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A class of Butler groups and their endomorphism rings

Adolf MADER and Lutz STRUNGMANN
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Abstract. We study a class of Butler groups of infinite rank, called Hawaiian groups.
They are defined as subgroups of a rational vector space and contain parameters that
provide for flexibility but are concrete enough to allow for the computation of certain
crucial subgroups and quotient groups, to exhibit endomorphisms and describe the endo-
morphism rings. Most Hawaiian groups are finitely Butler; under stronger assumptions
they are not finitely filtered and hence not Ba-groups.

Key words: torsion-free abelian group of infinite rank, Butler group, finitely Butler, en-
domorphism ring, free direct summand.

1. Introduction

It is common knowledge that the concept of a Butler group is ambiguous
for torsion-free abelian groups that are uncountable. There are competing
definitions which we recall. A torsion-free abelian group G is called finitely
Butler if every finite rank pure subgroup H of G is a Butler group, i.e.,
a pure subgroup or equivalently a homomorphic image of a completely de-
composable group of finite rank. A torsion-free group B is called a B-group
if Bextz (B, T') = 0 for all torsion groups T'. Here Bextz(—, —) denotes the
subfunctor of Extz(—, —) consisting of all balanced exact extensions. Fi-
nally, a torsion-free group G is a Ba-group if it has a filtration G = |, Ga
of pure subgroups G, such that for every a < A, Go+1 = G, + H,, for some
Butler group H, of finite rank.

In [ShSt] groups were constructed that are finitely Butler but not Ba-group
and it was shown that in certain models of ZFC some of these groups are
Bji-groups.

The purpose of this paper is to investigate further the finitely Butler groups
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constructed in [ShSt] and to determine their endomorphism rings. We gen-
eralize the construction from [ShSt] and obtain a large class of torsion-free
groups, called Hawaiian groups, that are finitely Butler but not Ba-groups
and study their properties as well as characterize the groups that can ap-
pear as endomorphism groups. Hawaiian groups may serve as examples or
counterexamples for various questions on infinite rank Butler groups. For
instance it is not known if Hawaiian groups are pure subgroups of (infinite
rank) completely decomposable groups.

Our notation is standard and we write maps on the right. All groups under
consideration are abelian and written additively. P denotes the set of all
primes. If we say that a prime p divides an integer m or even a fraction
m/n, then this means that p divides m inside Z. If H is a pure subgroup
of the abelian group G, then we write H C, G. Moreover, H, C G denotes
the purification of the subgroup H of a torsion-free group G. A reasonable
knowledge about abelian groups as for instance in [Fu] is assumed. However,
the authors have tried to make the paper as accessible as possible.

2. Hawaiian groups

In what follows x always stands for an infinite cardinal < 20 We let
V= @an b @an
new a<k

be the vector space with basis {x,, y}. Let
R:=(R,|n<w), and S:=(S,|a<k)

be sequences of rational groups by which we mean additive subgroups of Q
that contain Z. Let

F:=FL(R,S) = (@ Rnxn) ® (@ Saya>

be the completely decomposable subgroup of V with “decomposition basis”
{Zn, Ya}. We define torsion-free groups sandwiched between F' and V as
follows.

Definition 2.1 Let 7 := (T, | n < w) be a sequence of rational groups,
let P := (pn: n € w) be a sequence of (distinct) prime numbers, and finally
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let A= (As: a < k) be a sequence of subsets of w such that

Vo, 8: AN Ag # 0, | ) Aa=w, and [ Aa=0.

a<k a<k

The group
B=(FR,S), p; ' Tp(ya — 2n): @ < kK, n € Ag) CV

is called a k-Hawaiian group or simply a Hawaiian group. The k-Hawaiian
group with the specified data we denote by B, (R, S, T, A, P).

Every element b of B = B(R, S, 7, A, P) has a representation

b= rant Y sarat Y lgamm)  (21)

n<w a<k (a,n): a<r,n€Aq Pn
t t
=3 (m X e (et X e @2)
n<w a: nEAy Pn a<k nEAq Pn

where 7, € Ry, 8o € Sq and to, € T, for n € w, o < K, and all but a finite
number of coefficients are zero.

We will use the following notation where the type of a rational group is its
isomorphism class.

Definition 2.2 Let B=B4(R, S, 7, A, P), and a < < k. Then set

(1) ¢:=type(Z);

(ii) Pa:i=(p,':n€An); da:=type(Pa);

(111) P = <p771: n € w> = Zp<.‘$Pp; R = En<an; S = Zp<nsp;
T:= Zn<w Tn;

(iV) gavﬁ = P,NPg = <p;1: n e AQQA5>; 5a,ﬂ = type(Paﬁ) = 5(1/\65;
(v) To:=3hea, Tn; Ta:=type(Tn);

(Vi) Tap =2 neauna; Ini  Tap = type(To,p);

(vil) 04 :=type(Sa); Sap=SaNSs; 0ap=type(Sap)=0aA0gs.
We remark that 0, is represented by the characteristic [hy, ..., h;, ...]

where h,, = 1if n € A, and h,, = 0 otherwise.

As we proceed we will impose one or more conditions on the rational groups
involved in the definition of Hawaiian groups. Some such conditions are as
follows.

PNT=Z and Vn<w:T,n Y Ti=L (2.3)

i1 1EW,I#N
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SNT =7 and SNP=2Z. (2.4)
RNP=7Z and RNT =17Z. (2.5)

All these conditions are satisfied if R =S =T = Z, but it is not difficult to
exhibit many other examples of rational groups satisfying these conditions.
Recall that a rational group is determined by generators of the form p=™"
([Ma, Section 1.2]). One only needs to write P as a countable disjoint
union of infinite subsets and pick the generators for the rational groups
from different subsets. For example, to satisfy T,, N >, ., o Ti = Z let
U be an infinite set of primes and write U = |, <o Ui such that the U; are
pairwise disjoint and infinite. Now, for each ¢, choose generators p~" of T;

such that p € U,.

Remark 2.3 It follows from the second assumption in (2.3) that T, N
Ts =T,z

We will use without explicit mention (see [Ma, Lemma 1.2.13]) the fact that
intersection distributes over finite sums in the poset of rational groups. For
two rational groups S, T, let ST := D sitiz s € S tie T} ~ S ®T which
is again a rational group. The type of a rational group is its isomorphism
class and we have

type(S + T') = type(S) V type(T),
type(S NT) = type(S) A type(T).

Before going on we need to record a consequence of the assumption PNT =
7.

Lemma 2.4 Suppose that P N\T = Z. Then the following statements are
true.

(i) ZneAa(l/pn)Tn = Pa + Ta = PaTa-

(ii) 0o VT8 > 0o V 73 if and only if 0o > 6o and 753 > Tg1.

Proof. (i) Let n € Ay and t,, € T,,. Then t, = (1/pn)(tnpn) € (1/pn)Tn,
so Ty C ZneAa(l/pn)Tn- Further, P, = ZneAa(l/pn)Z - ZneAa(l/pn)Tn'
Hence P, + T, C ZneAa(l/pn)Tn-

Conversely, let n € A, and 0 # t,/p, € (1/pp)T,. Write t,, as a reduced

fraction t,, = r/s. Then the assumption PNT = Z implies that ged(py, s) =
1. In fact, if s = p,s’, then r/p, = (r/s)s’ € PNT = Z, a contradiction.
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We have a Bezout equation up, + vs =1 and

tn_ v _r(upatus) _ru v g

Pn SPn SPn S Pn
This shows that > s (1/pn)T C Pa + T,, and the desired equality is
established.
To show that P, + T\a = PaT\a we first note that trivially P, + T\a - PaT\a.
The reverse containment follows from the partial fraction decomposition of
an element r € P,:

r=—+—"+--., 1, €L n; € A,.

(ii) Suppose that do V75 > 4 V7. The lattice of types is distributive and
the hypothesis PNT = Z implies that always 6, A7, = 6 = type(Z). Hence
Ot N 0o = O N (504 V Tg) > 0t A ((50/ V 7’5/) = §y and dq A 0y > Oy implies
that d, > 0. The inequality 753 > 74 is obtained analogously. O

To establish properties of Hawaiian groups we need a preparatory numerical
lemma.

Lemma 2.5 Assume (2.3). Then a finite sum
is in Z if and only if t,/pn € Z for alln € w.

tn/pn with t, € T,

new

Proof. Let F' be a finite subset of w and set m := >, pt;/p; € Z with
0 #t; € T;. Let n € F and write t,, as a reduced fraction ¢, = r/s. Then
the first equation of (2.3) implies that ged(s, p,) = 1. We have r/p, =

$(tn/pn), SO
tA
L(HpZ):s(Hpi)(m— ZL)GPHT:Z.
Pn ! . - Di
n#ieF n#ieF n#ieF

Hence p,, divides r. Now m — Zn;ﬁieF ti/pi = tn/pn € TN Zn?éieF T, = 7.
O

We introduce important subgroups of B.

Definition 2.6 Let B = B.(R, S, 7, A, P) be a Hawaiian group. For
each a < k define

Fo(R, ) i= (6D Run) @ (€D Sow)

new p<a
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and
B, = <Fa<R7 S)v pngn(yp - xn): p<a,nc AP>'

In particular, By = 6P, .., Rnzyn and B, = B.

new

Lemma 2.7 Let B be a Hawaiian group and let B, (o < k) be the as-

cending chain of subgroups defined in Definition 2.6. So B = |J,., Ba-

Assume (2.3) and (2.4). Then the following statements hold.

(i) By is pure in B for every a < K.

(i) B/Bo = @,c)s(Sp + Xonea,(1/Pn)Tn)yp, the isomorphism being in-
duced by the projection

V- @Qyp along QBy.

P<K

(iii) For B <, Ba/Bg = @p<pcalSo + 2 nea, (1/0n)Tn)yp, the isomor-
phism being induced by the projection

m: QBy @ (@Qy,;) — @ Qy,

p<a B<p<a
along QBg = QBy ® (@ Qy,,).
p<p

Proof. (i) Let b € B be as in (2.1) and assume that mb € B, for some
nonzero integer m. By (2.2)

tO’TL
Yo > «: 85 + — = 0. 2.6
2 s, ) (2.0
ner'

Lemma 2.4

Hence Vo > a: s, = — ZnEAU (ton/Pn) € Sg N PUT\U = Se N (Py +
T,) C SN (P+T)=(SNP)+(SNT) = Z and by Lemma 2.5 we have that

t
Vo> a,Vne Ay,: " €. (2.7)
Pn
Therefore
t
new pP<K (p,n): p<r,n€A, Pn
t t
=3 (= X et Y (st 30 20y,
ne€w p:nEA, Pn p<K neA, Pn
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DS T s Do

n

new p:nEA, neA,
t
p? p,n
DI 3 (D1 HED DI SR
nEw neEw p: n€A, Pn p<a (p;n): p<a,neA, Pn
t
P
S S (Y e Y
new new p: p>a,n€A, " p<a

t (2.7)
+ Z L2y, — xn) € Ba.
(pyn): p<a,neA, Pn

(iii) Let
B e (D)~ P e,
pLla B<p<a
be the projection along QBﬁ. We claim that 7 [p, has image
SECEDIET A
B<p<a neA,

and kernel Bg.
By (i) Bg is pure in B, and hence B, N QBg = Bg. Therefore Ker(w [p,)
= Bp. Let b € B, be given in the representation (2.2). Then

=3 (s 3 e @ (S5+ 2 4)
B<p<a neA, Pn B<p<a neA,

Now suppose that y € @g<,ca(Sp + 2neca, (1/Pn)Tn)yp. Then y has the
form

Y= Z <SP+Z pn)yp with s, € S, and t,, € T),.

’VL

B<p<a neA,
Then
t
Z SpYp + Z L2 (yp — xn) € Ba
B<p<a (p,n): B<p<a,neA, Pn
and clearly br = y. This proves (iii).
Finally, (ii) is the special case a = k and § = 0 of (iii). O

Using Lemma 2.4 we can reformulate results in Lemma 2.7.
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Corollary 2.8 Let B be a Hawaiian group and assume (2.3) and (2.4).
Then

B/By = @(Pp + 55+ T0)y,-
pP<K

The groups Ya 5 := (Yo — yg)2 C B turn out to be very important in

studying the endomorphism ring of a Hawaiian group. We describe next
the structure of Y, 3.

Lemma 2.9 Let B = B.(R,S, 7T, A, P) be a Hawaiian group. Assume
(2.3), (2.4), and (2.5). Then

Va < ﬂ < K: Yaﬂ = (Pa,ﬁ + Soéﬂ + Taﬂ)(ya — yg).
In particular,
Va < B < k: type(Yag) =008V Tas V 0as-

Proof. Suppose that a < § < k.
Let s € Sq 3 = Sa N Sz. Then sy, € B and syg € B, so s(ya — yg) € B.
Hence

Sa.8(Ya —yp) C B.

The assumption A, N Ag # () assures that there is m € A, N Ag. Let m be
such an integer.
Let t € Ty,. Then t(yo — 2m) € B and t(ys — xp,) € B. Hence

t(Ya — y3) = t(Ya — Tm) — t(ys — zm) € B.

This shows that T}, (yo —y3) € B and therefore, m having been any element
of A, N A/g,

Ta,ﬁ(ya - yﬁ) C B.

Finally, let p;,! € Po . Then p,'(ya — 2m) € B and p,'(ys — #m) € B,
hence also p;,!(yo — y3) € B which shows that

Py s(ya —ys) € B.

Altogether we have

(Sa,8+ Tap + Pap)(Ya — yp) C Yoz
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For the reverse containment we make use of the projection 7 in Lemma
2.7(ii). We have Y, g = U(ya — ys) for some rational group U containing
Sa,8 +Top+ P, p and, by Corollary 2.8,
(Yo,8)m=U(Ya — yg)m € Uya ® Uyg
C (Sa + Po+To)ya © (Ss + P+ 1p)yg.

Hence by our assumptions ([Ma, Lemma 1.2.13] for distributivity)
U C (Sa+Po+Ta)N(Sg+ Ps+1Tp)

= (Sa N S) + (Sa N Ps)+ (SaNTp) + (Po N Sg) + (P N Pa)
+(PyNTp) + (TN S5) + (T N Ps) + (To N Ts)

2.4(ii o

(80N Ss) + Z+Z+ L+ (PaPy) + Z+Z+Z+ (Ta N Ty)

2.3

= SO(,ﬁ + Pa,ﬁ + Tavﬂ'
We have established that U = S, g + Py g + T 8- O
Lemma 2.10 Assume (2.3), (2.4), (2.5) and RNS =Z. Then

1
Va < k,Vn € Ay (Yo — xn>f = —T0(Ya — xn).

n
Proof. As it is clear that (Yo —2,)Z D (1/pn)Tn(Ya — Tn), We suppose that
tyi ty
b= Z(m — Z ’”)xi + Z(sp + Z ﬂ)yp € (Ya — :I?n>*B
, pi
p<K i€Ap

— pi

1Ew p:i€A,

Then there is a positive integer m such that mb = q(yo — ) for some
rational number ¢. It follows that

t,i t,i
Vi#£n:r— £t —0, and V, o s, + L2 =
i Z i P # P Z D;
pri€A, 1€A,
Hence
t toi
b:(rn— Z p’n)xn—i-(sa—i—ZLfZ)ya,
p:n€EA, n i€Aq Pi
and

1 toi
m(rn_; Z tp,n)l‘n"‘m(sa‘f‘ Z ﬂ)fya:(I(ya_xn)'

n p:nEA, 1€AQ pi
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So
m(r _ 1 Z t ) —q and m(s —l-ztm) q
n pmn | = o .
pnp:nEAp ey 2

Adding the two equations and canceling m we obtain

- — Z tom + Sa + Z t‘“f

p neA, 1€AQ
Hence
1 tai
Tn + 8q = — Z ton — :
Pn . n€A, icA, Pi

ER+S)NPT=(R+S)N(P+T)=L1.

Our assumption RN .S = 7Z further implies that

ta,

rn €74, So €7, tom — e
ETnZ L S g- Y
p ncA, 1€AL
In the last expression the term ¢, /py cancels and we are left with
1 toi
— tom — — € Z.
Pn Z P o Z Di
p: pFa,n€A, i1 i£n,i€Aq

By Lemma 2.5

1 £
-—— E ton €Z and Vi#n, i € Ay: —* € Z.
Pr . ptanea, !

Hence b = zx,, + Yo + (1/pn)tan(Ya — ) for integers z, s. Using again
that mb = q(yo — x) we find that z = —s, and finally that
1
b = (S —+ 71:047”) (ya — $n>
Pn

1 1
= 7(Spn + ta,n)(ya - Zvn) S 7Tn(ya - -'En)

n Pn

0

Before determining the endomorphism ring of certain Hawaiian groups we
show that all Hawaiian groups are finitely Butler.
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Theorem 2.11 Let B=B.(R, S, T, A, P) and assume (2.3), (2.4), and
(2.5). Then B is finitely Butler.

Proof. Let H C, B be a pure subgroup of B of finite rank. Then there is
a finite set £ C x and a finite subset W C w such that

1
HC, L. with L := <FH Ty (Yo —an): @ € B, n € Ay N W>

n

where Fir = (©,,ew Bmm) ® (B, Spyp). Without loss of generality we
may assume that A, N Ag N W # 0 for all «, § € E which assures that
Yo C Ls.

We claim that L, C B is a Butler group. Since the class of Butler groups
is closed under pure subgroups, also H is then a Butler group of finite
rank. We first define a completely decomposable group of finite rank as an
external direct sum

1
C= FH @ @ 7Tn<ya - xn) ©® @ YO(WB‘
(o,n): a€EE,nEALNW Pn a,BeE,a<f8
Since all summands of C are subgroups of L, we obtain a homomorphism

p: C — L,

induced by the inclusion of the summands of C'. It remains to prove that ¢
is surjective. Let b € B and assume that mb € L for some 0 # m € N, i.e.,
be L,. Then

/

mb = Z T, + Z s;,yp + Z tp—’n(yp —x,) (2.8)

neWw pEE (psn): pEENEA,NW Pn

for some ;, € Ry, s}, € Sp and t,,, € T, withn € W, p € E. Let b be given
in the form of (2.1). Then

mt
mb = Z Mr Ty + Z ms,y, + Z —L2 (y, — xy)
new p<K (pn): p<w,n€A, Pn

for some r, € R,, s, € S, and t,, € T, where n € w, p < k. Equating
coefficients of y, in V', we obtain that

VagZE:m(sa—i— Z ta—’n):O.

HEAQ pn
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By Lemma 2.5 it follows that

tan
Va g E,Vn € Ay: —— € Z.

n

Note that SN P = SNT = Z and hence so = — ), s tan/Pn € SN
(P +T) = Z. Hence, combining and renaming coefficients we may assume
without loss of generality that

b= Z Tn&n + Z SpYp + Z fon (Yp — n)

new pEE (p,n): pEENEA,

= (Z TnTn + Z SpYp + Z tp—’n(yp — :cn)>

new peEE (pyn): pEENEA,NW Pn

+ Z TnTpn + Z t;’n(yp—xn).
n

ngWw (psn): peENEA,\W

Obviously, h := 3, cy nin+)_,cp Spyp+2(p,n): peE,neAme(tp,n/pn)(yp_
Zyn) is in the image of ¢, so it remains to prove that

t
Z TnLy + Z ﬂ(yp - xn) € CQO
ngWw (p,n): pEENEA\W Pn

Fix k ¢ W. For our current b, the multiple mb must have the form (2.8).
Equating coefficients of x yields that

t
m(rk — Z p—’k) =0.
Pk
p: pEEKEA,\W

If there is no p € E such that k € A,, then r;, = 0. So assume that there is
p € E with k€ A,. Then

t 1
= Y. PreRnN-Ty=Z
Pk Pk
p: pEEkEA,\W
Hence

1
— ) tk€l (2.9)

P p: pEEKEA,\W
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Let {ai, ..., an} ={a € E: k€ A, \ W}. Then

1
mekt— ) oy, —an)
Pk p: peEKEA,\W

1
=t — > ey —an)
k pf{ai,...,an}

1 1
S 7ta1,k(ya1 - yaz) + 7(ta1,k + taz,k)(yaz - ya3) + e
Pk Dk
1
+ *(tmyk et tocn—1,k’)(yan71 - yan)
Pk
1

o Gank + oo o) (Yo — ),

which is an element of Im ¢ since (1/pg)(ta, &+ - +ta, k) € Z by equation
(2.9) and (1/pg)(tay e+ - -+ ta; k) € (1/px)Ty for all i. This finishes the
proof. O

3. Strong Hawaiian groups

We now need to make stronger assumptions on our Hawaiian groups by
placing further restrictions on the defining sequences A.

Definition 3.1 Let X be an infinite cardinal. A set of types {d, | & < N}
is called a strong anti-chain of size N if it satisfies the following condition.
If a < XN and E C N is a finite subset of X such that a ¢ E, then §, and
A ek 6p are incomparable.

Strong anti-chains satisfy stronger conditions than those postulated by the
definition.

Lemma 3.2 Let A = {d, | @ < N} be a strong anti-chain of size . If E
and E' are finite subsets of N such that £ ¢ E" and E' € E, then \gep dp
and /\ﬁeE/ dg are incomparable.

Proof. By way of contradiction assume that A\gcpdp and Agep g are
comparable. Without loss of generality we may assume that /\ﬁe po0g <
Npepr 95- Choosing o € E'\ E' which exists by assumption, we obtain that
A ser 08 < 0 contradicting the fact that A is a strong anti-chain. O

We prove next that strong anti-chains exist in ZFC.
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Lemma 3.3 There exist strong anti-chains of size V.

Proof. We define subsets A,, of w using the binary expansion of integers.
For m € w let

Ao = {0} U {Zaﬁ' ’ ap = 1}
icw
and form>1 A, = {Z a;2!

€W

Ay = 1}.

Then the following statements are evident.
e A, is infinite;
Um<w Am =w;

[ ]
i mm<w Am = (Z);
e For disjoint finite subsets E and E’ of w the intersection

(n(gE An) N ( ﬂ EAn> is infinite.

nck’
Here C stands for complementation in w. Let P = {pg, p1, ...} be an infinite
set of primes and define 6, := type(p; ! | i € A,,). Then it is easy to see
that {0, | m € w} is a strong anti-chain of size Rg. O

We can also show that there exist strong anti-chains of size 2%0.
Theorem 3.4 There exists a strong anti-chain of cardinality 280,

Proof. The result follows from [Je, Lemma 24.8] but for the convenience
of the reader we recall it. Let A be an infinite cardinal. A family € of
subsets of a cardinal A is called uniformly independent if for any distinct sets
X1, ..., Xpand Yy, ..., Y, in € the intersection X;N---NX,NCY;N---N
CY;, has cardinality A. Here C denotes complementation in A\. Obviously, for
A = w, the existence of a uniformly independent family {A,: o < 280} of
subsets of w yields the desired strong anti-chain by choosing an infinite set
of primes P = {po, p1, ...} putting R, = (p;1: i € A,), and 6§, = type R,
for o < 2%,

[Je, Lemma 24.8] states that for every infinite cardinal X there is a uniformly
independent family of size 2*. A proof is as follows.

Let P be the collection of all pairs (F, §) where F is a finite subset of A
and § is a finite set of finite subsets of A\. Then |P| = X and it suffices to
find a uniformly independent family of subsets of P of size 2*. For v C A
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let X, ={(F,8) € P: FNu € §} and let € = {X,,: u C A}. It is easy
to check that all the X,’s are distinct and hence |¢€| = 2*. To show that
¢ is uniformly independent let uq, ..., up, v1, ..., vy, be distinct subsets
of A. Choose a;; € u;\vj or a;; € vj\u; for i < n and j < m. For any
finite subset F' of A containing all the o;;’s we let § = {F Nw;: ¢ < n}.
Then (F, §) € Xy, for all i <n and (F, §) € X, for all j < m. Thus the
intersection X,, N---N X,, NCX,, N---NCX,,, has cardinality \. g

Recall that in the context of Hawaiian groups we have P, := (p;': n € A,)
and d, = type(FPy).

Definition 3.5 A Hawaiian group B = B.(R, S, 7, A, P) is called a
strong Hawaiian group if Vo < k: Sy = Z and {0, | @ < K} is a strong
anti-chain of size k. We denote the strong Hawaiian group with the specified
data by B.(R, T, A*, P).

Note that for B.(R, 7, A*, P) the condition (2.4) is satisfied due to the
special choice of §. For the next theorem recall that a torsion-free group
G is called finitely filtered if G is the union of an ascending continuous
sequence {G,: o < A} of pure subgroups G, such that for every a < A
there is a finite rank subgroup H, of G with Go11 = G, + H,.

Theorem 3.6 Let B = B.(R, T, A*, P) and assume that cf(k) > Ny.
Then B is not a finitely filtered group. In particular, B is not a Bo-group.

Proof. The proof is essentially contained in [ShSt, Theorem 5.1] but for
the convenience of the reader we shall recall the main steps. By way of
contradiction assume that B is finitely filtered. Hence (the B, in this proof
have no relation to the B, in Definition 2.6)

B:UBQ

a<k

where By11 = By + H,, for some finite rank subgroup H,. It is now straight
forward to check that the set C' = {0 < k| Bs = (zp, yg: n < w, B < §)s}
is a closed unbounded subset (cub) of k since x has uncountable cofinality
(see [ShSt, Lemma 5.2]). Now let § € C be such that § > Xy and w.l.o.g. let
0 be a limit ordinal. This is possible since C is a cub. Note that y; & Bs.
However, as in [ShSt, Lemma 5.3] one proves that there exist n* < w and a
sequence of ordinals § < a; < ag -+ < ayn+ < Kk such that
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(Bs + Zys)« C Y Ha,, + Bs.

m<n*

For every m < n* we choose a finite set W,,, C k and an integer n,, < w
such that

H,, C < Z Ly~ + Z Rﬂ?z>*

YEWm 1<nm

Collecting all these generators and letting W = Umgn* Wi, k = max{n,,:
m <n*}and H = (3 cw Zyy + D<) Rixi)« we obtain

(Bs + Zys)« € H + Bs. (3.1)
Now choose § < 6\W and let n > k be such that

ne(Agnds)\ | 4,
YEWyH#S

Note that this choice is possible since B is a strong Hawaiian group and
hence the types d, (o < k) form a strong anti-chain. It is now straightfor-
ward to see that p,'(ys — ys) is an element of (Bj + Zys). but it is not an
element of H + Bjs contradicting equation (3.1) (see also [ShSt, Lemma 5.3]).

g

Note that every Ng-Hawaiian group is a Ba-group since it is finitely Butler.
Finally we show that a strong Hawaiian group possesses many fully invariant
subgroups.

Lemma 3.7 Let B=B.(R, T, A*, P) and assume (2.3) and (2.5). Then
the following hold for a < 8 < k.

(i) Bltype(Ya,p)) = Yo

(ii) Y, is a pure fully invariant subgroup of B.

Proof.  Put o3 = type(Ya,g) = 00,8V Ta,3. The inclusion Y, g C B(uq)
is obvious. Conversely, let b € B(uq). Then type?(b) > pqp. Hence
typeB/Bo(b + By) > [a,3- Since B is strong Hawaiian, the types d,, v < &,
form a strong anti-chain and hence (B/By)(fta,3) = (Pa + To)yYe ® (Ps +
fg)yg by Lemma 3.2 and Lemma 2.7(ii). By Lemma 2.7(ii) the types
0y V 7y, v < K, form a strong anti-chain. Using the isomorphism 7 from
Lemma 2.7(ii) we obtain that
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b="TaYa + rsYg + Z T'nZn

new

t t
(o — ) + Y L (g — )

neAq neAg n

for some 7o € Po, 13 € Pg, tan, tgn € Ty, and 7, € R, for n € w.
Hence multiplying by a suitable product K of prime numbers and renaming
coefficients we may assume without loss of generality that

Kb:ra(ya - yﬁ) + (""ﬁ + Ta)yﬂ + Z ThnTn + Z ta,n(ya - yﬁ)

new ncAq
+ D tan(ys = @) + D tan(ys = wa)
n€Aq neAﬁ
with 4., tg, € Z. Thus
Kb— Ta Yo Z ta n Ya —
neAq
= (rg+ra)ys + Z Tnn + Z tan(ys — Tn)
new ncAq
+ ) tanl ) € Bljtap)-
TLEAQ

Using that B is a strong Hawaiian group (hence the types d, where o < K,
form a strong anti-chain) it is now easy to check that this can only happen
if Kb—7a(Ya —Ys) — 2onea, tan(¥a —ys) = 0 and hence Kb € Y, 5. By
purity it follows that b € Y, 3. This shows that Y, 3 = B(jq,3) and hence
(i) and (ii) hold. O

4. Endomorphism rings of Hawaiian groups

We begin with an explanation on notations used for classes of Hawaiian
groups. These are as follows.

o B.(R,S, T, A P)is most general Hawaiian group where R = (R,, |
n<w),S=(Sq|a<k),T =(T,|n<w), are sequences of arbitrary
rational groups, A = (A, | @ < k) is a family of subsets of w such that
Ao NAg # 0, Uper Aa =w, and o, Aa =0, and P = (pp: n € w)
is a sequence of primes.

o B.(R, 7T, A, P)isthe group B,(R, S, 7, A, P)withS=(Z, Z, . ..).
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o B.(R, T, A*, P) is the group B.(R, T, A, P) where A is such that
the types d, form a strong anti-chain.
o B.(R*, T, A* P)is the group B.(R, T, A*, P) where R is such that
the types type(R,) are pairwise incomparable.
e Finally, B, (A*, P) (respectively B, (A, P)) is the group B, (R, T, A*,
P) (respectively B (R, T, A, P)) where R and T are all sequences of
the integers Z.
The scheme is to drop sequences of Z from the listing, and to place a * if a
special condition is imposed on the sequence.
In this section we consider Hawaiian groups B, (A, P). Note that (2.3),
(2.4), and (2.5) are satisfied for these special groups. We will show that
these Hawaiian groups have many endomorphisms. Recall that all Hawaiian
groups B, (A, P) are of the form

B = (F, pgl(ya—:nn): n e Ay, a < K)

where F = @ Zx, D @ VAT
new a<k

Definition 4.1 Let B = B,;(A, P). Recall that A = (Ay: a < k). Let
(i) A, C A, for a < k;
(ii) A = (4, : a < k);
(iii) N =Ugen Ay and §: N — & be a function such that (n)d € {a: a <

Kk, n € AL} for every n € N;
(iv) b= (b, by: n € w) with b, b, € B for all n € w;
(v) melLZ.
Then a linear transformation ¢ = ¢ 4 53 ,, € Endg(V) is defined as follows:
(1) (Ya)P = mya + b for a < k;
(i) (zn)o = my(m)s + b — pubn if n € N;
(i) (zn)d = maxy, +b— ppby, if n & N.
A linear transformation ¢ of V is called a Hawaiian transformation if there
exist A, 6, b, m as above such that ¢ = ¢ 4 55 -

Lemma 4.2 Let B = B, (A, P). Then every Hawaiian transformation of
V' is an endomorphism of B.

Proof.  Let ¢ = ¢ 4 53, be a Hawailan transformation of V. By definition
¢ satisfies (F)¢p C B. Now, let « < k and n € A,. If n & N, then

(ya - ZCn)(ZS = Mmyq + b— (mxn +b— pnbn) = m(yoz - .an) + pnbn
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and hence (Yo — xn)¢ is pp-divisible in B which shows that (1/p,)(Ya
ZTp)p € B. If n € N, then

(ya - xn>¢ =mya +b— (myé(n) +b— pnbn)
=m(Ya — yé(n)) + pnbn
= m(ya - xn) - m(yé(n) - wn) +pnbn

which is p,-divisible in B since n € A, and n € Aj(,), hence p;,, divides
Ya — Ys(n) in B. This finishes the proof. O

To illustrate the Hawaiian transformations that induce endomorphisms of
Hawaiian groups let us give three examples.

Example 4.3 Let B = B,(A, P). If b € B and m € Z, then the linear
transformation of V' defined by y, — mys + b and x,, — max, +b for a < k,
and n € w is an endomorphism of B.

Proof. Follows from the Lemma 4.2 choosing N = () = A/, for all a < &,
and b, = 0 for all n € w. O

Example 4.4 Let B = B, (A, P). For (fixed) o < k and m € Z, the
linear transformation of V' defined by yg — m(yg — ya) for all 5 < &, , —
m(xy,—yq) forn € A, and x,, — 0 for n € A,, restricts to an endomorphism
of B.

Proof. This follows from Lemma 4.2 choosing b = —my,, b, = 0 for every
ne€w N=A4, = A, and A; = 0 for 8 # a as well as d(n) = a for
n € N. [l

Example 4.5 Let B = B,(A, P). For m € Z, the linear transformation ¢
of V defined by y3 — myg and z,, — mx,, —p,x, for every n € w restricts to
an endomorphism of B. Moreover, By is invariant under ¢ and the induced
homomorphism ¢: B/By — B/By is multiplication by m.

Proof. This follows from Lemma 4.2 choosing b = 0, b, = x,, for every
n €wand N = (. O

Note that the linear transformations from Example 4.5 are in fact endomor-
phisms of any Hawaiian group B = B.(R, S, 7, A, P).

The following lemma shows that a Hawaiian group B, (A*, P) usually has
many free summands.
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Lemma 4.6 Let B = B.(A, P) and o < k. Then (Yo, (1/pn)(Ya —
Tp):n € Ay) is a free summand of B.

Proof. Choose ¢ € Endz(B) as in Example 4.4 with m = 1. Thus

(i) (Us) = ys — Yo for all § < r;

(ii) (xn)SO =Tp — Yo for n & Ay;

(iii) (zn)p =0forne A,.

Since (ya)p = 0 it is easily checked that ¢ is a projection, i.e., > = .
Consequently, B = Ker(¢) @ Im(p). We claim that Ker(¢) = (ya, (1/pn)
(Yo — Tpn): n € Ay). By definition of ¢ we have (Yo, (1/pn) (Yo — Tn): n €
Aan) € Ker(yp). Therefore, let b € B such that ¢(b) = 0. Assume that b is
represented as in equation (2.1), i.e.,

b= Z TnTp + Z 58Y3 + Z toin (yg — xn) (4.1)

new B<k (Bn): B<k,nEAg Pn

for some 7, sg, tg, € Z. Then

(b)p= Z Tn(Tn — Ya) + Z $8(Y8 — Ya)

ngAaq B<k

t
+ > D0 (g — )

(B,n): B<k,nEAR\An Pn

t
+ > L (g — ya) = 0.
(Bn): B<k,nEANA, Pn

Now choose o # 3 < k and equate coefficients for yz inside V' to get
tgn
53+ — =0
R Dy
nEA,g

which (Lemma 2.5) implies that p, must divide tg,, for all n € Az. Hence,
combining and renaming coefficients in (4.1) shows that b is of the form

t
b= Z TnTn + Sala + Z O (Yo — )

new n€Aq Pn

Now, (b)¢ = 0 reads as (b)p = >_, 24, n(Zn — Ya) = 0 and hence r, =0
for all n € Ay. Thus b € (Yo, (1/pn)(Ya — n): n € A,) which proves that

(Yo (1/Pn) (Yo — xn): 1 € Ag) = Ker(gp).
Finally, we have to show that (ya, (1/pn)(Ya — xn): n € Ag) is free. Fix
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n' € A,. We claim that

1 1
<ya, — (Yo —xp): M E Aa> = @ —Z(Ya — Tn) ® Ly
Pn neAq Pn

The equality of the two sides is obvious, hence it suffices to prove that
Drca, (1/Pn)Z(Ya — Tn) © L,y is indeed a direct sum. Therefore, assume
that

t
> Yo — )+t =0 (4.2)
necAq Pn

for some t,,, t' € Z. Equating coefficients for y, we obtain 7, t,/pn =
0 and thus (Lemma 2.5) p, must divide ¢, for all n € A,. Moreover, for
n # n' we get t,/p, = 0 by looking at the coefficient of z,, in (4.2) and thus
taken together ¢,/ /p,, = 0. Finally, for n’ we have t' = t,//p,» = 0. Hence
the sum is direct. O

Corollary 4.7 Let B = B,(A, P). Then |Homgz(B, Z)| > 2%.

Proof. This follows easily from Lemma 4.6 and the fact that Homz (P, Z,
7Z) = 1], Homg(Z, Z). O

The final result of this section shows that the lower bound in Corollary 4.7
is best possible if we deal with strong Hawaiian groups.

Corollary 4.8 Let B = B.(A*, P) and assume that A, is infinite for
every . Then

Homyz(B, Z) = [[Z and |Homgz(B, Z)| = 2.
new
Proof. Let B be a strong Hawaiian group and f € Homg(B, Z). Since
B is strong each type d,,3 is bigger than Z for every @ < 8 < s. Thus
(Yo —yg)f = 0 (o < B < k) which implies that (yo)f = (yo)f for all
a < k. We put (yo)f = 2/ € Z. Now, let n € w and choose a < &
such that n € A,. Then (yo, — xn)f = pn((l/pn)(ya — l‘n)f = pnzTJ; for
some z, € Z. Therefore, (z,)f = 2/ — pnzl. We now define a mapping
U: Homy (B, Z) — ZX]],,., Z by sending f € Homy(B, Z) to the sequence
(21, Zine w). It is immediately verified that ¥ is a group isomorphism
and hence Homgz (B, Z) =[], ., Z which shows | Homz(B, Z)| = 2%. O

new

new

The next result shows that the Hawaiian transformations from Definition 4.1
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form a subgroup of the endomorphism ring of Hawaiian groups.

Theorem 4.9 Let B = B.(R, T, A, P). Then there is an injective ho-
momorphism of additive groups

©:Z®B® [[ pnB — Endg(B).

new

Proof. We first define ®. Let b= (2, b, ppb,: n € w) € Z x B x [1,co PnB.
We define f; € Endz(B) to be the endomorphism of B induced by the
Hawaiian transformation defined by yo — 2y +b and x,, — 2z, + b — ppby,
for all & < k and n € w. By Lemma 4.2 f; is a well-defined endomorphism
of B and it is easy to see that ®: Z ® B @ [[,,c,, pnB — Endz(B), b f,
is a well-defined injective homomorphism of additive groups. 0

5. Endomorphism rings of strong Hawaiian groups

In this section we will study the endomorphism rings of general strong
Hawaiian groups, i.e., groups Bk(R, 7, A*, P). It turns out that these
groups have endomorphism rings that are "rather small” which means ” close
to Z”. Recall that the nucleus nuc(P) of a rational group P C Q is defined to
be the largest subring contained in P. Equivalently, if we consider Endyz(P)
as a subring of Q, then nuc(P) = Endz(P).

Lemma 5.1 Let B=B.(R, T, A*, P) and f € Endz(B). Assume (2.3),
and (2.5). Then there exists an integer r € Z such that f [y, , is multipli-
cation by r for every a < 8 < K.

Proof. Let a < < kand f € Endz(B) as stated. By Lemma 3.7 we know
that Y, 3 is a pure fully invariant subgroup of B, hence (yo — yg)f € Ya 3
Since (Lemma 2.9) Y, 3 = P, 3 + T, 3 we obtain that there is an element
Ta,p € nuc(T, g) such that f [y, , is multiplication by r, 5. It remains to
prove that r, g is independent of o, 3 and an integer. Therefore, let o <
B < v < k. Applying f to the equation

(Yo —yp) + (Y3 — ¥7) = Ya — Yy
implies that

Ta,3(Ya — Yp) + 784(Ys — Yy) = Tay (Yo — Yy)-
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Equating coefficients inside V' it follows that

Ta,8 = Tay = T3y
Since a, (3, v were arbitrary we have that 7 := 101 = 74,5 € (14 g<, 20C(Ta,p)

for all @ < 8 < k. By (2.3) it follows that = € Z and therefore f [y, , is
multiplication by r € Z for every o < § < k. O

The next result shows that the Hawaiian transformations from Definition 4.1
determine completely the endomorphism ring of strong Hawaiian groups.

Theorem 5.2 Let B = By(A*, P) be a strong Hawaiian group. Then
there is a bijective homomorphism of additive groups

0:Z®B® [[ pnB — Endg(B).
new
Proof. By Theorem 4.9 we only need to show that & is surjective. There-
fore, let f € Endz(B). By Lemma 5.1 there is an integer z € Z such that

(Yo —y3)f = 2(ya —yp) for all @ < B < k. Putting b = (yo)f — zyo this
implies that (yo)f = zya + b for all & < k. Moreover, if n € w, then there
is a < K such that z,, € A, and hence (yo — xy)f = pub), for some b}, € B.
Thus (z,)f = 2Ya + b — publ,. Since p, (Yo — z,) € B we let b, = b, —
Py t2(yo — ) and obtain (z,) f = zxy, +b—puby, for all n € w. Thus f = f;
where b = (2, b, ppbp: n € w) and so P is surjective. [l

The next theorem deals with possible direct decompositions of strong Hawai-
ian groups.

Theorem 5.3 Let B = B, (A*, P). If f € Endz(B) is idempotent, then
there are b, by, € B (n € w) such that either

Ker(f) = (b, bp: n € w), or Im(f)= (b, by:n € w),.

Hence, B = (b, bp: n € w),®C for some C C B. In particular, if B=A®
C, then A or C must be countable.

Proof. Let f € Endz(B) and assume that f is idempotent, i.e., f2 = f. By
Theorem 4.9 there are elements b, b,, € B and m € Z such that f is induced
by the Hawaiian transformation y, — myq + b and x, — mz, + b — ppb,
for all & < k and n € w. Therefore we obtain

mYo +b = (Ya)f = (ya)f2 =m(ya)f + (b)f = man +mb + (b) f.
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If we pick a < k large enough (so that y, does not appear in the repre-
sentations of b and (b)f), then equating coefficients implies that m = m?,
hence m = 0 or m = 1. Let us first assume that m = 0. Then (y,)f = b for

all @ < k. Thus b = (yo)f = (ya) 2 = (b)f. Moreover, for n € w we have

b — ppby, = (xn)f = (mn)fZ = (b)f _pn(bn)f =b _pn(bn)f)

hence b, = (b,)f for all n € w. It now follows easily that Im(f) =
(b, bp,: n € w), C B.

On the other hand, if m = 1, then we consider g = 1 — f instead of f. Then
g is again idempotent and Im(g) = Ker(f). Moreover, in the case of g we
have m = 0, hence the above shows that Im(g) = (b, b,,: n € w), = Ker(f).
The other claims follow immediately. O

The next lemma shows that the endomorphism ring of a strong Hawaiian
group is very special if the group has many invariant subgroups.

Lemma 5.4 Let B=B.(R, T, A", P) and assume (2.3), and (2.5). As-
sume further that for all « < k and n € w, the map f € Endy(B) is such
that (Yo — xn)f = Tan(Ya — Tn) for some 1o, € Q. Then there is r € Z
such that ro, = r. Moreover, f is induced by the linear transformation
Yo > TYa + b, Ty — 12 + (Yo f —ryo) for a <k and n € w.

Proof. Since B = B,(R, T, A*, P), Lemma 5.1 applies and there is r € Z
such that (yo —yg)f =7(ya —yg) for all a < B < k. Fix o« < k and n € w.
Choose any 3 > a. Then

Yo —Ys = (Yo — Tn) — (Y — Tn)
and hence
T(ya - y,@) = 7"oz,n(ya - xn) - Tﬁ,n(y,@ - xn)

and equating coefficients we see that r = r,, = 13, € Z.
Now, (yo — zn)f = 7(yo — =) implies that

Tnf =yof —ryo +ren =12, + (yof — ryo)-
Moreover, (yo — ys)f = r(yo — yg) says that
ysf =vof —ryo+rys =rys + (Yof — ryo)
for all 8 < x and the claim is established. O
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Finally, we study some special strong Hawaiian groups with especially nice
properties.

Lemma 5.5 Let B=B.(R, T, A*, P) and assume (2.3), and (2.4). As-
sume further that f € Endz(B) and that x,f = rpx, for some r, € Q and
alln < w. Then there is r € Z and €, € nuc(Ry,) such that f is induced by
the linear transformation Yo — TYa, Tn — TTn + €nPpTy where a < Kk and
neEw.

Proof. By Lemma 5.1 we obtain r € Z such that (yo — y3)f = 7(Ya — y3)
for all @ < 8 < k. Then, choosing a = 0,

ygf =rys + (Wof —ryo)

for every 3 < k and hence

(g — xn)f=rys + (Yof — ryo) — rnan
= T(yﬁ - xn) + (7’ - 7’n)xn + (yOf - TyO)
for all 3 < k and n € w. Thus, for 8 < k and n € Ag we get that
pr, divides (r — ry)x, + (yof — ryo) in B. (5.1)

Passing to the quotient B/By this implies that (yof — 7yo) + By is divisible
by pn, whenever n € Ag. As ., Aa = w it follows that (yof —ryo) + Bo is
divisible by every p € P. Using Lemma 2.7(ii) it follows that yo f —ryo € By
and hence yof —ryo =Y., o TmTm for some 7}, € R,,. Therefore, by (5.1),

mew m

(r=7rn)Tn + ) Tt € paB,

mew

and by purity of By and its summands R, 2,
(r—rp) +71l, €ppRy, and Vn#m: 1, € pyRpy. (5.2)

We will show that this is impossible except when 7], = 0 for all m € w.
Suppose to the contrary that there is an m such that 7, # 0. Write 7/, as a
canceled fraction 7, = a/b. Since n was arbitrary in (5.2) there is some p,
that does not divide a. Now a/b = 1], € p,Rp, so a/p, = b(1/py)rl, € R,
and since Ry, contains 1, also 1/p, € R,,. But then 1/p, € RNP =7, a
contradiction. We have established that r/, = 0 for all m. Thus yof = ryo
and p,, divides r — 1, inside R,, for every n € w. Let r,, — = py€, for some
€n € R,. Then r, = p,e, +r and hence x,f = r,x, = 7T, + Pp€nTn as
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claimed. Since f is a homomorphism and R,x, is fully invariant, we must
have r, € nuc(R,). Furthermore r € Z C nuc(R,) and nuc(R,,) is pure,
therefore also €, € nuc(R,,) for all n € w. O

We specialize further to groups B.(R, 7, A*, P) with the additional prop-
erty that ¢qoR = R for some prime number ¢o ¢ P. The following re-
sult completely describes the (small) endomorphism ring of such a group

B.(R*, T, A*, P).

Corollary 5.6 Let B = B.(R*, T, A*, P) satisfying the additional prop-
erty that qoR = R for some prime number qo ¢ P and {type(R,): n € w}
is an anti-chain. Assume (2.3), and (2.5). Then f € Endg(B) if and only
if f is induced by a linear transformation Yo — TYa, Tn > TTy + €xPnTn
where r € Z and €, € nuc(R,,).

Proof. By hypothesis goR = R and {type(R,): n € w} is an anti-chain,
hence qoBy = By and therefore By is fully invariant in B. In fact, every
R, x, is a fully invariant subgroup of B for n € w. Thus, any f € Endz(B)
satisfies z,, f = r,x, for some r, € Q and all n € w. By Lemma 5.5 it follows
that f is of the desired form. Conversely, every linear transformation of the
described form is an endomorphism of B (see also Example 4.5). O

We end with a second corollary.

Corollary 5.7 Let B = B,(R*, T, A*, P) satisfying the additional prop-
erty that goR = R for some prime number qo € P and {type(Ry): n € w} is
an anti-chain. Assume (2.3), and (2.5) and furthermore that ¥Yn < w: T,
R,. Then Endyz(B) = Z.

Proof. Let B be given and let f € Endz(B). By Corollary 5.6 it follows
that f is induced by the linear transformation yo — Yo, Tn > TTn+ €D Ty
for « < Kk, n € w for some r € Z, €, € nuc(R,). Let n € w and choose
a < k such that n € A,. Then {t € Q | t(yo — zn) € B} 2 T,,. Hence
also {t € Q | t((ya — ) f — 7(Ya — 2p)) € B} 2 Ty But (ya — zn)f —
(Yo — Tp) = €nxn. By way of contradiction assume that €, # 0. Then
R, = {t € Q| tepx, € B} 2O T, contradicting our assumptions. Therefore
€, = 0, f is multiplication by r € Z, and Endyz(B) = Z. O
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