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1. Introduction

One of the aims of this paper is extending the fundamental Cremer theorem from
the iteration theory of one complex variable to the setting of higher-dimensional
dynamics over more general valued-fields, not necessarily C. We note that ana-
lytic function theory over such fields was already well prepared in the fundamental
work [A] around 1960.

Let K be a commutative algebraically closed field that is complete and non-
trivial with respect to an absolute value (or valuation) |·|. Then |·| is said to be
non-Archimedean if, for all z,w ∈ K, |z − w| ≤ max{|z|, |w|}. Otherwise, |·| is
said to be Archimedean, in which case K is topologically isomorphic to C (with
Hermitian norm). We extend |·| to K� (� ∈ N) as the maximum norm |Z| =
|Z|� = maxj=1,...,�|zj | for Z = (z1, . . . , z�). We consider the polydisk

P̄(Z0, r) = P̄ �(Z0, r) := {Z ∈K�; |Z − Z0| ≤ r}
for Z0 ∈K� and r > 0. The extended |·|� is non-Archimedean if and only if the
original |·|1 is also, and in this case

int P̄(Z0, r) = P̄(Z0, r).

We denote the origin in K� by O = O�. In the Archimedean case K = C, C� also
has the Hermitian norm ‖·‖ = ‖·‖� (� |·|� uniformly).

Let π : Kn+1 \ {O} → P n(K) be the canonical projection. Set the integer
�(n) = (

n+1
2

)
so that

∧2
Kn+1 ∼= K�(n) (cf. [Ko, Sec. 8.1]). We equip P n(K) with

the chordal distance [z,w] between z,w ∈ P n(K), defined as

[z,w] :=




|Z ∧W |�(n)
|Z|n+1|W |n+1

≤ 1 (|·| is non-Archimedean),

‖Z ∧W‖�(n)
‖Z‖n+1‖W‖n+1

≤ 1 (|·| is Archimedean),
(1.1)

where Z ∈ π−1(z) and W ∈ π−1(w). For z0 ∈ P n(K) and r > 0, we consider
the ball

B̄(z0, r) := {z∈ P n(K); [z, z0 ] ≤ r}.
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Let f : P n(K) → P n(K) be a (finite) morphism—that is, there is a homoge-
neous polynomial map F : Kn+1 → Kn+1, which is called a lift of f , such that
F −1(O) = {O} and

π � F = f � π. (1.2)

The (algebraic) degree d = deg f is that of F as a homogeneous polynomial map.
The Fatou set F(f ) is the largest open set at each point of which the family {f k;
k ∈ N} is equicontinuous, and the Julia set is J(f ) := P n(K) \ F(f ). In the
Archimedean case, J(f ) �= ∅ if d ≥ 2. In the non-Archimedean case, J(f ) may
be empty even if d ≥ 2 (cf. [KS, Thm. 10, Rem. 12]). One of the results is the
following.

Theorem 1 (nonlinearity of morphisms). Let f : P n(K) → P n(K) be a mor-
phism of degree d > 0. If there exist a ball B̄(z0, r) ⊂ P n(K) and a morphism
g : P n(K) → P n(K) such that

lim inf
k→∞

1

d k
log sup

B̄(z0,r)

[f k, g] = −∞, (1.3)

then either f is linear (i.e., d = 1) or J(f ) = ∅.
Remark 1.4. From the proof, we may replace the second assertion J(f ) = ∅ by
the quantitative one: for any ball B̄(z0, r) ⊂ P n(K), (1.3) holds. For α ∈ R \ Q

Liouville enough, the linear map fα(z) = e2iπαz (J(f ) = ∅) satisfies (1.3) for
g = IdP1(C) (and any B̄(z0, r) ⊂ P n(C)).

We next give applications of Theorem 1.

Analytic Linearization over a Field K

Consider the K-algebra

On
∼= K{X1, . . . ,Xn} =

{
f =

∑
cIX

I ; lim sup
|I |→∞

|cI |1/|I | =: r−1
f < ∞

}

of all germs of analytic functions at O, where I = (i1, . . . , in) ∈ Zn
≥0 is a multi-

index, Xi1
1 · · ·Xin

n is denoted by XI, and we put |I | := i1 + · · · + in. For the germ
φ = (f1, . . . , fn) ∈ (On)

n of an analytic map, we put rφ := min i=1,...,nrfi and
identify the linear part of φ at O with

Aφ :=
(
∂fi

∂Xj
(O)

)
i,j=1,...,n

∈M(n,K) ∼= End(Kn).

We also denote the operator norm on M(n,K) by |·|.
A germ φ = (f1, . . . , fn)∈ (On)

n fixing O is (analytically) linearizable if there
is an H ∈ (On)

n fixing O such that AH = In (unit matrix) and H satisfies the
Schröder (or Poincáre) equation

φ �H = H � Aφ. (1.5)

From Siegel and Sternberg [Sie; St] and its non-Archimedean version [HeY], φ is
linearizable if Aφ is diagonalizable and the eigenvalues λ1, . . . , λn of Aφ satisfy
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the Diophantine condition: there exist C > 0 and β ≥ 0 such that, for every I =
(i1, . . . , in)∈ Zn

≥0 with |I | ≥ 1,

|(λi11 · · · λinn )− 1| ≥ C

|I |β .
The case |Aφ| < 1 over C is studied in a quite general setting in [BeDM].

Consider the inverse of a coordinate chart,

σ : Kn � (z1, . . . , zn) �→ (1 : z1 : · · · : zn)∈ P n(K),

that is locally uniformly bi-Lipschitz at O. Let f : P n(K) → P n(K) be a mor-
phism fixing z0 ∈ P n(K). Assuming that z0 = σ(O) without loss of general-
ity, we say f is linearizable at z0 if the germ φf ∈ (On)

n of the analytic map
σ−1 � f � σ : P̄ n(O, r) → Kn is linearizable.

Theorem 2 (nonresonance). Let f : P n(K) → P n(K) be a morphism of degree
d ≥ 2 that fixes z0 ∈ P n(K), and suppose that J(f ) �= ∅. If f is linearizable at
z0 and |Aφf | ≤ 1, then

lim inf
k→∞

1

d k
log|(Aφf )

k − In| > −∞. (1.6)

If in addition Aφf is diagonalizable, then its eigenvalues λ1, . . . , λn satisfy

lim inf
k→∞

1

d k
log max

j=1,...,n
|λkj − 1| > −∞. (1.7)

Remark 1.8. The boundedness (1.6) is regarded as a higher-dimensional version
of the Cremer condition [C, p. 157].

Singular Domain over the Field C

Suppose now that |·| is Archimedean, and identify K with C.

Let f : P n = P n(C) → P n be a morphism, which is now holomorphic, of de-
gree d ≥ 2. Each component D of F(f )—a so-called Fatou component of f—is
Stein and Kobayashi hyperbolic [U1]. In particular, D is holomorphically separa-
ble and the biholomorphic automorphism Aut(D) is a Lie group.

If there is an (f kj ) ⊂ (f k) that converges to IdD locally uniformly on D,
then fp(D) = D for some p ∈ N (D is cyclic) and, moreover, fp|D ∈ Aut(D).
Following Fatou [Fa, Sec. 28], we call suchD a singular domain (un domaine sin-
gulier) of f , which is also known as a Siegel domain [FSi2] and a rotation domain
[U2]. We find several nice (higher-dimensional) examples in [Mi].

When n = 1, a singular domain D is either a Siegel disk or an Herman ring.
When n ≥ 2, the following partial analogue is known. Let G be the closed sub-
group generated by fp|D in Aut(D), let G0 be the component of G containing
IdD , and put

q := min{j ∈pN; f j|D ∈G0}.
Then there is a Lie group isomorphismG0 → T s for some s ∈ {1, . . . , n} that maps
f q |D to (e2iπα1, . . . , e2iπαs ) for some α1, . . . ,αs ∈ R \ Q (see [FSi2; Mi; U2]). In
the maximal case s = n, we say that the singular domain D is of maximal type.
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A singular domain D of maximal type is exactly a generalization of one-
dimensional Siegel disks and Herman rings: put λj := e2iπαj (j = 1, . . . , n)
and . := diag(λ1, . . . , λn)∈M(n, C) ∼= End(Cn). By [BaBDa, Thm. 1], there is
a biholomorphism (linearization map) / from a Reinhardt domain U ⊂ Cn to D
such that the Schröder equation

f q �/ = / �.
holds on U. We have the following result.

Theorem 3 (a priori bound). Let f : P n → P n be a holomorphic map of de-
gree d ≥ 2. If a singular domain D of f is of maximal type, then (with notation
as before) D satisfies

lim
k→∞

1

dqk
log max

j=1,...,n
|λkj − 1| = 0. (1.9)

In the case of n = 1, every singular domain of f is of maximal type. In this case,
(1.9) is essentially proved in [FSi1, p. 169] by pluripotential theory and in [O,
Main Thm. 3] by a Nevanlinna theoretical argument. Both proofs contain some
one-dimensional arguments that are not easily extended to higher dimensions.

The proofs of Theorems 1, 2, and 3 are motivated by the theory of arithmetic
height and do not rely on pluripotential theory.

Finally, we give a vanishing result on the Valiron deficiency

δV (IdP n , (f k)) := lim sup
k→∞

1

d k

∫
P n

log
1

[f k, Id]
dωn

FS

of (f k) for IdP n (cf. [DrO]). Here we denote the Fubini–Study Kähler form on
P n by ωFS.

Theorem 4 (a vanishing theorem). If every singular domain of f is of maximal
type, then

δV (IdP n , (f k)) = 0. (1.10)

We expect that the conclusion (1.10) still remains true with no maximality assump-
tion on singular domains.

2. Proof of Theorem 1

Let f : P n(K) → P n(K) be a morphism of degree d ≥ 2 and F a lift of f. We
gather some basic facts about the Green function associated to F and its applica-
tion. For the details, see [HuP] in the Archimedean case and [BakRu, Sec. 3; KS,
Sec. 2] in the non-Archimedean case.

The homogeneity of F and elimination theory (cf. [V]) yield that

sup
Kn+1\{O}

∣∣∣∣ 1

d
log|F | − log|·|

∣∣∣∣ < ∞,

so that ((log|F k|)/d k) is a Cauchy sequence, and the limit
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GF := lim
k→∞

1

d k
log|F k| : Kn+1 \ {O} → R (2.1)

is called the Green function of F. More precisely, the convergence is uniform, so
that GF is continuous on Kn+1 \ {O} and

sup
Kn+1\{O}

|GF − log|·|| < ∞. (2.2)

In the Archimedean case, by [U1, Thm. 2.2], Z0 ∈π−1(F(f )) if and only if GF

is locally pluriharmonic at Z0. As a consequence, we have the following result.

Theorem 2.3 [U1, Thm. 2.2]. Suppose that |·| is Archimedean. If there is an
infinite subfamily of {f k; k ∈ N} equicontinuous at every point of a neighborhood
of z0 ∈ P n(K), then z0 ∈F(f ).

In non-Archimedean case, by [KS, Thm. 23], z0 ∈F(f ) if and only if

π∗(GF − log|·|) : P n(K) → R

is locally constant at z0. We point out that their proof yields more.

Theorem 2.4. Suppose that |·| is non-Archimedean. If there is an infinite sub-
family of {f k} equicontinuous at z0 ∈ P n(K), then z0 ∈F(f ).

Now we prove Theorem 1. Take f , g, and B̄(z0, r) (satisfying (1.3)) as in The-
orem 1, and let F,G : Kn+1 → Kn+1 be lifts of f and g, respectively. Since
π : Kn+1 → P n(K) is surjective, open, and continuous, there exist Z0 ∈ π−1(z0)

and s > 0 such that π(P̄(Z0, s)) ⊂ B̄(z0, r). Supposing that d = deg f ≥ 2 and
J(f ) �= ∅, we will derive a contradiction.

First, we consider the case that int P̄(Z0, s)∩π−1(J(f )) �= ∅. Let (ki) ⊂ N be
an infinite sequence such that

lim
i→∞

1

d ki
log sup

π(P̄(Z0,s))

[f ki, g] = lim inf
k→∞

1

d k
log sup

π(P̄(Z0,s))

[f k, g].

By Theorems 2.3 and 2.4, there exists a w0 ∈ π(int P̄(Z0, s)) where {f ki } is
not equicontinuous. Hence there exist (kj ) ⊂ (ki) and (wj ) ⊂ P n(K) such that
limj→∞ wj = w0 and lim infj→∞[f kj(wj ), f kj(w0)] > 0; then the continuity of
g at w0 implies

lim inf
j→∞ sup

π(P̄(Z0,s))

[f kj, g] > 0.

Therefore, in this case, we have proved that

lim inf
k→∞

1

d k
log sup

π(P̄(Z0,s))

[f k, g] ≥ 0. (2.5)

We prepare a comparison estimate (2.6) in what follows. For every k ∈ N,
F k ∧ G : Kn+1 → K�(n) is a polynomial map of degree d k + deg g. For every
Z0 ∈Kn+1 and every s > 0, from homogeneous expansion of F k ∧ G at Z0, we
have by Cauchy estimate,
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|(F k ∧G)(Z)| ≤
∑

I∈Z
n+1
≥0 , |I |≤d k+deg g

supP̄(Z0,s)
|F k ∧G|

s|I | |Z − Z0||I |

in the Archimedean case; by the maximum modulus principle (cf. (3.1)), we obtain

|(F k ∧G)(Z)| ≤ max
I∈Z

n+1
≥0 ,|I |≤d k+deg g

supP̄(Z0,s)
|F k ∧G|

s|I | |Z − Z0||I |

in the non-Archimedean case. In each case, if P̄(Z0, s) ⊂ Kn+1 \ {O} then, for
every Z ′ /∈ P̄(Z0, s) ∪ {O} and every r ′ > 0 small enough, we have

1

d k
log sup

P̄(Z ′,r ′ )
|F k ∧G|

≤ 1

d k
log sup

P̄(Z0,s)

|F k ∧G| +
(

1 + deg g

d k

)
log

|Z ′ − Z0| + r ′

s
+ o(1),

where the o(1) term appears only when K is Archimedean and equals

d−k log

( ∑
I∈Z

n+1
≥0 ,|I |≤d k+deg g

1

)
= O(kd−k ) as k → ∞.

Since ‖·‖ � |·| uniformly, we may replace |F k ∧ G| by ‖F k ∧ G‖ in the
Archimedean case. This, together with (1.1), (1.2), and (2.1), implies the compar-
ison estimate

lim inf
k→∞

1

d k
log sup

π(P̄(Z ′,r ′ ))
[f k, g] + inf

P̄(Z ′,r ′ )
GF

≤ lim inf
k→∞

1

d k
log sup

π(P̄(Z0,s))

[f k, g] + sup
P̄(Z0,s)

GF + log
|Z ′ − Z0| + r ′

s
. (2.6)

Now we suppose that int P̄(Z0, s) ∩ π−1(J(f )) = ∅. Decreasing s > 0 if
necessary, we also assume that P̄(Z0, s) ∩ π−1(J(f )) = ∅; then there is a Z ′ ∈
π−1(J(f )) \ P̄(Z0, s). If r ′ > 0 is small enough, then by (2.6) (and (2.5) for
Z0 = Z ′, s = r ′),

0 + inf
P̄(Z ′,r ′ )

GF

≤ lim inf
k→∞

1

d k
log sup

π(P̄(Z0,s))

[f k, g] + sup
P̄(Z0,s)

GF + log
|Z ′ − Z0| + r ′

s
,

which together with (2.2) implies that

−∞ < lim inf
k→∞

1

d k
log sup

π(P̄(Z0,s))

[f k, g].

The proof of Theorem 1 is now complete.



Nonlinearity of Morphisms in Non-Archimedean and Complex Dynamics 511

3. Proof of Theorem 2

Consider a germ
h =

∑
cIX

I ∈ On.

For every r ∈ (0, rh)∩ |K∗| (lim sup|I |→∞|cI |1/|I | =: r−1
h ), h induces a (rigid ana-

lytic) function
P̄ n(O, r)�Z �→ h(Z) =

∑
cIZ

I ∈K,

which is (uniformly) Lipschitz continuous on P̄ n(O, r).
In the non-Archimedean case, the maximum modulus principle

(|h|r :=) sup
I

|cI |r |I | = sup
Z∈P̄ n(O,r)

|h(Z)| (3.1)

holds and so the Lipschitz constant of h can be chosen as |h|r/r (see [BoGR,
Sec. 5.1.4; Hs, Prop. 1.1; KS, Lemma 21]).

Now we prove Theorem 2. We continue to use the same notation as in Section 1.
Suppose there is an H ∈ (On)

n fixing O such that

AH = In and ((σ−1 � f � σ) �H =) φf �H = H � Aφf .

Fix r ∈ (0, rφf ) so small that σ : P̄ n(O, r) → σ(P̄ n(O, r)) (we normalized as
σ(O) = z0) is bi-Lipschitz, and choose s ∈ (0, rH ) such that H(P̄ n(O, s)) ⊂
P̄ n(O, r). From the assumption |Aφf | ≤ 1, it follows that for every k ∈ N,
(Aφf )

k(P̄ n(O, s)) ⊂ P̄ n(O, s) and so

f k � (σ �H ) = (σ �H ) � (Aφf )
k

on P̄ n(O, s). Since σ �H : P̄ n(O, s) → P n(K) is Lipschitz, we have

lim inf
k→∞

1

d k
log sup

(σ◦H )(P̄ n(O,s))

[f k, IdP n(K)]

≤ lim inf
k→∞

1

d k
log sup

P̄ n(O,s)

[(σ �H ) � (Aφf )
k, σ �H ]

≤ lim inf
k→∞

1

d k
sup

P̄ n(O,s)

log|(Aφf )
k − In| ≤ lim inf

k→∞
1

d k
log|(Aφf )

k − In|,

which together with Theorem 1 completes the proof so long as H(P̄ n(O, s)) is
open (then so is (σ �H )(P̄ n(O, s))) for s > 0 small enough. Indeed, we have the
following statement.

Theorem 3.2 (inverse function theorem; see [A, Sec. 10, Thm. 10]). Let H =
(f1, . . . , fn) ∈ (On)

n fix O. If detAH �= 0, then for s > 0 small enough,
H : P̄ n(O, s) → H(P̄ n(O, s)) is a bianalytic homeomorphism.

The proof of Theorem 2 is now complete.
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4. Proof of Theorem 3

Let f : P n → P n be a holomorphic map of degree d ≥ 2, and let D be a singular
domain of f with fp(D) = D. Suppose that D is of maximal type; we continue
to use the same notation (q ∈ pN, λ1, . . . , λn ∈ S1, . ∈M(n, C), / : U → D) as
in Section 1.

For every ε > 0, there exist Z0 ∈ Cn+1 \ {O} and s,R > 0 such that

P̄(Z0, s) ⊂ π−1(D) (⊂ π−1(F(f ))), P(Z0,R) ∩ π−1(J(f )) �= ∅,

0 < log
R

s
<

ε

3
, sup

Z,W∈P̄(Z0,R)

|GF(Z)−GF(W )| < ε

3
.

After choosing Z ′ ∈ P(Z0,R) ∩ π−1(J(f )) and r ′ > 0 small enough, from (2.6)
(and (2.5) for Z0 = Z ′, s = r ′), we have

0 − ε

3
< lim inf

k→∞
1

d k
log sup

π(P̄(Z0,s))

[f k, IdP n ] + 2 · ε
3
. (4.1)

Put V := π(P̄(Z0, s)) (⊂ D). Since the restriction of /−1 to
⋃

k∈N f
k(V ) is

bi-Lipschitz, from (4.1) we obtain

−ε < lim inf
k→∞

1

dqk
log sup

V

[f qk, IdP n ]

= lim inf
k→∞

1

dqk
log sup

/−1(V )

|.k − IdCn |

= lim inf
k→∞

1

dqk
log max

j=1,...,n
|λkj − 1|.

The proof of Theorem 3 is now complete.

5. Proof of Theorem 4

Let f : P n → P n be a holomorphic map of degree d ≥ 2, and let F be a lift of f.
In this section, we denote the Lebesgue measure on Cn+1 by m.

On every compact set in Cn+1, by (2.1) and (2.2) we have that ((log‖F k‖)/d k)

is uniformly bounded; hence, by (1.1), ((log‖F k∧ Id‖)/d k) is uniformly bounded
from above.

Let (ki) ⊂ N be an infinite sequence. If ((log‖F ki ∧ Id‖)/d ki ) converges to
−∞ uniformly on the compact set {‖Z‖ = 1}, then it follows from (1.1), (2.1),
and (2.2) that

lim
i→∞

1

d ki
log[f ki, IdP n ] = −∞

uniformly on π({‖Z‖ = 1}) = P n. Together with Theorem 2.3, this implies that
P n = F(f ), which is a contradiction.

The bounds on ((log‖F ki∧ Id‖)/d ki ) yield, by [H,Thm. 4.1.9(a)] (see also [Az,
Thm. 1.1.1]), a subsequence (kj ) ⊂ (ki) such that the plurisubharmonic limit
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φ := lim
j→∞

1

d kj
log‖F kj ∧ Id‖ (5.1)

exists in L1
loc(C

n+1,m). By (1.1) and (2.1), we then have φ ≤ GF.

We assume that {φ−GF < 0} �= ∅. Since φ−GF is upper semicontinuous, we
can choose P̄(Z0, r) ⊂ {φ − GF < 0}; then, by a version of the Hartogs lemma
[H, Thm. 4.1.9(b)], it follows that

lim sup
j→∞

sup
P̄(Z0,r)

(
1

d kj
log‖F kj ∧ Id‖ −GF

)
≤ sup

P̄(Z0,r)

(φ −GF) < 0.

Hence, by (1.1) and (2.1) we have

lim sup
j→∞

sup
π(P̄(Z0,r))

1

d kj
log[f kj, IdP n ] < 0. (5.2)

Therefore, π(Z0) is contained in a Fatou component D of f , which must be a sin-
gular domain of f with, say, fp(D) = D.

Suppose thatD is of maximal type; we continue to use the same notation (G0 ⊂
G ⊂ Aut(D), q ∈pN, λ1, . . . , λn ∈ S1, .∈M(n, C), / : U → D) as in Section 1.
From (5.2) (and the identity theorem), f kj |D tends to IdD locally uniformly on D;
thus, for every j ∈ N large enough, we have (kj ∈pN and) f kj |D ∈G0.

Lemma 5.3. G0 ∩ {f k|D; k ∈pN} = {f k|D; k ∈ qN}.
Proof. If f k|D ∈ G0, then writing k = Qq + r (Q ∈ N ∪ {0}, r ∈ {0,1, . . . ,
q − 1} ∩ pN) yields f r |D = f k|D � f −Qq |D ∈G0, so that r = 0 from the mini-
mality of q. The reverse inclusion is clear.

Put k̃j := kj/q ∈ N, and choose z0 ∈ D such that /−1(z0) = (w1, . . . ,wn) sat-
isfies minj=1,...,n|wj | > 0. Because the restriction of /−1 to {f k(z0); k ∈ N} is
bi-Lipschitz, we have

0 > lim sup
j→∞

1

d kj
log[f kj(z0), z0 ]

= lim sup
j→∞

1

dqk̃j
log|.k̃j(/−1(z0))−/−1(z0)|

≥ lim inf
k→∞

1

dqk
log max

j=1,...,n
|λkj − 1|,

which contradicts (1.9).
We have proved that if every singular domain of f is of maximal type, then in

L1
loc(C

n+1,m),

lim
k→∞

1

d k
log‖F k ∧ Id‖ = GF.

This, together with (1.1) and (2.1), implies (1.10) by a change of variables under
the projection π.

The proof of Theorem 4 is now complete.
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Remark 5.4. The argument deriving (5.1) and (5.2) from [H, Thm. 4.1.9] is sim-
ilar to that in [FSi1, p. 169]. If we choose the (ki) ⊂ N so that

lim
i→∞

1

d ki

∫
P n

log
1

[f ki , Id]
dωn

FS = δV ((f
k), IdP n),

then (5.1) implies—by an argument similar to the one in the proof of Theorem 4—
that, even if f has a singular domain that is not of maximal type,

δV ((f
k), IdP n) < ∞. (5.5)

This finiteness proves (1.7) for the Archimedean case K = C.
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