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Four-manifolds Admitting Hyperelliptic
Broken Lefschetz Fibrations

Kenta Hayano & Masatoshi Sato

1. Introduction

A broken Lefschetz fibration is a smooth map from a four-manifold to a surface
that has at most two types of singularities: Lefschetz singularity and indefinite fold
singularity. This fibration was introduced in [1] as a fibration structure compatible
with near-symplectic structures.

A simplified broken Lefschetz fibration is a broken Lefschetz fibration over the
sphere that satisfies several conditions on fibers and singularities. This fibration
was first defined by Baykur [3]. Despite the strict conditions in the definition of
this fibration, it is known that every closed oriented four-manifold admits a sim-
plified broken Lefschetz fibration. For a simplified broken Lefschetz fibration, we
can define a monodromy representation of this fibration as we do for a Lefschetz
fibration. Thus we can define hyperelliptic simplified broken Lefschetz fibrations
as a generalization of hyperelliptic Lefschetz fibrations. Hyperelliptic Lefschetz
fibrations have been studied in many fields—for example, algebraic geometry and
topology—and it has been shown that the total spaces of such fibrations satisfy
strong conditions on the signature, the Euler characteristic, and so on (see e.g.
[10]). Furthermore, we can obtain a signature formula of hyperelliptic simplified
broken Lefschetz fibrations similar to that of hyperelliptic Lefschetz fibrations (see
[13]). It is therefore natural to ask how far total spaces of hyperelliptic simplified
broken Lefschetz fibrations are restricted as well as what conditions these spaces
satisfy. The following result gives a partial answer.

Theorem 1.1. Let f : M → S 2 be a genus-g hyperelliptic simplified broken Lef-
schetz fibration. We assume that g ≥ 3.

(i) Let s be the number of Lefschetz singularities of f whose vanishing cycles are
separating. Then there exists an involution

ω : M → M

such that the fixed point set of ω is the union of ( possibly nonorientable) sur-
faces and s isolated points. Moreover, ω can be extended to an involution
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ω̄ : M#sCP2 → M#sCP2

such that M#sCP2/ω̄ is diffeomorphic to S#2sCP2 for S an S 2-bundle over
S 2 and such that the quotient map

/ω̄ : M#sCP2 → M#sCP2/ω̄ ∼= S#2sCP2

is a double branched covering.
(ii) A regular fiber F of the fibration f represents a nontrivial rational homology

class of M; that is, [F ] �= 0 in H2(M;Q).

Remark 1.2. As we will state in Theorem 4.7, Theorem 1.1 can be generalized
to directed broken Lefschetz fibrations, which we will define later (see Defini-
tion 2.2).

Remark 1.3. Auroux, Donaldson, and Katzarkov [1] gave a necessary and suf-
ficient condition for a closed oriented four-manifold to admit a near-symplectic
form. By using this result together with Theorem 1.1(i), we can prove that every
total space of a hyperelliptic simplified broken Lefschetz fibration with genus
g ≥ 3 has a near-symplectic form. Moreover, we can take such a near-symplectic
form so that all the fibers of the fibration are symplectic outside of the singularities.

Part (i) of Theorem 1.1 is a generalization of the results of Fuller [8] and of Siebert
and Tian [17] on hyperelliptic Lefschetz fibrations. Indeed, they proved indepen-
dently that, after blowing up s times, the total space of a hyperelliptic Lefschetz
fibration (with arbitrary genus) is a double branched covering of a manifold ob-
tained by blowing up a sphere bundle over the sphere 2s times, where s is the
number of Lefschetz singularities of the fibration whose vanishing cycles are sep-
arating. Fuller proved this statement by using handle decompositions and Kirby
diagrams, whereas Siebert and Tian did so using complex geometry. We also use
handle decompositions to prove Theorem 1.1(i), but our method is slightly dif-
ferent from that of Fuller; we give an involution of the total space of a fibration
explicitly, and that explicit description is used in the proof of Theorem 1.1(ii).

Since the self-intersection of a regular fiber of a broken Lefschetz fibration is
equal to 0, we can obtain the following corollary immediately.

Corollary 1.4. A closed oriented four-manifold with definite intersection form
cannot admit any hyperelliptic simpified broken Lefschetz fibrations with genus
g ≥ 3.

Note that the condition g ≥ 3 is essential here. Indeed, it is proved in [1] that S 4

and #nCP2 (n ≥ 1) admit genus-1 simplified broken Lefschetz fibrations. Since
every simplified broken Lefschetz fibration with genus less than 3 is hyperelliptic,
these examples mean that Corollary 1.4 does not hold without the assumption
g ≥ 3.

Remark 1.5. It is shown in [11] that a simply connected four-manifold with a
positive definite intersection form cannot admit any genus-1simplified broken Lef-
schetz fibrations except S 4. In particular, #nCP2 (n ≥ 1) cannot admit any genus-1
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simplified broken Lefschetz fibrations. However, it is proved in [4] that the mani-
fold #nCP2 admits a genus-2 simplified broken Lefschetz fibration for any n ≥ 0
(see [4, Thm. 18]). In the argument in [4], Baykur constructed a genus-2 simpli-
fied broken Lefschetz fibration in an explicit way. He did not mention vanishing
cycles of this fibration, yet we can easily obtain these cycles by using the result
in [12].

This result also means that Corollary 1.4 does not hold without the assumption
on genus. Moreover, it is easy to see that the genus-2 fibration on #nCP2 can-
not be compatible with any near-symplectic forms even though #nCP2 (n ≥ 1)
admits a near-symplectic form.

In general, a genus-g simplified broken Lefschetz fibration can be changed into
a genus-(g+ 1) simplified broken Lefschetz fibration by a certain homotopy of fi-
brations, called flip and slip (for the detail of this homotopy, see e.g. [2]). Hence
for any g ≥ 3 we can easily construct genus-g simplified broken Lefschetz fibra-
tions on S 4 as well as on #nCP2 and #nCP2 (n ≥ 1). However, these fibrations
are not hyperelliptic by Corollary 1.4.

In Section 2, we review the definitions of broken Lefschetz fibrations and sim-
plified ones. We also review the basic properties of monodromy representations
of broken Lefschetz fibrations. After reviewing the hyperelliptic mapping class
group, we give the definition of hyperelliptic simplified broken Lefschetz fibra-
tions. In Section 3, we prove a certain lemma on the subgroup of the hyperelliptic
mapping class group consisting of elements that preserve a simple closed curve c.
This lemma plays a key role in the proof of Theorem 1.1. In Section 4, we prove
Theorem 1.1.

2. Preliminaries

2.1. Broken Lefschetz Fibrations

We start by giving the precise definition of broken Lefschetz fibrations.

Definition 2.1. Let M and � be compact oriented smooth manifolds of dimen-
sion 4 and 2, respectively. A smooth map f : M → � is called a broken Lefschetz
fibration (BLF) if it satisfies the following conditions.

(1) f −1(∂�) = ∂M.

(2) f has at most two types of singularities which is locally written as follows:
• (z1, z2) 
→ ξ = z1z2, where (z1, z2) (resp. ξ) is a complex local coordinate

of M (resp. �) compatible with its orientation;
• (t, x1, x2, x3) 
→ (y1, y2) = (t, x1

2 + x2
2 − x3

2), where (t, x1, x2, x3) (resp.
(y1, y2)) is a real coordinate of M (resp. �).

The first singularity in condition (2) is called a Lefschetz singularity and the sec-
ond is called an indefinite fold singularity. We denote by Cf the set of Lefschetz
singularities of f and by Zf the set of indefinite fold singularities of f. Note that
a Lefschetz fibration is a BLF that has no indefinite fold singularities.
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Let f : M → S 2 be a BLF over the 2-sphere. Suppose that the restriction of f
to the set of singularities is injective and that the image f(Zf) is the disjoint union
of embedded circles parallel to the equator of S 2. We put f(Zf) = Z1�· · ·�Zm,
where Zi is the embedded circle in S 2. We choose a path α : [0,1] → S 2 that sat-
isfies the following properties:

(1) Imα is contained in the complement of f(Cf );
(2) α starts at the south pole ps ∈ S 2 and connects the south pole to the north pole

pn ∈ S 2;
(3) α intersects each component of f(Zf) at a single point transversely.

We put {qi} = Zi ∩ Imα and α(ti) = qi. We assume that q1, . . . , qm appear in this
order when we go along α from ps to pn (see Figure 1).

Figure 1 Example of the path α; the bold circles describe f(Zf)

The preimagef −1(Imα) is a three-manifold that is a cobordism betweenf −1(ps)

and f −1(pn). By the local coordinate description of the indefinite fold singular-
ity, it is easy to see that f −1(α([0, ti + ε])) is obtained from f −1(α([0, ti − ε]))
by either 1- or 2-handle attachment for each i = 1, . . . ,m. In particular, we obtain
a handle decomposition of the cobordism f −1(Imα).

Definition 2.2. A BLF f is said to be directed if it satisfies the following
conditions:

(1) the restriction of f to the set of singularities is injective and the image f(Zf)

is the disjoint union of embedded circles parallel to the equator of S 2;
(2) all the handles in the handle decomposition of f −1(Imα) just described are

of index 1; and
(3) all Lefschetz singularities of f are in the preimage of the component of S 2 \

(Z1 � · · · � Zm), which contains the point pn.

Condition (3) is not essential. Indeed, we can change a BLF f by a homotopy that
satisfies conditions (1) and (2) so that it satisfies condition (3) (cf. [3]).
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For a directed BLF f , we assume that the set of indefinite fold singularities of
f is connected and that all the fibers of f are connected. We call such a BLF
a simplified broken Lefschetz fibration (SBLF). For an SBLF f , Zf is empty set
or an embedded circle in M. If Zf is not empty, then the image f(Zf) is an em-
bedded circle in S 2. Thus S 2 \ Int νf(Zf) consists of two 2-disks, D1 and D2,
and the genus of the regular fiber of the fibration res f : f −1(D1) → D1 is just 1
higher than that of the fibration res f : f −1(D2) → D2. We call f −1(D1) (resp.
f −1(D2)) the higher side (resp. lower side) of f and call f −1(νf(Zf)) the round
cobordism of f. By our definition, all Lefschetz singularities of f are in the higher
side of f. We call the genus of the regular fiber in the higher side the genus of f.

2.2. Monodromy Representations

Let f : M → B be a genus-g Lefschetz fibration. We denote by Cf = {z1, . . . , zn}
the set of Lefschetz singularities of f and put yi = f(zi). For a base point y0 ∈
B \ f(Cf ) we can define a homomorphism  f : π1(B \ f(Cf ), y0) → Mg , called
a monodromy representation of f , where Mg = Diff+ �g/Diff+0 �g is the map-
ping class group of the closed oriented surface �g. We endow the C∞ topology
with Diff+ �g so that Diff+0 �g is the component of Diff+ �g containing the iden-
tity map. (Readers are referred to [9] for the precise definition of monodromy
representations.)

We examine the case B = D2. For each i = 1, . . . , n we take embedded paths
α1, . . . ,αn ⊂ D2 that satisfy the following conditions:

• each αi connects y0 to yi;
• αi ∩ f(Cf ) = {yi};
• αi ∩ αj = {y0} for all i �= j ; and
• α1, . . . ,αn appear in this order when we travel counterclockwise around y0.

For each i = 1, . . . , n, denote by ai ∈ π1(D
2 \ f(Cf ), y0) the element repre-

sented by the loop obtained when we connect a counterclockwise circle around
yi to y0 by using αi. We put Wf = ( f (a1), . . . ,  f (an)) ∈ Mg

n; this sequence is
called a Hurwitz system of f. By the conditions on paths α1, . . . ,αn, the product
 f (a1) · · ·  f (an) is equal to the monodromy of the boundary of D2. It is known
that each  f (ai) is the right-handed Dehn twist along a simple closed curve ci,
called a vanishing cycle of the Lefschetz singularity zi [14; 16].

Remark 2.3. The sequence Wf is not unique for f. Indeed, it depends on the
choice of paths α1, . . . ,αn and the choice of the identification of f −1(y0) with the
closed oriented surface �g. Yet it is known that another Hurwitz system, W̃f , is
obtained fromWf by successive application of the transformations

• (. . . , gi, gi+1, . . . ) 
→ (. . . , gi+1, gi+1
−1gigi+1, . . . ) (and its inverse transforma-

tion) and
• (g1, . . . , gn) 
→ (h−1g1h, . . . ,h−1gnh),

where gi,h∈Mg (cf. [9]). Two sequences of elements in Mg are said to be Hur-
witz equivalent if one is obtained from the other by successive application of the
transformations just described.
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Let f̂ : M → S 2 be a genus-g SBLF with nonempty indefinite fold singularities.
We denote by Mh the higher side of f̂ . The restriction res f̂ : Mh → D2 is a Lef-
schetz fibration overD2. Thus, a monodromy representation and a Hurwitz system
of res f̂ can be defined and are called (respectively) a monodromy representation
and a Hurwitz system of f̂ , which we denote by  f̂ and Wf̂ . For the Lefschetz fi-
bration res f̂ : Mh → D2, we choose a base point y0 and paths α1, . . . ,αn as in the
previous paragraph. We also take a path α : [0,1] → S 2 that satisfies the follow-
ing conditions:

• α connects y0 to a point in the image of the lower side of f̂ ;
• α ∩ αi = {y0} for each i = 1, . . . , n;
• α intersects the image f̂ (Zf̂ ) at one point transversely; and
• α1, . . . ,αn,α appear in this order when we travel counterclockwise around y0.

We put q = α(t) ∈ Imα ∩ f̂ (Zf̂ ). The preimage f̂ −1(α([0, t + ε])) is obtained
from the preimage f̂ −1(α([0, t − ε])) ∼= f̂ −1(p0)× [0, t − ε] by 2-handle attach-
ment. We regard the attaching circle c of the 2-handle as a simple closed curve in
f̂ −1(p0) ∼= �g , which we call a vanishing cycle of the indefinite fold singularity
of f̂ .

Lemma 2.4 (Auroux, Donaldson, and Katzarkov [1]; see also Baykur [3]). The
product  f̂ (a1) · · ·  f̂ (an) is contained in Mg(c), where Mg(c) is the subgroup
of the group Mg consisting of elements represented by a map that preserves the
curve c.

For an element ψ ∈Mg(c), we take a representative T ∈ψ such that T preserves
the curve c. Then T induces the homeomorphism T : �g \ c → �g \ c, and this
homeomorphism can be extended to the homeomorphism T̂ : �g−1 → �g−1 by
regarding �g \ c as the genus-(g− 1) surface with two punctures. Eventually, we
can define the homomorphism )c as follows:

)c : Mg(c) �� Mg−1

∈ ∈

ψ = [T ] � �� [T̂ ].

Remark 2.5. Let c ⊂ �g be a separating simple closed curve. We can regard
�g\c as the disjoint union of the two once-punctured surfaces of genush and g−h.

Thus, we can define the homomorphism )c : Mg(c
ori) → Mh × Mg−h as we

define )c for a nonseparating curve c, where Mg(c
ori) is the subgroup of Mg(c)

consisting of elements represented by maps that preserve c and its orientation.

Lemma 2.6 [3]. The product  f̂ (a1) · · ·  f̂ (an) is contained in the kernel of )c.

Conversely, if simple closed curves c, c1, . . . , cn ⊂ �g satisfy the conditions

• c is nonseparating and
• tc1 · · · tcn ∈ Ker)c,

then there exists a genus-g SBLF f : M → S 2 such that Wf = (tc1, . . . , tcn) and a
vanishing cycle of the indefinite fold of f is c.
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2.3. The Hyperelliptic Mapping Class Group

Let �g be a closed oriented surface of genus g ≥ 1. Denote by ι : �g → �g the
involution described in Figure 2.

c

d

Figure 2 Hyperelliptic involution on the surface �g

Let C(ι) denote the centralizer of ι in the diffeomorphism group Diff+ �g , and
endow C(ι) ⊂ Diff+ �g with the relative topology. The inclusion homomorphism
C(ι) → Diff+ �g induces a natural homomorphism π0C(ι) → Mg between their
path-connected components.

Theorem 2.7 (Birman and Hilden [6]). When g ≥ 2, the homomorphism
π0C(ι) → Mg is injective.

Denote the image of this homomorphism by Hg for g ≥ 1. This group is called
the hyperelliptic mapping class group. In fact, the authors also proved the same
result in more general settings (see [6] for details).

A Lefschetz fibration is said to be hyperelliptic if we can take an identification
of the fiber of a base point with the closed oriented surface so that the image of the
monodromy representation of the fibration is contained in the hyperelliptic map-
ping class group. Thus, it is natural to generalize this definition to directed (and
especially simplified) BLFs as follows. Let f : M → S 2 be a directed BLF. We
use the same notation as in the argument preceding Definition 2.2. We take a disk
neighborhood D ⊂ S 2 \ f(Zf) of pn so that f(Cf ) is contained in D. We put

ri = α

(
ti + ti+1

2

)
(i = 1, . . . ,m− 1) and rm = pn.

Let di ⊂ f −1(ri) be the vanishing cycle of Zi determined by α. After fixing an
identification of f −1(rm) with �g1 � · · · � �gk , we obtain an involution ιi on
f −1(ri) induced by the hyperelliptic involution on f −1(rm) because we can use α
to identify f −1(ri−1)\{two points} with f −1(ri)\di. We say that f is hyperelliptic
if it satisfies the following conditions for a suitable identification of f −1(rm) with
�g1 � · · · ��gk :

• the image of the monodromy representation of the Lefschetz fibration
res f : f −1(D) → D is contained in the group Hg; and

• di is preserved by the involution ιi up to isotopy.

We shall use HSBLF to denote a hyperelliptic simplified BLF.
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Remark 2.8. Every SBLF whose genus is no more than 2 is hyperelliptic since
Hg = Mg and since all simple closed curves in �g are preserved by ι if g ≤ 2.

2.4 Handle Decompositions

Let f : M → S 2 be a genus-g SBLF, and let Mh (resp., Mr and Ml) be the
higher side (resp., the round cobordism and the lower side) of f. The restriction
res f : Mh → D2 is a Lefschetz fibration over the disk. We choose y0 ∈D2 and
α1, . . . ,αn ⊂ D2 as in Section 2.2. Let D ⊂ IntD2 \Cf be a disk whose boundary
intersects each path αi at one point transversely. Denote by wi ∈ ∂D the intersec-
tion between ∂D and αi and by ci ⊂ f −1(wi) a vanishing cycle of the Lefschetz
singularity in the fiber f −1(yi).

Theorem 2.9 (Kas [14]). The higher side Mh is obtained by attaching n 2-
handles to f −1(D) ∼= D ×�g; the attaching circles are c1, . . . , cn, and the fram-
ings of these handles are −1 relative to the framing along the fiber.

We call Rλ = [0,1] × Dλ × D3−λ/((1, x1, x2, x3) ∼ (0,±x1, x2,±x3)) a (4-
dimensional) round λ-handle (λ = 1, 2); then X 4 ∪ϕ R

λ is a four-manifold ob-
tained by attaching a round λ-handle to the four-manifold X 4, where ϕ : [0,1] ×
∂Dλ × D3−λ/∼ → ∂X is an embedding. A round handle Rλ is said to be un-
twisted if the sign in the equivalence relation is positive and is said to be twisted
otherwise.

Theorem 2.10 ([1]; cf. [3]). The union Mh ∪ Mr is obtained by attaching a
round 2-handle to Mh. Moreover, a circle {t}× ∂D2 ×{0} in the attaching region
of R2 is attached along a vanishing cycle of indefinite fold singularities of f.

Observe that the isotopy class of the attaching map ϕ : [0,1] × ∂D2 × D1/∼ →
∂Mh is uniquely determined by a vanishing cycle of an indefinite fold of f if the
genus of f is no less than 2. In particular, if the genus of f is no less than 3, then
the total space of f is uniquely determined by the vanishing cycle of an indefinite
fold of f and those of Lefschetz singularities of f. However, there exist infinitely
many SBLFs with genus g ≤ 2 such that they have the same vanishing cycles de-
spite each one’s total space being mutually distinct (see [5] or [11]).

Round 2-handle attachment is given by 2-handle attachment followed by 3-
handle attachment (cf. [3]). Thus, we obtain a handle decomposition of Mh ∪Mr

by the previous theorems. Since Ml contains no singularities of f , it follows that
the map res f : Ml → D2 is the trivial�g−1-bundle. In particular,Ml is diffeomor-
phic to D2 ×�g−1 and we obtain a handle decomposition of M = Mh ∪Mr ∪Ml.

Moreover, we can draw a Kirby diagram of M by the decomposition (see [3] for
more details).

By the same argument we can also obtain a handle decomposition of the total
space of a directed BLF f : M → S 2. Indeed, we can decompose M into D2 ×
(�g1 �· · ·��gm), n1 2-handles, n2 round 2-handles, and D2 × (�h1 �· · ·��hm);
here n1 is the number of the Lefschetz singularities of f , and n2 is the number of
the components of the set of indefinite fold singularities of f.
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3. A Subgroup Hg(c) of the Hyperelliptic Mapping
Class Group That Preserves a Curve c

Let c be an essential simple closed curve in the surface �g that is preserved by
the involution ι ∈ Diff+ �g as a set. Let Hg(c) denote the subgroup of the hyper-
elliptic mapping class group defined by Hg(c) := Hg ∩ Mg(c). As introduced in
Theorem 2.7, the hyperelliptic mapping class group Hg is isomorphic to the group
consisting of the path-connected components ofC(ι). Hence the group Hg(c) con-
sists of the mapping classes that can be represented not only by elements in the
centralizer C(ι) but also by elements in Diff+(�g , c). Let Hs

g(c) denote the sub-
group of π0C(ι) defined by Hs

g(c) := {[T ] ∈ π0C(ι) | T(c) = c}. In this section
we prove the following lemma.

Lemma 3.1. Let g ≥ 2. The natural isomorphism π0C(ι) → Hg in Theorem 2.7
restricts to an isomorphism between the groups Hs

g(c) and Hg(c).

To prove the lemma, it is enough to show that the homomorphism maps Hs
g(c)

onto Hg(c). Let [T ] be a mapping class in Hg(c). We can choose a representative
T : �g → �g in the centralizer C(ι). Because this T is isotopic to some diffeo-
morphism on �g that preserves the curve c, the curve T(c) is isotopic to c.

We call an isotopy L0 : �g × [0,1] → �g symmetric if and only if L0(∗, t) ∈
C(ι) for any t ∈ [0,1]. We shall construct a symmetric isotopy L : �g × [0,1] →
�g satisfying

L(∗, 0) = T and L(c, 1) = c ⊂ �g ,

where L(∗, 1) represents an element in Hs
g(c) and [L(∗, 1)] = [T ] ∈π0C(ι). Thus

we see that the homomorphism Hs
g(c) → Hg(c) is surjective.

To construct the symmetric isotopy L : �g × [0,1] → �g , we need the follow-
ing proposition, which gives the so-called bigon criterion.

Proposition 3.2 (Farb and Margalit [7, Prop. 1.7]). Let S be a compact sur-
face. The geometric intersection number of two transverse simple closed curves
in S is minimal if and only if they do not form a bigon.

We may assume that the curves c and T(c) are transverse by changing the diffeo-
morphism T in terms of some symmetric isotopy. Since c and T(c) are isotopic,
their minimal intersection number is 0. Hence there exist bigons each of whose
boundaries is the union of an arc of c and an arc of T(c). Choose an innermost
bigon 5 among them.

Let α be the arc c ∩ ∂5 and β the arc T(c) ∩ ∂5. Since 5 is a bigon, the end-
points of α and β coincide; denote these endpoints by {x1, x2} ⊂ ∂5.

Lemma 3.3.
Int5 ∩ (T (c) ∪ c) = ∅.

Proof. If the set Int5∩c is nonempty, then there exists an arc of c in 5 that forms
a bigon with the arc β. Yet this is a contradiction because the bigon 5 is inner-
most. In the same way, we can show that Int5 ∩ T(c) = ∅.
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Note that the bigon ι(5) is also innermost. By Lemma 3.3, we have 5 ∩ ι(5) =
∂5 ∩ ∂ι(5).

Lemma 3.4.
∂5 ∩ ∂ι(5) ⊂ {x1, x2}.

Proof. Since ∂α = ∂β = α∩β = {x1, x2}, it suffices to show that Intα∩∂ι(5) =
Intβ ∩ ∂ι(5) = ∅. Since α ∩ T(c) = {x1, x2}, we have Intα ∩ ι(β) = ∅.
Next we show that Intα ∩ Int ι(α) = ∅. So assume by way of contradiction that
Intα ∩ Int ι(α) �= ∅. Since c is simple and contains α and ι(α), it follows that α
and ι(α) must coincide. In particular, we have ∂α = ∂ι(α). Hence β ∪ ι(β) forms
a simple closed curve, and this curve is null-homotopic because both of the arcs β
and ι(β) are homotopic to α = ι(α) relative to their boundaries. Since T(c) is sim-
ple and contains both β and ι(β), T(c) and β∪ ι(β) must coincide—contradicting
the essentialness of T(c). We can likewise show that Intβ ∩ ∂ι(5) = ∅.
Let �ι

g denote the fixed point set of the involution ι on �g.

Lemma 3.5. If c is nonseparating, then the set c ∩�ι
g consists of two points and

c ∩�ι
g = T(c) ∩�ι

g;
if c is separating, then

c ∩�ι
g = T(c) ∩�ι

g = ∅.
Proof. Endow the curves c and T(c) with arbitrary orientations.

First we consider the case where c is a nonseparating simple closed curve. In
this case the curve T(c) is also nonseparating; c and T(c) represent nontrivial ho-
mology classes in H1(�g;Z). Because the involution ι acts on H1(�g;Z) by −1,
it changes the orientations of c and T(c). Therefore, each of the sets c ∩ �ι

g and
T(c) ∩�ι

g consists of two points.
We will show that T(c)∩�ι

g = c∩�ι
g. Since c and T(c) are isotopic, the Dehn

twists tc and tT (c) represent the same element in Hg. The mapping classes 7([tc])
and7([tT (c)]) in M2g+2

0 permute the branched pointsp(c∩�ι
g) andp(T (c)∩�ι

g),
respectively; hence the sets p(c∩�ι

g) and p(T (c)∩�ι
g) coincide. This establishes

that c ∩�ι
g = T(c) ∩�ι

g.

Next, let c be a separating simple closed curve. Since ι preserves the orienta-
tions of the subsurfaces bounded by c or T(c), it also preserves the orientation of c
and T(c). In general, an involution that acts on a circle while preserving its orien-
tation does not have a fixed point. Hence we have c ∩�ι

g = T(c) ∩�ι
g = ∅.

Proof of Lemma 3.1. Let c be a nonseparating curve. By Lemma 3.5, the geomet-
ric intersection number of c and T(c) is at least 2. Hence, there is an innermost
bigon 5. By Lemma 3.4, the cardinality 8(5 ∩ ι(5)) is equal to 0, 1, or 2; see
Figure 3.
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Figure 3 Cardinality of 5 ∩ ι(5): 0 (left), 1 (center), 2 (right); the bold curves
describe the curves T(c)

First assume that 8(5 ∩ ι(5)) = 0. In this case, there is a symmetric isotopy
L1 : �g × [0,1] → �g such that L1(∗, 0) is the identity and L1(∗, 1) collapses the
bigon 5 as in Figure 4. Therefore, the geometric intersection number of c and
T(c) is decreased by 4 when we replace the diffeomorphism T by L1(∗, 1)T.

Figure 4

Now assume that 8(5 ∩ ι(5)) = 1, in which case we also have a symmetric
isotopy L2 : �g × [0,1] → �g; this isotopy decreases the geometric intersec-
tion number by 2 (see Figure 5). Note that 5 ∩ ι(5) is a branched point and that
L2(∗, t) fixes it for any t ∈ [0,1].

Figure 5

After replacing the diffeomorphism T in these two cases, the branch points
{x1, x2} remain in c ∩ T(c). So if we repeat the replacement of T, the case
8(5 ∩ ι(5)) = 2 will definitely occur. Then there is a symmetric isotopy L3:
�g × [0,1] → �g such that

• L3(∗, 0) is the identity map,
• L3(β, 1) = α, and
• L3(ι(β), 1) = ι(α);
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Figure 6

see Figure 6. This isotopy indicates thatL3(∗, 1)T preserves the curve c. Combin-
ing all three isotopies now yields the desired symmetric isotopy.

Next, let c be a separating curve. If the geometric intersection number of c and
T(c) is 0, then the curves c and T(c) bound an annulus A. Since ι acts on A with-
out fixed points, A/〈ι〉 is also an annulus. We can therefore make a symmetric
isotopy that moves T(c) to c.

Suppose the geometric intersection number is not 0. Since c∩�ι
g = T(c)∩�ι

g =
∅, it follows that the cardinality 8(5∩ ι(5)) �= 1. By Lemma 3.4, 8(5∩ ι(5)) =
0 or 2. So by the same argument as for the case of nonseparating c, we can col-
lapse the bigons 5 and ι(5).

4. An Involution on HSBLF

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1(i). Let f : M → S 2 be an HSBLF of genus g ≥ 3, let
c1, . . . , cn ⊂ �g be vanishing cycles of Lefschetz singularities of f , and let c ⊂
�g be a vanishing cycle of indefinite fold singularities of f. We assume that
c1, . . . , cn and c are preserved by the involution ι : �g → �g. By the argument in
Section 2.4, we can decompose M as follows:

M = D2 ×�g ∪ (h2
1 � · · · � h2

n) ∪ R2 ∪D2 ×�g−1,

where h2
i = D2 × D2 is the 2-handle attached along the simple closed curve

{pi}× ci ∈ ∂D2 ×�g and R2 is a round 2-handle. We first use this decomposition
to prove the existence of an involution ω.

Step 1. We define an involution ω1 on D2 ×�g as follows:

ω1 = id × ι : D2 ×�g
�� D2 ×�g

∈ ∈

(z, x) � �� (z, ι(x)).

In the subsequent steps, we will define an involution on each component in the
preceding decomposition of M that is compatible with the involution ω1.
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Step 2. We next define an involution ω2,i on the 2-handle h2
i attached along

{qi} × ci ⊂ ∂D2 × �g. We will abuse notation by denoting the attaching circle
{qi} × ci simply by ci .

We take a tubular neighborhood νci in {qi} ×�g and an identification

νci ∼= S1 × [−1,1]

such that ci corresponds to the circle S1×{0} under the identification. We assume
that the standard orientation of S1 × [−1,1] coincides with that of {qi} ×�g. We
take a sufficiently small neighborhood Iqi of qi in ∂D2 as follows:

Iqi =
{
qi · exp

(√−1θ
)∈ ∂D2 | θ ∈ [−ε1, ε1]

}
,

where ε1 > 0 is a sufficiently small number. We further identify the neighbor-
hood Iqi with the unit interval [−1,1] by using the following map:

[−1,1] ∼ �� Iqi

∈ ∈

s
� �� qi · exp

(√−1ε1s
)
.

We regard Iqi × [−1,1] as the subset of C via the embedding

Iqi × [−1,1] ↪ �� {z∈C | |Re z| ≤ 1, |Im z| ≤ 1}

∈ ∈

(s, t) � �� s + t
√−1.

We put J = {z ∈ C | |Re z| ≤ 1, |Im z| ≤ 1}. The orientation of ∂D2 ×�g is op-
posite to the natural orientation of J ×S1. Thus, the attaching map of the 2-handle
h2
i is described as

ϕi : ∂D2 ×D2 �� J × S1 ⊂ ∂D2 ×�g

∈ ∈

(w1,w2)
� �� (ε2w2w1,w1),

where ε2 > 0 is a sufficiently small number. Note that the map ϕi is orientation
preserving if we give the natural orientation of ∂D2 ×D2.

Case 2.1. If ci is nonseparating, then we can take a tubular neighborhood νci ∼=
S1 × [−1,1] such that the involution ω1 acts on νci as follows:

ω1|νci : S1 × [−1,1] �� S1 × [−1,1]

∈ ∈

(z, t) � �� (z̄,−t).
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Since the involution ω1 : D2 ×�g → D2 ×�g preserves the first component, ω1

acts on Iqi × νci ∼= J × S1 as follows:

ω1|J×S1 : J × S1 �� J × S1

∈ ∈

(z1, z2)
� �� (z̄1, z̄2).

We define an involution ω2,i on the 2-handle h2
i as

ω2,i : D2 ×D2 �� D2 ×D2

∈ ∈

(w1,w2)
� �� (w̄1, w̄2).

Then the following diagram commutes:

∂D2 ×D2
ω2,i

��

ϕi

��

∂D2 ×D2

ϕi

��

J × S1
ω1 �� J × S1.

Thus, we can define an involution ω1 ∪ ω2,i on the manifold D2 ×�g ∪ϕi h
2
i .

Case 2.2. If ci is separating, we take a tubular neighborhood νci ∼= S1× [−1,1]
such that the involution ω1 acts on νci as follows:

ω1|νci : S1 × [−1,1] �� S1 × [−1,1]

∈ ∈

(z, t) � �� (−z, t).

Then ω1 acts on Iqi × νci ∼= J × S1 as follows:

ω1|J×S1 : J × S1 �� J × S1

∈ ∈

(z1, z2)
� �� (z1,−z2).

We define an involution ω2,i on the 2-handle h2
i as

ω2,i : D2 ×D2 �� D2 ×D2

∈ ∈

(w1,w2)
� �� (−w1,−w2).

Then the following diagram commutes:
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∂D2 ×D2
ω2,i

��

ϕi

��

∂D2 ×D2

ϕi

��

J × S1
ω1 �� J × S1.

Thus, we can define an involution ω1 ∪ ω2,i on the manifold D2 ×�g ∪ϕi h
2
i .

Combining Case 2.1 and Case 2.2, we can define the involution ω̃2 =
ω1 ∪ (ω2,1 ∪ · · · ∪ω2,n) on the four-manifold Mh = M ∪ (h2

1 � · · · � h2
n). Before

giving an involution on the round 2-handle, we look at the �g-bundle structure of
∂Mh. The projection πh : ∂Mh → ∂D2 of this bundle is described as follows:

πh(z, x) = z ((z, x)∈ ∂D2 ×�g \ (� Intϕi(∂D
2 ×D2)),

πh(w1,w2) = qi · exp
(√−1ε1ε2(Rew1 Rew2 − Imw1 Imw2)

)
((w1,w2)∈D2 × ∂D2 ⊂ ∂h2

i ).

Indeed, the map πh is well-defined. To see this, we need only verify that

qi · exp
(√−1ε1ε2(Rew1 Rew2 − Imw1 Imw2)

) = p1  ϕi(w1,w2),

where (w1,w2)∈D2 × ∂D2 ⊂ ∂h2
i and p1 : J × S1 → Iqi is the projection. Now

p1  ϕi(w1,w2) is calculated as

p1  ϕi(w1,w2) = p1(ε2w2w1,w1)

= qi · exp
(√−1ε1 Re(ε2w2w1)

)
= qi · exp

(√−1ε1ε2(Rew1 Rew2 − Imw1 Imw2)
)
.

This implies that our foregoing definition of πk makes sense.

Lemma 4.1. The involution ω̃2 preserves the fibers of πh. Moreover, there exists
a lift X of the vector field d

dθ
exp

(√−1θ
)

by the map πh, which is compatible with
the involution ω̃2; that is,

ω̃2∗(X) = X.

Proof. It is easy to verify by direct calculation that ω̃2 preserves the fibers of πh.
The details are left to the reader.

To prove the existence of a lift X, we construct X explicitly. We define a vector
field X1 on ∂D2 ×�g \ (�ϕi(∂D2 ×D2) as follows:

X1
(
exp

(√−1θ0
)
, x

) = d

dθ
exp

(√−1θ
)∣∣∣
θ=θ0

∈ T(exp(
√−1θ0),x)(∂D

2 ×�g),

for a point
(
exp

(√−1θ0
)
, x

)∈ ∂D2 ×�g \(� Intϕi(∂D2 ×D2)). The vector field
X1 is described in J × S1 as

X1
(
s + t

√−1, z
) = 1

ε1

∂

∂s

∣∣∣
s
∈ T(s+t

√−1,z)(J × S1).

We also define a vector field X2 on D2 × ∂D2 ⊂ ∂h2
i as
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X2(w1,w2) =  (|w1|2)
ε1ε2|w1|2

(
x1

∂

∂x2
− y1

∂

∂y2

)
+ 1−  (|w1|2)

ε1ε2

(
x2

∂

∂x1
− y2

∂

∂y1

)
,

where wi = xi + yi
√−1 and  : [0,1] → [0,1] is a monotone increasing smooth

function that satisfies the following conditions:

•  (t) = 0 for t ∈ [
0, 1

3

];
•  (t) = 1 for t ∈ [

2
3 ,1

]
.

For (w1,w2)∈ ∂D2 × ∂D2, we calculate dϕi(X2(w1,w2)) as follows:

dϕi(X2(w1,w2))

= dϕi

(
1

ε1ε2

(
x1

∂

∂x2
− y1

∂

∂y2

))
(∵ |w1| = 1)

= 1

ε1ε2
x1dϕi

(
∂

∂x2

)
− 1

ε1ε2
y1dϕi

(
∂

∂y2

)

= 1

ε1
x1

(
x1

∂

∂s
+ y1

∂

∂t

)
− 1

ε1
y1

(
−y1

∂

∂s
+ x1

∂

∂t

)

= 1

ε1
(x 2

1 + y2
1 )

∂

∂s

= X1(ϕi(w1,w2)).

Hence we can define a vector fieldX = X1∪X2 on the manifold ∂Mh. Moreover,
it can be shown that each of X1 and X2 is a lift of the vector field d

dθ
exp

(√−1θ
)

by the map πh. Thus, the vector field X is a lift of d
dθ

exp
(√−1θ

)
. We can show

that the vector field X is compatible with the involution ω̃2 by direct calculation.
This completes the proof of Lemma 4.1.

We choose a base point q0 ∈ ∂D2 \ (�Iqi ) and define a map ?X : f −1(q0) →
f −1(q0) as follows:

?X(x) = cX,x(2π),

where cX,x is the integral curve of the vector field X constructed in Lemma 4.1
that satisfies cX,x(0) = x. We identify f −1(q0) with the surface �g via the projec-
tion onto the second component. Then the map ?X is contained in the centralizer
C(ι) ⊂ Diff+ �g because the vector field X is compatible with ω̃2. The isotopy
class represented by ?X is the monodromy of the boundary of Mh. In particular,
this class is contained in the group Hg(c). By Lemma 3.1, there exists an isotopy
Ht : �g → �g that satisfies the following conditions:

• H0 = ?X;
• H1 preserves the curve c as a set;
• for each level t, Ht is in the centralizer C(ι).

We obtain the following isomorphism of �g-bundles:

∂Mh
∼= [0,1] ×�g/

(
(1, x) ∼ (0,H1(x))

)
.

We identify these �g-bundles via the isomorphism. Under this identification, the
involution ω̃2 acts on ∂Mh as
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ω̃2(t, x) = (t, ι(x)),

where (t, x) is an element in [0,1] ×�g/
(
(1, x) ∼ (0,H1(x))

) ∼= ∂Mh.

Step 3. In this step, we define an involution ω3 on the round 2-handle R2. Since
c is nonseparating and since c is preserved by ι, it follows that c contains two fixed
points of the involution ι; we denote these points by v1 and v2. We can take a tubu-
lar neighborhood νc ∼= S1 × [−1,1] in �g such that the involution ι acts on νc as
follows:

ι(z, t) = (z̄,−t).
By perturbing the map H1, we can assume that H1 preserves the neighborhood
νc. Since the genus of the fibration f is not equal to 1, the attaching region of the
round 2-handle R2 must be [0,1] × νc/

(
(1, x) ∼ (0,H1(x))

)
.

Case 3.1. If H1 preserves the orientation of c and of the two points v1 and v2,
then the round handle R2 is untwisted and the restriction H1|νc is described as

H1(z, t) = (z, t),

where (z, t)∈ S1× [−1,1] ∼= νc. Moreover, the attaching map of the round handle
is described as

ϕ : [0,1] × ∂D2 ×D1/∼ �� [0,1] × S1 × [−1,1]/∼

∈ ∈

(s, z, t) � �� (s, z, t),

where [0,1] × ∂D2 ×D1 is the attaching region of R2 and [0,1] × S1 × [−1,1] ∼=
[0,1] × νc is the subset of ∂Mh. We define an involution ω3 on the round handle
as follows:

ω3 : [0,1] ×D2 ×D1/∼ �� [0,1] ×D2 ×D1/∼

∈ ∈

(s, z, t) � �� (s, z̄,−t).
Then the following diagram commutes:

[0,1] × ∂D2 ×D1 ω3 ��

ϕ

��

[0,1] × ∂D2 ×D1

ϕ

��

[0,1] × S1 × [−1,1]
ω̃2 �� [0,1] × S1 × [−1,1].

Therefore, we obtain an involution ω̃3 = ω̃2 ∪ ω3 on Mh ∪Mr = Mh ∪ R2.

Case 3.2. If H1 preserves the orientation of c but does not preserve the points
v1 and v2, then the round handle R2 is untwisted and the restriction H1|νc is de-
scribed as
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H1(z, t) = (−z, t).

The attaching map of the round handle is described as

ϕ : [0,1] × ∂D2 ×D1/∼ �� [0,1] × S1 × [−1,1]/∼

∈ ∈

(s, z, t) � ��
(
s, exp

(
π
√−1s

)
z, t

)
.

We define an involution ω3 on the round handle as follows:

ω3 : [0,1] ×D2 ×D1/∼ �� [0,1] ×D2 ×D1/∼

∈ ∈

(s, z, t) � ��
(
s, exp

(−2π
√−1s

)
z̄,−t).

Then we can define an involution ω̃3 = ω̃2 ∪ ω3 on Mh ∪Mr = Mh ∪ R2 by the
same reason as in Case 3.1.

Case 3.3. IfH1 does not preserve the orientation of c but preserves two points v1

and v2, then the round handleR2 is twisted and the restrictionH1|νc is described as

H1(z, t) = (z̄,−t),
where (z, t)∈ S1× [−1,1] ∼= νc. Moreover, the attaching map of the round handle
is described as

ϕ : [0,1] × ∂D2 ×D1/∼ �� [0,1] × S1 × [−1,1]/∼

∈ ∈

(s, z, t) � �� (s, z, t).

We define an involution ω3 on the round handle as follows:

ω3 : [0,1] ×D2 ×D1/∼ �� [0,1] ×D2 ×D1/∼

∈ ∈

(s, z, t) � �� (s, z̄,−t).

Then we can define an involution ω̃3 = ω̃2 ∪ ω3 on Mh ∪Mr = Mh ∪ R2.

Case 3.4. If H1 preserves neither the orientation of c nor the points v1 and v2,
then the round handle R2 is twisted and the restriction H1|νc is described as

H1(z, t) = (−z̄,−t),
where (z, t)∈ S1× [−1,1] ∼= νc. Moreover, the attaching map of the round handle
is described as
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ϕ : [0,1] × ∂D2 ×D1/∼ �� [0,1] × S1 × [−1,1]/∼

∈ ∈

(s, z, t) � ��
(
s, exp

(
π
√−1s

)
z, t

)
.

We define an involution ω3 on the round handle as follows:

ω3 : [0,1] ×D2 ×D1/∼ �� [0,1] ×D2 ×D1/∼
∈ ∈

(s, z, t) � ��
(
s, exp

(−2π
√−1s

)
z̄,−t).

Then we can define an involution ω̃3 = ω̃2 ∪ ω3 on Mh ∪Mr = Mh ∪ R2.

Eventually, we obtain the involution ω̃3 on Mh ∪ Mr in any case. We next
look at �g−1-bundle structure of ∂(Mh ∪Mr). The projection πr : ∂(Mh ∪Mr) →
[0,1]/{0,1} of this bundle is described as

πr(s, x) = s
(
(s, x)∈ ([0,1] ×�g/(1, x) ∼ (0,H1(x))) \ ([0,1] × νc/∼));

πr(s, z, t) = s ((s, z, t)∈ [0,1] ×D2 × ∂D1).

Indeed, it is easy to show that πr is well-defined.

Lemma 4.2. The involution ω̃3 preserves the fibers of πr. Moreover, there exists
a lift X̃ of the vector field d

ds
on [0,1]/{0,1} by the map πr that is compatible with

the involution ω̃3.

Proof. It is obvious that the involution ω̃3 preserves the fibers of πr. We construct
X̃ as in Lemma 4.1. Define a vector field X̃1 on ([0,1] ×�g/∼) \ ([0,1] × νc/∼)
as follows:

X̃1(s, x) = d

ds
.

We first consider the case where H1 preserves the points v1 and v2. In this case,
we define a vector field X̃2 on the round handle R2 as

X̃2(s, z, t) = d

ds
,

where (s, z, t)∈ [0,1]×D2×∂D1 ⊂ ∂R2. It is easy to verify the equality dϕ
(
d
ds

) =
d
ds

, so we can define a vector field X̃ = X̃1 ∪ X̃2 on ∂Mh ∪Mr. It is obvious that

X̃ is a lift of the vector field d
ds

on [0,1]/{0,1} by πr and is compatible with the
involution ω̃3.

We next consider the case where H1 does not preserve the points v1 and v2. In
this case, we define a vector field X̃2 on R2 as

X̃2
(
s, x + y

√−1, t
) = d

ds
+ πy

∂

∂x
− πx

∂

∂y
,

where (
s, x + y

√−1, t
)∈ [0,1] ×D2 × ∂D1 ⊂ ∂R2.
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The differential dϕ
(
X̃2

(
s, x +√−1y, t

))
is then calculated as follows:

dϕ
(
X̃2

(
s, x +√−1y, t

))

= dϕ

(
d

ds
+ πy

∂

∂x
− πx

∂

∂y

)

=
(
d

ds
+ π(−x sinπs − y cosπs)

d

dx
+ π(x cosπs − y sinπs)

d

dy

)

+ πy

(
cosπs

d

dx
+ sinπs

d

dy

)
− πx

(
−sinπs

d

dx
+ cosπs

d

dy

)

= d

ds

= X̃1
(
ϕ

(
s, x +√−1y, t

))
.

We can therefore define a vector field X̃ = X̃1 ∪ X̃2 on ∂(Mh ∪ Mr). It is obvi-
ous that X̃ is a lift of the vector field d

ds
on [0,1]/{0,1} by πr. To verify that X̃ is

compatible with the involution ω̃3, we need to prove that

dω̃3(X̃(x)) = X̃(ω̃3(x)) for any x ∈ ∂(Mh ∪Mr).

If x is contained in [0,1]×�g/∼\([0,1]×νc/∼), then this equation can be proved
easily. If x = (

s, x + √−1y, t
) ∈ [0,1] × D2 × ∂D1 ⊂ ∂R2, then dω̃3(X̃(x)) is

calculated as follows:

dω̃3(X̃(x))

= dω̃3

(
d

ds
+ πy

∂

∂x
− πx

∂

∂y

)

=
(
d

ds
+ 2π(−x sin 2πs − y cos 2πs)

∂

∂x
+ 2π(−x cos 2πs + y sin 2πs)

∂

∂y

)

+ πy

(
cos 2πs

∂

∂x
− sin 2πs

∂

∂y

)
− πx

(
−sin 2πs

∂

∂x
− cos 2πs

∂

∂y

)

= d

ds
+ π(−x sin 2πs − y cos 2πs)

∂

∂x
+ π(−x cos 2πs + y sin 2πs)

∂

∂y

= X̃(ω̃3(x)).

Thus, X̃ is compatible with the involution ω̃3. This completes the proof of Lem-
ma 4.2.

We now define the map ?X̃ : π−1
r (0) → π−1

r (0) as follows:

?X̃ : π−1
r (0) �� π−1

r (0)

∈ ∈

x
� �� cX̃,x(1);
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here cX̃,x is the integral curve of X̃ starting at x. We identify the fiber π−1
r (0) with

the surface �g−1. The map ?X̃ is contained in the centralizer C(ι) because X̃ is
compatible with ω̃3. Furthermore, ?X̃ is isotopic to the identity map. By The-
orem 2.7, we can take an isotopy H̃t : �g−1 → �g−1 that satisfies the following
conditions:

• H̃0 = ?X̃;
• H̃1 is the identity map;
• H̃t is contained in the centralizer C(ι).

Observe that such an isotopy may not be taken if the condition g ≥ 3 is dropped.
Indeed, the map π0C(ι) → M1 induced by the inclusion is not injective.

By using the isotopy H̃t , we obtain the following isomorphism of a�g−1-bundle:

∂(Mh ∪Mr) ∼= [0,1] ×�g−1/(1, x) ∼ (0, x).

The involution ω̃3 acts on [0,1] × �g−1/(1, x) ∼ (0, x) via that isomorphism as
follows:

ω̃3(s, x) = (s, ι(x)).

Step 4. We define an involution ω4 on D2 ×�g−1 as

ω4(z, x) = (z, ι(x)),

where (z, x) ∈ D2 × �g−1. Let ) : [0,1] × �g−1/∼ → ∂D2 × �g−1 be the at-
taching map of the lower side. Since the genus of the fibration f is greater than 2,
we can assume that ) is given by )(s, x) = (

exp
(
2π

√−1s
)
, x

)
. In particular, the

following diagram commutes:

[0,1] ×�g−1/∼ ω̃3 ��

)

��

[0,1] ×�g−1/∼
)

��

∂D2 ×�g−1
ω4 �� ∂D2 ×�g−1.

Hence, we obtain an involution ω = ω̃3 ∪ ω4 on M.

We next look at the fixed point set of ω. The involution ω is equal to id × ι on
D2 ×�g. Thus we obtain

Mω ∪D2 ×�g = D2 × {v1, . . . , v2g+2},
where v1, . . . , v2g+2 ∈�g are the fixed points of ι. Note that Mω ∪D2 × �g has
the natural orientation derived from the orientation of D2.

The involution ω acts on the 2-handle h2
i = D2 ×D2 as follows:

ω(w1,w2) =
{
(w̄1, w̄2) (ci nonseparating),

(−w1,−w2) (ci separating);
here (w1,w2) ∈ D2 × D2. Thus, the fixed point set h2

i

ω
is equal to (D2 ∩ R) ×

(D2 ∩ R) if ci is nonseparating and is equal to {(0, 0)} if ci is separating. Further-
more, if ci is nonseparating then we can give an orientation to (D2∩R)×(D2∩R)
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that is compatible with the orientation of D2 × {v1, . . . , v2g+2}. Hence, the fixed
point set Mh

ω is the union of the oriented surfaces and the s points, where s is the
number of Lefschetz singularities of f whose vanishing cycle is separating.

The involution ω acts on the round 2-handle R2 as follows:

ω(s, z, t)

=
{
(s, z̄,−t) if H1 preserves the points v1 and v2,(
s, exp

(−2π
√−1s

)
z̄,−t) otherwise,

where (s, z, t)∈R2 = [0,1] ×D2 ×D1/∼. Thus we obtain

R2ω

=



[0,1] × (D2 ∩ R)× {0}/∼ if H1 preserves the points v1 and v2 ,{
(s, z, 0)∈R2 |
z = r exp

(−π√−1s
)
, r ∈ [−1,1]

}
otherwise.

Therefore, the fixed point setR2ω is equal to the annulus or the Möbius band. As ex-
plained in the previous paragraph, we can give an orientation of the 2-dimensional
part of Mh

ω in the canonical way. It is easy to see that any orientation of R2ω is
not compatible with this canonical orientation of Mh

ω. In particular, even if R2ω

is the annulus, the 2-dimensional part of the fixed point set (Mh ∪Mr)
ω may not

be orientable. Indeed, this part is orientable if and only if R2ω is the annulus and
there is a connected component in Mh

ω whose boundary contains only one com-
ponent of ∂R2ω.

The involution ω is equal to id × ι on D2 × �g−1. Thus, the fixed point set
(D2 × �g−1)

ω is equal to D2 × {ṽ1, . . . , ṽ2g}, where {ṽ1, . . . , ṽ2g} is the set of
the fixed points of ι. Eventually, Mω is the union of the closed surfaces and the
s points. The 2-dimensional part of Mω is orientable if and only if that part of
(Mh ∪ Mr)

ω is orientable. This completes the proof of Theorem 1.1’s statement
on the fixed point set of ω.

We next extend the involution ω to the manifold M#sCP2. We assume that the
curves ck1, . . . , cks are separating. We construct the manifoldM#sCP2 by blowing
up M s times at (0, 0)∈ h2

ki
(i = 1, . . . , s). We can obtain a natural decomposition

of M#sCP2 as follows:

M#sCP2 = D2 ×�g ∪ (h2
1 �

k̂1, . . . , k̂s· · · �h2
n)∪ (h̃k1 �· · ·� h̃ks )∪R2 ∪D2 ×�g−1,

where h̃ki = {((w1,w2), [l1 : l2 ]) ∈ D2 × D2 × CP1 | w1l2 − w2 l1 = 0} ∼=
hki #CP2. We define an involution ω̄ on M#sCP2 as follows:

ω̄(x) = ω(x) (x ∈M#sCP2 \ (h̃k1 � · · · � h̃ks )),

ω̄((w1,w2), [l1 : l2 ]) = ((−w1,−w2), [l1 : l2 ])
(
((w1,w2), [l1 : l2 ])∈ h̃ki

)
.

It is obvious that ω̄ is an extension of ω. The fixed point set of ω̄ is the union of
the 2-dimensional part of Mω and s 2-spheres.

We next prove thatM#sCP2/ω̄ is diffeomorphic to S#2sCP2, where S is an S 2-
bundle over S 2. Since�g/ι is diffeomorphic to S 2, it is easy to see thatD2×�g/ω̄
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is diffeomorphic toD2×S 2. Thus, the manifoldM#sCP2 is obtained by attaching
hj/ω̄ (j �= k1, . . . , ks), h̃ki/ω̄, R2/ω̄, and D2 ×�g−1/ω̄ ∼= D2 × S 2 to D2 × S 2.

Lemma 4.3. Suppose that ci is nonseparating. Then

(D2 ×�g ∪ϕi h
2
i )/ω̄

∼= D2 × S 2.

Proof. If we identify h2
i = D2×D2 withD4, then ω̄ is equal to the covering trans-

formation of the double covering D4 → D4 branched at the unknotted 2-disk in
D4. In particular, we obtain that h2

i /ω̄ is diffeomorphic to D4. Moreover, the at-
taching region of h2

i corresponds to the 3-disk in ∂D4 under the diffeomorphism.
Denote by ϕ̄i : h2

i /ω̄ → ∂D2 ×�g/ω̄ the embedding induced by ϕi. Then

(D2 ×�g ∪ϕi h
2
i )/ω̄

∼= (D2 ×�g/ω̄) ∪ϕ̄i h
2
i /ω̄

∼= D2 × S 2AD4

∼= D2 × S 2.

This completes the proof of Lemma 4.3.

Lemma 4.4. For each i ∈ {1, . . . , s}, (D2 ×�g ∪ϕi h̃
2
ki
)/ω̄ ∼= D2 × S 2 #2CP2.

Proof. By eliminating the corner of D2 ×D2, we identify h̃2
ki

with the manifold

H = {((w1,w2), [l1 : l2 ])∈D4 × CP1 | w1l2 − w2 l1 = 0}.
Under this identification, the attaching region of h̃2

ki
corresponds to the tubu-

lar neighborhood of the circle {((w1, 0), [1 : 0]) ∈ ∂H | |w1| = 1} in ∂H. Let
p2 : H → CP1 be the projection onto the second component. The map p2 is the
D2-bundle over the 2-sphere with Euler number −1. We define D1,D2 ⊂ CP1

and also the local trivializations ψ1 and ψ2 of p2 as follows:

D1 = {[l1 : l2 ] ∈CP1 | |l1| ≥ |l2|},
D2 = {[l1 : l2 ] ∈CP1 | |l2| ≥ |l1|};

ψ1 : D2 ×D2 �� p−1
2 (D1)

∈ ∈

(w1,w2)
� ��

(
w2√

1+|w1|2
(1,w1), [1,w1]

)
,

ψ2 : D2 ×D2 �� p−1
2 (D2)

∈ ∈

(w1,w2)
� ��

(
w2√

1+|w1|2
(w1, 1), [w1,1]

)
.

Denote p−1
2 (D1) and p−1

2 (D2) by H1 and H2, respectively. We identify H1 and
H2 with D2 × D2 by the preceding trivializations. The manifold H can be
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identified with D2 × D2 ∪7 D2 × D2, where 7 = ψ−1
1  ψ2 : (w1,w2) 
−→

(1/w1,w1w2). Under the identification, the attaching region of H corresponds to
∂D2 ×D2 ⊂ ∂H1.

We define H̃ = H̃1∪7̃ H̃2, where H̃i = D2×D2 (i = 1, 2) and 7̃ : ∂D2×D2 →
∂D2 ×D2 is a diffeomorphism defined as

7̃(w1,w2) = (1/w1,w1
2w2).

We can define P : H → H̃ as follows:

P(w1,w2) =
{
(w1,w2

2)∈ H̃1 ((w1,w2)∈H1),

(w1,w2
2)∈ H̃2 ((w1,w2)∈H2).

The map P is a double branched covering branched at the 0-section of H̃ as a
D2-bundle. Moreover, ω̃ is the nontrivial covering transformation of P. Thus we
obtain that H/ω̃ is diffeomorphic to H̃.

Since the attaching region of H is mapped by P to D2 × ∂D2 ⊂ ∂H̃1, we can
regard H̃1 and H̃2 as 2-handles. Thus, (D2 ×�g ∪ϕi h̃

2
ki
)/ω̄ is obtained by attach-

ing the 2-handles H̃1 and H̃2 to D2 × S 2. To prove the statement, we look at the
attaching maps of H̃1 and H̃2.

Take an identification νcki ∼= J × S1 as in Step 2 of the construction of ω. The
attaching map ϕki of the 2-handle h2

ki
satisfies ϕki(w1,w2) = (ε2w2w1,w1). Since

the manifold H is obtained by eliminating the corner of h̃2
ki

, the attaching map of
H1 is described as

) : ∂H1 ⊃D2 × ∂D2 �� J × S1

∈ ∈

(w1,w2)
� �� (ε2w2

2w1,w2).

For an element (z1, z2) ∈ J × S1, the image ω̄(z1, z2) is equal to (z1,−z2).

Thus, the manifold J × S1/ω̄ is diffeomorphic to J × S1 and the quotient map
/ω̄ : J×S1 → J×S1/ω̄ ∼= J×S1 satisfies the equality /ω̄(z1, z2) = (z1, z2

2). The
attaching map )̃ : D2 × ∂D2 → J × S1 of H̃1 satisfies the equality )̃(w1,w2) =
(ε2w2w1,w2). It is easy to see that the attaching circle of H̃1 is equal to the circle
cki/ω̄. Moreover, the framing of )̃ is −1 relative to the framing along {∗}× S 2 ⊂
∂D2 × S 2.

By the definition of 7̃, the attaching circle of H̃2 is equal to the belt circle of
H̃1, which is isotopic to the meridian of the attaching circle of H̃1. In particular,
there exists the natural framing of the attaching circle of H̃2 that is represented by
the meridian of the attaching circle of H̃1 parallel to the attaching circle of H̃2.

Since the Euler number of H̃ as a D2-bundle is equal to −2, the framing of the
attaching map 7̃ is equal to −2 relative to the natural framing. Therefore, we can
draw a Kirby diagram of (D2 ×�g ∪ϕi h̃

2
ki
)/ω̄ as shown in Figure 7. It is obvious

that this manifold is diffeomorphic to D2 × S 2 #2CP2, and this completes the
proof of Lemma 4.4.
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Figure 7 The (−1)-framed knot describes H̃1; the (−2)-framed knot describes H̃2

By applying the arguments in Lemma 4.3 and 4.4 successively, we can prove that
Mh#sCP2/ω̄ is diffeomorphic to D2 × S 2 #2sCP2.

Lemma 4.5. ((Mh ∪Mr)#sCP2)/ω̄ ∼= D2 × S 2 #2sCP2.

Proof. We can decompose R2 into two components as follows:

R2 = [
0, 1

2

] ×D2 ×D1 ∪ [
1
2 ,1

] ×D2 ×D1.

Denote
[
0, 1

2

] ×D2 ×D1 and
[

1
2 ,1

] ×D2 ×D1 by R1 and R2, respectively. It is
easy to see that Ri/ω̄ is diffeomorphic to D4 and that Ri is the double covering of
D4 ∼= Ri/ω̄ branched at the unknotted 2-disk.

The attaching region of R1 is equal to
[
0, 1

2

]× ∂D2 ×D1. The quotient
[
0, 1

2

]×
∂D2 ×D1/ω̄ is a 3-ball in ∂D4 ∼= ∂R1. Thus we obtain

(Mh ∪ R1)/ω̄ ∼= Mh/ω̄ ∪ R1/ω̄

∼= D2 × S 2 #2sCP2AD4

∼= D2 × S 2 #2sCP2.

The attaching region ofR2 is equal to
[

1
2 ,1

]×∂D2×D1∪{
1
2 ,1

}×D2×D1. The
quotient

[
1
2 ,1

]×∂D2×D1/ω̄ is a 3-ballD0 in ∂D4 ∼= ∂R2, and
{

1
2 ,1

}×D2×D1/ω̄

is a disjoint union of two 3-ballsD1�D2 in ∂D4. Both of the intersectionsD0∩D1

and D0 ∩ D2 are 2-disks in ∂D0. Eventually, the attaching region of R2 is a 3-
ball in ∂D4. Thus, we can prove that (Mh ∪ R1 ∪ R2)/ω̄ is diffeomorphic to
D2 × S 2 #2sCP2. This completes the proof of Lemma 4.5.

It is easy to see thatD2 ×�g−1/ω̄ is (a) diffeomorphic toD2 ×S 2 and (b) attached
to (Mh ∪Mr)/ω̄ such that the following diagram commutes:

(Mh ∪Mr)/ω̄ ⊃ S1 × S 2 ��

��

∂D2 × S 2 ⊂ D2 ×�g−1/ω̄

��

S1 �� ∂D2 ;

here the upper horizontal arrow in the diagram represents the attaching map, the
lower horizontal arrow represents the identity map, and vertical arrows represent
the projection onto the first component (in other words, the attaching map is a
bundle map as a S 2-bundle over S1). In particular, we obtain
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M#sCP2/ω̄ ∼= S#2sCP2.

It is obvious that the quotient map /ω̄ : M#sCP2 → S#2sCP2 is a double
branched covering. This completes the proof of Theorem 1.1(i).

Proof of Theorem 1.1(ii). Let Fh ⊂ M be a regular fiber in the higher side of f.
It is easy to see that Fh represents the same rational homology class of M as that
represented by F. Let ω : M → M be the involution constructed in the proof of
Theorem 1.1(i). If f has no indefinite fold singularities, then (a) the 2-dimensional
part of the fixed point setMω of the involutionω is an orientable surface and (b) the
algebraic intersection number between this part and Fh is equal to 2g + 2 and,
especially, is nonzero. Then part (ii) of the theorem would hold.

So suppose that f has indefinite fold singularities. We first prove that Fh repre-
sents a nontrivial rational homology class of Mh∪Mr. To prove this, we construct
an element S in the group H2(Mh ∪Mr , ∂(Mh ∪Mr);Q) such that [Fh] · S �= 0.
Let S̃ be the intersection between the 2-dimensional part of Mω and Mh, which is
the union of compact oriented surfaces. We use the notation H1, c, v1, v2, and R2

as in the proof of Theorem 1.1(i).

Case 1. If the map H1 preserves the orientation of c and the points v1 and v2,
then R2 is untwisted and S̃ ∩R2 = {(s,±1, 0)∈R2 | s ∈ [0,1]} is a disjoint union
of two circles. We define four annuli A1, A2, A3, and A4 as follows:

A1 = {(s, t, 0)∈R2 | s ∈ [0,1], t ∈ [0,1]},
A2 = {(s, t, 0)∈R2 | s ∈ [0,1], t ∈ [−1, 0]},
A3 = {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [0,1]},
A4 = {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [−1, 0]}.

The union S = S̃ ∪A1 ∪A2 ∪A3 ∪A4 represents the homology class of the pair
(Mh∪Mr , ∂(Mh∪Mr)) after giving suitable orientations to the annuli A1, A2, A3,
and A4. We denote this class by S. It is easy to verify that the intersection number
S · [Fh] is nonzero and equal to 2g + 2.

Case 2. If the map H1 preserves the orientation of c but does not preserve the
points v1 and v2, then R2 is untwisted and S̃ ∩ R2 = {(

s,±exp
(−π√−1s

)
, 0

) ∈
R2 | s ∈ [0,1]

}
is a circle. We define three annuli A5, A6, and A7 as follows:

A5 = {(
s, t exp

(−π√−1s
)
, 0

)∈R2 | s ∈ [0,1], t ∈ [0,1]
}

∪ {(
s,−t exp

(−π√−1s
)
, 0

)∈R2 | s ∈ [0,1], t ∈ [0,1]
}
,

A6 = {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [0,1]},
A7 = {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [−1, 0]}.

The union S = S̃ ∪ A5 ∪ A6 ∪ A7 represents the homology class of the pair
(Mh ∪ Mr , ∂(Mh ∪ Mr)) after giving suitable orientations to the annuli A5, A6,
and A7. We denote this class by S. It is easy to verify that the intersection number
S · [Fh] is nonzero and equal to 2g + 2.
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Case 3. If the map H1 does not preserve the orientation of c but does pre-
serve the points v1 and v2, then R2 is twisted and S̃ ∩ R2 = {(s,±1, 0) ∈ R2 |
s ∈ [0,1]} is a disjoint union of two circles. We define three annuli A8, A9, and
A10 as follows:

A8 = {(s, t, 0)∈R2 | s ∈ [0,1], t ∈ [0,1]},
A9 = {(s, t, 0)∈R2 | s ∈ [0,1], t ∈ [−1, 0]},
A10 = {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [0,1]}

∪ {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [−1, 0]}.
The union S = S̃ ∪ A8 ∪ A9 ∪ A10 represents the homology class of the pair
(Mh ∪ Mr , ∂(Mh ∪ Mr)) after giving suitable orientations to the annuli A8, A9,
and A10. We denote this class by S. It is easy to verify that the intersection number
S · [Fh] is nonzero and equal to 2g + 2.

Case 4. If the map H1 preserves neither the orientation of c nor the points
v1 and v2, then R2 is twisted and S̃ ∩ R2 = {(

s,±exp
(−π√−1s

)
, 0

) ∈ R2 |
s ∈ [0,1]

}
is a circle. We define two annuli A11 and A12 as follows:

A11 = {(
s, t exp

(−π√−1s
)
, 0

)∈R2 | s ∈ [0,1], t ∈ [0,1]
}

∪ {(
s,−t exp

(−π√−1s
)
, 0

)∈R2 | s ∈ [0,1], t ∈ [0,1]
}
,

A12 = {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [0,1]}
∪ {(s, 0, t)∈R2 | s ∈ [0,1], t ∈ [−1, 0]}.

The union S = S̃ ∪ A11 ∪ A12 represents the homology class of the pair
(Mh ∪ Mr , ∂(Mh ∪ Mr)) after giving suitable orientations to the annuli A11 and
A12. We denote this class by S. It is easy to verify that the intersection number
S · [Fh] is nonzero and equal to 2g + 2.

Eventually, we can construct the element S satisfying the desired condition in
any case. We have therefore established that [Fh] is nontrivial inH2(Mh∪Mr;Q).

We can now complete the proof of Theorem 1.1(ii). There exists the following
exact sequence, which is the part of the Meyer–Vietoris exact sequence:

H2(S
1×�g−1;Q)

i1⊕i2−−−→H2(Mh∪Mr;Q)⊕H2(D
2×�g−1;Q)

j1−j2−−−→H2(M;Q).

Suppose that (j1 − j2)([Fh], 0) = [Fh] = 0. Then there exists an element µ ∈
H2(S

1 ×�g−1;Q) that satisfies the equality (i1 ⊕ i2)(µ) = ([Fh], 0). By a Kün-
neth formula, we obtain the isomorphism

H2(S
1 ×�g−1;Q) ∼= H2(�g−1;Q)⊕ (H1(�g−1;Q)⊗H1(S

1;Q)).

Since the map i2 : H2(S
1 ×�g−1;Q) → H2(D

2 ×�g−1;Q) ∼= H2(�g−1;Q) can
be viewed as the projection onto the first component via the preceding isomor-
phism, it follows that the element µ is contained in H1(�g−1;Q) ⊗ H1(S

1;Q).

The involution ω acts on the component H2(�g−1;Q) trivially and on the compo-
nent H1(�g−1;Q)⊗H1(S

1;Q) via multiplication by −1. Thus we obtain

ω∗(µ) = −µ.
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The composition i1  ω∗ is equal to ω∗  i1 because i1 is induced by the inclusion
map. Therefore,

[Fh] = ω∗([Fh])

= ω∗  i1(µ)
= i1  ω∗(µ)
= i1  (−µ) = −[Fh].

This means that 2[Fh] = 0 in H2(Mh∪Mr;Q), which contradicts [Fh] �= 0. Thus
we obtain [Fh] �= 0 in H2(M;Q), and this completes the proof of part (ii).

Remark 4.6. By an argument similar to the one used in the proof of Theorem 1.1,
we can generalize that theorem to directed BLFs as follows.

Theorem 4.7. Let f : M → S 2 be a hyperelliptic directed BLF. Suppose that
the genus of every connected component of fiber of f is greater than or equal to 2.

(i) Let s1 be the number of Lefschetz singularities of f whose vanishing cycles
are separating. We define

s2 = max{s ∈N | f −1(x) has s components, x ∈ S 2}.
Then there exists an involution

ω : M → M

such that the fixed point set of ω is the union of ( possibly nonorientable) sur-
faces and s1 isolated points. Moreover, the involution ω can be extended to
an involution

ω̄ : M#s1CP2 → M#s1CP2

such that M#s1CP2/ω̄ is diffeomorphic to #s2S#2s1CP2; here S is an S 2-
bundle over S 2, and the quotient map

/ω̄ : M#s1CP2 → M#s1CP2/ω̄ ∼= #s2S#2s1CP2

is the double branched covering.
(ii) Let F ∈ M be a regular fiber of f. Then F represents a nontrivial rational

homology class of M.

We leave the details of the proof of Theorem 4.7 to the reader.
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[2] R. İ. Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. IMRN,
2008.



Four-manifolds Admitting Hyperelliptic Broken Lefschetz Fibrations 351

[3] , Topology of broken Lefschetz fibrations and near-symplectic four-manifolds,
Pacific J. Math. 240 (2009), 201–230.

[4] , Broken Lefschetz fibrations and smooth structures on 4-manifolds, preprint,
arXiv:math.GT/1205.5439.
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