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The variational formulas of the volume function

in the equiaffine geometry

Naoyuki Koike
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Abstract. We obtain the first and second variational formulas for the volume function

over the space of all equiaffine immersions. By using the first variational formula, we

define some kinds of volume functions over the space of all non-degenerate immersions

and obtain the Euler-Lagrange equation for those volume functions. Also, in the case

where the ambient space is flat, we obtain the second variational formulas for special

ones of those volume functions.

Key words: equiaffine immersion, non-degenerate immersion, Tchebychev tensor field,

volume ratio function.

1. Introduction

Let D be a relatively compact domain with smooth boundary of an n-
dimensional manifold M . Let f be a non-degenerate immersion of M into
the (n+1)-dimensional equiaffine space (Rn+1, ∇̃, ω̃), where ∇̃ is the affine
connection defined by ∇̃∂/∂xi∂/∂xj = 0 (1 ≤ i, j ≤ n + 1) and ω̃ is the
volume element defined by ω̃(∂/∂x1, . . . , ∂/∂xn+1) = 1 in terms of the nat-
ural coordinate (x1, . . . , xn+1) of Rn+1. The immersion f admits uniquely
a pair (N, θ⊥) of its transversal bundle N and its transversal volume ele-
ment θ⊥ such that (f,N, θ⊥) is an equiaffine immersion with θ = ωh (i.e.,
a Blaschke immersion), where θ is the induced volume element and ωh is the
volume element determined by the affine fundamental form h. The volume
element θ is called the affine volume element. In 1989, L. Verstraelen and
L. Vrancken [VeVr] obtained the first and second variational formulas for
the volume function Vol (for the affine volume element) over the whole of
the restriction f |D to D of a non-degenerate immersion f of M into the
equiaffine space (Rn+1, ∇̃, ω̃) satisfying f |M\D = φ, where φ is a fixed non-
degenerate immersion of M \ D into (Rn+1, ∇̃, ω̃). Note that they treat
only transversal variations. They showed that the affine mean curvature
of f vanishes on D if and only if d

dt

∣∣
t=0

Vol(ft|D) = 0 for any transversal
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variation ft of f (f0 = f) consisting of non-degenerate immersions with
ft|M\D = φ.

Remark 1.1 In 1982, E. Calabi [C] has already obtained the first and
second variational formulas for the same volume function over the whole of
locally strongly convex immersion into (Rn+1, ∇̃, ω̃).

In 2002, M. Wiehe [Wi] treated regular (non-degenerate in the sense of
this paper) immersions of general codimension into the equiaffine space
(Rn+r, ∇̃, ω̃). Such an immersion f admits uniquely a pair (N, θ⊥) of
its transversal bundle N and its transversal volume element θ⊥ such that
(f,N, θ⊥) is an equiaffine immersion with θ = ωh and T = 0, where θ is the
induced volume element, ωh is the volume element defined from the affine
fundamental form h and T is the Tchebychev tensor field. We call the vol-
ume element θ the affine volume element. Such an equiaffine immersion
is interpreted as the higher codimension version of a Blaschke immersion.
Hence we call such an immersion a Blaschke immersion of general codimen-
sion. He obtained the first variational formula for the volume function Vol
(for the affine volume element) over the whole of the restriction f |D to D of
such an immersion f of M into (Rn+r, ∇̃, ω̃) satisfying f |M\D = φ, where
D and φ are as above. He showed that the affine mean curvature function
of such an immersion f vanishes on D if and only if d

dt

∣∣
t=0

Vol(ft|D) = 0
holds for any variation ft of f (f0 = f) consisting of such immersions.

Remark 1.2 In 1994, F. Dillen, G. Mys, L. Verstraelen and L. Vrancken
[DMVV] treated certain kind of equiaffine immersions of codimension two
into (R4, ∇̃, ω̃). It is shown that the equiaffine immersions are Blaschke
immersion of codimension two. They obtained the first variational formula
for a certain kind of volume function over the whole of such immersions. It
is shown that the volume function coincides with one for the affine volume
element. Thus the result of [Wi] includes that of [DMVV].

In this paper, we treat general equiaffine immersions into a general
equiaffine manifold. For each immersion f of a manifoldM into an equiaffine
manifold (M̃, ∇̃, θ̃), there exist infinitely many pairs (N, θ⊥) of its transver-
sal bundle N and its transversal volume element θ⊥ such that (f,N, θ⊥)
is an equiaffine immersion. To each equiaffine immersion (f,N, θ⊥), an
immersion of M into the exterior product bundle

∧r(TM̃) (r := dim M̃ −
dimM) of degree r of the tangent bundle TM̃ satisfying some conditions
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corresponds bijectively (see Section 2). Hence we can define an equiaffine
immersion into (M̃, ∇̃, θ̃) as such an immersion into

∧r(TM̃). When we
consider the variational problem of equiaffine immersions, we had better
define an equiaffine immersion as such an immersion into

∧r(TM̃) rather
than the triple (f,N, θ⊥) because the variation vector field is then catched
as a vector field along the immersion. Hence we shall define an equiaffine
immersion as such an immersion. We first obtain the first and second vari-
ational formulas for the volume function over the space of all equiaffine
immersions (see Theorem 3.1). Next we investigate some classes consist-
ing of non-degenerate equiaffine immersions (see Theorem 4.1) and obtain
the first variational formulas for the volume functions over the classes (see
Theorem 5.1). According to the first variational formula, some volume func-
tions are well-defined over the space of all non-degenerate immersions. We
obtain the Euler-Lagrange equations for those volume functions (see Theo-
rem 5.4). In particular, we can obtain the Euler-Lagrange equation for the
volume function over the space of all c-Blaschke immersions. See Section 4
about the notion of a c-Blaschke immersion. In the case where the ambient
space is flat, the Euler-Lagrange equation is reduced to H = 0 (H: the affine
mean curvature). Furthermore, we obtain the second variational formula
for the volume function over the space of all c-Blaschke immersions into
a flat equiaffine space (see Theorem 5.7).

2. The definition of an equiaffine immersion in a new style

In [K], we defined the notion of an equiaffine immersion of general
codimension. We consider a variation of the immersions. For its purpose,
we had better define the notion in a new style as follows. Let (M̃, ∇̃, θ̃)
be an (n + r)-dimensional equiaffine manifold and M be an n-dimensional
manifold. Let

∧r TM̃ (resp.
∧r T ∗M̃) be the exterior product bundle of

degree r of the tangent bundle TM̃ (resp. the dual bundle T ∗M̃). Denote
the bundle projections of

∧r TM̃ and
∧r T ∗M̃ by the same symbol π. We

define the set C∧(M, M̃) (resp. C∧∗(M, M̃)) by

C∧(M, M̃) := {F ∈ C∞(M,
∧rTM̃) |Π(F (x))⊕ (π ◦ F )∗(TxM)

= T(π◦F )(x)M̃ (x ∈M)}
(resp. C∧∗(M, M̃) := {F ∈ C∞(M,

∧rT ∗M̃) | KerF (x)

= (π ◦ F )∗(TxM) (x ∈M)}),
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where Π is the natural projection of
∧r TM̃ removed the zero section onto

the Grassmann bundle Gr(TM̃) of r-dimensional subspaces. Also, define
a submersion Φ: C∧(M, M̃) → C∧∗(M, M̃) by Φ(F )(x)(F (x)) = 1 and
KerΦ(F )(x) = (π ◦ F )∗(TxM) (x ∈ M). For F ∈ C∧(M, M̃), we set f :=
π ◦ F , ν := Φ(F ) and Nx := Π(F (x)) (x ∈ M). We call ν a transversal
volume element map of F .

Remark 2.1 In the case where the ambient space (M̃, ∇̃, θ̃) is an equi-
affine space (Rn+r, ∇̃, ω̃), the tansversal volume element map ν coincides
with a transversal volume element map (of F ) defined in [KT] under the
identification of

∧r T ∗f(x)R
n+r (x ∈M) with

∧r(Rn+r)∗ (see Fig. 2).

Denote by prT (resp. prN) the projection of f∗TM̃ onto f∗TM (resp. N).
We define a connection ∇ on M and a N -valued symmetric (0, 2)-tensor
field h on M by f∗(∇XY ) = prT (∇̃Xf∗Y ) and h(X,Y ) := prN (∇̃Xf∗Y )
(X, Y ∈ TM), respectively. The quantities ∇ (resp. h) is called the connec-
tion induced from ∇̃ by F (resp. the affine fundamental form of F ). Then
we call F an affine immersion of (M,∇) into (M̃, ∇̃). Also, we define
a section A of the tensor bundle N∗ ⊗ T ∗M ⊗ TM and a connection ∇⊥
of N by f∗(AξX) = −prT (∇̃Xξ) and ∇⊥X ξ = prN (∇̃Xξ) (X ∈ TM , ξ ∈ N),
respectively. The quantities A (resp. ∇⊥) is called the affine shape ten-
sor (resp. the transversal connection) of F . Define a section H of N∗ by
H(ξ) = (1/n) trAξ (ξ ∈ N). The section H is called the affine mean cur-
vature function of F . Set θ⊥ := ν|N×···×N , which is called the transversal
volume element of F . Define a volume element θ on M by

θ(X1, . . . ,Xn) =
θ̃(f∗X1, . . . , f∗Xn, ξ1, . . . , ξr)

θ⊥(ξ1, . . . , ξr)
(X1, . . . ,Xn ∈TM),

where (ξ1, . . . , ξr) is an arbitrary frame of N . This volume element θ is
called the induced volume element of F . Define a section τ of f∗

∧n T ∗M̃
by τ ◦ fn∗ = θ and Ker τ = N , where fn∗ := f∗ × · · · × f∗ (n-times). We
call τ a tangential volume element map of F . If ∇θ = 0, then we call F an
equiaffine immersion of (M,∇, θ) into (M̃, ∇̃, θ̃).
Remark 2.2 Let (f,N, θ⊥) be an equiaffine immersion of an equiaffine
manifold (M,∇, θ) into another equiaffine manifold (M̃, ∇̃, θ̃) in the sense
of [K], where N is the transversal bundle and θ⊥ is the transversal vol-
ume element (hence θ⊥ ∈ Γ(

∧rN∗) (r := dim M̃ − dimM)). Then an
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Fig. 1.

Fig. 2.

immersion F : M ↪→ ∧r TM̃ is defined by F (x) := ξx1 ∧ · · · ∧ ξxr (x ∈ M),
where (ξx1 , . . . , ξ

x
r ) is a frame of Nx with θ⊥x (ξx1 , . . . , ξ

x
r ) = 1. This map F

is an equiaffine immersion of (M,∇, θ) into (M̃, ∇̃, θ̃) in the above sense.
In particular, if (f, ξ) : (M,∇, θ) ↪→ (M̃, ∇̃, θ̃) is an equiaffine immersion
of codimension one (ξ: the equiaffine transversal vector field), then an im-
mersion F : M ↪→ TM̃ defined by F (x) := ξx (x ∈ M) is an equiaffine
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immersion in the above sense.

Let E(M, (M̃, ∇̃, θ̃)) := {F ∈ C∧(M, M̃) |F : equiaffine (i.e., ∇θ = 0)}.
For simplicity, we denote this set by E(M). Let F ∈ E(M). Take a frame
(ξ1, . . . , ξr) of N with θ⊥(ξ1, . . . , ξr) = 1 and let h = hρ ⊗ ξρ, where ρ runs
{1, . . . , r} and we use the Einstein’s rule. In the sequel, we use this rule.
Define a (0, 2r)-tensor field h̃ on M by

h̃(X1, X2, . . . , X2r−1, X2r)

:= δρ1···ρrh
ρ1(X1, X2) · · ·hρr(X2r−1, X2r)

for X1, . . . , X2r ∈ TM , where δρ1···ρr is given by

δρ1···ρr :=





sgn
(

1 · · · r
ρ1 · · · ρr

)
({ρ1, . . . , ρr} = {1, . . . , r})

0 ({ρ1, . . . , ρr} 6= {1, . . . , r}).

It is easy to show that h̃ is well-defined, that is, it is independent of the
choice of a frame (ξ1, . . . , ξr) of N with θ⊥(ξ1, . . . , ξr) = 1. An n-form ωh
on M is defined by

ωh(∂1, . . . , ∂n) =
∣∣∣∣
1
n!
δi

1
1···in1 · · · δi12r···in2r h̃i11···i12r

· · · h̃in1 ···in2r

∣∣∣∣
1/(2r)

(
=

∣∣∣δi12···in2 · · · δi12r···in2r h̃1i12···i12r
· · · h̃nin2 ···in2r

∣∣∣
1/(2r)

)
,

where (∂1, . . . , ∂n) is the natural base of a local coordinate (x1, . . . , xn) of M
which is positive with respect to θ. h̃

ij1···ij2r
(j = 1, . . . , n) are components

of h̃ with respect to (x1, . . . , xn) and

δi
1
j ···inj :=





sgn
(

1 · · · n
i1j · · · inj

)
({i1j , . . . , inj } = {1, . . . , n})

0 ({i1j , . . . , inj } 6= {1, . . . , n}).
It is easy to show that ωh is well-defined, that is, it is independent of the
choice of a local coordinate (x1, . . . , xn) of M which is positive with respect
to θ. If ωh is a volume element on M , that is, it does not vanish at each
point of M , then we call F a non-degenerate equiaffine immersion. Denote
by END(M) the set of all non-degenerate equiaffine immersions of M into
(M̃, ∇̃, θ̃). Let f be an immersion of M into (M̃, ∇̃, θ̃). If there exists F ∈
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END(M) with π ◦ F = f , then f is called a non-degenerate immersion.
Then, for any F ∈ E(M) with π ◦ F = f , we have F ∈ END(M). Denote
by ND(M) the set of all non-degenerate immersions of M into (M̃, ∇̃, θ̃).
Define a (2r, 0)-tensor field h̃−1 on M by

h̃−1 :=
1

(n− 1)!ωh(∂1, . . . , ∂n)2r
δi1j

1
1 ···jn−1

1 · · · δi2rj12r···jn−1
2r

× h̃j11 ···j12r
· · · h̃jn−1

1 ···jn−1
2r

∂i1 ⊗ · · · ⊗ ∂i2r ,

where h̃jk
1 ···jk

2r
(k = 1, . . . , n − 1) are the component of h̃ with respect to

(x1, . . . , xn). It is easy to show that h̃−1 is well-defined. Denote by h̃i1···i2r

the component of h̃−1 with respect to a local coordinate (x1, . . . , xn). This
tensor field h̃−1 is called the pseudo-inverse of h̃. Also, define a section h

of the tensor bundle N∗ ⊗ TM ⊗ TM by

h(ξρ) = rδρρ2···ρrh
ρ2
k3k4

· · ·hρr

k2r−1k2r
h̃ijk3k4···k2r−1k2r ∂i ⊗ ∂j ,

where hρkl is defined by h(∂k, ∂l) = hρklξρ. It is easy to show that h is well-
defined. This section h is called the pseudo-inverse of h. Denote by h

ij
ρ the

component of h with respect to (∂1, . . . , ∂n) and (ξ1, . . . , ξr). We prepare
the following lemma.

Lemma 2.1 For components hρij (resp. h
ij
ρ ) of h (resp. h) with respect to

(∂1, . . . , ∂n) and (ξ1, . . . , ξr), we have hρijh
ij
γ = nδργ and hρijh

ik
ρ = rδkj .

See Lemma 4.13 of [Wi] about the proof of this lemma. Denote by ∇̂ the
connection of N∗⊗TM ⊗TM induced from ∇ and ∇⊥. Define a section T
of N∗ ⊗ TM by T iρ = (∇̂jh)jiρ . For each section ξ of N , the tangent vector
field T (ξ) of M is called the Tchebychev vector field of F . We call T the
Tchebychev tensor field of F . Define a 1-form T̂ on M by T̂ (∂j) = T iρh

ρ
ij .

We call T̂ the Tchebychev form of F . Also, we define a section T e of
f∗T ∗M̃ ⊗ TM by T e|N = T and T e|f∗TM = 0. We call T e the extended
Tchebychev tensor field of F .

Proposition 2.2 For F ∈ END(M), we have T̂ = 2r d log ωh
θ . In partic-

ular, the form T̂ is exact.

Proof. This relation directly follows from (5.2) of [Wi] and the equiaffinity
of F . ¤
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3. The variational formulas for the volume function over the
space of all equiaffine immersions

Let E(M) be the space of all equiaffine immersions of a manifold M

into an equiaffine manifold (M̃, ∇̃, θ̃). Let π be the bundle projection of∧r(TM̃). For an immersion φ of M \D (D: a relatively compact domain
with smooth boundary of M) into M̃ , we set E(M)φ := {F ∈ E(M) |π ◦
F = φ on M \D} and E(M)φ|D := {F |D |F ∈ E(M)φ}. Define the volume
Vol(F ) of F ∈ E(M)φ|D by Vol(F ) =

∫
D θ, where θ is the induced volume

element of F . Let K be the connection map of the connection (which is
also denote by ∇̃) on

∧r T ∗M̃ induced from ∇̃, that is, the element of
Γ(T ∗(

∧r T ∗M̃)⊗ V ) defined by
(
K

(dµ
dt

∣∣∣
t=0

)
= ∇̃

π∗( dµ
dt
|t=0)

µ

for each curve µ : (−ε, ε) → ∧r T ∗M̃ , where V is the vertical distribution
of

∧r T ∗M̃ , π is the bundle projection of
∧r T ∗M̃ and we identify Vµ(0)

with the fibre
∧r T ∗π(µ(0))M̃ . First we prove the following first and second

variational formulas.

Theorem 3.1 Let dimM = n, dim M̃ = n+ r, D be a relatively compact
domain with smooth boundary of M and φ be an immersion of M\D into M̃ .
Let F ∈ E(M)φ|D, Ft (−ε < t < ε) be a variation of F in E(M)φ|D and
νt be the transversal volume element map of Ft. Let v := dFt

dt

∣∣
t=0

and vν :=
dνt
dt

∣∣
t=0

.
(i) We have the following first variational formula:

d

dt

∣∣∣
t=0

Vol(Ft) = −
∫

D

(
nH((π∗v)N ) +K(vν)(θ⊥−1(1))

)
θ,

where H is the affine mean curvature function of F , π is the bundle
projection of

∧r(TM̃), (π∗v)N is the N -component of π∗v (N : the trans-
versal bundle of F ) and K(vν)(θ⊥−1(1)) implies K(vν)(ξ1, . . . , ξr) as
θ⊥(ξ1, . . . , ξr) = 1.
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(ii) We have the following second variational formula:

d2

dt2

∣∣∣∣
t=0

Vol(Ft)

=
∫

D

((
nH((π∗v)N ) +K(vν)(θ⊥−1(1))

)2

− 2 div∇((π∗v)T )
(
nH((π∗v)N ) +K(vν)(θ⊥−1(1))

)

− trT R̃(·, π∗v)π∗v − tr
(
(A(π∗v)N

−∇(π∗v)T )2
)

+ (div∇((π∗v)T ))2 +K(vν)(θ⊥−1(1))2

−K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))− nH

(
(∇̃∂t|t=0

δ∗∂t)N
))
θ,

Here R̃ is the curvature tensor of ∇̃, trT R̃(·, π∗v)π∗v is the trace of
prT ◦R̃(·, π∗v)π∗v|f∗TM (f := π ◦ F ), A (resp. ∇) is the affine shape tensor
(resp. the induced connection) of F , (π∗v)T := prT (π∗v) and δ is a map
of D × (−ε, ε) into M̃ defined by δ(x, t) := (π ◦ Ft)(x), where prT is the
projection of f∗TM̃ onto f∗TM with respect to the decomposition f∗TM̃ =
f∗TM ⊕N .

Proof. Let Nt, θt, θ⊥t , ht, At, ∇t and ∇⊥t be the quantities for Ft. Take
a local coordinate (U, (x1, . . . , xn)) of M with U ⊂ D. For simplicity, set
∂i := ∂/∂xi (i = 1, . . . , n). Let (ξt1, . . . , ξ

t
r) be a local frame field of Nt on U

with θ⊥t (ξt1, . . . , ξ
t
r) = 1. Set δ(t, x) := ft(x) (x ∈ M). Denote by the same

symbol ∇̃ the connection of δ∗TM̃ induced from ∇̃ by δ. Let (∇̃∂tξ
t
ρ)Nt =

τ̃µρ ξtµ. Then we have

d

dt

∣∣∣
t=0

θt(∂1, . . . , ∂n)

=
d

dt

∣∣∣
t=0

θ̃(ft∗∂1, . . . , ft∗∂n, ξt1, . . . , ξ
t
r)

=
n∑

i=1

θ̃
(
f∗∂1, . . . , (∇̃∂i

δ∗∂t)|t=0, . . . , f∗∂n, ξ01 , . . . , ξ
0
r

)

+ τ̃ρρ θ(∂1, . . . , ∂n). (3.1)

Also, we have
(
(∇̃∂i

δ∗∂t)|t=0

)
T

= (∇̃∂i
π∗v)T = −A(π∗v)N

∂i +∇∂i
(π∗v)T , (3.2)
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Fig. 3.

where ( · )T implies the element of TM such that f∗(( · )T ) is equal to the
f∗TM -component of ( · ). From (3.1) and (3.2), we have

d

dt

∣∣∣
t=0

θt(∂1, . . . , ∂n)

=
n∑

i=1

θ(∂1, . . . ,−A(π∗v)N
∂i +∇∂i

(π∗v)T , . . . , ∂n)+ τ̃ρρ θ(∂1, . . . , ∂n)

=
(−nH((π∗v)N )+ div∇(π∗v)T + τ̃ρρ

)
θ(∂1, . . . , ∂n), (3.3)

where div∇(π∗v)T is the divergence of (π∗v)T with respect to ∇. Also, we
have

∂t|t=0θ
⊥
t (ξt1, . . . , ξ

t
r) = ∂t|t=0νt(ξt1, . . . , ξ

t
r)

= K(vν)(θ⊥−1(1)) + τ̃ρρ ,

which vanishes because of θ⊥t (ξt1, . . . , ξ
t
r) = 1. That is, we have τ̃ρρ =

−K(vν)(θ⊥−1(1)). From ∇θ = 0 and (π∗v)T |∂D = 0, it follows that∫
D div∇(π∗v)T θ = 0 (see Lemma 6.1 and (2.11) of [Wi]). By integrat-

ing (3.3) and using these relations, we can obtain the desired first variational
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formula in the statement (i).
Next we shall show the second variational formula in (ii). We have

d2

dt2

∣∣∣∣
t=0

θt(∂1, ... , ∂n)

=
d2

dt2

∣∣∣∣
t=0

θ̃(ft∗∂1, ... , ft∗∂n, ξt1, ... , ξ
t
r)

=2
∑

1≤i<j≤n
θ̃(f∗∂1, ... ,∇̃∂tδ∗∂i|t=0, ... ,∇̃∂tδ∗∂j |t=0, ... , f∗∂n, ξ01 , ... , ξ

0
r )

+
n∑

i=1

θ̃(f∗∂1, ... ,∇̃∂t∇̃∂tδ∗∂i|t=0, ... , f∗∂n, ξ01 , ... , ξ
0
r )

+2
∑

1≤ρ<µ≤r
θ̃(f∗∂1, ... , f∗∂n, ξ01 , ... ,∇̃∂tξ

t
ρ|t=0, ... ,∇̃∂tξ

t
µ|t=0, ... , ξ

0
r )

+
r∑

ρ=1

θ̃(f∗∂1, ... , f∗∂n, ξ01 , ... ,∇̃∂t∇̃∂tξ
t
ρ|t=0, ... , ξ

0
r )

+2
n∑

i=1

r∑

ρ=1

θ̃(f∗∂1, ... ,∇̃∂tδ∗∂i|t=0, ... , f∗∂n, ξ01 , ... ,∇̃∂tξ
t
ρ|t=0, ... , ξ

0
r ).

(3.4)

The first term (∗1) in the right-hand side of (3.4) is rewritten as follows:

(∗1) =
{
n2H((π∗v)N )2− tr((A(π∗v)N

)2)− 2nH((π∗v)N ) tr∇(π∗v)T
+ 2 tr(A(π∗v)N

◦ ∇(π∗v)T ) + (tr∇(π∗v)T )2

− tr((∇(π∗v)T )2)
}
θ(∂1, . . . , ∂n). (3.5)

The second term (∗2) in the right-hand side of (3.4) is rewritten as follows:

(∗2)=
n∑

i=1

θ(∂1, . . . , (∇̃∂t|t=0
∇̃∂i

δ∗∂t)T , . . . , ∂n)

=
n∑

i=1

θ(∂1, . . . ,−(R̃(f∗∂i,π∗v)π∗v)T +(∇̃∂i
∇̃∂t|t=0

δ∗∂t)T , . . . , ∂n)

=−(trT R̃(·,π∗v)π∗v)θ(∂1, . . . , ∂n)

+
n∑

i=1

θ(∂1, . . . ,−A(e∇∂t|t=0
δ∗∂t)N

∂i+∇∂i
(∇̃∂t|t=0

δ∗∂t)T , . . . , ∂n)
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=
(− trT R̃(·,π∗v)π∗v−nH((∇̃∂t|t=0

δ∗∂t)N )

+div∇(∇̃∂t|t=0
δ∗∂t)T

)
θ(∂1, . . . , ∂n). (3.6)

The sum (∗34) of the third term and the fourth one in the right-hand side
of (3.4) is rewritten as follows:

(∗34) =

(
2

∑

1≤ρ<µ≤r
ν(ξ01 , . . . , ∇̃∂tξ

t
ρ|t=0, . . . , ∇̃∂tξ

t
µ|t=0, . . . , ξ

0
r )

+
r∑

ρ=1

ν(ξ01 , . . . , ∇̃∂t∇̃∂tξ
t
ρ|t=0, . . . , ξ

0
r )

)
θ(∂1, . . . , ∂n)

=
(
−(∇̃∂t|t=0

(∇̃∂tνt))(ξ1, . . . , ξr)

− 2
r∑

ρ=1

(∇̃∂t|t=0
νt)(ξ1, . . . , ∇̃∂t|t=0

ξtρ, . . . , ξr)
)
θ(∂1, . . . , ∂n)

=
(
−K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1)) + 2K(vν)(θ⊥−1(1))2

)

θ(∂1, . . . , ∂n), (3.7)

where we use d2

dt2

∣∣
t=0

νt(ξt1, . . . , ξ
t
r) = 0. The fifth term (∗5) in the right-hand

side of (3.4) is rewritten as follows:

(∗5) = 2K(vν)(θ⊥−1(1))
(
nH((π∗v)N )− div∇(π∗v)T

)

θ(∂1, . . . , ∂n). (3.8)

These relations (3.4)∼(3.8) together with the arbitrariness of (U,(x1, . . . ,xn))
deduces the desired second variational formula. ¤

Remark 3.1 The relation (3.3) is equivalent to (6.5) of [Wi].

Now we state the following two facts.

Proposition 3.2 If (∇̃, θ̃) is the equiaffine structure associated with
a pseudo-Riemannian metric g̃ of M̃ and Ft is a variation consisting of
isometric immersions with respect to g̃, then we have K(vν)(θ⊥−1(1)) = 0.

Proof. Let (ξt1, . . . , ξ
t
r) be an orthonormal normal base of ft at x. Then we

have Ft(x) = ξt1 ∧ · · · ∧ ξtr and hence
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K(vν)(θ⊥−1(1)) = τ̃ρρ =
r∑

ρ=1

g̃(∇⊥π∗vξtρ, ξ0ρ) = 0.

¤

Proposition 3.3 The volume function over E(M)φ|D has no critical point.

Proof. Take an arbitrary F ∈ E(M)φ|D. Define a variation Ft of F
by Ft(x) = (t + 1)F (x) (x ∈ D). Since F is equiaffine and the coeffi-
cient (t + 1) of the right-hand side is independent of the choice of x ∈ D,
Ft is also equiaffine. Hence we have Ft ∈ E(M)φ|D. Easily we can show
d
dt |t=0 Vol(Ft) > 0. Hence F is not a critical point of the volume function
over E(M). This completes the proof. ¤

When the variation consists of isometric immersions, the quantity
K

(
d
dt

∣∣
t=0

K
(
dνt
dt

))
(θ⊥−1(1)) in the second variational formula of (ii) of The-

orem 3.1 is described as follows.

Proposition 3.4 If (∇̃, θ̃) is the equiaffine structure associated with
a pseudo-Riemannian metric g̃ of M̃ and Ft is a variation consisting of
isometric immersions, then we have

K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1)) = −

∥∥∇⊥(π∗v)N+h((π∗v)T , ·)
∥∥2

eg,

where ‖ · ‖eg is the norm of (·) with respect to g̃.

Proof. Define a map ν̃ of M × (−ε, ε) into
∧r T ∗M̃ by ν̃(x, t) = νt(x)

((x, t) ∈M×(−ε, ε)), where νt is the transversal volume element map of Ft.
Let (ξt1, . . . , ξ

t
r) be an orthonormal frame field of Nt and ξ̃i (i = 1, . . . , r) be

a section of δ∗TM̃ defined by ξ̃i(x, t) := (ξti)x ((x, t) ∈ D × (−ε, ε)). Then
we have

K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))

= (∇̃∂t|t=0
(∇̃∂t ν̃ ))(ξ1, . . . , ξr)

= ∇̃∂t|t=0
((∇̃∂t ν̃ )(ξt1, . . . , ξ

t
r))

−
r∑

ρ=1

(∇̃∂t|t=0
ν̃ )(ξ1, . . . , ∇̃∂t|t=0

ξ̃ρ, . . . , ξr)
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= ∇̃∂t|t=0

(
K

(
dνt
dt

)
(θ⊥−1
t (1))

)

−
r∑

ρ=1

K

(
dνt
dt

∣∣∣
t=0

)
(ξ1, . . . , ∇̃∂t|t=0

ξ̃ρ, . . . , ξr).

Since Ft (−ε<t<ε) are isometric immersions, we have K(dνt
dt )(θ⊥−1

t (1))=0.
Hence we have

K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))

= −
r∑

ρ=1

K

(
dνt
dt

∣∣∣
t=0

)
(ξ1, . . . , (∇̃∂t|t=0

ξ̃ρ)T , . . . , ξr). (3.9)

The right-hand side (∗) of this relation is rewritten as follows:

(∗) = −
r∑

ρ=1

(∇̃∂t|t=0
ν̃ )(ξ1, . . . , (∇̃∂t|t=0

ξ̃ρ)T , . . . , ξr)

=
r∑

ρ=1

ν(ξ1, . . . , ∇̃∂t|t=0
((∇̃∂t ξ̃ρ)T ), . . . , ξr)

=
r∑

ρ=1

g̃(∇̃∂t|t=0
((∇̃∂t ξ̃ρ)T ), ξρ)

= −
r∑

ρ=1

g̃((∇̃∂t|t=0
ξ̃ρ)T , (∇̃∂t|t=0

ξ̃ρ)T )

= −
r∑

ρ=1

‖(∇̃∂t|t=0
ξ̃ρ)T ‖2

eg. (3.10)

Let (et1, . . . , e
t
n) be an orthonormal frame field of ft∗TM and ẽi (i = 1, . . . , n)

be a section of δ∗TM̃ defined by ẽi(x, t) = (eti)x ((x, t) ∈ D × (−ε, ε)). On
the other hand, we have

(∇̃∂t|t=0
ξ̃ρ)T =

n∑

i=1

g̃(∇̃∂t|t=0
ξ̃ρ, ei)ei

= −
n∑

i=1

g̃(ξρ, ∇̃∂t|t=0
ẽi)ei
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= −
n∑

i=1

g̃(ξρ, ∇̃eiπ∗v + [δ∗∂t, ẽi]|t=0)ei.

It is easy to show that [δ∗∂t, ẽi]|t=0 ∈ f∗TM . Hence we have

(∇̃∂t|t=0
ξ̃ρ)T = −

n∑

i=1

g̃(ξρ, h(ei, (π∗v)T ) +∇⊥ei
(π∗v)N )ei.

From (3.9), (3.10) and this relation, the desired relation is deduced. ¤

4. Some classes consisting of non-degenerate equiaffine
immersions

In this section, we treat non-degenerate equiaffine immersions into
a general equiaffine manifold. Note that the non-degeneracy in the sense of
this paper is a property stricter than the non-degeneracy and the strictly
non-degeneracy in the sense of [KT]. Let END(M) be the space of all
non-degenerate equiaffine immersions (in the sense of this paper) of a man-
ifold M into an equiaffine manifold (M̃, ∇̃, θ̃). For each F ∈ END(M), we
define a function VRF overM by ωh = VRF θ, where θ is the induced volume
element of F and ωh is the volume element defined from the affine funda-
mental form h of F . Note that this function VRF is positive-valued by the
definition of ωh. We call this function VRF the volume ratio function of F .
For each positive function ψ over M , we denote {F ∈ END(M) |VRF = ψ}
by V R−1(ψ). Also, for each positive function ψ over M , we denote
{F ∈ END(M) | T̂F = d logψ} by T̂−1(ψ), where T̂F is the Tchebychev form
of F . Denote by ND(M) the space of all non-degenerate immersions of M
into (M̃, ∇̃, θ̃) in the sense of this paper. Define a map π̂ of END(M) onto
ND(M) by π̂(F ) := π ◦ F , where π is the bundle projection of

∧r(TM̃).
For f ∈ ND(M), denote by Γ0(f∗T ∗M̃ ⊗ TM) the set of all sections of
f∗T ∗M̃ ⊗ TM vanishing on f∗TM . For Ψ ∈ Γ0(f∗T ∗M̃ ⊗ TM), we denote
{F ∈ π̂−1(f) | T̃F = Ψ} by T̃−1(Ψ), where T̃F is the extended Tchebychev
tensor field of F . For these classes, we prove the following facts.

Theorem 4.1 Let dimM = n, dim M̃ = n + r, f ∈ ND(M), ψ ∈
C∞(M)+ and Ψ ∈ Γ0(f∗T ∗M̃ ⊗ TM). Then the following statements
(i)∼(vi) hold:

(i) T̂−1(ψ) = ∪
c∈R+

V R−1(cψ1/2r).

(ii) π̂−1(f) ∩ V R−1(ψ) 6= ∅,
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(iii) Let Gf,x(V R−1(ψ)) := {(NF )x |F ∈ π̂−1(f) ∩ V R−1(ψ)}, where
NF is the transversal bundle of F . Then Gf,x(V R−1(ψ)) are connected and
of dimension at most n(r − 1) in the following sense:

For any n(r − 1) + 1-dimensional topologically embedded sub-
manifold L in the Grassmannian manifold Gr(Tf(x)M̃) of
r-dimensional subspaces in Tf(x)M̃ , L ∩ Gf,x(V R−1(ψ)) has no
interior point as subsets of L.

(iv) For arbitrary two points F and G of π̂−1(f) ∩ V R−1(ψ), there
exists a variation Ft (0 ≤ t ≤ 1) in π̂−1(f) ∩ V R−1(ψ) with F0 = F and
F1 = G.

(v) T̃−1(Ψ) 6= ∅ and the set Gf,x(T̃−1(Ψ)) := {(NF )x |F ∈ T̃−1(Ψ)} is
an one-point set.

(vi) There exists ψ0 ∈ C∞(M)+ satisfying

]
(
T̃−1(Ψ)∩V R−1(ψ)

)
=

{
1 (ψ ∈ Rψ0)

0 (ψ /∈ Rψ0).

In particular, we have

]
(
T̃−1(0) ∩ V R−1(c)

)
= 1 (c: a positive constant)

]
(
T̃−1(0) ∩ V R−1(ψ)

)
= 0 (ψ: a non-constant positive function),

where 0 is the zero element of Γ0(f∗TM̃ ⊗ TM).

Proof. According to Proposition 2.2, we have T̂ = 2r d log ωh
θ for each F ∈

END(M), where T̂ , θ and ωh are the quantities for F . Hence we have the
relation of (i). Next we shall show the statements (ii)∼(iv). Let F ∈ π̂−1(f).
Take another element F̄ of π̂−1(f). Let h, ∇⊥, θ, T and T̂ be the quantities
for F and h̄, ∇̄⊥, θ̄, T̄ and ¯̂

T be the quantities for F̄ . Let U be a contractible
open set of M . On U , we can express F and F̄ as F = ξ1 ∧ · · · ∧ ξr and
F̄ = (f∗X1 + ηξ1) ∧ · · · ∧ (f∗Xr + ηξr) in terms of a frame field (ξ1, . . . , ξr)
of NF on U and tangnet vector fields X1, . . . , Xr on U and η ∈ C∞(U)+.
Set ξ̄ρ := f∗Xρ + ηξρ (ρ = 1, . . . , r). From (2.7) of [KT], we have τ̄ρρ = τρρ +
η−1(hρ(Xρ, ·)+r dη), where τγρ (resp. τ̄γρ ) is defined by ∇⊥ξρ = τγρ ⊗ξγ (resp.
∇̄⊥ξ̄ρ = τ̄γρ ⊗ ξ̄γ) and hρ is defined by h = hρ ⊗ ξρ. From the equiaffinities
of F and F̄ , we have τρρ = τ̄ρρ = 0. Hence we have

hρ(Xρ, ·) = −r dη. (4.1)
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Since F is non-degenerate, we may assume that hρ (ρ = 1, . . . , r) are
non-degenerate by retaking (ξ1, . . . , ξr) if necessary. Hence, for each η,
there exist tangent vector fields X1, . . . , Xn on U satisfying (4.1). On the
other hand, we have ωh̄/θ̄ = η−(n+2r)/2×ωh/θ (see the proof of Lemma 5.2
in [Wi]). Hence F̄ ∈ V R−1(ψ) if and only if η = ψ−2/(n+2r)×(

ωh/θ
)2/(n+2r)

and (4.1) hold. From these facts, it follows that the statements (ii), (iii) and
(iv) hold for f |U . Hence these statements hold for f , where we note that the
simply connectedness of M does not need to be assumed because it follows
from the above investigation that {F (x) |F ∈ π̂−1(f)∩ V R−1(ψ)} (x ∈M)
is connected. Next we shall show the statement (v). Let F ∈ π̂−1(f). Take
another F̄ ∈ π̂−1(f). Let U , ξρ, ξ̄ρ, Xρ (ρ = 1, . . . , r) and η be as in the
proof of (ii), (iii) and (iv). From the equiaffinities of F and F̄ , we have the
relation (4.1). From (5.3) of [Wi], F̄ ∈ T̃Ψ holds if and only if

η
(
T iρ+(n+r)Xi

ρ+h
γ
jkh

ij
ρ X

k
γ

)
= Ψ̄i

ρ = ηΨi
ρ,

that is,

(n+ r)Xi
ρ + hγjkh

ij
ρ X

k
γ = Ψi

ρ − T iρ, (4.2)

where Xi
ρ, h

ρ
ij , h

ij
ρ , Ψi

ρ and T iρ are the components of Xρ, h, h, Ψ and T with
respect to a local coordinate (x1, . . . , xn) on U and (ξ1, . . . , ξr). Since (4.2) is
a simultaneously linear equation with respect to nr pieces of unknown vari-
ables Xi

ρ (ρ = 1, . . . , r, i = 1, . . . , n) consisting nr pieces of equations, it has
at least one solution. For each solution Xi

ρ of (4.2), there exists a positive
function η on U satisfying (4.1). These facts imply T̃−1(Ψ|U ) 6= ∅. Hence
T̃−1(Ψ) 6= ∅ follows. Assume that F, F̄ ∈ T̃−1(Ψ). From (5.3) of [Wi], we
have

T
i
ρ−ηT iρ = η

(
(n+r)Xi

ρ+h
γ
jkh

ij
ρ X

k
γ

)
.

On the other hand, we have

T
i
ρ − ηT iρ = T̃ (ξ̄ρ)i − T̃ (ηξρ)i = Ψ(ξ̄ρ − ηξρ)i = Ψ(f∗Xρ)i = 0.

Hence we have

(n+ r)Xi
ρ + hγjkh

ij
ρ X

k
γ = 0, (4.3)
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that is, Xi
ρ = −(

1/(n+ r)
)
hγjkh

ij
ρ Xk

γ . Furthermore, we have

(n+ r)Xi
ρ + hγjkh

ij
ρ X

k
γ = (n+ r)Xi

ρ + hγjkh
ij
ρ

(
− 1
n+ r

)
hµlmhklγ X

m
µ

= (n+ r)Xi
ρ −

r

n+ r
hilρh

µ
lmX

m
µ = 0,

that is, (n + r)Xi
ρ −

(
r/(n + r)

)
hγjkh

ij
ρ Xk

γ = 0. This together with (4.3)

deduces Xρ = 0, which implies N = N̄ . Thus Gf,x(T̃−1(Ψ)) is a one point
set.

Next we shall show the statement (vi). Take ψ ∈ C∞(M). Assume that
F, F̄ ∈ T̃−1(Ψ)∩V R−1(ψ). By (v), we haveN = N̄ . Since F, F̄ ∈ V R−1(ψ),
we have ωh/θ = ωh̄/θ̄ (= ψ). These facts imply θ = θ̄, that is, F = F̄ . Hence
we have ]

(
T̃−1(Ψ) ∩ V R−1(ψ)

) ≤ 1. It is clear that ]
(
T̃−1(Ψ) ∩ VR−1(ψ0)

)

= 1 for some ψ0 ∈ C∞(M)+. Assume that ]
(
T̃−1(Ψ) ∩ VR−1(ψ1)

)
= 1 for

another ψ1 ∈ C∞(M)+. Let Fi ∈ T̃−1(Ψ) ∩ V R−1(ψi) (i = 0, 1). Also,
let Ni (resp. θ⊥i ) be the transversal bundle (resp. the transversal volume
element) of Fi. By (v), we have N0 = N1. Hence it follows from the
equiaffinities of Fi (i = 0, 1) that θ⊥0 = cθ⊥1 for some positive constant c.
This implies that ψ0 = c(n+2r)/(2r)ψ1. Hence we have

]
(
T̃−1(Ψ) ∩ V R−1(ψ)

)
=

{
1 (ψ ∈ Rψ0)

0 (ψ /∈ Rψ0).

It is clear that

T̃−1(0) ∩ V R−1(ψ) = {F ∈ π̂−1(f) ∩ V R−1(ψ) |TF = 0},

where TF is the Tchebychev tensor field of F . Hence, if T̃−1(0)∩V R−1(ψ) 6=
∅, then we have d logψ = 0 by Proposition 2.2. That is, ψ is constant. Hence
we have ]

(
T̃−1(0) ∩ V R−1(c)

)
= 1 and ]

(
T̃−1(0) ∩ V R−1(ψ)

)
= 0 for each

non-constant positive function ψ. ¤

According to (vi) of this theorem, there exists the only element of
V R−1(c) ∩ π̂−1(f) having vanishing Tchebychev tensor field for each f ∈
ND(M) and each positive constant c. We denote this element by fcB and
call it a c-Blaschke immersion (associated with f). In particular, when
c = 1, we denote it by fB and call it the Blaschke immersion (associ-
ated with f). For example, for any homogeneous isometric embedding with
parallel second fundamental form (i.e., the inclusion map of homogeneous
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pseudo-Riemannian submanifold with parallel second fundamental form)
f : M ↪→ M̃ , an immersion F : M ↪→ ∧r TM̃ defined by F (x) = ξx1 ∧· · ·∧ξxr
((ξx1 , . . . , ξ

x
r ): an orthonormal normal base of f at x) for x ∈M is c-Blaschke

one for some c > 0.

5. The variational formulas for some volume functions over the
space of all non-degenerate immersions

For an immersion φ of M \ D (D: a relatively compact domain with
smooth boundary of M) into M̃ , we define END(M)φ|D, V R−1(ψ)φ|D,
T̂−1(ψ)φ|D and T̃−1(Ψ)φ|D in similar to E(M)φ|D.

Theorem 5.1 Let F ∈ V R−1(ψ)φ|D, Ft (−ε < t < ε) be a variation of F
in V R−1(ψ)φ|D and νt be the transversal volume element map of Ft, where
ψ is a positive function on M and φ is a non-degenerate immersion of M \D̊
(D: a compact domain of M) into

∧r(TM̃). Let v := dFt
dt

∣∣
t=0

. Then we
have

d

dt

∣∣∣
t=0

Vol(Ft)

= − 1
n+ 2r

∫

D

(
n(n+ r)H((π∗v)N )− µ eR,h(π∗v)

+ 2r(d logψ)((π∗v)T ) + tr(T ◦ ∇⊥(π∗v)N )
)
θ.

Here θ is the induced volume element of F , H is the affine mean curvature
function of F , T is the Tchebychev tensor field of F , ∇⊥ is the transversal
connection of F , h is the affine fundamental form of F and π is the bundle
projection of

∧r TM̃ , ( · )T (resp. ( · )N ) is the tangential (resp. transversal)
component of ( · ) and µ eR,h is a section of f∗T ∗M̃ defined by µ eR,h( · ) :=

tr R̃(·, f∗∂i, f∗∂j)Nhij in terms of a local coordinate (x1, . . . , xn) of M , where
R̃ is the curvature tensor of ∇̃, f := π ◦ F , ∂i := ∂/∂xi and h( · ) =
hij( · )∂i ⊗ ∂j (h: the pseudo-inverse of h).

Proof. Let F , Ft (−ε < t < ε) and v be as in the statement. Let Nt,
ht, h̃t, ht, θt and θ⊥t be the quantities for Ft. In particular, set N := N0,
h = h0, h̃ = h̃0, h := h0, θ := θ0 and θ⊥ := θ⊥0 . Let (U, (x1, . . . , xn)) be
a local coordinate of M with U ⊂ D and (ξt1, . . . , ξ

t
r) be a local frame field

of Nt over U such that θ⊥t (ξt1, . . . , ξ
t
r) = 1 and that ξti (i = 1, . . . , r) are

smooth with respect to t. Let ht(∂i, ∂j) = hρij(t)ξ
t
ρ and ht(ξtρ) = h

ij
ρ (t)∂i⊗∂j
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(i, j = 1, . . . , n). Also, let ∂t = ∂/∂t. According to the proof of (iii) of
Lemma 4.13 of [Wi], we have

∂t|t=0ωht(∂1, . . . , ∂n)2r = (∂t|t=0h
ρ
ij)h

ij
ρ (0)ωh(∂1, . . . , ∂n)2r (5.1)

and hence

∂t|t=0ωht(∂1, . . . , ∂n) =
1
2r

(∂t|t=0h
ρ
ij)h

ij
ρ ωh(∂1, . . . , ∂n). (5.2)

Define a section ωρt of f∗t T ∗M̃ by ωρt (ξ
t
γ) = δργ and Kerωρt = ft∗TM . Ac-

cording to (6.6) of [Wi], we have

∂t|t=0h
ρ
ij = −hγijωρ(∇̃∂t|t=0

ξtγ)− Γkijω
ρ(∇̃∂t|t=0

δ∗∂k)

+ ωρ(∇̃∂t|t=0
∇̃∂i

δ∗∂j), (5.3)

where ωρ := ωρ0 and Γkij is defined by ∇∂i
∂j = Γkij∂k. Let Bπ∗v :=

h((π∗v)T , · ) +∇⊥· (π∗v)N and define Bπ∗v by B i
π∗v = h

ij
ρ (0)(Bπ∗v)

ρ
j . From

(5.2) and (5.3), we have

2r ∂t|t=0 logωht(∂1, . . . , ∂n)

=
(−hρijωγ(∇̃∂t|t=0

ξtρ)−Γkijω
γ(∇̃∂t|t=0

δ∗∂k)+ωγ(∇̃∂t|t=0
∇̃∂i

δ∗∂j)
)
hijγ

=nK(vν)(θ⊥−1(1))−hijγ Γkij(Bπ∗v)
γ
k

+hijγ ω
γ
(
R̃(π∗v,f∗∂i)f∗∂j + ∇̃∂i

∇̃∂tδ∗∂j
)
.

By somewhat long calculations, it is shown that the sum of the second and
third terms is equal to

r div∇(π∗v)T − nrH((π∗v)N ) + div∇Bπ∗v

− tr(T ◦Bπ∗v) + µ eR,h(π∗v).

Hence we have

∂t|t=0ωht(∂1, . . . , ∂n)

=
1
2r

(
nK(vν)(θ⊥−1(1))+ rdiv∇(π∗v)T −nrH((π∗v)N )

+div∇Bπ∗v− tr(T ◦Bπ∗v)+µ eR,h(π∗v)
)
ωh(∂1, . . . , ∂n). (5.4)

On the other hand, we have

∂t|t=0θt(∂1, . . . , ∂n) = −(
K(vν)(θ⊥−1(1)) + nH((π∗v)N )
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− div∇((π∗v)T )
)
θ(∂1, . . . , ∂n) (5.5)

(see the proof of (i) of Theorem 3.1). Also, we have

∂t|t=0ωht(∂1, . . . , ∂n) =
ωh
θ
∂t|t=0θt(∂1, . . . , ∂n) (5.6)

because ∂t|t=0ωht/θt = 0 by the assumption. From (5.4)∼(5.6), we have

K(vν)(θ⊥−1(1)) =
1

n+ 2r
{r div∇(π∗v)T − nrH((π∗v)N )

− div∇Bπ∗v + tr(T ◦Bπ∗v)− µ eR,h(π∗v)}. (5.7)

Also, we have tr(T ◦ Bπ∗v) = T̂ ((π∗v)T ) + tr(T ◦ ∇⊥(π∗v)N ). By sub-
stituting (5.7) and this relation into the first variational formula in (i) of
Theorem 3.1, we obtain the desired relation, where we also use Proposi-
tion 2.2. ¤

For an immersion φ of M \ D (D: a relatively compact domain with
smooth boundary of M) into M̃ , we set ND(M)φ := {f ∈ ND(M) | f = φ

on M \D} and ND(M)φ|D := {f |D | f ∈ ND(M)φ}. We define the function
VolcB,D on ND(M)φ|D by

VolcB,D(f) := Vol(fcB) (f ∈ ND(M)φ|D).

In particular, we have the following first variational formula for c-Blaschke
immersions.

Corollary 5.2 Let f ∈ ND(M)φ|D, ft (−ε < t < ε) be a variation of f
in ND(M)φ|D and v := dft

dt

∣∣
t=0

. Then we have

d

dt

∣∣∣
t=0

VolcB,D(ft) = − 1
n+ 2r

∫

D

(
n(n+r)H(vN )−µ eR,h(v)

)
θ,

where H and h are the quantities for fcB.

Remark 5.1 (i) The above first variational formula for the case of
(M̃, ∇̃, θ̃) = (Rn+r, ∇̃, ω̃) coincides with (the equiaffine case of) the for-
mula (6.10) of [Wi].

(ii) in case of R̃(f∗TM, f∗TM)f∗TM ⊂ f∗TM , we have µ eR,h(v) =
µ eR,h(vN ). Hence, according to the above first variational formula, in the
case where f is a critical point of the volume function VolcB,D, the index
of the critical point f is analyzed by investigating d2

dt2

∣∣
t=0

VolcB,D(ft) for
transversal variations ft of f in ND(M)φ|D.
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From the first variational formula of Theorem 5.1 and (iv) of Theo-
rem 4.1, the following fact follows.

Theorem 5.3 Let F , G ∈ V R−1(ψ)φ|D. If π ◦ F = π ◦G, then Vol(F ) =
Vol(G) holds.

Proof. Assume that π ◦ F = π ◦ G. Let f := π ◦ F . According to the
statement (iv) of Theorem 4.1, there exists a variation Ft (0 ≤ t ≤ 1) in
π̂−1(f) ∩ V R−1(ψ)φ|D with F0 = F and F1 = G. From Theorem 5.1, it
follows that (d/dt)Vol(Ft) = 0 because π ◦ Ft = f (0 ≤ t ≤ 1). Hence we
have Vol(F ) = Vol(G). ¤

According to Theorem 5.3, for each positive function ψ overM and each
relatively compact domain D with smooth boundary of M , a function over
ND(M)φ|D is well-defined by assigning Vol(F |D) to each f ∈ ND(M)φ|D,
where F is an arbitrary element of V R−1(ψ) with (π◦F )|D = f . We denote
this function by Volψ,D. Here we note that Volc,D coincides with the above
VolcB,D. The following fact for Volψ,D directly follows from Theorem 5.1.

Theorem 5.4 Let f ∈ ND(M)φ|D. Then f is a critical point of Volψ,D
if and only if the following conditions (a)∼(c) hold on D:

(a) n(n+ r)H − µ eR,h|N = 0,
(b) µ eR,h ◦ f∗ = 2r d logψ,
(c) tr(∇̄T ) = 0,

where N , µ eR,h, H and T are the quantities for an arbitrary element F of
V R−1(ψ)φ|D with π ◦ F = f and ∇̄ := ∇ ⊗ ∇⊥∗ (∇, ∇⊥: the quantities
for F ).

Proof. Let f and F be as in the statement. According to the first varia-
tional formula of Theorem 5.1, f |D is a critical point of Volψ,D if and only
if for any w ∈ Γ(f∗TM̃) with suppw ⊂ D,

∫

D

(
n(n+r)H(wN )−µ eR,h(w)+2r(d logψ)(wT )+tr(T◦∇⊥wN )

)
θ

vanishes. Furthermore this holds if and only if the conditions (a) and (b)
in the statement of Theorem 5.4 and the following condition (c′) hold:

(c′)
∫

D
tr(T ◦ ∇⊥ξ)θ = 0 for any ξ ∈ Γ(N) with supp ξ ⊂ D.

We show that the condition (c′) is equivalent to the condition (c) in the



The variational formulas of the volume function in the equiaffine geometry 741

statement. For η ∈ Γ(N), we have

tr(T ◦ ∇⊥η) = div∇ T (η)− tr(∇̄T )(η). (5.8)

Hence, by using the Green’s theorem, it is shown that the condition (c)
implies the condition (c′). We show the converse. Suppose tr(∇̄T )x0 6= 0
for some x0 ∈ D. Take a local section ξ of N over a sufficiently small
neighborhood U of x0 in D such that tr(∇̄T )(ξ) has no zero point on U .
Let ρ be a positive function on M with ρ(x0) = 1 and supp ρ ⊂ U . Clearly
we have

∫
D ρ tr(∇̄T )(ξ)θ 6= 0. On the other hand, from the condition (c′),

we have
∫
D tr(T ◦ ∇⊥(ρξ))θ = 0. This together with (5.8) and the Green’s

theorem deduces
∫
D ρ tr(∇̄T )(ξ)θ = 0. Thus a contradiction arises. Hence

it follows that tr(∇̄T ) = 0 on D. Thus the condition (c′) implies the
condition (c). This completes the proof. ¤

From this theorem, we have the following corollaries.

Corollary 5.5 Assume that M̃ is flat. Let f ∈ ND(M)φ|D. Then f is
a critical point of Volc,D (c: a positive constant) if and only if H = 0 holds
on D, where H is the affine mean curvature function of fcB.

Corollary 5.6 Assume that M̃ is flat. If ψ is not constant on D, then
Volψ,D has no critical point.

Remark 5.2 According to Corollary 5.6, in the case where M̃ is flat,
we should treat Volc,D’s (c: a positive constant) as a volume function over
ND(M)φ|D.

Also, we prove the following second variational formula.

Theorem 5.7 Assume that M̃ is flat. Let f be a critical point of Volc,D.
Then, for a transversal variation ft (−ε < t < ε) of f in ND(M)φ|D, we
have

d2

dt2

∣∣∣∣
t=0

Volc,D(ft) =
−1

n+ 2r

∫

D

{
(n+ r) tr(A2

v)−
1

n+ 2r
(4hv)2

− tr(Av ◦ ∇B̄v) + (n+ r) tr(Qv ◦ ∇⊥v)
+ tr(Qv ◦ h(B̄v, ·))

}
θ,

where v := dft

dt

∣∣
t=0

, A, h, h, θ, ∇ and ∇⊥ are the quantities for fcB,
4hv is defined by 4hv := h

ij
ρ

(∇⊥∂i
(∇⊥∂j

v) − ∇⊥∇∂i
∂j
v
)ρ in terms of the local
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expression, B̄v is the tangent vector field of D defined by B̄i
v := h

ij
ρ ∇⊥j vρ in

terms of the local expression and Qv is a section of the bundle N∗ ⊗ TM

(N : the transversal bundle of fcB) defined as below.

Let f , ft, v and N be as in the statement of Theorem 5.7. Define
a map δ of D × (−ε, ε) into M̃ by δ(x, t) = ft(x). Take ξ ∈ Nx. Let ξ̃ be
a vector field along t→ δ(x, t) with ξ̃0 = ξ and ξ̃t ∈ (Nt)x, where Nt is the
transversal bundle of (ft)cB. Then we define Qv(ξ) by Qv(ξ) := (∇̃∂t|t=0

ξ̃)T ,
which is independent of the choices of the variation ft with dft

dt

∣∣
t=0

= v

(because f is a critical point of Volc,D) and the extension ξ̃ of ξ, that is,
determined by only v and ξ. Thus a section Qv of N∗⊗TM is well-defined
by assigning Qv(ξ) to each ξ ∈ N .

Proof of Theorem 5.7. Since f is a critical point of Volc,D, ft is a transver-
sal variation of f and M̃ is flat, it follows from (ii) of Theorem 3.1 and
Theorem 5.4 that H vanishes and

d2

dt2

∣∣∣∣
t=0

Volc,D(ft) =
∫

D

{
2K(ṽν)(θ⊥−1(1))2 − tr(A2

v)

−K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))

}
θ, (5.9)

where H, A, θ and θ⊥ are the quantities for fcB, v := dft

dt

∣∣
t=0

and ṽν :=
dνt
dt

∣∣
t=0

(νt: the transversal volume element map of (ft)cB). From (5.7), we
have

K(ṽν)(θ⊥−1(1)) = − 1
n+ 2r

div∇ B̄v

and

K

(
dνt
dt

)
(θ⊥−1
t (1))

=
1

n+2r
(
rdiv∇t(δ∗∂t)T −nrHt((δ∗∂t)N )−div∇t B̄t

δ∗∂t

)
, (5.10)

where δ is a map of D× (−ε, ε) into M̃ defined by δ(x, t) := ft(x), and ∇t,
Ht and B̄t are the quantities for (ft)cB. Since 4hv = div∇ B̄v, we have

K(ṽν)(θ⊥−1(1)) = − 1
n+ 2r

4hv. (5.11)
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Let (ξt1, . . . , ξ
t
r) be a frame field of Nt with θ⊥t (ξt1, . . . , ξ

t
r) = 1. Then we have

d

dt

∣∣∣
t=0

K

(
dνt
dt

)
(θ⊥−1
t (1))

= K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))

+
r∑

ρ=1

K(ṽν)(ξ1, . . . , (∇̃∂t|t=0
ξtρ)N , . . . , ξr)

+
r∑

ρ=1

K(ṽν)(ξ1, . . . , (∇̃∂t|t=0
ξtρ)T , . . . , ξr)

= K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))−K(ṽν)(θ⊥−1(1))2

+
r∑

ρ=1

K(ṽν)(ξ1, . . . , Qv(ξρ), . . . , ξr)

= K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))−K(ṽν)(θ⊥−1(1))2

− tr(Qv ◦ ∇⊥v). (5.12)

Also, since (δ∗∂t)T |t=0 = vT = 0, we have

d

dt

∣∣∣
t=0

div∇t(δ∗∂t)T

=
d

dt

∣∣∣
t=0

{
n∑

i=1

τt(δ∗∂1, . . . , δ∗(∇t
∂i

(δ∗∂t)T ), . . . , δ∗∂n)
τt(δ∗∂1, . . . , δ∗∂n)

}

=
n∑

i=1

τ(f∗∂1, . . . , (∇̃∂t|t=0
δ∗(∇t

∂i
(δ∗∂t)T ))T , . . . , f∗∂n)

τ(f∗∂1, . . . , f∗∂n)

=
n∑

i=1

τ(f∗∂1, . . . , f∗∇∂i
((∇̃∂t|t=0

(δ∗∂t)T )T ), . . . , f∗∂n)
τ(f∗∂1, . . . , f∗∂n)

= div∇(∇̃∂t|t=0
(δ∗∂t)T )T , (5.13)

where τt is the tangential volume element map of (ft)cB. Also, since H = 0,
(δ∗∂t)T |t=0 = 0 and M̃ is flat, we have

n
d

dt

∣∣∣
t=0

H((δ∗∂t)N )
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=
d

dt

∣∣∣
t=0

(
−

n∑

i=1

τt(δ∗∂1, . . . , ∇̃∂i
((δ∗∂t)N ), . . . , δ∗∂n)

τt(δ∗∂1, . . . , δ∗∂n)

)

= −
n∑

i=1

K(ṽτ )(f∗∂1, . . . , ∇̃∂i
v, . . . , f∗∂n)

θ(∂1, . . . , ∂n)

−
n∑

i=1

∑

j 6=i

(
(Av)

j
j(Av)

i
i − (Av)ij(Av)

j
i

)

−
n∑

i=1

τ(f∗∂1, . . . , ∇̃∂t|t=0
∇̃∂i

((δ∗∂t)N ), . . . , f∗∂n)
θ(∂1, . . . , ∂n)

+
n∑

i=1

τ(f∗∂1, . . . , ∇̃∂i
v, . . . , f∗∂n)

θ(∂1, . . . , ∂n)2
× d

dt

∣∣∣
t=0

τt(δ∗∂1, . . . , δ∗∂n)

= nH(v)K(ṽτ )(f∗θ−1(1))− n2H(v)2 + tr(A2
v)

+
n∑

i=1

τ(f∗∂1, . . . , Qv(∇⊥∂i
v), . . . , f∗∂n)

θ(∂1, . . . , ∂n)

−
n∑

i=1

τ(f∗∂1, . . . ,−f∗A(e∇∂t|t=0
(δ∗∂t)N )N

∂i

+∇∂i
(∇̃∂t|t=0

(δ∗∂t)N )T , . . . , f∗∂n)

× −nH(v)
θ(∂1, . . . , ∂n)

(
K(ṽτ )(f∗θ−1(1))− nH(v)

)

= tr(Qv ◦ ∇⊥v) + tr(A2
v)− div∇

(∇̃∂t|t=0
(δ∗∂t)N

)
T
, (5.14)

where (Av)
j
i is the component of Av with respect to (∂1, . . . , ∂n). Also, since

H = 0 and M̃ is flat, we have

d

dt

∣∣∣
t=0

div∇t B̄t
δ∗∂t

=
d

dt

∣∣∣
t=0

(
n∑

i=1

τt(δ∗∂1, . . . , ∇̃∂i
δ∗B̄t

δ∗∂t
, . . . , δ∗∂n)

τt(δ∗∂1, . . . , δ∗∂n)

)

=
n∑

i=1

K(ṽτ )(f∗∂1, . . . , ∇̃∂i
f∗B̄v, . . . , f∗∂n)

θ(∂1, . . . , ∂n)

−
n∑

i=1

∑

j 6=i

(
(Av)

j
j(∇B̄v)ii − (Av)ij(∇B̄v)ji

)
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+
n∑

i=1

τ(f∗∂1, . . . , ∇̃∂t|t=0
∇̃∂i

δ∗B̄t
δ∗∂t

, . . . , f∗∂n)
θ(∂1, . . . , ∂n)

+
n∑

i=1

−τ(f∗∂1, . . . , f∗∇∂i
B̄v, . . . , f∗∂n)

θ(∂1, . . . , ∂n)2

× d

dt

∣∣∣
t=0

τt(δ∗∂1, . . . , δ∗∂n)

= (div∇ B̄v)K(ṽτ )(f∗θ−1(1))− nH(v) div∇ B̄v + tr(Av ◦ ∇B̄v)

−
n∑

i=1

τ(f∗∂1, . . . , Qv(h(B̄v, ∂i)), . . . , f∗∂n)
θ(∂1, . . . , ∂n)

+ div∇(∇̃∂t|t=0
δ∗B̄t

δ∗∂t
)T − nH((∇̃∂t|t=0

δ∗B̄t
δ∗∂t

)N )

− div∇ B̄v
(
K(ṽτ )(f∗θ−1(1))− nH(v)

)

= tr(Av ◦ ∇B̄v) + div∇(∇̃∂t|t=0
δ∗B̄t

δ∗∂t
)T − tr(Qv ◦ h(B̄v, ·)).

(5.15)

From (5.10)∼(5.15), we have

K

(
d

dt

∣∣∣
t=0

K

(
dνt
dt

))
(θ⊥−1(1))

=
1

n+ 2r

{
1

n+ 2r
(4hv)2 + (n+ 2r) tr(Qv ◦ ∇⊥v)

+ r div∇(∇̃∂t|t=0
(δ∗∂t)T )T − r tr(Qv ◦ ∇⊥v)

+ tr(Qv ◦ h(B̄v, ·))− r tr(A2
v) + r div∇(∇̃∂t|t=0

(δ∗∂t)N )T

− tr(Av ◦ ∇B̄v)− div∇(∇̃∂t|t=0
δ∗B̄t

δ∗∂t
)T

}
. (5.16)

By substituting (5.11) and (5.16) into (5.9) and using the Green’s theorem,
we have the desired variational formula. ¤

Let f be a critical point of Volc,D. Assume that there exists a parallel
normal vector field v̄ of F such that h(v̄) has the inverse, that is, the matrix
(h(v̄)ij) consisting of the components of h(v̄) is non-singular. Let η be
a positive function over M whose support is contained in the closure D̄
of D. Then we have the following second variational formula in terms of
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Theorem 5.7.

Corollary 5.8 Let ft (−ε < t < ε) be a transversal variation of f in
ND(M)φ|D having ηv̄ as the variational vector field. Then we have

d2

dt2

∣∣∣∣
t=0

Volc,D(ft)

= − n+ r

n+ 2r

∫

D

{
η2 tr(A2

v̄) +
1

n+ 2r
(
dη(L−1(v̄)) +4bL−1(v̄)

η
)4h(v̄)η

− trbL−1(v̄)
((dη ◦Av̄)⊗ dη)

}
θ,

where A and h are the quantities for fcB and L̂−1, L−1, 4bL−1(v̄)
η, 4h(v̄)η

and trbL−1(v̄)
((dη ◦Av̄)⊗ dη) are the quantities defined as below.

Remark 5.3 In the case where r = 1 and v̄ is the affine normal of f , we
have Lj11i = (L−1)1ji1 = δij , (L̂−1)ij1 = hij and (L−1)i = ∇̄jhij = T i = 0,
where (hij) = (hij)−1. Hence this second variational formula is as follows:

d2

dt2

∣∣∣∣
t=0

Volc,D(ft) = −n+ 1
n+ 2

∫

D

{
η2 tr(A2

v̄) +
1

n+ 2
(4hη)2

− trh((dη ◦Av̄)⊗ dη))
}
θ,

which coincides with the second variational formula in Theorem 4.2
of [VeVr].

Let h and h be as in Corollary 5.8. Define a section L of N∗ ⊗ TM ⊗
T ∗M⊗N by Ljµρi := h

jk
ρ h

µ
ki, where h

ij
ρ and hµki are the components of h and h

with respect to (∂1, . . . , ∂n) and (ξ1, . . . , ξr) in the previous paragraph. Note
that the following matrix is non-singular:
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L :=




L11
11 · · · L1r

11 · · · L11
1n · · · L1r

1n
...

...
...

...
L11
r1 · · · L1r

r1 · · · L11
rn · · · L1r

rn
...

...
...

...
Ln1

11 · · · Lnr11 · · · Ln1
1n · · · Lnr1n

...
...

...
...

Ln1
r1 · · · Lnrr1 · · · Ln1

rn · · · Lnrrn




.

Hence a section L−1 of N ⊗ T ∗M ⊗ TM ⊗N∗ is defined by (L−1)ρjiµL
iν
ρk =

δνµδ
j
k, where δνµ and δjk are the Kronecker’s delta. Furthermore, we de-

fine a section L̂−1 of N∗ ⊗ TM ⊗ TM and a section L
−1 of N∗ ⊗ TM

by (L̂−1)ijρ := (L−1)µikρh
kj
µ and (L−1)iρ := ∇̄j(L̂−1)ijρ , respectively, where

∇̄ is the connection of N∗ ⊗ TM ⊗ TM induced from the induced connec-
tion ∇ on M and the transversal connection ∇⊥. For a function η on M

and a parallel transevrsal vector field v̄, we define 4h(v̄)η and 4bL−1(v̄)
η

by 4h(v̄)η := h(v̄)ij(∇2η)ij and 4bL−1(v̄)
η := L̂−1(v̄)ij(∇2η)ij , respectively.

Also, we define trbL−1(v̄)
((dη ◦ Av̄) ⊗ dη) by trbL−1(v̄)

((dη ◦ Av̄) ⊗ dη)) :=

L̂−1(v̄)ij(dη ◦Av̄)idηj .
Proof of Corollary 5.8. Let v := ηv̄. According to Theorem 5.7, we have

d2

dt2

∣∣∣∣
t=0

Volc,D(ft)

=
−1

n+ 2r

∫

D

{
(n+ r)η2 tr(A2

v̄)−
1

n+ 2r
(4hv)2 − tr(Av ◦ ∇B̄v)

+ (n+ r) tr(Qv ◦ ∇⊥v) + tr(Qv ◦ h(B̄v, ·))
}
θ. (5.17)

By somewhat long calculations, we have

4hv = div∇ B̄v = 4h(v̄)η (5.18)

and

tr(Av ◦ ∇B̄v)
= div∇(η trh(v̄)(dη ⊗Av̄))− trh(v̄)((dη ◦Av̄)⊗ dη), (5.19)

where we use the Codazzi equation. Let δ : D × (−ε, ε) → M̃ by δ(x, t) =
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ft(x) ((x, t) ∈ D × (−ε, ε)) and Nt (resp. θ⊥t ) be the transversal bundle
(resp. the transversal volume element) of (ft)cB. Take a local coordi-
nate (x1, . . . , xn) on an open set U of D and vector fields ξ1, . . . , ξr along
δ|U×(−ε,ε) such that (ξ1)(x,t), . . . , (ξr)(x,t) give a frame of Nt with
θ⊥t ((ξ1)(x,t), . . . , (ξr)(x,t)) = 1 for each (x, t) ∈ U × (−ε, ε). Let hρij , (Qv)iρ
and (Av̄)

j
i be the components of h, Qv and Av̄ with respect to (∂1, . . . , ∂n)

and (ξ1)(·,0), . . . , (ξr)(·,0), where ∂i := ∂/∂xi. Let (∇̃∂t|t=0
ξρ)N =

∑r
µ=1 κ

µ
ρξµ.

Then, by somewhat long calculations, we have

hρij(Qv)
j
ρ = −∂iκρρ − (Av̄)

j
i∂jη. (5.20)

By operating hkiµ to both sides of this relation, we have

Lkρµj(Qv)
j
ρ = −hkiµ

(
∂iκ

ρ
ρ + (Av̄)

j
i∂jη

)
.

Furthermore, by operating (L−1)µlkν to both sides of this relation, we have

(Qv)lν = −(L̂−1)liν
(
∂iκ

ρ
ρ + (Av̄)

j
i∂jη

)
. (5.21)

Hence we have

tr(Qv ◦ ∇⊥v) = (∂iη)(Qv)iρv̄
ρ

= − trbL−1(v̄)
(dη ⊗ d(κρρ))− trbL−1(v̄)

((dη ◦Av̄)⊗ dη). (5.22)

Also, from (5.20), we have

tr(Qv ◦ h(B̄v, ·)) = (∂iη)h(v̄)jihρjk(Qv)
k
ρ

= − trh(v̄)(dη ⊗ d(κρρ))− trh(v̄)((dη ◦Av̄)⊗ dη). (5.23)

On the other hand, it follows from ∇⊥v̄ = 0 that

trh(v̄)(dη ⊗ d(κρρ)) = div∇X − (4h(v̄)η)κ
ρ
ρ,

that is,

tr(Qv ◦ h(B̄v, ·))
= −div∇X + (4h(v̄)η)κ

ρ
ρ − trh(v̄)((dη ◦Av̄)⊗ dη), (5.24)

where X is defined by Xi := h(v̄)ij(∂jη)κ
ρ
ρ. Also, we have

trbL−1(v̄)
(dη ⊗ d(κρρ))

= div∇ Y − L
−1(v̄)i(∂iη)κρρ − (4bL−1(v̄)

η)κρρ, (5.25)
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where Y is defined by Y i := L̂−1(v̄)ji(∂jη)κ
ρ
ρ. From (5.22) and (5.25), we

have

tr(Qv ◦ ∇⊥v) = −div∇ Y + L
−1(v̄)i(∂iη)κρρ + (4bL−1(v̄)

η)κρρ

− trbL−1(v̄)
((dη ◦Av̄)⊗ dη). (5.26)

On the other hand, by somewhat long calculations, we can show

(∂i∂jη)v̄ρ − ηhρik(Av̄)
k
j

= ((∇∂i
∂j)η)v̄ρ + ∂t|t=0(ht)

ρ
ij + hµijκ

ρ
µ,

where we use the flatness of ∇̃. By operating h
ij
ρ to this both sides, we have

4h(v̄)η = nκρρ + 2r
∂t|t=0ωht

ωh
,

where we use H(v̄) = 0. Also, from (5.4), (5.7) and (5.18), we have

∂t|t=0ωht(∂1, . . . , ∂n) =
1

n+ 2r
(4h(v̄)η)ωh(∂1, . . . , ∂n),

that is, ∂t|t=0ωht/ωh = 1/(n + 2r)4h(v̄)η. Hence we have κρρ = 1/(n +
2r)4h(v̄)η. By substituting this relation, (5.18), (5.19), (5.24) and (5.26)
into (5.17) and using the Green’s theorem, we can obtain the desired rela-
tion. ¤

From this corollary, we directly have the following fact.

Corollary 5.9 Let f be an immersion of an n-dimensional manifold M

into an (n + r)-dimensional flat equiaffine manifold (M̃, ∇̃, θ̃) and D be
a non-degenerate part of f . Assume that D has a relatively compact com-
ponent D0 with smooth boundary. Let ft (−ε < t < ε) be a transversal
variation of f satisfying ft|M\D0

= f |M\D0
and ∇⊥v = 0, where v is a vari-

ational vector field of ft and ∇⊥ is the transeversal connection of (f |D0)cB.
If the affine mean curvature function H of (f |D0)cB vanishes and the affine
shape operator Av of (f |D0)cB is non-zero and real diagonalizable, then f |D0

is a critical point of Volc,D0 and d2

dt2

∣∣
t=0

Volc,D0(ft|D0) < 0, that is, the crit-
ical point f |D0 is not a minimal point of Volc,D0.

Remark 5.4 Since ∂D0 consists of degenerate points of f , there is possi-
ble to exist a ∇⊥-parallel transversal vector field v on D0 satisfying
limk→∞ vxk

= 0x0 for any sequence {xk}∞k=1 in D0 with limk→∞ xk ∈ ∂D0,
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Fig. 4.

where x0 := limk→∞ xk and 0x0 is the zero element of Nx0 . In particu-
lar, if r = 1, then any ∇⊥-parallel transversal vector field on D0 is such
one. Hence, there is possible to exist the transversal variation ft as in the
statement of this corollary.

Proof. According to Corollary 5.5, f |D0 is a critical point of Volc,D0 because
of H = 0. Hence, it follows from Corollary 5.8 that

d2

dt2

∣∣∣∣
t=0

Volc,D0(ft|D0) = − n+ r

n+ 2r

∫

D0

tr(A2
v)θ,

where we use ∇⊥v = 0. Since Av is non-zero and real diagonalizable, we
have tr(A2

v) > 0 and hence d2

dt2

∣∣
t=0

Volc,D0(ft|D0) < 0. Thus f |D0 is not
a minimal point of Volc,D0 . ¤
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