? n+1 9. 9 1 )
—5| Vol = - tr(A2) + ——(A
|, Volen () n+2/D{17 L AY)

~tn((dno Ay) @ dn>>}e,

which coincides with the second wvariational formula in Theorem 4.2
of [VeVr].

Let h and b be as in Corollary 5.8. Define a section L of N* @ TM ®
T*M ® N by Lff; = hf)khzi, where by and hf; are the components of h and h
with respect to (01, ...,0,) and (&1, ..., &) in the previous paragraph. Note
that the following matrix is non-singular:
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) S EERRI JEC SRR /2
LH . L;1~7{ . L71’717, e L;1‘77"L
L= : : : :
L?ll ce LY Lﬁ R 1S
L?11 - Li}{ - LZ}% e L';}j;

Hence a section L™ of N @ T*M @ TM @ N* is defined by (L_l)f,iLﬁﬁg =

5;15%, where ¢, and 5i are the Kronecker’s delta. Furthermore, we de-
fine a section L~! of N* @ TM @ TM and a section 77" of N* R TM

lzy (E_l)ﬁ,j = (L‘l)’k‘f)hﬁj and (171)2 =V (E_l)foj, respectively, where
V is the connection of N* @ TM ® T'M induced from the induced connec-

tion V on M and the transversal connection V+. For a function n on M
and a parallel transevrsal vector field v, we define Aygn and Az, @

by Aymyn = h(v)¥(V?n);; and AE_l(ﬁ)n = E—l(a)ij(v%)“, respectively.
Also, we define trz_, )((dn o Ay) ® dn) by trz,l(@)((dn o Ag) ® dn)) =

v

L=(3)% (dn o Ag)sdn;.

Proof of Corollary 5.8. Let v := nv. According to Theorem 5.7, we have

d2
p7o) - Vol p(ft)
_ 1 2 2y 1 2 _ B
= o /D{(n +r)n”tr(A7) o (Ayv)° —tr(Ay o VBy)
) 0(Qu o VE) + Qo (B ) [0 (517
By somewhat long calculations, we have
Ahv = din Bv = Ah(«v)’r] (518)
and
tr(A, o VB,)
= divy (1 try) (dn ® Ag)) — trye) ((dn o Ag) ® dn), (5.19)

where we use the Codazzi equation. Let 0: D x (—¢,e) — M by 8(z,t) =
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fi(z) ((x,t) € D x (—¢,¢)) and N; (resp. 6;) be the transversal bundle
(resp. the transversal volume element) of (f;).p. Take a local coordi-
nate (z!,...,2") on an open set U of D and vector fields ¢1,...,&, along
5|U><(—a,a) such that (fl)(x7t),. R (fr)(%t) give a frame of N, with
07 ((€1) (2t)s - - -+ (&) (wty) = 1 for each (z,t) € U x (—¢,e). Let iy (Qv)),
and (A@)g be the components of h, @, and Az with respect to (O1,...,0n)

and (£1)(.,0), - - - » (&) (,0), Where 0; := 0/0z". Let (Varliolp)N = 22:1 Kp&y-
Then, by somewhat long calculations, we have

R (Qu)) = —0ikh — (Av)l0im. (5.20)
By operating bﬁi to both sides of this relation, we have
L2(QuY, = =05 (9irf) + (As)]9jm).
Furthermore, by operating (Lil)gf/ to both sides of this relation, we have
(Qu)y, = —(L71) (9 + (An)]0jm). (5.21)
Hence we have
tr(Qu o V) = (9m)(Qu) 0"
= — oy (dn®d(kh)) — trz,l(ﬁ)((dn o Ay) ®dn). (5.22)
Also, from (5.20), we have
tr(Qu o h(Bu, ) = (9m)b(0) . (Qu),
= — trh(q—}) (dn® d(/@g)) — trh(@)((dn o Aj) ®dn). (5.23)
On the other hand, it follows from V1% = 0 that
tryp) (dn ®@ d(kh)) = divg X — (Agyw)n) kb,
that is,
tr(Qu 0 h(By, "))
= —divy X + (Dy@)n)kh — trye)((dn o Az) @ dn), (5.24)
where X is defined by X* := h(v)"” (9;n)rp. Also, we have
tri_l(ﬁ)(dn ® d(I{,Z))

=divy Y = L (0) (Oim)rh — (Do gy m)Hh (5.25)
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where Y is defined by Y := E_l(ﬁ)ji(ajn)ﬁﬁ. From (5.22) and (5.25), we
have

tr(Qy 0 Vo) = —dive Y + L7 (0)'(0im)kf + (Ag -1 pyn)

- tri,l(ﬁ)((dn o Ag) ®dn). (5.26)
On the other hand, by somewhat long calculations, we can show
(2:0m)v” — i (A);

— ((V@iaj)n)f}p + 8t‘t:0(ht>fj + h%/ﬂ)ﬁ,

where we use the flatness of V. By operating %j to this both sides, we have

Ot|t=0wh,
Apyyn = nkh + 27‘T,

where we use H(v) = 0. Also, from (5.4), (5.7) and (5.18), we have

1

Otlt=own, (01, ...,0,) = =

(Ah(ﬁ)n)wh(ah “eey 677,)7

that is, Oli=own,/wp = 1/(n + 2r)Apn. Hence we have sj = 1/(n +
2r)Agyn- By substituting this relation, (5.18), (5.19), (5.24) and (5.26)
into (5.17) and using the Green’s theorem, we can obtain the desired rela-
tion. g

From this corollary, we directly have the following fact.

Corollary 5.9 Let f be an immersion of an n-dimensional manifold M
into an (n + r)-dimensional flat equiaffine manifold (Mﬁ,é) and D be
a non-degenerate part of f. Assume that D has a relatively compact com-
ponent Do with smooth boundary. Let f; (—e < t < &) be a transversal
variation of f satisfying filarp, = flanp, and V4iv =0, where v is a vari-
ational vector field of f; and V= is the transeversal connection of (f|py)eB-
If the affine mean curvature function H of (f|p,)en vanishes and the affine
shape operator A, of (f|p,)cB is non-zero and real diagonalizable, then f|p,
is a critical point of Vol. p, and c%;}t:o Vole. p, (ft|p,) < 0, that is, the crit-
ical point f|p, is not a minimal point of Vol p,.

Remark 5.4 Since dDg consists of degenerate points of f, there is possi-
ble to exist a V-t-parallel transversal vector field v on Dy satisfying
im0 Vz), = 04, for any sequence {z;}72, in Dy with limy_,o 21 € 0Dy,
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f(M)
non-degenerate part
Fig. 4.
where xg := limy_, zx and 0, is the zero element of N,,. In particu-

lar, if » = 1, then any V-*-parallel transversal vector field on Dy is such
one. Hence, there is possible to exist the transversal variation f; as in the
statement of this corollary.

Proof.  According to Corollary 5.5, f|p, is a critical point of Vol. p, because
of H = 0. Hence, it follows from Corollary 5.8 that

d? n+r / 9

— Vol =— tr(Az)0,
dt? o C,Do(ft|D0) n+ 2r Do ( v)

where we use Vv = 0. Since A, is non-zero and real diagonalizable, we

have tr(A2) > 0 and hence %L:O Vol p, (ft|p,) < 0. Thus f|p, is not

a minimal point of Vol. p,. ]
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