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A note on the large time asymptotics for a system
of Klein-Gordon equations

Hideaki SUNAGAWA
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Abstract. We study the asymptotic behavior of the solution in the large time for the
system

(O+m3)u =0
(O+m3ug =0
(O+ m2)us = vius
in two space dimensions. We prove the existence of a solution whose amplitude is mod-

ulated by the long range effect when msz = Aymi + Aamsg for some A1, Ag € {£1}.
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1. Introduction

We are concerned with the large time behavior of the solution to the
Cauchy problem

(D—f‘m?)ui:Fi(UL...,UN), t>0,$€Rn, (1 1)
(u, Oput)|t=0 = (efi,€9:), 1=1,...,N. '

Here O = 82 — A, m; > 0 is a constant, f; and g; are real valued functions
which belong to the Schwartz class S(R™), and € > 0 is a small parameter.

We also assume that for each i € {1,...,N}, F; is a smooth function of
u = (u1,...,un) in its argument and vanishes to p-th order at the origin,
i.e.

" F;

5o (0)=0 for |o/<p-1.

Since we are interested in the critical nonlinear case, we restrict ourselves
to'the case p=1+4+2/n and n < 2, that is, (n, p) = (1, 3) or (n, p) = (2, 2).

In the previous work [8], it is shown that the Cauchy problem (1.1)
admits a unique global smooth solution which tends to a free solution as
t — oo under the following condition, which we call the non-resonance
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condition ;

m; = A\im; + demy,  for some  Aj, Ag € {£1}
2
. 1. 2 O —
implies o 8uk( )

for each 4, j, k € {1,..., N} when (n, p) = (2, 2), and

m; = A\ + Aamyg + Azmy for some  Ap, Ao, A3 € {:l:l}
implies &K, (0)=0
impli ———(0) =
P Ou;OukOuy
for each 4, 7, k, 1 € {1,...,N} when (n, p) = (1, 3). More precisely, we
have

Theorem 1.1 If the non-resonance condition is satisfied, there exists a
unique solution in C*((0, co) x R™) to the Cauchy problem (1.1) for suffi-
ciently small €. Furthermore, we have

lu(t) —u*@)|g —0 as t— o0
or some free solution u* = (ul)i<i<n, i.e. the function satisfying (O +
2 e >

m3ul = 0.

Here and later on as well, we use the notation

N
Hu(t)HQE = Z/{(@tuz(t, x>)2 + ‘qui(t, x)|2 +m?'u,i(t, x)2} dzx.
i=1

Remark 1 Similar result is true when F; contains also the first order
derivatives of the unknowns, i.e. F; = F;(u, Ou), but we do not mention
here for the simplicity of exposition (see [8] for detail).

Remark 2 Typical examples of the systems which satisfy the non-reso-
nance condition are

(@ + m})ur = ugus

O+ m%)’LLQ = U3U1

(O+ md)us = urug

in two space dimensions with Z?Zl Aim; # 0 for any A1, Ao, A3 € {£1},
and
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(D + m%)ul = U2U3U4
(D + m%)UQ = U3U4U1L
(D + m%)ug = U4UIU2
(O+ mi)u4 = Ui UU3

in one space dimension with Z;Ll Aim; # 0 for any A1, Ao, Az, A4 € {£1}.

The following question arises naturally: How does the solution behave
in the large time if the non-resonance condition is not satisfied? For the one-
dimensional scalar equation (n = 1, N = 1), the results due to Delort [3] or
Georgiev-Yordanov [4] might answer this question, but for the case N > 2,
the question seems completely open except Tsutsumi’s remark [9] (see also
[5], [7]). The aim of this paper is to give an answer to this question for the
following special case

(D + m%)ul =0
(O+md)ug =0 (1.2)
(O + m3)us = urug

in two space dimensions with mg = A1my + Agma for some A1, Ag € {£1}.
We will find the asymptotic profile of the solution to this system to show
that the large time behavior is quite different from that of the free solution.
More precisely, we will prove the existence of a solution whose amplitude is
modulated by the long range effect. Note that the nonlinear behavior found
in [3], [4] take place at the level of the phase of oscillation of the solution.
The main result is the following:

Theorem 1.2 For the solution u = (u1, ug, us) of (1.2), we have
Cilogt > ||u(t)||g = Calogt for t>T

when mg = A\ymi + Aama for some A1, Ao € {1} and the initial data is
appropriately chosen in S(R2). Here T > 1 and C1 > Cy > 0 are constants
which depend on the initial data.

Remark 1 If ug had a free profile in the sense of Theorem 1.1, the energy
should stay bounded, i.e., [|u(t)|z < C for any ¢ > 0 with some positive
constant C. So uz does not have a free profile in the usual sense when
ms = Aym1 + Agmg for some A1, Ay € {£1}. The asymptotic profile of us
will be obtained in §2.3 (see Theorem 2.1 below).
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Remark 2 On the other hand, when mg # A1mq 4 Agmy for any A, As €
{£1}, uz has a free profile in the sense of Theorem 1.1 since the non-
resonance condition is satisfied.

Remark 3 We can obtain the similar result in the same way for the sys-
tem

(O+mHu; =0
(O+m2)ug =0
(O+mdusg =0
(D + m4)U4 = UjU2U3

in one space dimension when my = Aymi1 + Aomg + Agmg for some A1, Ao,
Az € {il}.

2. Proof of the main theorem

This section is devoted to the proof of Theorem 1.2. The proof is
divided into 4 steps. In the first step, we will consider the asymptotic forms
in the large time of the solutions to the linear Klein-Gordon equations using
the result from §7.2 of [6]. In the next step, we will prepare some lemma
related to the normal form argument (cf. §2.1 of [2]). In the third step, we
will obtain the asymptotic profile for ug in the system (1.2), and we will
reach the desired conclusion in the final step. Since we are interested in the
large time behavior, we always suppose that ¢ > 1 in what follows.

2.1. Asymptotic behavior of the solutions to the free
Klein-Gordon equations
We first investigate the asymptotic form of the oscillatory integral

I, 2) = / O (E) d,

where h € S(R™), t > 1, z € R™ and (¢) = (1 + |¢]?)"/2. The following
lemma is due to Hérmander [6], though we state a slightly modified version
here.

Lemma 2.1 If h € S(R"), then the oscillatory integral I(t, z) can be
written in the form
eiq&(t, z)

A(t, z) + R(t, )
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where A, R € C*°(]1, oo[xR™) and ¢(t, z) = (t* — ]x|2)i/2. The function A
has the asymptotic expansion

Alt, z) ~ Zt_jaj (%) ,

Jj=0
where a; € C*(R™C), 1 =0,1,2, ..., satisfy
105a;(y)| < Cj 0, v (1= [y (2.1)

with some positive constant C; o, N for any multi-indices « and N € N. In
particular, the leading term aqg is given by

(1- |y|2)‘(”“’/4h.<—1—¢%—yp) if Iyl <1,

0 if lyl = 1.

et /4

aoly) ={ (2m)"/?

Concerning the function R, for any multi-indices o and N € N, there exists
a positive constant Co, v such that

68, R(t, z)| < Ca,n(t+ |27,

Remark In the above statement, we have used the notation ~ in the
following sense: We write

p(t, ) ~ ij(t’ z)
Jj20
if for any multi-indices o and N € N there exists a positive constant Cy, v
such that

N-1

8&6{29@7 z) — Z p;(t, x)} < Co,n(t+ |x])—N_|a[,

Jj=0

The proof of Lemma 2.1 may be found in Section 7.2 of [6] except the
estimate (2.1), so we shall only check it. According to Hérmander’s original
argument, a;(y) is given of the form

bl ——Y¥ if ’
ai(y) = J<¢1 —‘|y_|2> <t

0 if |yl =1
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with appropriate b; € S(R™). So it is easy to see that
la; ()] < Cio,n(1 = ly*)F

Here we note that 1 — |y|? = (€)™2 when ¢ = —y/+/1 — |y|2. Also, da;/0yy
can be written

. . -y i
gﬂ“’):{ () (iZgm) # <
Y 0 if Jyl>1

with

. 9
€ (On+&&) 5 58
1=1 !
Since Lib; € S(R™), we have

Irgliji 10%a;(y)| < Cj1,n(1 = y)Y

By induction we obtain (2.1).
Now, we put
— (om ( Fle) — '®>
we) = em (Flo -5,

where fstands for the Fourier transform of f. Since the solution v of the
Cauchy problem

(O4+Dv=0, v(0,z)=f(z), Jw(0,x)=g(x) (2.2)

is given by

Ae{il}
=Re {/ MBI B (£) dé] ,

we can apply Lemma 2.1 to obtain

Sid(t,2)
u(t, z)= Re[ 73 A(t, z) + R(¢, x)}
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=Re {%ao (%)J
+ Re {%t{fl@, z) — ag @)} + &, x)} ’

where A, R, ag are as in Lemma 2.1 with above h. Summing up, we have
the following:

Corollary 2.1  For the solution v of (2.2), we have

ot 21 < O {1777 (1= [2[) 4 (e

and

IAG(t, z)
v(t, z) - Y et_n/g—am (%)

re{£1}

22\
B
+

with some constant Cn,, N, for any N1, No € N. Here aM iy e R?" = C
is given by alTY (1) = ag(y)/2 and o=V (y) = ag(y)/2.

2.2. A lemma related to the normal form argument
The goal of the second step is to show the following:

Lemma 2.2 Leta:y € R — C be a smooth function supported on the
unit ball {y € R™ | ly| < 1}, and m, u be real constants. Also let ¢(t, x) =

(t? — |m|2)i/2. Then we have

cthdte) o ) et (t, z) x
() = @+ e ()

€ L1(1, co; L2(R™))

if |m| # |ul, while

Cra(£) - (@t [ (2 (2]

€L(1, 00; L2(R™))

if m=Au, A€ {xl}.
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Remark For non-trivial a € L2(R™), the function e®®*%)t=va(z/t) be-
longs to L'(1, co; L2(R™)) if and only if v > 1 4 n/2 because

ei.u‘b(tv') . 2d(L‘ 2
— n/2—v
= a(t) L = o n/2 {/‘ } =t ||a||L§.

Lemma 2.2 is a consequence of the following lemma, which appears in
[2] in somewhat different form.

Lemma 2.3 Let m, u, ¢ be as in the Lemma 2.2 and let A: (s, y) €
10, co[xR™ — C be a smooth function which vanishes when |y| > 1. Then,

for v € R, we have
et (t, ) T
w A (10g t, ?)

et (t, )

— (m? — MQ)A(logt, %)

(O+m?)

giud(t,z) J n x
T i {( — gy 1/2<83 +5 - V>A} (logt, ;)

etud(t, ) T
tVT (P,,A) (10gt, ;) y

_.|_

+

where
o s, %, = s,
P, = (% - ;:1 yjéy_j -v-— 1> (& —jE:1 yja—yj - 1/) — Ay

Remark The auxiliary variable s = logt in this lemma is often called
the slow time, which is familiar in the theory of blowup for quasilinear
hyperbolic equations (see [1], [6]).

Proof of Lemma 2.2 via Lemma 2.3. When we choose A(s, y) = (m? —

)" ta(y) and v = 1+ n/2 in Lemma 2.3, we have
eind(t,z) o 0 et (t,z) T
$1+n/2 “(?) -(@+m?) [(m2—u2)t1+n/2a (E)}

_ Qiﬂeiﬂ¢(t,$) 12 -1/2 T eiuqb(t,z) .
B (m?2 — p2)t2+n/2 <1 - ‘ﬂ >+ a(?) B (m2 — p2)t3+n/2 (Pva) (;)
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if |m] # |u]. Since both (1—|y|2);1/2a(y) and (P,a)(y) are smooth functions
with their support on the unit ball if a(y) is so, we obtain the first half of
Lemma 2.2. When m = Ay, A € {£1}, we have

e (2) - Oy [T Bl |2 ) (7))

ei/\m¢>(t,:c) T

by choosing A(s, y) = (2iu)"ts(1 — ]y[2)i/2a(y) and ¥ = n/2 in Lemma
2.3 and using the relation iX = e*7/2, Since (P,A)(s, y) is majorized by
(1+ s)b(y) with appropriate b € L2(R™), we have

ePmelt) . (1+logt
W—(PVA) (10gt, ?)H , < '—_t'—)"”bHH € Ll(l 00),
Lm

which yields the latter half of Lemma 2.2.
Proof of Lemma 2.3. First, we note that we may assume |z| < t since the
both left and right hand sides are 0 when |z| > t. Now, let us introduce

0 " o
_ _ Zyj—. _
0s pt 0y;
so that
01 T T
Then it follows that
92 [eird(tz) T it o 02%¢ T
W[ Iz A(logt’ ?)]_ % { I <8t> T }A(logt’ ?)
eimﬁ

9¢
tu+1 2zu< 8t) (X, 4) (logt, %)

it T
W (XV+1X,/A) (logt, ;) .

_|,_

Similarly, straightforward calculation yields
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92 [ etud(t,z) T glke ¢ ¢ x
8—33]2[ t“ A<1ogt,?>}— w { H <a—)+ 8 }A(logt, ?)
eiwb '
() () (o
et 152 A
v () (o807,
Thus we have

5 eiﬂ¢(tvx) E
(O+m )[ v A(logt, t)

:i_5¢{m2 . [(@@2 _ ‘ngbﬂ +iM(D¢)}A <Iogt, %)
g

:V o 21#[(3@))@ — (Vs0) - vy} A (logt, %)

Zj—iﬁ (X,,HX,, _ Ay)A <logt, %)

i
=ety (m? — A (logt, %)
g

+ 2] (0:6) X, = (V) - Vy + %(m)} 4 (10gt, Z)

_l’_

::T; (P A) (log t, —f—) .

Here we have used the relations (8t¢)2 - |Vmgb|2 =land P, = X, 11 X, —
Ay. Finally, since ¢ satisfies

+

n

(&= eP)7

0 0
<t%; +£Eja> ¢ = 0,

O =

and

we have
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(08X, = (Vo) -V, + 5 (09)

= (0:9) [Xy+%.vy] n E(l 3 ‘f 2)—1/2

NS VY S
= (1 |y|)+ <8s+2 1/)

which completes the proof. O

(s,y)=(logt, z/t)

2.3. Construction of the asymptotic profile for ug

In this step, we are going to find the large time asymptotic profile for
ug in the system (1.2). The goal is Theorem 2.1 below.

First, we put v;(t, ) = u;(t/m;, /m;) and

eiAquﬁ(t,m) N /T
ri(t, ) =t ) — Y Ta§ )(z)
Ae{£1} J

for u; in the system (1.2) so that (O + L)v; = 0, v;(0, z) = u;(0, x/my),
(0v5)(0, z) = mj_l(Btuj)(O, z/m;) and

ei¢(t’,x’) N /T
’I"j(i, x) = l:”l)j(t/, :L'/) — Z " ag )(t >:| )
re{x1} (t', z")=(mgt, m;x)

o)

Here j =1, 2 and a; 1y € R? — C is given by

(+1) m2_ei7r/4

2\ —1~ —m;y
CLj (y): 1767r3 (1 - Iyl )+ Usj <0, ﬁ)

L ot3m/4 o
mje 2N—1/2 757 myy
- 167(1 —ly1*) " (Geuy) <0, \/CW)’
o\ Y (y)=a{" (v).

Then it follows from Corollary 2.1 that

|uj(t’ z)| < CNl,Nz{t—l (1 - ‘%‘Q)jl +(t+ IIED_N:)}

and
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e 31 o {50 5+ v}

for j =1, 2 and any N1, Ny € N with some positive constant Cn,, v,. Thus,
putting

R1 = ujug — (ug — r1)(ug — ra),
we have
|R1 (¢, 2)|<|usllra] + [ug|lrs] + |7a]lre]
§C§V17N2{t‘3(1 — E Q)T + (t+ |x|)_N2}

for any N1, Ng € N with some positive constant Cfvl, No- In particular we
have R; € L(1, oo; L2(R?)).
Next, let us introduce

Ae={(01, do) € (217 | Avrma + Aoma = ms ),
A_={(/\1, Ao) € {£1}? ‘ A1my + Agmg = —m3},

AOZ{(/\L Xo) € {£1}2 ‘ |A1my + Agma| # m3}

and
gi{mae(t,z)=m/2} 150 ¢ 12\ 1/2
w+(t’ CE) - 2m1m2m3t (1 N ‘?’ >+
M) (TN (M) (X
x D, a4 (t)% ’ <t>’
()\1,)\2)EA+
e~ Hmad(t,z)—m/2} o0 ¢ 212y 1/2
w-(t, %) = 2myimaomat (1 B l?‘ )+
AT () (T
x XA (?)CL? (t)
(A1, A2)EA—
eiAimi+iama)e(t, z)
wo(t, x) = Z m1m2{m§ — (g + A2m2)2}t2

(A1, A2)EAg

O (2)e0 ()

Then it follows from Lemma 2.2 that
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gi(dimi+dama)e(t, z)

Rt op= Y e ()af ()

(A1, do)e{£1}?
— (O +mj) [we(t, z) + w-(t, ) +wolt, )]
€ L(1, oo; L2(R2)).

Now, we put wi (¢, z) = wy(t, ) + w-(t, ) = 2Re[w (¢, z)]. Since
Ry + Ry = wyug — (O + mg)(wo + wr),

we have
(O + m3)(us —wo — w1) = Ry + Ry € L*(1, oo; L2(R?)).

Therefore there exists a solution ws(t, ) of the linear Klein-Gordon equa-
tion (O + m2)w = 0 such that

[ {ua(t) — wo(t) —wi(t)} —wa(®)]|, » O as t— oo,

where the norm || - || is defined by

w(®)]le = U{(atw(t, 2))? + |Vaw(t, 2)|” + mw(t, .q;)?} dx] "
Furthermore, since

|lwo(t)]le = 0 as ¢ — oo,
w3 = uz — w1 — wo has the same property. Summing up, we obtain
Theorem 2.1  For us in the system (1.2), we have

U3z = wi + wg + w3,

where
_ logt i{mag(t,z)—m/2} 4 (%
o1 = 8% maeteso 42
with
(1—|y|2)f/2 T M)y () :
) ai (y)ag ' (y) of Ay #0,
Aly) = M1Mams (O, Aa)ehs
0 2f A+:®7

wo is a solution of the free Klein-Gordon equation (O + mi)w = 0 and w3
satisfies [[ws(t)|e — 0 as t — oo.
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2.4. The end of the proof

Now, we are in position to show Theorem 1.2. Since the upper bound
follows immediately from Theorem 2.1, we omit the proof of it and we prove
the lower bound here.

By Theorem 2.1, we have

lus(®)lle > lwi(®)lle = lwa(@)lle = lwa(®)lle

and ||wa(t)||e = const., |[ws(t)|le — 0 as t — oo. Also, since

Bew (¢, z)=ma (0up(t, 7)) lngt Im [eim3(¢(t’ 2)=/2) 4 (f)}

t
L LAlogt oo [eim3<¢<t, z)—/2) 4 (E)]

t2 t
logt ; ¢ 2)—m/2
+ 22 Re [ezmsw( =)=r/2) (y . v, A)y:m]
and
2 £
|O: (¢, )|° = 2= [a? >1 for |z]<t,
we have

|Bpws (¢, x)\Qng l%g—tlm [eimsw(t,x)—ﬂ/z)A (E)} ‘2

t

ol

with some smooth function B(y) which vanishes when |y| > 1. Thus, we
have

Ilwl(t)IIQZ/ Gewr (t, 2)” +milwi(t, 2)|* da

>m} (loth)Q / }A <§>’2 o (10g3t)2 / ’B (ENZ .
> ; : t t
Z(HAHLzmg logt)Q _ (log t)?

t
Therefore we can choose T' > 1 such that

18|12

1
lu®lle 2 lust)lle 2 1Al 2mslogt for ¢ 2T,

provided that ||.A||z2 is strictly positive. In order that [|.A4]|z2 be strictly
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positive, it is sufficient to choose the initial data so that
u;(0, 0) = /ug(O, z)dr#0 and

(6tu3 /(%ug 0 CE z =10

for j = 1, 2. Indeed we can choose § €]0, 1] so that |A(y)| > |A(0)|/2 >
0 for |y| < § since A(0) = cu1(0, 0)u2(0, 0) with some ¢ € C\{0} then.
Therefore we have

AP Y 12 A0)]
R TR e B e

which completes the proof. O

3. Concluding Remark

Though the system treated in this paper is nothing but an inhomo-
geneous linear equation, this example suggests several kinds of long range
effect may appear in much wider class of resonant systems, in particular,

O+ ml)ul = UgU3Ug
(O + md)up = uzuqus
(D + m3)’LL3 = U4UTU2
(O + m?)ug = urugus

in one space dimension with Zfﬂ Aim; = 0 for some (\;)1<i<a € {1}
For sufficiently small and smooth data, the global existence of the solution
to this system follows from the inclusion H*(R!) «— L*®°(R!) and

/Z{ 8tuz zuz) + m u; } — 2ujugususdz =0

(see e.g. [6, Theorem 7.5.2]). However, it seems difficult to obtain the
asymptotic profile of the solution by this approach. In two dimensional
quadratic nonlinear case, even the small data global existence is open with-
out the non-resonance condition. It seems an interesting problem to clear
up the long range effect in such resonant systems.
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