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The Cauchy integral operator on Hardy space
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Abstract. We show that the Cauchy integral operator is bounded from Hp(R1) to

hp(R1) (local Hardy space). To prove our theorem we shall introduce generalized atom

and consider a variant of “Tb theorem”.
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1. Introduction

Consider the Cauchy integral operator

CAf(x) = p.v.

∫
R1

1
x − y + i(A(x) − A(y))

f(y)dy.

This operator is very important in real and complex analysis, and many
studies have been carried out (see, for example, [11]). Lp boundedness of
CA is well-known, but Hp boundedness of CA has not been studied yet.

In this paper we shall show that CA is a bounded operator from Hp(R1)
to hp(R1) (local Hardy space). In [8] (see Theorem A in Section 2), the au-
thor proved the Hp(R1) → hp(R1) boundedness of Calderon’s commutator

TAf(x) = p.v.

∫
R1

A(x) − A(y)
(x − y)2

f(y)dy.

The relation between CA and TA is written in [11]. Compared with
Calderon’s commutator, the Cauchy integral operator is difficult to study.
Because we can calculate TA1 and apply “T1 theorem”by David and Journé
[5], but we can not calculate CA1 directly. To prove our theorem we shall
introduce generalized atom and consider a variant of “Tb theorem”.

2. Definitions and notation

Throughout this paper we assume that, unless otherwise stated, all
given functions are complex valued. Strictly speaking, only functions A
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and ϕ are real valued.
The following notation is used: For a set E ⊂ Rn and a locally inte-

grable function b, we denote the Lebesgue measure of E by |E| and b(E) =∫
E b(x)dx. We indicate the characteristic function of E by χE . We write a

ball of radius r centered at x0 by B(x0, r) = {x ∈ Rn; |x − x0| < r}.
First we shall define two maximal functions and two Hardy spaces. Let

ϕ be a fixed real valued Schwartz function in S(Rn) such that supp(ϕ) ⊂
B(0, 1) and

∫
ϕ(x)dx 6= 0, then we define

Mϕf(x) = sup
t>0

∣∣∣∫ f(y)ϕt(x − y)dy
∣∣∣,

mϕf(x) = sup
1>t>0

∣∣∣∫ f(y)ϕt(x − y)dy
∣∣∣,

where ϕt(x) = t−nϕ(x/t).

Definition 1 (Fefferman–Stein’s Hardy space [6])

Hp(Rn) = {f ∈ S ′; ‖f‖Hp = ‖Mϕf‖Lp < ∞}, where 0 < p < ∞.

Definition 2 (local Hardy space [7])

hp(Rn) = {f ∈ S ′; ‖f‖hp = ‖mϕf‖Lp < ∞}, where 0 < p < ∞.

Remark ‖f‖hp ≤ ‖f‖Hp .

Definition 3 (Lipschitz space)

Lipα(Rn) =
{

f ; ‖f‖Lipα
= sup

x6=y

|f(x)− f(y)|
|x− y|α

< ∞
}

for 0 < α < 1.

Remark (Hp)∗ = Lipn(1/p−1) where n/(n+1) < p < 1 (For the duality,
see [6] or [10], p. 54).

Next we shall define Calderón–Zygmund operator.

Definition 4 Let 0 < δ ≤ 1. We say a function K(x, y) defined on
{(x, y) ∈ Rn ×Rn;x 6= y} is a δ-Calderón-Zygmund kernel if K satisfies the
following conditions.

|K(x, y)| ≤ C1

|x − y|n
, (i)

|K(x, y) − K(x, z)| + |K(y, x) − K(z, x)| ≤ C1
|y − z|δ

|x − z|n+δ
, (ii)
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if 2|y − z| < |x − z|.

Definition 5 We say an operator T is a δ-Calderón-Zygmund operator
(associated with δ-Calderón-Zygmund kernel K) if

Tf(x) = lim
ε→0

∫
|x−y|>ε

K(x, y)f(y)dy

exists for almost all x where f ∈ L2(Rn) and T is bounded on L2(Rn);

‖Tf‖L2 ≤ C2‖f‖L2 .

Definition 6 The transpose of a operator T is denoted by

tTf(x) = lim
ε→0

∫
|x−y|>ε

K(y, x)f(y)dy.

Definition 7 For a bounded function b, we define

t̃Tb(x) = lim
ε→0

∫
|x−y|>ε

{
K(y, x) − K(y, 0)χ{|y|≥1}(y)

}
b(y)dy.

Note that if b ∈ L2 ∩ L∞ then t̃Tb(x) = tTb(x) + Cb a.e. where Cb is a
constant.

Remark There are more elaborate definitions of Calderón-Zygmund op-
erator and t̃Tb (see, for example, [3] and [4]). But we are interested in the
Cauchy integral operator, so our definitions will do.

Following [3] and [4], we define accretivity condition on functions. We
shall use this condition in Section 3.

Definition 8 Let β > 0. An bounded function b is said to be β-accretive
if Re b(x) ≥ β for almost all x.

Next we define the Cauchy integral operator and Calderón’s commuta-
tor.

Definition 9 (the Cauchy integral operator) Let A be a real valued func-
tion on R1. We define

CAf(x) = lim
ε→0

∫
|x−y|>ε

1
x − y + i(A(x) − A(y))

f(y)dy.
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Definition 10 (Calderón’s commutator) Let A be a real valued function
on R1. We define

TAf(x) = lim
ε→0

∫
|x−y|>ε

A(x) − A(y)
(x − y)2

f(y)dy.

The following propositions are most essential (see [3] and [4]).

Proposition 1 If A′ ∈ L∞(R1) then the Cauchy integral operator CA is
a 1-Calderón-Zygmund operator, that is, bounded on L2(R1).

Proposition 2 If A′ ∈ L∞(R1) then Calderón’s commutator TA is a 1-
Calderón-Zygmund operator, that is, bounded on L2(R1).

The author [8] proved the next theorem.

Theorem A If A′ ∈ L∞(R1) ∩ Lipα(R1), then TA is a bounded operator
from Hp(R1) to hp(R1) where 1/(1 + α) ≤ p ≤ 1.

Remark In [9], the author proved the Hp → hp boundedness of higher
order commutators.

3. Theorem

Our result is the following:

Theorem Let n/(n + δ) < p ≤ 1 and n/(n + α) ≤ p. We assume that T

is a δ-Calderón-Zygmund operator. If there exists a β-accretive function b

such that b, t̃Tb ∈ Lipα(Rn) then T is a bounded operator from Hp(Rn) to
hp(Rn) and

‖Tf‖hp ≤ Cp,n,δ,β,b‖f‖Hp ,

where Cp,n,δ,β,b is a positive constant depending only on p, n, C1, C2, δ, β,
‖b‖∞, ‖b‖Lipα

and ‖t̃Tb‖Lipα
.

As a corollary of this theorem we obtain the boundedness of the Cauchy
integral.

Corollary If A′ ∈ L∞(R1) ∩ Lipα(R1), then CA is a bounded operator
from Hp(R1) to hp(R1) where 1/(1 + α) ≤ p ≤ 1.

Proof. Note that CA is a 1-Calderón-Zygmund operator (Proposition 1).
Let b(x) = 1 + iA′(x). Then b is 1-accretive and b ∈ Lipα(R1). By an
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elementary calculus of complex analysis (refer the calculation in [12], p.
407),

t̃CAb(x)

= lim
ε→0

∫
|x−y|>ε

{ 1 + iA′(y)
y − x + i(A(y) − A(x))

− 1 + iA′(y)
y + i(A(y) − A(0))

χ{|y|≥1}(y)
}

dy

= constant.

Therefore we can apply theorem. ¤

4. Lemmas

In this section we shall define atoms and molecules on Hp(Rn) and
hp(Rn) and show some properties of Hardy spaces. Let n/(n + 1) < p < 1.

First we define atoms on Hp(Rn).

Definition 11 A function a(x) is a Hp-atom centered at x0 if there exists
a ball B(x0, r) such that the following conditions are satisfied

supp(a) ⊂ B(x0, r), (1)

‖a‖L∞ ≤ r−n/p, (2)∫
a(x)dx = 0. (3)

Proposition 3 (atomic decomposition of Hp) If f ∈ Hp(Rn) then f can
be written as f =

∑∞
j=1 λjaj where aj’s are Hp-atoms and

∑∞
j=1 |λj |p ≈

‖f‖p
Hp.

For the proof of this proposition, see [10], p. 20. The following Lemma 1
is trivial.

Lemma 1 If a function a(x) is a Hp-atom supported in B(x0, r), then
‖a‖Hq ≤ Cn,qr

n(1/q−1/p) where n/(n + 1) < q ≤ 1.

Next we define atoms on hp(Rn).

Definition 12 A function a(x) is a large hp-atom centered at x0 if there
exists a ball B(x0, r) of radius r > 1 which satisfies the conditions (1) and

‖a‖L1 ≤ rn(1−1/p). (2′)
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Lemma 2 ([7]) If a function a(x) is a large hp-atom then ‖a‖hp ≤ Cp,n.

Remark The condition p < 1 is essential.

Definition 13 A function a(x) is a small hp-atom centered at x0 if there
exists a ball B(x0, r) of radius r ≤ 1 which satisfies the conditions (1), (2′)
and ∣∣∣∫ a(x)dx

∣∣∣ ≤ 1. (3′)

Lemma 3 ([8]) If a function a(x) is a small hp-atom then ‖a‖hp ≤ Cp,n.

In [8], the author introduced small hp-atom. In this paper we need to
consider generalization of this atom.

Definition 14 Let b be β-accretive. We say a function a(x) is a small
(hp, b)-atom centered at x0 if there exists a ball B(x0, r) of radius r ≤ 1
which satisfies the conditions (1), (2′) and∣∣∣∫ a(x)b(x)dx

∣∣∣ ≤ 1. (3′′)

Lemma 4 We assume that b is β-accretive and b ∈ Lipα(Rn). If a func-
tion a is a small (hp, b)-atom centered at x0 then

‖a‖hp ≤ Cp,n,β,b,

where α ≥ n(1/p − 1).

Proof. We assume that supp(a) ⊂ B(x0, r), then∣∣∣∫ a(x)dx
∣∣∣≤ ∣∣∣ 1

b(x0)

∫
B(x0,r)

a(x)(b(x) − b(x0))dx
∣∣∣

+
∣∣∣ 1
b(x0)

∫
a(x)b(x)dx

∣∣∣
≤ Cn

β
‖b‖Lipα

rα · rn(1−1/p) +
1
β

≤
Cn‖b‖Lipα

+ 1
β

.

Therefore by Lemma 3 we obtain the desired result. ¤

Next we define molecules on hp(Rn).

Definition 15 Let δ > n(1/p − 1). A function M(x) is a large (hp, δ)-
molecule centered at x0 if there exists r > 1 such that the following condi-
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tions are satisfied∫
|x−x0|<2r

|M(x)|dx ≤ rn(1−1/p), (M1)∫
|x−x0|≥2r

|M(x)||x − x0|δdx ≤ rδ+n(1−1/p). (M2)

Definition 16 We assume that b is β-accretive and δ > n(1/p − 1). We
say a function M(x) is a small (hp, δ, b)-molecule centered at x0 if there
exists r ≤ 1 which satisfies (M1), (M2) and∣∣∣∣∫ M(x)b(x)dx

∣∣∣∣ ≤ 1. (M3)

The following two lemmas are most essential to prove our theorem.

Lemma 5 If a function M(x) is a large (hp, δ)-molecule centered at x0

then ‖M‖hp ≤ Cp,n,δ.

Lemma 6 Let δ > n(1/p − 1) and α ≥ n(1/p − 1). We assume that b

is β-accretive and b ∈ Lipα(Rn). If a function M(x) is a small (hp, δ, b)-
molecule centered at x0 then ‖M‖hp ≤ Cp,n,α,β,δ,b.

Remark For the definition of Hp-molecule, see [10]. The author [8] in-
troduced hp-molecule when b ≡ 1.

The proofs of Lemmas 5 and 6 are similar, so we shall prove Lemma 6
only. The proof of Lemma 5 is easier.

Proof of Lemma 6. We use the same argument as in [8]. Let E0 = {x; |x−
x0| < 2r} and Ei = {x; 2ir ≤ |x − x0| < 2i+1r}, i = 1, 2, 3, . . ., and let
χi(x) = χEi(x), χ̃i(x) = (1/b(Ei))χEi(x), mi = (1/b(Ei))

∫
Ei

M(y)b(y)dy,
m̃i =

∫
Ei

M(y)b(y)dy and Mi(x) = (M(x)−mi)χi(x). Note that b(Ei) 6= 0.
We write

M(x) =
∞∑
i=0

Mi(x) +
∞∑
i=0

miχi(x) =
∞∑
i=0

Mi(x) +
∞∑
i=0

m̃iχ̃i(x).

Let Nj =
∑∞

k=j m̃k and we write

M(x) =
∞∑
i=0

Mi(x) +
∞∑
i=1

Ni(χ̃i(x) − χ̃i−1(x)) + N0χ̃0(x)

= I + II + III.
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First we estimate I.
It is clear that supp(Mi) ⊂ B(x0, 2i+1r) and

∫
Mi(x)b(x)dx = 0.

By the condition (M1) and the accretivity condition of b, we have∫
|M0(x)|dx ≤

(
1 +

‖b‖∞
β

)
rn(1−1/p).

So by Lemma 2 or 4 we have ‖M0‖hp ≤ Cp,n,β,b.
When i ≥ 1, by using the condition (M2), we have∫

|Mi(x)|dx ≤ Cn,β,b(2ir)−δ

∫
Ei

|M(x)||x − x0|δdx

≤ Cn,β,b(2ir)−δrδ+n(1−1/p) ≤ Cn,β,b2−δirn(1−1/p).

By Lemma 2 or 4 we have

‖Mi‖hp ≤Cp,n,β,b2−δirn(1−1/p)(2i+1r)n(1/p−1)

= Cp,n,β,b2(−δ+n(1/p−1))i.

Since δ > n(1/p − 1), we obtain
∑∞

i=1 ‖Mi‖p
Hp ≤ Cp,n,δ,β,b and ‖I‖Hp ≤

Cp,n,δ,β,b.
Next we estimate II.
Let Ai(x) = Ni(χ̃i(x)−χ̃i−1(x)). It is clear that supp(Ai)⊂B(x0, 2i+1r)

and
∫

Ai(x)b(x)dx = 0. Using the condition (M2), we have

‖Ai‖L∞ ≤ Cn,β,b(2ir)−n

∫
|x−x0|≥2ir

|M(x)|dx

≤ Cn,β,b(2ir)−n(2ir)−δ

∫
|x−x0|≥2ir

|M(x)||x − x0|δdx

≤ Cn,β,b2i(−n−δ)r−n−δrδ+n(1−1/p) = Cn,β,b2i(−n−δ)r−n/p.

By Lemma 2 or 4 we have

‖Ai‖Hp ≤ Cp,n,β,b2i(−n−δ)r−n/p(2i+1r)n/p ≤ Cp,n,β,b2i(−δ+n(1/p−1)).

Since δ > n(1/p − 1), we obtain
∑∞

i=1 ‖Ai‖p
Hp ≤ Cp,n,δ,β,b and ‖II‖Hp ≤

Cp,n,δ,β,b.
Finally we estimate III.
It is clear that supp(N0χ̃0) ⊂ B(x0, 2r). Using the conditions (M1) and
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(M2), we have

‖N0χ̃0‖L1 ≤ Cβ,b

∫
|M(x)|dx

≤ Cβ,b

(∫
|x−x0|<2r

|M(x)|dx + (2r)−δ

∫
|x−x0|≥2r

|M(x)||x − x0|δdx
)

≤ Cβ,b

(
rn(1−1/p) + (2r)−δrδ+n(1−1/p)

)
≤ Cβ,br

n(1−1/p).

Using the condition (M3), we have∣∣∣∫ N0χ̃0(x)b(x)dx
∣∣∣ =

∣∣∣∫ M(x)b(x)dx
∣∣∣ ≤ 1.

By Lemma 2 or 4 we have ‖N0χ̃0‖hp ≤ Cp,n,β,b. ¤

5. Proof of Theorem

Applying the interpolation theorem between L2 and Hp or hp, we may
assume p < 1. By the atomic decomposition of Hp, it suffices to show that
‖Ta‖hp ≤ C for every Hp-atom a, where C is a positive constant depending
only on p, n, C1, C2, δ, β, ‖b‖∞, ‖b‖Lipα

and ‖t̃Tb‖Lipα
.

We assume Hp-atom a is supported in B(x0, r). We shall show that if
r ≥ 1 then Ta(x) is a constant multiple of a large (hp, δ)-molecule, and if
r < 1 then Ta(x) is a constant multiple of a small (hp, δ, b)-molecule.

We have to check that if r ≥ 1 then Ta satisfies (M1) and (M2), and if
r < 1 then Ta satisfies three conditions of Definition 16.

Since T is bounded on L2, we have∫
|x−x0|≤2r

|Ta(x)|dx ≤ C‖Ta‖L2rn/2 ≤ Crn(1−1/p). (4)

If |x − x0| ≥ 2r, we have

|Ta(x)| =
∣∣∣∫ (K(x, y)−K(x−x0))a(y)dy

∣∣∣ ≤ C
rn(1−1/p)+δ

|x − x0|n+δ
. (5)

If r ≥ 1, by (4), (5) and Lemma 5, we have ‖Ta‖hp ≤ C. If r < 1, by the
duality of Hn/(n+α) and Lipα and Lemma 1, we have∣∣∣∫ Ta(x)b(x)dx

∣∣∣ = |(a, t̃Tb)| ≤ C‖a‖Hn/(n+α)‖t̃Tb‖Lipα

≤ C‖t̃Tb‖Lipα
rα+n(1−1/p) ≤ C, (6)
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because α ≥ n(1/p − 1).
By (4), (5), (6) and Lemma 6, we obtain ‖Ta‖hp ≤ C. ¤
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