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Rédei’s theorem with a factor of order four
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Abstract. We will prove that if a finite abelian group is a direct product of its subsets

such that one subset has four elements and the others have prime cardinalities, then

at least one of the factors must be periodic.
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periodic factorizations, normalized factorizations.

1. Introduction

Let G be a finite abelian group and let A1, . . . , An be subsets of G. If the
product A1 · · ·An is direct and is equal to G, then we say that the equation
G = A1 · · ·An is a factorization of G. The next theorem of L. Rédei is one
of the most celebrated factorization results.

Let G be a finite abelian group and let e be the identity element of G.
If G = A1 · · ·An is a factorization of G, |Ai| is a prime and e ∈ Ai for each
i, 1 ≤ i ≤ n, then at least one of the factors must be a subgroup of G.

We say that a subset A of G is periodic with period g if g 6= e and Ag =
A. Rédei’s theorem can be reformulated using periodicity in the following
way. If G = A1 · · ·An is a factorization of the finite abelian group G and each
|Ai| is a prime, then at least one of the factors must be periodic. Examples
show that the condition that each |Ai| is a prime cannot be dropped from
the theorem. However, for 2-groups K. Amin, K. Corrádi and A. D. Sands
([1, Theorem 15]) proved a slightly more general version. Namely, if G =
BA1 · · ·An is a factorization of the finite abelian 2-group G such that |B| = 4
and |A1| = · · · = |An| = 2, then at least one of the factors is periodic.

It is Problem 1 in [7] that if a finite abelian group is factorized as a
product of factors each of which has prime order or order four must one of
the factor be periodic.

We will extend the above result of K. Amin, K. Corrádi and A. D. Sands
proving that if G = BA1 · · ·An is a factorization of the finite abelian group
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G such that |B| = 4 and each |Ai| is a prime, then at least one of the factors
must be periodic. This provides a partial answer for Sands’ problem.

2. Preliminaries

If χ is a character of G, then χ(A) will denote

∑

a∈A

χ(a).

Lemma 1 Let A, B be subsets of a finite abelian group G. If χ(A) = χ(B)
for each character χ of G, then A = B.

Proof. Let g1, . . . , gn be all the elements of G. Let χ1, . . . , χn be all the
characters of G. As χi(A) = χi(B) for each i, 1 ≤ i ≤ n we get the following
system of linear equations.

χ1(g1)(x1 − y1)+ · · · +χ1(gn)(xn − yn) = 0
...

. . .
...

χn(g1)(x1 − y1)+ · · · +χn(gn)(xn − yn) = 0

Here xi = 1 if gi ∈ A and xi = 0 if gi 6∈ A. Similarly, yi = 1 if gi ∈ B and
yi = 0 if gi 6∈ B. By the standard orthogonality relations the matrix [χi(gj)]
is orthogonal. In particular the columns are linearly independent. It follows
that the system of equations has only the trivial solution

x1 − y1 = · · · = xn − yn = 0

and so A = B. ¤

Corollary 1 If A is a subset of a finite abelian group G and χ(A) = 0 for
each nonprincipal character χ of G, then A = G.

Proof. Let |A| = r, |G| = n. The multiset nA contains the elements of
A with multiplicity n. Similarly, the multiset rG contains the elements of
G with multiplicity r. Note that χ(nA) = χ(rG) holds for each character
χ of G. Indeed, if χ is not the principal character of G, then χ(nA) =
nχ(A) = 0, χ(rG) = rχ(G) = 0. If χ is the principal character of G, then
χ(nA) = χ(rG) is equivalent to n|A| = r|G|. Using the argument we have
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seen in the proof of Lemma 1 we get that the multisets nA and rG are equal.
It follows that A = G. ¤

Let A, A′ be subsets of the finite abelian group G. We say that A is
replaceable by A′ if G = A′B is a factorization of G whenever G = AB is
a factorization of G. If χ(A) = 0, then we say χ annihilates A. The set of
all characters of G that annihilate A is denoted by Ann(A). The connection
between annihilators and replacement we will need is the following. If |A| =
|A′| and Ann(A) ⊂ Ann(A′), then A can be replaced by A′. The periodicity
of a subset A of G can be tested by means of its translates. Namely, if g 6= e

and

g ∈
⋂

a∈A

a−1A,

then A is periodic with period g. (A proof can be found for example in [8].)
We will need the following lemmas.

Lemma 2 If ρ1, . . . , ρ4 are complex numbers such that |ρ1| = · · · = |ρ4| =
1 and ρ1 + · · ·+ ρ4 = 0, then there is a permutation σ1, . . . , σ4 of ρ1, . . . , ρ4

such that σ1 + σ2 = 0 and σ3 + σ4 = 0.

Proof. Draw a closed polygon on the complex plane with vertices P1, . . . ,

P4 such that

−−−→
P1P2 = ρ1,

−−−→
P2P3 = ρ2,

−−−→
P3P4 = ρ3,

−−−→
P4P1 = ρ4.

In the “triangles” P1P2P4 and P3P2P4 the “side” P2P4 is common. If P2 =
P4 then

−−−→
P1P2 +

−−−→
P4P1 = ρ1 + ρ4 = 0,

and
−−−→
P2P3 +

−−−→
P3P4 = ρ2 + ρ3 = 0,

as required. Thus for the remaining part of the proof we may assume that
P2 6= P4.

In the “triangles” P4P1P3 and P2P1P3 the “side” P1P3 is common. If
P1 = P3 then
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−−−→
P1P2 +

−−−→
P2P3 = ρ1 + ρ2 = 0,

and
−−−→
P3P4 +

−−−→
P4P1 = ρ3 + ρ4 = 0,

as required. Therefore for the remaining part of the proof we may assume
that P1 6= P3.

Since P2 6= P4 and P1 6= P3, the polygon is a rhombus with diagonals
P2P4 and P1P3. In this case

−−−→
P1P2 +

−−−→
P3P4 = ρ1 + ρ3 = 0,

and
−−−→
P2P3 +

−−−→
P4P1 = ρ2 + ρ4 = 0.

This completes the proof. ¤

Lemma 3 Let B = {e, ax, by, cz} be a subset of a finite abelian group G

such that a, b, c are 2-elements and x, y, z are 2′-elements. Then B can be
replaced by

B′ = {e, axs, bys, czs}

for each integer s.

Proof. It is enough to show that χ(B) = 0 implies χ(B′) = 0 for each
character χ of G.

0 = χ(B) = χ(e) + χ(ax) + χ(by) + χ(cz)

can hold only in the following three ways

1 + χ(ax) = 0, χ(by) + χ(cz) = 0,

1 + χ(by) = 0, χ(ax) + χ(cz) = 0,

1 + χ(cz) = 0, χ(ax) + χ(by) = 0.

Let us deal with the first possibility. (The others can be handled in a similar
way.) It follows that
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(−1)χ(a) = χ(x−1), (−1)χ(bc−1) = χ(zy−1).

The left sides have 2 power orders and the right sides have odd orders.
Therefore

−χ(a) = 1, χ(x−1) = 1, −χ(bc−1) = 1, χ(zy−1) = 1,

that is,

χ(a) = −1, χ(x) = 1, χ(c) = −χ(b), χ(y) = χ(z).

Computing χ(B′) shows that χ(B′) = 0.
This completes the proof. ¤

3. The result

We are ready to prove the main result of the paper.

Theorem 1 Let G = BA1 · · ·An be a factorization of the finite abelian
group G such that |A1|, . . . , |An| are primes and |B| = 4. Then at least one
of the factors B,A1, . . . , An is periodic.

Proof. We may assume that |A1| = · · · = |Am| = 2 and |Am+1|, . . . , |An|
are odd primes. In order to prove the theorem we assume the contrary that
there is a counterexample. In the n = 0 case the theorem holds. So in a
counterexample n ≥ 1.

Let us consider an Ai and assume that |Ai| = p is a prime. If each
a ∈ Ai \ {e} has order p, then do nothing with Ai. If there is an element
a ∈ Ai \ {e} with p2 | |a|, then replace Ai by A′i = {e, a, a2, . . . , ap−1}.
Clearly A′i is not periodic. If there is an element a ∈ Ai whose order is
not a prime power then there is an integer s such that As

i = {as : a ∈ Ai}
contains only (p, q)-elements, where q is a prime distinct from p. In this case
replace Ai by As

i . By Proposition 3 of [6], this can be done. In short we
may assume that there is a counterexample in which each Ai contains only
(p, q)-elements.

If each of B,A1, . . . , Am contains only 2-elements, then the product
BA1 · · ·Am forms a factorization of the 2-component of G and so by the
Amin-Corrádi-Sands result at least one of the factors B,A1, . . . , Am is pe-
riodic. We choose a counterexample with minimal n and among these we
choose one for which the quantity
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h =
∏

b∈B

|b|2′ |
m∏

i=1

∏

a∈Ai

|a|2′ |

is minimal. We may assume that one of B,A1, . . . , Am contains not only
2-elements.

Let us consider B. Clearly B = {e, ax, by, cz}, where the orders of a, b,
c are 2 powers and the orders of x, y, z are odd. Assume first that each of
x, y, z is equal to e. This case can be settled by the method of K. Amin,
K. Corrádi and A. D. Sands. In this case B = {e, a, b, c}. If one of a, b,
c has order 2, say |a| = 2, then the squares of e and a are equal. From
the factorization G = B(A1 · · ·An) by Lemma 1 of [5], it follows that B or
A1 · · ·An is periodic. As B is not periodic, A1 · · ·An is periodic. In this case
the conditions of the Theorem 2 of [3] are satisfied and so by this theorem,
one of the factors A1, . . . , An is periodic. This is a contradiction. We may
assume that none of a, b, c has order 2. Write c in the form c = abd, where
d is an element of G.

B = {e, a, b, abd}

If d = e, then B = {e, a}{e, b}. Here {e, a}, {e, b} are not subgroups of G as
|a| 6= 2, |b| 6= 2. From the factorization G = {e, a}{e, b}A1 · · ·An, by Rédei’s
theorem, it follows that at least one of the factors is periodic. This is not
possible. Thus we may assume that d 6= e. If there is no character χ of G

for which χ(B) = 0, then 0 = χ(G) = χ(A1 · · ·An) for each nonprincipal
character χ of G. By Corollary 1, we get the contradiction G = A1 · · ·An.
Consider a character χ of G for which χ(B) = 0.

0 = χ(B) = χ(e) + χ(a) + χ(b) + χ(abd)

The sum of 4 complex numbers whose length are all 1 is 0. This can happen
only in the following 3 ways

χ(e) + χ(a) = 0, χ(b) + χ(abd) = 0,

χ(e) + χ(b) = 0, χ(a) + χ(abd) = 0,

χ(e) + χ(abd) = 0, χ(a) + χ(b) = 0.

From χ(a) = −1, χ(b) = −χ(abd) it follows that χ(d) = 1. From χ(b) = −1,
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χ(a) = −χ(abd) it follows that χ(d) = 1. In other words χ(B) = 0, χ(d) 6= 1
implies χ(abd) = −1.

Set C = {e, abd}A1 · · ·An. Notice that the product is direct. We claim
that Cd = C. We verify the claim showing that χ(Cd) = χ(C) for each
character χ of G. It is clear when χ(d) = 1 or χ(C) = 0. So suppose that
χ(d) 6= 1, χ(C) 6= 0. Now χ is not the principal character of G. From the
factorization G = BA1 · · ·An it follows that χ(B) = 0 or χ(Ai) = 0 for
some i, 1 ≤ i ≤ n. As χ(C) 6= 0 we get χ(B) = 0. But χ(B) = 0, χ(d) 6= 1
implies χ({e, abd}) = 0 and χ(C) = 0. Therefore χ(Cd) = χ(C). Thus C

is periodic with period d. Theorem 2 of [3] gives that one of the factors
A1, . . . , An, {e, abd} is periodic. This is a contradiction.

Turn to the cases when not all of x, y, z is equal to e. By Lemma 3, B

can be replaced by B′ = {e, a, b, c}. From the factorization G = B′A1 · · ·An

by the minimality of the counterexample, it follows that one of the factors B′,
A1, . . . , An, is periodic. This leads to a contradiction unless B′ is periodic.
By relabeling a, b, c we may assume that B′ = {e, a}{e, b}, where |a| = 2.
Thus B = {e, ax, by, abz}, that is, c = ab. We distinguish 5 cases.

Case 1. Two of x, y, z are equal to e.
Case 2. One of x, y, z is equal to e.
Case 3. None of x, y, z is equal to e and |x||y||z| is not a power of a

prime.
Case 4. x, y, z are nonidentity p-elements and two of them generate the

same subgroup.
Case 5. x, y, z are of order p and z = xky.
Turn to case 1. Suppose that exactly one of x, y, z is not equal to e.

Now factor B is in one of the following forms

B = {e, ax, b, ab}, x 6= e,

B = {e, a, by, ab}, y 6= e,

B = {e, a, b, abz}, z 6= e.

In the last two cases B contains an element of order 2. This leads to the
contradiction that one of the factors B,A1, . . . , An is periodic. We may
assume that the first possibility occurs. Consider a character χ of G with
χ(B) = 0.

0 = χ(B) = χ(e) + χ(ax) + χ(b) + χ(ab)
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It can happen only in one of the following three ways

1 + χ(ax) = 0, χ(b) + χ(ab) = 0,

1 + χ(b) = 0, χ(ax) + χ(ab) = 0,

1 + χ(ab) = 0, χ(ax) + χ(b) = 0.

From χ(ax) = −1, χ(b) = −χ(ab) it follows that χ(x) = 1. From χ(b) = −1,
χ(ax) = −χ(ab) it follows that χ(x) = 1. From χ(ab) = −1, χ(ax) = −χ(b)
it follows that χ(x) = 1. In short χ(B) = 0 implies χ(x) = 1. Thus B can
be replaced by

B′ = {e, ax, bx, abx2} = {e, ax}{e, bx}.

From the factorization G = {e, ax}{e, bx}A1 · · ·An by Rédei’s theorem it
follows that one of the factors is periodic. This is a contradiction.

Turn to case 2 when exactly 2 of x, y, z are not equal to e. Now B is
in one of the following forms

B = {e, ax, by, ab}, x 6= e, y 6= e,

B = {e, ax, b, abz}, x 6= e, z 6= e,

B = {e, a, by, abz}, y 6= e, z 6= e.

In the third case B contains an element of order 2. This leads to the con-
tradiction that one of the factors is periodic. We may assume that the first
two possibilities occur. Suppose B = {e, ax, by, ab}. Consider a character χ

of G for which χ(B) = 0.

0 = χ(B) = χ(e) + χ(ax) + χ(by) + χ(ab)

can hold only in the following ways

1 + χ(ax) = 0, χ(by) + χ(ab) = 0,

1 + χ(by) = 0, χ(ax) + χ(ab) = 0,

1 + χ(ab) = 0, χ(ax) + χ(by) = 0.

From χ(ax) = −1, χ(by) = −χ(ab) it follows that χ(x) = 1, χ(y) = 1. From
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χ(by) = −1, χ(ax) = −χ(ab) it follows that χ(x) = 1, χ(y) = 1. From
χ(ab) = −1, χ(ax) = −χ(by) it follows that χ(x) = χ(y). In short χ(B) = 0
implies χ(x) = χ(y).

If x = y, then

B = {e, ax, by, ab} = {e, ax}{e, ab}.

In the |ab| = 2 case B is periodic which is a contradiction. We may assume
that |ab| 6= 2. From the factorization G = {e, ax}{e, ab}A1 · · ·An by Rédei’s
theorem, it follows that one of the factors is periodic. So we may assume
that x 6= y. Set v = x−1y. Note that v 6= e and χ(B) = 0 implies χ(v) = 1.
This gives that B can be replaced by

B′ = {e, av, bv, abv2} = {e, av}{e, bv}.

The factorization G = {e, av}{e, bv}A1 · · ·An contradicts Rédei’s theorem.
Suppose B = {e, ax, b, abz}. This case can be settled in a similar man-

ner.
Turn to case 3 when none of x, y, z is equal to e and there are distinct

primes p, q such that both p and q divides |x||y||z|. Now B = {e, ax, by, abz}.
Assume first that |b| 6= 2. Replace B by B′ = {e, axp, byp, abzp} in the fac-
torization G = BA1 · · ·An. In the factorization G = B′A1 · · ·An the value
of h decreased. By the minimality of the counterexample, B′ is periodic.
This gives that xp = e, that is, |x| ∣∣ p. Replacing B by {e, axq, byq, abzq}
gives xq = e, that is, |x| ∣∣ q. Therefore x = e. This is a contradiction. So we
may assume that |b| = 2. Then |ab| = 2. In this situation the roles of a, b,
ab are symmetric and we write B in the form B = {e, ax, by, cz}. Replacing
B by B′ = {e, axp, byp, czp} gives that B′ is periodic. By symmetry we may
assume that xp = e and yp = zp. Replacing B by B′′ = {e, axq, byq, czq}
gives that B′′ is periodic. We face the following possibilities

xq = e, yq = zq,

yq = e, xq = zq,

zq = e, xq = yq.

In the first case xp = e, xq = e imply the contradiction x = e. In the
second case from xp = e, yq = e it follows that |x| = p, |y| = q. From
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zpq = (zp)q = (yp)q = (yq)p = e it follows that |z| ∣∣ pq. Set z = αβ where
|α| is a p power and |β| is a q power. From yp = zp = (αβ)p = βp it follows
that y = β. From xq = zq = (αβ)q = αq it follows that x = α. Hence
z = xy and

B = {e, ax, by, abz} = {e, ax}{e, by}.

By Rédei’s theorem one of the factors in the factorization

G = {e, ax}{e, by}A1 · · ·An

is periodic. This is a contradiction. The third possibility can be settled in
a similar way.

Turn to case 4 when x, y z are p-elements and two of x, y, z generate
the same subgroup. This can happen in the following ways

〈x〉 = 〈y〉, y = xs, p 6 |s,
〈x〉 = 〈z〉, z = xs, p 6 |s,
〈y〉 = 〈z〉, z = ys, p 6 |s,

In the first case B = {e, ax, bxs, abz}. Consider a character χ of G with
χ(B) = 0.

0 = χ(B) = χ(e) + χ(ax) + χ(bxs) + χ(abz)

can hold only in the following ways

1 + χ(ax) = 0, χ(bxs) + χ(abz) = 0,

1 + χ(bxs) = 0, χ(ax) + χ(abz) = 0,

1 + χ(abz) = 0, χ(ax) + χ(bxs) = 0.

From χ(a) = −1, χ(x) = 1 we get χ(xs) = χ(z) then χ(z) = 1. From
χ(b) = −1, χ(xs) = 1 we get χ(x) = χ(z) then χ(z) = 1. From χ(ab) = −1,
χ(z) = 1 we get χ(z) = 1. In short χ(B) = 0 implies χ(z) = 1. So B can be
replaced by

B′ = {e, az, bz, abz2} = {e, az}{e, bz}.
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From the factorization G = {e, az}{e, bz}A1 · · ·An by Rédei’s theorem we
get the contradiction that one of the factors is periodic. The second and
third possibilities can be settled in similar ways.

Turn to case 5 when |x| = |y| = |z| = p and z = xky. Now B =
{e, ax, by, abxky}. If k = 0, then 〈y〉 = 〈z〉 and by case 4, we are done. If
k = 1, then

B = {e, ax, by, abxy} = {e, ax}{e, by}

and by Rédei’s theorem we are done. If k = −1, then

B = {e, ax, by, abx−1y} = {e, ax}{e, abx−1y}

and by Rédei’s theorem we are done. We may assume that 2 ≤ k ≤ p − 2.
Consider a character χ of G with χ(B) = 0.

0 = χ(B) = χ(e) + χ(ax) + χ(by) + χ(abxky)

This can hold only in the following ways

1 + χ(ax) = 0, χ(by) + χ(abxky) = 0,

1 + χ(by) = 0, χ(ax) + χ(abxky) = 0,

1 + χ(abxky) = 0, χ(ax) + χ(by) = 0.

If χ(a) = −1, χ(x) = 1 we get χ(x) = 1. If χ(b) = −1, χ(y) = 1 we get
χ(xk−1) = 1. If χ(ab) = −1, χ(xky) = 1 we get χ(xk+1) = 1. In short
χ(B) = 0 implies χ(x) = 1 and so B can be replaced by

B′ = {e, ax, bx, abx2} = {e, ax}{e, bx}.

From the factorization G = {e, ax}{e, bx}A1 · · ·An by Rédei’s theorem we
get the contradiction that one of the factors is periodic.

In the factorization G = BA1 · · ·An replace B by B′ = {e, a}{e, b}. Set
H0 = {e, a} = 〈a〉, A0 = {e, b}. We get the factorization G = H0A0A1 · · ·An

and then the factorization

G/H0 = (A0H0)/H0 · · · (AnH0)/H0
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of the factor group G/H0. Here (AiH0)/H0 stands for {aH0 : a ∈ Ai}. By
Rédei’s theorem, one of the factors, say (A0H0)/H0, is a subgroup of G/H0.
It means that A0H0 = H1 is a subgroup of G. Then, by relabelling the
factors if necessary, we get the factorization

G/H1 = (A1H1)/H1 · · · (AnH1)/H1

of the factor group G/H1. Continuing in this way we get that there is a
maximal subgroup M of G such that M contains all but one of the factors
H0, A0, . . . , An. We may assume that

( i ) A0 6⊂ M or
( ii ) one of A1, . . . , Am is not contained by M , say Am 6⊂ M or
(iii) one of Am+1, . . . , An is not contained by M , say An 6⊂ M .

If A0 6⊂ M , then |G : M | = 2 and each 2′-element of G is in M . In
particular x ∈ M . So {e, ax} ⊂ M . Therefore M = {e, ax}A1 · · ·An is a
factorization of M . By Rédei’s theorem one of the factors is a subgroup of
M . This is a contradiction.

If Am 6⊂ M , then |G : M | = 2 and each 2′-element of G is in M . In
particular x, y, z ∈ M . Hence B = {e, ax, by, cz} ⊂ M and so

M = BA1 · · ·Am−1Am+1 · · ·An

is a factorization of M . By the minimality of the counterexample one of the
factors is periodic. This is a contradiction. We may assume that An 6⊂ M .
This means |G : M | = p is an odd prime. If {x, y, z} ⊂ M , then B ⊂ M

and so M = BA1 · · ·An−1 is a factorization of M . By the minimality of the
counterexample one of the factors is periodic. This is a contradiction. We
may assume that {x, y, z} 6⊂ M . By Proposition 3 of [6], An can be replaced
by A′n such that A′n contains only p-elements. Choose an element c ∈
A′n \ {e} and replace A′n by C = {e, c, c2, . . . , cp−1} to get the factorization
G = BA1 · · ·An−1C. By Lemma 3 of [9], this replacement is possible. As
G = M(Cd−1) is a factorization of G for each d ∈ C, Cd−1 is a complete set
of representatives modulo M . There are elements ud, vd, wd ∈ Cd−1 such
that

(ax)−1 ∈ udM, (by)−1 ∈ vdM, (abz)−1 ∈ wdM.



Rédei’s theorem with a factor of order four 279

Hence axud, byvd, abzwd ∈ M . Set

Dd = {e, (ax)ud, (by)vd, (abz)wd}.

Note that M = DdA1 · · ·An−1 is a factorization of M . Indeed, prod-
uct coming from DdA1 · · ·An−1 are among the products coming from
BA1 · · ·An−1(Cd−1). By the minimality of the counterexample Dd is peri-
odic. If |b| 6= 2, then the periodicity of Dd gives that xud = e and yvd = zwd

for each d ∈ C. We get

x−1 ∈
⋂

d∈C

Cd−1.

By Lemma 6 of [8], C is periodic. As |C| = p we get C = 〈c〉, that is, |c| = p.
Choose d to be e and consider xue = e, yve = zwe. As ue, ve, we ∈ 〈c〉, we
get that there is an integer k such that z = xky. Now B = {e, ax, by, abxky}
and by case 5 we are done. We may assume that |b| = 2. In this situation
|ab| = 2 and the roles of a, b, ab are symmetric. We write B back in the
form B = {e, ax, by, cz}, where c = ab. By the periodicity of Dd, one of the
following holds

xud = e, yvd = zwd,

yvd = e, xud = zwd,

zwd = e, xud = yvd.

Suppose there are g, h ∈ C such that g 6= h and

xug = e, yvg = zwg,

yvh = e, xuh = zwh.

Then x = ci, y = cj for some i, j, −p + 1 ≤ i, j ≤ p − 1. Here i 6= 0, j 6= 0
as x 6= e, y 6= e. If i = j, then x = y and by case 4, we are done. Therefore
i 6= j and y = xs, where p 6 |s. Again by case 4, we are done. We may assume
that xud = e for each d ∈ C. It means that

x−1 ∈
⋂

d∈C

Cd−1
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and by Lemma 6 of [8], C is periodic. Since |C| = p, we get that C is a
subgroup of G and so |c| = p. Using the fact that Dd is periodic for d = e

by symmetry we may assume that xue = e, yve = zwe. As ue, ve, we ∈ 〈c〉,
it follows that there is an integer k for which z = xky. Now by case 5, we
are done.

This completes the proof. ¤

4. An open problem

We describe a construction of N. G. De Bruijn [2] explicitly. Let p, q

be primes with p ≥ 5 and let G be a group with basis elements x, y, z,
|x| = |y| = p, |z| = q. Set

A1 =
{
e, xy, (xy)2, . . . , (xy)p−3, xp−2yp−1, xp−1yp−2

}
,

B = 〈x〉 ∪ z〈x〉 ∪ · · · ∪ zq−2〈x〉 ∪ zq−1〈y〉.

A routine computation shows that G = BA1 is a factorization and none of
the factors is periodic. Clearly |A1| = p, |B| = pq.

Let G = BA1 · · ·An be a factorization of G such that |A1|, . . . , |An| are
primes and |B| is a product of two primes, say |B| = pq. Does it follow that
at least one of the factors is always periodic? The example above shows
that the answer is “no” if p ≥ 5. We can hope an affirmative answer only in
the p ≤ 3 case. The p = q = 2 case is settled by this paper. The answer is
not known when p = q = 3 or p = 3, q = 2. This is Problem 2. of [7] which
reads as follows.

Let G = BA1 · · ·An be a factorization of a finite abelian group G such
that |A1|, . . ., |An| are primes and |B| is 6 or 9. Does it follow that one of
the factors is periodic?
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