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The space of bilinear Fourier multipliers as a dual space

Naohito ToMITA

(Received February 14, 2005)

Abstract. Figa-Talamanca characterized the space of Fourier multipliers as a dual
space of a certain Banach space. In this paper, we give the similar result for bilinear
Fourier multipliers.
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1. Introduction

To describe the result given by Figa-Talamanca for Fourier multipli-
ers (in the single case), we first give some definitions. S(R"™) denotes the
Schwartz class. S'(R"™) is the dual space of S(R™). The space M,(R") of
Fourier multipliers consists of all m € S'(R") such that T}, is bounded on
LP(R™), where Ty, is defined by T, f = [F'm] = f for all f € S(R"). Let
1 < p < oo and p’ be the conjugate exponent of p (that is, 1/p+1/p’ =1).
The space A,(R") consists of all f € C(R™) N L*°(R™) which can be writ-
ten as f = >.0°, fi * g; in L(R™), where {f;} ¢ LP(R™), {g;} C L” (R
and >°, || fillpllgilly < oo. Then the norm [/ f[|4, is the infimum of the
sums 2 || fillpllgilly corresponding to the representations for f. In [3],
Figa-Talamanca proved that M,(R") = A,(R™)*, where A,(R™)* is the dual
space of A,(R") (see also [7]).

Bilinear Fourier multipliers were studied by, for example, Coifman and
Meyer [2], Grafakos and Torres [4] and Lacey and Thiele [6]. The pur-
pose of the paper is to find Figa-Talamanca’s theorem for bilinear Fourier
multipliers. The space M}?,, (R?") of bilinear Fourier multipliers consists
of all m € &'(R?") such that T}, is bounded from LP!(R™) x LP?(R") to
LP3(R™), where Ty, is defined by T,,,(f1, fo)(x) = [F~im] * [f1 ® fo](z, )
for all f1, fo € S(R™) and f1 ® fa(x1,22) = fi(x1) fa(z2) (for multilinear
Fourier multipliers, see [4]). We also denote the unique bounded extension
of Ty, by T}, and define the norm on M}? ,, (R?") by
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Imllagzs = sp{IT(Fr, s 151l = 1 allos = 13-

For appropriate functions f on R?” and g on R", we define the function
f *2 g on R?™ by

[ g(z1,m2) = - fr1—y,z2 —y)gly)dy (w1, 22 € R").

Let 1 < p1, p2, p3 < oo and 1/p3 = 1/p; + 1/pa. The space Ab? ,, (R*)
consists of all f € C(R?") N L*®(R?) which can be written as f =
2im1lf14® fa] %291 in L®(R*™), where {f1;} C LP*(R"), {f2;} C LP*(R"),
{g:} € LP(R™) and 3772 || frillp [ f2,llpe |1 gillp, < oo. Since |[fi ® fa] *2
9llos < L frllpi 1l follpe 19l and [fr @ fo] %2 g € C(R?") for all fi € LP(R"),
f2 € LP*(R") and g € LP5(R™), we note that, if Y271 || f1.illp, | faillp 193l <
o0, then Y00, [f1i ® fa.] *2 gi € C(R?*™) N L°°(R?*"). We define the norm on
B2 5o (R by

1 llazs ,, = inf{z 1 villp 1 f2llps lgill g = f = Z[fl,i®f2,i]*29i}-

=1 =1

Then Ab? . (R*") is a Banach space (Lemma 3.1). Given m € Mp? ,, (R?"),
we define the linear functional ¢, on Ab? ,, (R??) by

em(f) =Y T fris foi) * 6i(0) (1.1)
i=1

for f = Y20 [f1i ® foi] x2 i € AD?,,(R*). We note that the value
Yooy T (f1,is f2,i) * 9i(0) is independent of the representations for f
(Lemma 3.8). Our main result is the following.

Theorem Let 1 < pi, p2, p3 < 00 and 1/ps = 1/p1 + 1/pe. If m €
M;gipz (RQn)’ then o, € Agipz (]RQ”)* and H(pmH(AZiPQ)* = HmHMgf’,pQ' Con-
versely, if ¢ € Ab? ,, (R*™)*, then there exists m € ME?,,(R?*™) such that
© = Pm. In this sense, M? ,, (R?™) = AP? , (R?™)*.

We point out that Berkson, Paluszynski and Weiss applied Figa-
Talamanca’s theorem to wavelet theory [1].
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2. Preliminaries

We define the Fourier transform F f and the inverse Fourier transform
F~Lf of f € S(R") by

FIHO=1© = [ ey ds
—1 1 i:p-f
@) = e L €A e

We also define the Fourier transform Fu and the inverse Fourier transform
F~lu of u € S'(R") by

(Fu,p) = (u, Fp) and (Flu, ) = (u, F 1) for allyp € S(R™).

We note that, if u € §'(R") is a function, then (u,1) = [p, u( x)dx.
For u € §'(R™) and ¢ € S(R™), the convolution u* is deﬁned by u * 1/1( ) =

(u, 7o1), where 7,0(y) = P(y — ) and ¥ (y) = ¥(—y).

3. Proofs

Throughout the rest of the paper, we always assume that 1 <p1, pa, p3s <
oo and 1/p3 = 1/p1 + l/pg.

Lemma 3.1 AP? , (R*") is a Banach space.

Proof. The proof of Lemma 3.1 is similar to one of [9, Proposition 6.14].
Using that [|fllec < [|f]l4zs, for all f € Af}p, (R?"), we see that || - | 45

is a norm. To check that A}?,, (R?") is complete, it is enough to show
that, if {h;} C A p,(R*") and Y22, ”thAZ? ,, < 0o, then d2ihy €

AP o (R*™). Then we can represent each hj as > o, | fl(]l) ® fQ(JI)] %o ggj ),
where 327°, | f{/ leH HmHng)
tion 3322, >0 [fl,i ® f ] %o gl ) implies that Z 2 hy € AR L, (R?).

, < 2||h~HAp3 . Thus, the representa-
3

O

Lemma 3.2 Let m € MP?,,(R?), f, € LPL(R"), fo € LP2(R") and g €
Lp3(Rn)' If 77(3317332) = Tm(T—mflyT—me) *g(O), then n < C(R2n) N
L=®R*™) and [[nllse < llmllygs (11 llpy [l follpe gl -

Proof. Using that
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Tm(sztL_fla fo2f2) - Tm(T—x’lfla T—x’QfQ)
=TTy [1 — 7ot J1, =2 f2) + T (T_ oy f1, Ty f2 — Ty, f2),

we have that

In(z1, 22) — n(x7, 5)]
< (T (7= 1 = Tt f15 T—an f2) |l s

A NTon (Tt 1o Toa o = Tt f2) s ) 119
< llmllagzs, (Im=a1 f1r = 7ot Fillpa | follpe

+ 1l 17—z f2 = 72z follpe) 19l

This gives n € C(R?"). On the other hand, by Holder’s inequality, we see
that |[n]lee < [lmllyzs  [[f1llp: [ F2llp2llgllp;- O

P1,P2
Lemma 3.3 Let m € M}?,,(R?™) be a C°°(R?™)-function such that all its
derivatives are slowly increasing. Then we have that

/R% Tm(fol i, 7-79”2]02) * g(0) (21, x2) doy dag
= /RQ" [f_lm] * Q/V)(_Cvl, —x9) [f1 ® fo] *2 g(x1, 22) dx1 de

for all f1, f2, g € S(R") and ¢ € S(R?*™).

Proof. By the assumption of m, we see that [F~'m] * [f1 ® fo] € S(R?")

for f1, f2 € S(R™). Since Tpn(T—z, f1, Tap f2)(—y) = [F'm] + [f1 ® fo (x1 —
Yy, v2 —y), we have that sup,, . o [Tn(7—a, f1, 72, f2)(—y)| < co. Hence, by
Fubini’s theorem, we see that

/]R T fuo o) 5 9(0) Y1, ) diy di

:/n</ﬂw Ton(T—wy f1: T f2) (—Y) Y (21, 22) dy da:2>g(y) dy.

Using that Tm(Tf:m I1, TfmzfQ)(_y) = [f_lm] * [Tyfl ®7—yf2]($17 1'2)7 we have
that

/R% T ( Ty f1, Ty f2) (=) (1, 22) d2y do
= ([F'm] = [ryfr @ Ty fol, ) = ([F'm] x . [ry f1 @ 7y f2])
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= /2 [Fhm] x (=1, —a2) fi(er —y) folwz —y) der das.
R2n
Since [F~'m] * ¢ € S(R?"), by Fubini’s theorem, we get that

([ B s )0 1 02) i sz

2n

:/n</R%[f1m] #(—x1, —x2) f1(x1 —y) folre —y)dry dxz)Q(y) dy

Rn

:/ [F~ m] (=1, —962)( fi(x1—y) fa(2 —y)g(y)dy>d901 dx
R2n

:/2 [Fim]xp(—21, —22) [f1 ® fo] %2 g(1,22) dy do
R n
The proof is complete. U

Lemma 3.4 Let m € M}?,,(R?™) be a C°°(R?")-function such that all
its derivatives are slowly increasing. If {fi1;} C LP*(R™), {f2:} C LP*(R™)
and {g;} C LP3(R™) satisfy S X f1i ® fail %2 g = 0 in L®(R?™) and
Yoot 1fvillpa L f2illpa gl < 00, then 37721 Tin(f1: f2,4) * 9:(0) = 0.

Proof. We define the function o on R?" by

oo
o(x1,22) = Y Tn(Toay fris Towo foi) % 9i(0) (21, 33 € R),
i=1

Then, from Lemma 3.2, we see that o € C(R?*") N L°°(R?"). Hence, if

/ o(xy,x2) (1, 22) drydres =0 for all P € S(RZ”), (3.1)
R2n

then we get that
7(0,0) = > Tr(f1i: f2i) * 9i(0) = 0.
i=1

We prove (3.1). Let ¢ € S(R?"). By Lemma 3.2, we have that

Z/RQ | T (T—ay f1,5 T f2,0) * 9i(0) Y(@1, w2) | davy das
=1

< llmllygos

o0
Il > 1 frllps 1 f2illps Nl gillg, < oo
=1
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Thus, we see that

(o,) = /R% (Z Ton (T—ay [l T—a0 f2,4) *9i(0)>¢($1,x2) dxy dxy
i1

S
B Z /2 T (72 Fri, 7'73;2f2’i) * gi(0) (w1, 22) dz1 dovs.
i=1 /R

For fi, f2; and gi, we take {fii;}j, {f2.}5, {9i5}; C S(R") such that
fiij — fiiin LPY(R™), fo,; 5 — f2; in LP2(R™) and g¢; ; — g; in LP3(R") as
§ — 0o. Then, by Lemma 3.3 and [F~'m] %) € L1(R"), we have that

/ T (T—ay f1,i, Teao f2,i) % i (0) (21, 22) dzq do
R

2n

=lim [ Tp(T—oy frig T—anf25) * 9i,j(0) (21, 22) dxy dg

j—00 R2n

= lim [ [F'm]xd(—z1,—22) [f1,1) ® fo]*29ij(x1,22) dry dws

Jj—00 JR2n
—/2 [F m] s (=1, —22) [f14 @ foi] %2 gi (21, 22) dy dzs.
R n

Therefore, using that [F~'m] * ¢ € LY(R?) and S50, [f1.; ® fai] *2 9i = 0
in L (R?"), we get that

<Ua¢>:Z/R2 [F~tm] (=1, —2) [f14 @ fau] %2 gi(21, w2) dy diy
i=17 8"

:/ [F~tm] s p(—a1, —x2) (Z[fl,i ® fo,i] *2 gi(21, £U2)> dzq dwo
R2n i=1

=0.
The proof is complete. O

The following lemma in the single case is given as [5, (1.2)].

Lemma 3.5 Ifme M, (R?") and i € S(R?"), then yxm € MPp? p, (R?™)
and |l xml|yzs < llallmllpzs -

Proof. By duality, we have that

[ Tl £ ota) . 3.2

s mllggzs, = sup
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where the supremum is taken over all fi, fo, g € S(R") such that || f1]|,, =
| f2llp, = ||g||p/3 = 1. For fi1, fo € S(R™), we have that

Tpum (f1, f2) (@) =(F [ xm], fr(z —y1) fo(z —y2))y1 90
=(2m)*"([F " 'm] [F ), e i @ 7o fo) = ((F ' m] [ra fL @ 7o fo], F)

= (2 1)2n <m*f[7—mf1 ®Tzf2] ¢>

Let M, be the modulation operator defined by M,h(¢) = e ¢h(¢). Using
that M_,7,h(&) = e Y[ M,h](x — £), we see that

mx Flre fi @ 7o fo] (y1,y2) = (m, Flra fi @ 7o fo] (11 — 1,92 — &2))er
=2m)*"(m, F  r i @ e fo) (&1 — 91, & — 12))er 0
= (2m)*"(m, F (Mg, 70 f1) @ (M_yy 7 £2)) (€1, €2)) e, 2
= (2m)>e W) (F (M, i) (z — &) [My, fo) (2 — &2))e, 0
=(2 )2n - (y1+y2)T (My, f1, My, f2)(z).

Hence, by Holder’s inequality, we get that

[ oo 1)) gla) da

/n (/}RQ” e*ix-(yl+y2)Tm(My1 f1, My, f2)(z)

X P(—y1, —y2) dyr dy2>g(x) dx

‘/ Y(=y1, —y2)

( / T IT, (My, fi, My, 2)(2) g(2) da:) dyy dys

< llllimllagzs , [ Fillor | f2llp 9lps - (3-3)

(3.2) and (3.3) prove Lemma 3.5. O

Lemma 3.6 Let m € M} ,,(R*™) and p be a radial C°°(R?")-function
such that p > 0, suppp C B(0,1) and [p(x)dz = 1. Then for all fi €
LPY(R™), fo € LP2(R™) and g € LP3(R™) we have that

i [ Ty (1, f2) (@) g(2) die = / Tl 1, f2) () g(z) de,
RTL

e—0 n
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where pe(x) = e 2"p(x/e).

Proof. From Lemma 3.5, it is enough to prove Lemma 3.6 when f1, fo, g €
S(R™). Let f1, f2, g € S(R?). pc*m — m in S'(R?) as ¢ — 0 gives
Tposm(f1, f2)(x) — Tim(f1, f2)(x) as € — 0 for all x € R™. On the other
hand, since m € S'(R?"), there exist C > 0 and N € Z, such that

[(m, )] < Cpn(v) (¥ € S(R™),

where py (1) = 3144 ke n SUPy, yoern (14 1] + [92])¥10%¢(y1, y2)|. Hence,
we see that

‘Tpe*m(flan)(x” = |<map6 *‘7:71(7—1‘]61 ®7—xf2)>| < Cf1,f2(1 + ’x‘)Nv

where C'y, 1, is independent of 0 < € < 1. By Lebesgue’s theorem, we get
Lemma 3.6 when f1, fa, g € S(R™). O

Lemma 3.7 Let m € Mlz’)ipz (RQn). If {fl,i} C LPt (Rn), {f27i} C LP2 (Rn)
and {g;} C LP3(R") satisfy 3721 |[fuillpy 1 f2illps lgill, < oo and
Sy [f1i ® fail %2 gi = 0 in L®(R?™), then .52 Trn(f1i, f2.) * 9i(0) = 0.

Proof. By Lemmas 3.5 and 3.6, for each i, we have that

Tpesm (fris f2.0) * giO) <Hlmllpgs [ frillp |l f2.illpa lgillyy, (6> 0)

and
lij% Tpesem (f165 f2,i) * 9i(0) = T (f1,i5 f2,4) * 9i(0),

where p, is given in Lemma 3.6. Hence, by Lebesgue’s theorem, we get that

o0 [e.9]
li T, . ' [ ) — T ' fou (0).
Eg%z; am (f165 f2,i) % 9i(0) Zl m (S, f2.) * 9i(0)
1= 1=
On the other hand, since pexm is a C°°(R?")-function such that all its deriva-
tives are slowly increasing for each € > 0 ([8, Chapter 1, Theorem 3.13]),
pe *m satisfies the assumption of Lemma 3.4. Therefore, by Lemma 3.4, we
see that

ZT cem(f1is f2.i) % i(0) =0 (e >0).
=1

This proves Lemma 3.7. U
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Lemma 3.8 Let m € M}?,,(R?). Then we can define the linear func-
tional @, on Ab? ,, (R*™) by (1.1).

Proof. To define ¢,,, we need to show that, if {fl(}i)}, {fl(%)} C LPr(R™),
{5}, {6 C 2®") and {gM}, {gP} C LP(RY) satisty
S, 17201, 191 Zﬁlnff?um Hfé?Hm lo*],, < oo and
Do [fl(li) ®f2(z] *9 91( ) — Zz:l[fl(Qi) ®f ] ) in L"O(RQ”) then

ZT flz’ (1) *gz ZT flz7f21 1 ()

To do this, we define {fl’i} C LP(R™), {sz} C LP2(R™) and

{6} c @™ by {4V} = (A r3 A el {RY) =
1 2 1 2 3 2

{ﬁjhéjhéghégwu}and{é)}=:{1,—yilgét—% ,...}. Then

we have that

ZM%J?%M?

=2MMJ“%2i

p3+ZHf1’L lef2ZHp2H 2

, < 00
p3

and

S @ 9] 2 6

= 00 00
Zflz *2 gz Zflz®f21 *291) 0.
=1 =1

Hence, by Lemma 3.7, we get that

ZT{%&*%)—ZMM?@MﬁW

=1

_ZT flz7 z z ()_0

Thus, we can see that the value Y .2, Ty (f1,i, f2,i) * 9i(0) is independent
of the representations for f. In the same way, we can prove the linearity
of om. O
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We are now ready to prove Theorem given in the introduction.
Proof of Theorem. We first show that, if m € M}?,,(R?"), then ¢, €
A2 5 @2 and ool agp - = Imllagzo . Let m € ME, (R2). Then,

from Lemma 3.8, we have that ¢,, is a linear functional on Ab? ,, (R?"). Let
f=2211fi® fail x2 gi € Apl,pg (R?™). Since

)] < Imllygsy Iy
-

taking the infimum over all the representations for f, we have that |, (f)]| <

lmllpgzs [1fllazs - that is, om GAﬁ’pQ(R.?n)* and [omll ars ) <llmllprs .

We prove H(pmH(Aﬁi’,pg)* > HmHM;ff’,pg' Using the formula (3.2), for e > 0 we

can take fi., fae, ge € S(R™) such that ||fi |, = = [|gellp, =1

and

Imllgs,, — € <

/n Tin(fre, f2,6)(@) ge(@) dz|.

Since [fle ® f2 e] %9 Je € Apl pz(RQH) and H[fl,e ® f275] *2 gg||AP3 <

P1,P2

|4, » We see that

llags,, <| [ Talhie )@ o) do

= ’Tm(fl,ean,e) * gs( )’ +e= ‘Som[(fl7€ & f2,e) *9 ge]‘ +e€
< Nlomlleazs ,ye I fre © facl *2 Gellars  + e

+e€

<Nl e Wl Foclloalgelyg + € = lomllags - +e.
Hence, the arbitrariness of € gives ||¢m( A3y 2 || ME3 -
1P 1.P2

We next prove the converse. Let ¢ € Aﬁi’m (R27)*. Since [f1 @ fa] *2
g € AP L, (R* for fi € LP'(R™), fo € LP*(R") and g € LP3(R"), fixing
f1 € LP*(R") and fy € LP?(R"), we can define the linear functional FY, f,
on LP3(R"™) by
Fpop(9) = ¢l(f1® f2) x29] (g€ LPH(RY).

By the boundedness of ¢, we see that

Fp @) < el ams 1 ® fol 52 gllams
< lellgas ool il e llalally, (9 € ZPARY)),
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that is, Fy, s, € DGR and [Fp gl e < Deloass, - 1illo 1ol
By LP3(R")* = LP3(R"), we can find h € LP3(R") such that ||h,, =
||Ff17f2H(Lpg)* and

Frp(o) = [ h@)gl@)de (g e DHEY)

Then we define the bilinear operator T' by T(f1, f2) = h. By the definition
of T', we have that

IT (1, F2)llps = ollps < Nelliazs < fillpn [l £21lp2 (3-4)

for all fi € LP1(R™) and fy € LP2(R™). We show that T" commutes with
translations. Since [(7,f1) ® (Taf2)] *2 g = [f1 ® fa] *2 (729), the equations

(2 f1)®(2 f2)x29] = Fro 1 7,12 (9) = /RHT(TxflaTfo)(y)g(_y) dy
and

AU )52 (re0)] = Fr (o) = [ w (s £ -0)

give T(74f1, 7o f2) = 12T (f1, f2). Since the bilinear operator T' is bounded
from LP'(R™) x LP2(R"™) to LP3(R") and commutes with translations, by
[4, Proposition 3], we can find m € S'(R?") such that T'(f1, fo)(x) =[F ~1m]*
[f1® fo](x,z) for all f1, fo € S(R™). (3.4) implies m € M}?,, (R?"). Finally,
we prove that ¢ = ¢p. Let f =Y 72[f1; @ fou] *2 gi € AD: p,(R*™). Since
SN 10 ® fail %2 gi — f in AR, (R?™) as N — oo, by the continuity and
linearity of ¢ and [(f1 ® f2) *2 g] = T (f1, f2) * g(0) for all f; € LPY(R™),
fo € LP2(R™) and g € LP3(R™), we see that

N
p(f) = lim_ D el(fri ® foq) %2 gi]
=1

N
= ]\}EIIOO;Tm(fu, f2,i) * gi(0) = @i (f)-

The proof is complete. U
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