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On the Divisibility of Fermat Quotients
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1. Introduction

For a prime p and an integer a the Fermat quotient is defined as

qp(a) = ap−1 − 1

p
.

It is well known that divisibility of Fermat quotients qp(a) by p has numerous ap-
plications, which include Fermat’s last theorem and squarefreeness testing; see [6;
7; 8; 16].

In particular, the smallest value �p of a for which qp(a) �≡ 0 (modp) plays a
prominent role in these applications. In this direction, Lenstra [16, Thm. 3] has
shown that

�p ≤
{

4(logp)2 if p ≥ 3,

(4e−2 + o(1))(logp)2 if p → ∞; (1)

see also [7]. Granville [9, Thm. 5] has shown that in fact

�p ≤ (logp)2 (2)

for p ≥ 5.
A very different proof of a slightly weaker bound �p ≤ (4 + o(1))(logp)2 has

been obtained by Ihara [12] as a by-product of the estimate

∑
�k<p

�∈W(p)

log �

�k
≤ 2 log logp + 2 + o(1) (3)

as p → ∞, where the summation is taken over all prime powers up to p of primes
� from the set

W(p) = {� prime : � < p, qp(�) ≡ 0 (modp)}.
However, the proof of (3) given in [12] is conditional on the extended Riemann
hypothesis.

It has been conjectured by Granville [8, Conj. 10] that

�p = o((logp)1/4). (4)
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It is quite reasonable to expect a much stronger bound on �p. For example,
Lenstra [16] conjectures that �p ≤ 3; this has been supported by extensive com-
putation (see [5; 14]). The motivation for the conjecture (4) comes from the fact
that this has some interesting applications to Fermat’s last theorem [8, Cor. 1].
Although this motivation relating �p to Fermat’s last theorem does not exist any-
more, improving the bounds (1) and (2) is still of interest and may have some other
applications.

Theorem 1. We have
�p ≤ (logp)463/252+o(1)

as p → ∞.

Following the arguments of [16], we derive the following improvement of [16,
Thm. 2].

Corollary 2. For every ε > 0 and a sufficiently large integer n, if an−1 ≡ 1
(mod n) for every positive integer a ≤ (log n)463/252+ε then n is squarefree.

The proof of Theorem 1 is based on the original idea of Lenstra [16], which re-
lates �p to the distribution of smooth numbers, which we also supplement by some
recent results on the distribution of elements of multiplicative subgroups of res-
idue rings of Bourgain, Konyagin, and Shparlinski [3] combined with a bound
of Heath-Brown and Konyagin [10] for Heilbronn exponential sums. Also, using
these results we can prove the following.

Theorem 3. For every ε > 0, there is δ > 0 such that for all but one prime
Q1−δ < p ≤ Q, we have �p ≤ (logp)59/35+ε.

The proof of the next result is based on a large sieve inequality with square moduli
that is due to Baier and Zhao [1].

Theorem 4. For every ε > 0, there is δ > 0 such that for all butO(Q1−δ) primes
p ≤ Q, we have �p ≤ (logp)5/3+ε.

We note that

463

252
= 1.8373 . . . ,

59

35
= 1.6857 . . . ,

5

3
= 1.6666 . . . .

Throughout the paper, the implied constants in the symbols “O” and “�” may
occasionally depend on the positive parameters ε and δ, and are absolute other-
wise. We recall that the notations U = O(V ) and U � V are both equivalent to
the assertion that the inequality |U | ≤ cV holds for some constant c > 0.

2. Smooth Numbers

For any integer n we write P(n) for the largest prime factor of an integer n with
the convention that P(0) = P(±1) = 1.
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For x ≥ y ≥ 2 we define S(x, y) as the set y-smooth numbers up to x, that is

S(x, y) = {n ≤ x : P(n) ≤ y}
and put

�(x, y) = #S(x, y).

We make use of the following explicit estimate, which is due to Konyagin and
Pomerance [15, Thm. 2.1] (see also [11] for a variety of other results).

Lemma 5. If x ≥ 4 and x ≥ y ≥ 2, then

�(x, y) > x1−log log x/log y.

3. Heilbronn Sums

For an integer m ≥ 1 and a complex z, we put

em(z) = exp(2πiz/m).

Let Zn be the ring of integers modulo an n ≥ 1 and let Z
∗
n be the group of units

of Zn.

Now, for a prime p and an integer λ, we define the Heilbronn sum

Hp(λ) =
p∑

b=1

ep2(λbp).

For x ∈ Zp denote

f(x) = x + x 2

2
+ · · · + xp−1

p − 1
∈ Zp. (5)

Also, define for u∈ Zp

F(u) = {x ∈ Zp : f(x) = u}. (6)

We now recall the following two results due to Heath-Brown and Konyagin that
are [10, Thm. 2] and [10, Lemma 7], respectively.

Lemma 6. Uniformly over all s �≡ 0 modp, we have
p∑

r=1

|Hp(s + rp)|4 � p7/2.

Lemma 7. Let U be a subset of Zp and T = #U . Then∑
u∈U

#F(u) � (pT )2/3.

Since Hp(rp) = 0 if r �≡ 0 modp and Hp(rp) = p if r ≡ 0 modp, we immedi-
ately derive from Lemma 6 that

p2∑
u=1

|Hp(u)|4 � p9/2. (7)
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4. Distribution of Elements of Multiplicative Subgroups
in Residue Rings

Given a multiplicative subgroup G of Z
∗
n, we consider its coset in Z

∗
n (or multiplica-

tive translate) A = λG, where λ ∈ Z
∗
n. For an integer K and a positive integer k,

we denote
J(n, A , k,K) = #({K + 1, . . . ,K + k} ∩ A).

We need the following estimate from [3].

Lemma 8. Let A be a coset of a multiplicative subgroup G of Z
∗
n of order t.

Then, for any fixed ε > 0, we have

J(n, A , k,K) � kt

n
+ k

tn

∑
w∈Zn

Mn(w;Z, G )
∣∣∣∣
∑
u∈A

en(uw)

∣∣∣∣,
where

Z = min{n1+εk−1, n/2}
and Mn(w;Z, G ) is the number of solutions to the congruence

w ≡ zu (mod n), 1 ≤ |z| ≤ Z, u∈ G.
Let N(n, G,Z) be the number of solutions of the congruence

ux ≡ y (mod n), where 0 < |x|, |y| ≤ Z, and u∈ G.
We use Lemma 8 in a combination with yet another result from [3], which gives
an upper bound on N(n, G,Z). We note that the proof given in [3] works only for
Z ≥ n1/2, which is always satisfied in this paper; however it is shown in [4] that
the result holds without this condition too, exactly as it is formulated in [3].

Lemma 9. Let ν ≥ 1 be a fixed integer and let n → ∞. Assume #G = t � √
n.

Then for any positive number Z we have

N(n, G,Z) ≤ Zt(2ν+1)/(2ν(ν+1))n−1/(2(ν+1))+o(1) + Z2 t1/νn−1/ν+o(1).

5. Large Sieve for Square Moduli

We make use of the following result of Baier and Zhao [1, Thm. 1].

Lemma 10. Let α1, . . . ,αN be an arbitrary sequence of complex numbers and let

Y =
N∑
n=1

|αn|2 and S(u) =
N∑
n=1

αn exp(2πiun).

Then, for any fixed ε > 0 and arbitrary Q ≥ 1, we have

∑
1≤q≤Q

q2∑
a=1

gcd(a,q)=1

∣∣∣∣S
(

a

q2

)∣∣∣∣
2

� (QN)ε(Q3 + N + min{NQ1/2,N1/2Q2})Y.
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6. Proof of Theorem 1

For a positive integer k < p2, let Np(k) denote the number of elements v ∈ [1, k]
of the subgroup G ⊆ Z

∗
p2 of order p−1, consisting of nonzero pth powers in Zp2 .

We fix some ε > 0.
To get an upper bound on Np(k) we use Lemma 8, which we apply with n = p2,

A = G, t = p − 1, and K = 0. For every integer a with ap−1 ≡ 1 (modp2) there
is a unique integer b with 1 ≤ b ≤ p−1 such that a ≡ bp (modp2). Thus the cor-
responding exponential sums of G are Heilbronn sums, defined in Section 3. We
derive

Np(k) = J(p2, G, k,K) � k

p
+ k

p3

∑
w∈Zp2

Mp2(w;Z, G )(|Hp(w)| + 1). (8)

By the Hölder inequality, we obtain( ∑
w∈Zp2

Mp2(w;Z, G )|Hp(w)|
)4

=
( ∑

w∈Zp2

Mp2(w;Z, G )1/2(Mp2(w;Z, G )2)1/4(|Hp(w)|4)1/4

)4

≤
( ∑

w∈Zp2

Mp2(w;Z, G )
)2 ∑

w∈Zp2

Mp2(w;Z, G )2
∑

w∈Zp2

|Hp(w)|4. (9)

Trivially, we have∑
w∈Zp2

Mp2(w;Z, G ) = 2�Z�(p − 1) � p3+2εk−1. (10)

We also see that ∑
w∈Zp2

Mp2(w;Z, G )2 = (p − 1)N(p2, G,Z).

We now choose
k = �p463/252+3ε�.

Lemma 9 applies with ν = 6 and leads to the estimate

N(p2, G,Z) ≤ Zp13/84(p2)−1/14+o(1) + Z2p1/6(p2)−1/6+o(1)

≤ Zp13/84(p2)−1/14+o(1)

(since for Z ≤ p41/252 the first term dominates). Hence,

N(p2, G,Z) ≤ p2+1/84+3εk−1.

Therefore ∑
w∈Zp2

Mp2(w;Z, G )2 � p3+1/84+3εk−1. (11)
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Substituting (7), (10), and (11) in (9) and then using (8), we deduce that

Np(k) � k

p
+ k

p3
(p3+2εk−1)1/2(p3+1/84+3εk−1)1/4(p9/2)1/4 + p2ε

� k

p
+ k1/4p127/336+2ε,

provided p is large enough.
Recalling our choice of k, we see that

Np(k) � k

p
(12)

for the preceding choice of k and sufficiently large p.

Since ap−1 ≡ 1 (modp2) for all positive integers a ≤ �p, this also holds for any
a that is composed of primes � ≤ �p. In particular it holds for any a ∈ S(k, �p).
Thus

�(k, �p) ≤ Np(k). (13)

Now, using Lemma 5 and the bound (12), we derive from (13) that

k1−log log k/log �p � k

p
,

which implies that

log log k

log �p
≥ logp

log k
+ O

(
1

log k

)
=

(
463

252
+ 3ε

)−1

+ O

(
1

logp

)
.

Therefore

log �p ≤
(

463

252
+ 3ε

)
log log k + O

(
log logp

logp

)

=
(

463

252
+ 3ε

)
log logp + O(1) ≤

(
463

252
+ 4ε

)
log logp,

provided that p is large enough. Taking into account that ε is arbitrary, we con-
clude the proof.

7. Proof of Theorem 3

7.1. Preliminaries

We need several statements about the groups of pth powers modulo p2, which may
be of independent interest.

Fix a prime p. Let again G be the group of order p − 1, consisting of nonzero
pth powers modulo p2.

Lemma 11. If n1, n2 ∈ G are such that n1 ≡ n2 (modp) then we also have

n1 ≡ n2 (modp2).
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Proof. Since n1, n2 ∈ G we can write

n1 ≡ m
p

1 (modp2) and n2 ≡ m
p

2 (modp2) (14)

for some integers m1 and m2. Therefore

m1 − m2 ≡ m
p

1 − m
p

2 ≡ n1 − n2 ≡ 0 (modp).

Then m1 = m2 + pk for some integer k, which, after substitution in (14), yields
the desired congruence.

For v ∈ Zp2 , let

Dp(v) = {(m1,m2) : 0 ≤ m1,m2 ≤ p − 1, mp

1 − m
p

2 ≡ v (modp2)}. (15)

We can rewrite Lemma 7 in the following form.

Lemma 12. Let V be a subset of Z
∗
p2 , T = #V, and v1/v2 /∈ G for any distinct

v1, v2 ∈V. Then ∑
v∈V

#Dp(v) � (pT )2/3.

Proof. We follow the arguments of the proof of Lemma 2 from [10]. For v ∈ Z
∗
p2

denote
λ(v) = v1−p ∈ Z

∗
p2 .

Since the cardinality #Dp(v) is invariant under multiplication by elements of the
group G we have #Dp(λ(v)) = #Dp(v). Next, we always have λ(v) ≡ 1 (modp).
Therefore, the congruence

λ(v) ≡ m
p

1 − m
p

2 (modp2)

implies m1 − m2 ≡ λ(v) ≡ 1 (modp). Hence

λ(v) ≡ m
p

1 − (m1 − 1)p (modp2).

But
m

p

1 − (m1 − 1)p ≡ 1 − pf(m1) (modp2)

where the function f(x) is defined by (5). Hence,

#Dp(v) = #F(U(v)) (16)

where
U(v) = (1 − λ(v))/p ∈ Zp

and the set F(u) is defined by (6).
The assumption that v1/v2 /∈ G for any distinct v1, v2 ∈V implies λ(v1)/λ(v2) /∈

G and U(v1) �= U(v2). Applying Lemma 7 to the set

U = {U(v) : v ∈V }
and using (16) we get∑

v∈V
#Dp(v) =

∑
u∈U

#F(u) � (pT )2/3

as required.
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Now we consider two primes p1 �= p2 and the corresponding subgroups Gν ⊆ Z
∗
p2
ν

consisting of nonzero pν th powers modulo p2
ν , ν = 1, 2.

Also, we denote by Ḡν the subsets of Z formed by the integers belonging to
Gν modulo p2

ν . That is, while Gν is represented by some elements from the set
{1, . . . ,p2

ν − 1}, the set Ḡν is infinite, ν = 1, 2.

Lemma 13. Let x, K, and L be positive integers with x < p2
1p

2
2 . Suppose that a

set A ⊆ [1, x] ∩ Ḡ1 ∩ Ḡ2 satisfies the following conditions:

(i) there are at least L pairs (n1, n2) ∈ A2 with n1 > n2 and such that n1 ≡ n2

(modp2);
(ii) there are at most K elements of A in any residue class modulo p1.

Then
L

K
� p

2/3
1 Z1/3N(p2

1 , G1,Z)1/3

where Z = �x/p2
2 �.

Proof. Denote

Mi = #{n∈ A : n − ip2
2 ∈ A}, i = 1, . . . ,Z.

By Lemma 11 and the condition (i) we have

Z∑
i=1

Mi ≥ L.

Next, let
mi = #{n∈ G1 : n − ip2

2 ∈ G1}, i = 1, . . . ,Z.

Then by condition (ii) we have

Z∑
i=1

mi ≥ 1

K

Z∑
i=1

Mi ≥ L

K
. (17)

We observe also that for i = 1, . . . ,Z

mi ≤ #Dp1(ip
2
2). (18)

Moreover, we have Z < p2
1 . In particular, if a positive integer i ≤ Z is divisible

by p1 then, by Lemma 11,

mi = #Dp1(ip
2
2) = 0.

Assume that the residues of ip2
2 modulo p2

1 , i = 1, . . . ,Z, are contained in J

distinct cosets C1, . . . ,CJ of the group G1. For j = 1, . . . , J, we denote

sj = #{i : 1 ≤ i ≤ Z, ip2
2 ∈Cj}

and also
tj = #Dp1(v)

for some element v ∈ Cj (clearly, this quantity depends only on the coset Cj and
does not depend on the choice of v).
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Therefore, using (18) we can rewrite (17) as

J∑
j=1

sj tj ≥ L

K
. (19)

To estimate the left-hand side of (19) from above we consider that the cosets
C1, . . . ,CJ are ordered so that the sequence {t1, . . . , tJ } is nonincreasing. By
Lemma 12 we have for j = 1, . . . , J

t1 + · · · + tj � (p1j)
2/3.

Hence,
tj � p

2/3
1 j−1/3. (20)

Clearly,
J∑

j=1

sj = Z. (21)

By the definition of N(p2
1 , G1,Z), we have

J∑
j=1

s2
j ≤ N(p2

1 , G1,Z). (22)

We notice that Z ≥ 1; otherwise there are no (n1, n2)∈ A2 with n1 > n2 and such
that n1 ≡ n2 (modp2). Define

J0 = �Z2/N(p2
1 , G1,Z)� and J1 = min{J0, J }.

It is easy to see that J0 ≥ 1. Therefore, J1 ≥ 1.
To estimate the left-hand side of (19) we consider separately the cases j ≤ J1

and j > J1 (the second case can occur only if J0 = J1). By (20), (22), and the
Cauchy–Schwarz inequality, we have

( J1∑
j=1

sj tj

)2

≤
J1∑
j=1

s2
j

J1∑
j=1

t 2
j ≤

J∑
j=1

s2
j

J0∑
j=1

t 2
j � N(p2

1 , G1,Z)p
4/3
1 J

1/3
0 .

Therefore,
J1∑
j=1

sj tj � p
2/3
1 Z1/3N(p2

1 , G1,Z)1/3. (23)

If J0 = J1 then we also have to estimate the sum over j > J0. To do so we
use (20) and (21):

J∑
j=J0+1

sj tj ≤ tJ0Z � p
2/3
1 Z1/3N(p2

1 , G1,Z)1/3. (24)

Combining (19), (23), and (24), we complete the proof.
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Now we prove a combinatorial statement demonstrating that if a set [1, x]∩ Ḡ1∩ Ḡ2

is large then we can choose a set A ⊆ [1, x] ∩ Ḡ1 ∩ Ḡ2 satisfying the conditions of
Lemma 13 with K and L such that L/K � p2.

Let I1 and I2 be nonempty finite sets. For a set A ⊆ I1 × I2 we denote the
following horizontal and vertical “lines”:

A(x, ·) = {y ∈ I2 : (x, y)∈ A}; A(·, y) = {x ∈ I1 : (x, y)∈ A}.
Lemma 14. For any set A ⊆ I1 × I2 there exist a subset B ⊆ A and positive
integers k1 and k2 such that :

(i) #B ≥ 1

2
#A;

(ii) #B(x, ·) ≤ k1 for any x ∈ I1;
(iii) #B(·, y) ≤ k2 for any y ∈ I2;
(iv)

∑
x∈I1

#B(x,·)>k1/2

#B(x, ·) � 1

log(#I1 + #I2)
#A;

(v)
∑
y∈I2

#B(·,y)>k2/2

#B(·, y) � 1

log(#I1 + #I2)
#A.

Proof. The case A = ∅ is trivial, so we now consider that #A > 0. Let U be the
smallest integer such that 2U ≥ #I1 + #I2, so 1 ≤ U � log(#I1 + #I2).

We construct the following sequence of sets {Aν}, ν = 0,1, . . . . Set A 0 = A.

Assume that Aν has been constructed. We now define uν as the smallest integer u
such that ∑

x∈I1
#Aν (x,·)>2u

#Aν(x, ·) ≤ 1

8U
#A. (25)

Similarly, let vν be the smallest integer v such that
∑
y∈I2

#Aν (·,y)>2v

#Aν(·, y) ≤ 1

8U
#A. (26)

Define

Aν+1 = Aν

∖ ⋃
x∈I1

#Aν (x,·)>2uν

{(x, y) : y ∈ Aν(x, ·)}

∖ ⋃
y∈I2

#Aν (·,y)>2vν

{(x, y) : x ∈ Aν(·, y)}. (27)

Clearly, for any ν = 0,1, . . . we have

Aν+1 ⊆ Aν , 0 ≤ uν+1 ≤ uν < U, 0 ≤ vν+1 ≤ vν < U.

There exists a number N < 2U such that
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uN+1 = uN and vN+1 = vN .

Set
B = AN+1, k1 = 2uN, k2 = 2vN.

Now, from (25), (26), and (27), we derive

#(A \ B) ≤
N∑

ν=0

∑
x∈I1

#Aν (x,·)>2uν

#Aν(x, ·) +
N∑

ν=0

∑
y∈I2

#A(·,y)>2vν

#Aν(·, y)

≤ 2(N + 1)

8U
#A ≤ 1

2
#A.

So, condition (i) is satisfied.
By the definition of B, k1, and k2 we see that conditions (ii) and (iii) are satis-

fied too.
Next, if k1 = 1 then ∑

x∈I1
#B(x,·)>k1/2

#B(x, ·) = #B.

If k1 > 1 then we deduce from the equality uN+1 = uN that
∑
x∈I1

#B(·,y)>k1/2

#B(·, y) > 1

8U
#A.

In either case the condition (iv) holds. Analogously, we also have condition (v)
satisfied.

7.2. Conclusion of the Proof

We suppose that Q is large enough while ε and δ are small enough and define

x = Q59/24−3δ and y = ((1 − δ) logQ)59/35+ε.

Assume that there are two primes p1 �= p2 with Q1−δ < p1,p2 ≤ Q and
such that

ap1−1 ≡ 1 (modp2
1 ), ap2−1 ≡ 1 (modp2

2)

for all positive integers a ≤ y.

As before, for ν = 1, 2, we use Gν to denote the subgroup of Z
∗
p2
ν

consisting
of nonzero pν th powers modulo p2

ν and use Ḡν for the subset of Z formed by the
integers belonging to Gν modulo p2

ν .

Then S(x, y) ⊆ Ḡ1 ∩ Ḡ2 (here we take into account that y < min{p1,p2}).
Since

(59/24 − 3δ)

(
1 − 1

59/35 + ε

)
> 1 + δ

provided δ is small enough compared to ε, we derive from Lemma 5 that

�(x, y) > Q1+δ (28)

(provided ε and δ are small enough).
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We now associate with any integer n∈ S(x, y) the pair of residues

(n (modp1), n (modp2))∈ Zp1 × Zp2 .

Using Lemma 14 we conclude the existence of a set

A ⊆ S(x, y) ⊆ [1, x] ∩ Ḡ1 ∩ Ḡ2

and positive integers k1, k2 and an absolute constant c0 satisfying the following
conditions:

(a) #A ≥ �(x, y)/2;
(b) there are at most k1 elements of A in any residue class modulo p1;
(c) there are at most k2 elements of A in any residue class modulo p2;
(d) there are at least c0�(x, y)/(k1 logQ) residue classes modulo p1 containing

at least k1/2 elements from A;
(e) there are at least c0�(x, y)/(k2 logQ) residue classes modulo p2 containing

at least k2/2 elements from A.

Without loss of generality we can assume that k2 ≥ k1.

In particular, we see from property (a) and (28) that

#A � Q1+δ.

Therefore, by properties (a) and (e) we have

Q ≥ p2 ≥ c0
�(x, y)

k2 logQ
� Q1+δ

k2 logQ
.

Hence,

k2 � Qδ

logQ
,

provided that Q is large enough. If a residue class modulo p2 contains at least
k2/2 elements from A , then there are at least k2

2 /10 pairs (n1, n2)∈ A2 such that
n1 > n2 and n1 ≡ n2 (modp2). Therefore, the conditions of Lemma 13 are ful-
filled with K = k1 and

L =
⌈
k2

2

10

⌉
×

⌈
c0�(x, y)

k2 logQ

⌉
� �(x, y)k2

logQ
� Q1+δk2

logQ
.

Considering again that Q is large enough we obtain that

L

K
≥ k2Q

k1
≥ Q.

Applying Lemma 13, we obtain

p
2/3
1 Z1/3N(p2

1 , G1,Z)1/3 � Q (29)

where

Z =
⌊
x

p2
2

⌋
≤ Q11/24−δ ≤ p

11/24−δ/2
1 .

On the other hand, Lemma 9 applies with ν = 2 and yields
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N(p2
1 , G1,Z) ≤ Zp

5/12
1 (p2

1 )
−1/6+o(1) + Z2p

1/2
1 (p2

1 )
−1/2+o(1) ≤ p

13/24−δ/2+o(1)
1 .

Consequently,

p
2/3
1 Z1/3N(p2

1 , G1,Z)1/3 ≤ p
1−δ/3+o(1)
1 ≤ Q1−δ/3+o(1),

which disagrees with (29) for Q large enough. This contradiction completes the
proof.

8. Proof of Theorem 4

Let Py be the set of all primes p for which

ap−1 ≡ 1 (modp2) (30)
for all primes a ≤ y.

We need the following estimate, from which Theorem 4 follows quickly.

Lemma 15. Suppose Q ≥ 2y ≥ 2. Then for all δ > 0 and any x ≥ 2, we have

#{p ∈ Py : Q/2 < p ≤ Q} � (xQ)δ(Q2 + xQ−1 + min(xQ−1/2, x1/2Q))

�(x, y)
.

Proof. For real u, let
T(u) =

∑
n∈S(x,y)

exp(2πiun)

and put Y = T(0) = �(x, y).
Let p ∈ Py. By the Parseval identity, we have for each prime p

p2∑
a=1

(a,p)=1

∣∣∣∣T
(

a

p2

)∣∣∣∣
2

=
p2∑
a=1

∣∣∣∣T
(

a

p2

)∣∣∣∣
2

−
p∑

b=1

∣∣∣∣T
(
b

p

)∣∣∣∣
2

= p2
p2∑
a=1

N(p2, a)2 − p

p∑
b=1

N(p, b)2, (31)

where N(q, a) is the number of elements of n ∈ S(x, y) in the progression n ≡ a

(mod q). For p ∈ Py we see that np−1 ≡ 1 (modp2) for every n ∈ S(x, y). By
Lemma 11, for each b ∈ {1, . . . ,p−1} there is a unique residue ab modulo p2 with
ab ≡ b (modp) and a

p−1
b ≡ 1 (modp). Consequently, N(p2, ab) = N(p, b).

Therefore
p2∑
a=1

N(p2, a)2 =
p∑

b=1

N(p2, ab)
2 =

p∑
b=1

N(p, b)2,

which, after substitution in (31), implies that

∑
1≤a≤p2

(a,p)=1

∣∣∣∣T
(

a

p2

)∣∣∣∣
2

= p(p − 1)
p∑

b=1

N(p, b)2.

Since
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p∑
b=1

N(p, b) = Y

and clearly N(p, 0) = 0 for p > Q/2 ≥ y, by the Cauchy–Schwarz inequality,
we obtain ∑

1≤a≤p2

(a,p)=1

∣∣∣∣T
(

a

p2

)∣∣∣∣
2

= p(p − 1)
p−1∑
b=1

N(p, b)2 ≥ pY 2.

Therefore ∑
p∈Py

Q/2<p≤Q

∑
1≤a≤p2

(a,p)=1

∣∣∣∣T
(

a

p2

)∣∣∣∣
2

� QY 2 #{p ∈ Py : Q/2 < p ≤ Q}. (32)

By Lemma 10,

∑
q≤Q

∑
1≤a≤q2

(a,q)=1

∣∣∣∣T
(

a

q2

)∣∣∣∣
2

� (xQ)δ(Q3 + x + min{xQ1/2, x1/2Q2})Y. (33)

Comparing (32) and (33), we obtain the desired estimate.

To finish the proof of Theorem 4, we take x = Q5/2 and y = (logQ)5/3+ε in
Lemma 15. Inserting the bound from Lemma 5, we have

�(x, y) > x1−1/(5/3+ε) � Q1+5δ

for a suitable δ > 0. Therefore, for the previous choice of y we obtain

#{p ∈ Py : Q/2 < p ≤ Q} � Q1−δ,

which implies the desired estimate.

9. Comments

Lemmas 6, 8, and 9 can easily be obtained in fully explicit forms with concrete
constants. Thus, the bound of Theorem 1 can also be obtained in a fully explicit
form, which can be important for algorithmic applications. For example, it would
be interesting to get an explicit formula for n0(ε) such that for n ≥ n0(ε) the con-
clusion of Corollary 2 holds.

It is interesting to establish the limits of our approach. For example, the bound

Np(k) � kp−1+o(1)

for values of k = p1+o(1) (or larger), which is the best possible result about Np(k),
leads only to the estimate

�p ≤ (logp)1+o(1),

which is still much higher than the expected size of �p. Furthermore, if instead of
Lemma 10 we have the best possible bound
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∑
1≤q≤Q

q2∑
a=1

gcd(a,q)=1

∣∣∣∣S
(

a

q2

)∣∣∣∣
2

� Qδ(Q3 + N)Y,

the exponent 5/3 of Theorem 4 can be replaced with 3/2.
Certainly, improving and obtaining unconditional variants of the estimate (3)

and, more generally, investigating other properties of set W(p) is of great interest
owing to important applications outlined in [12]. It is quite possible that Lemma 6
can be used for this purpose as well.

Congruences with Fermat quotients qp(a) modulo higher powers of p have also
been considered in the literature; see [6; 13]. Using our approach with bounds of
generalized Heilbronn sums

Hp,m(λ) =
p∑

b=1

epm(λbp
m−1

)

due to Bourgain and Chang [2] or Malykhin [17] (which is fully explicit), one can
estimate the smallest a with

qp(a) �≡ 1 (modpm)

for fixed m ≥ 2.
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