Michigan Math. J. 59 (2010), 313-328

On the Divisibility of Fermat Quotients
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1. Introduction

For a prime p and an integer a the Fermat quotient is defined as

al~l—1
qpla) =

It is well known that divisibility of Fermat quotients g, (a) by p has numerous ap-
plications, which include Fermat’s last theorem and squarefreeness testing; see [6;
7; 8, 16].

In particular, the smallest value £, of a for which g,(a) # 0 (mod p) plays a
prominent role in these applications. In this direction, Lenstra [16, Thm. 3] has
shown that

4(log p)? if p=>3,
¢y = . (D
4e 2 + o(1))(log p)2 if p — oo;
see also [7]. Granville [9, Thm. 5] has shown that in fact
¢, < (log p)° )

for p > 5.
A very different proof of a slightly weaker bound £, < (4 4 o(1))(log »)? has
been obtained by Ihara [12] as a by-product of the estimate

log¢
Z T <2loglog p + 2+ o(1) (3)
£k<p
LeW(p)

as p — 00, where the summation is taken over all prime powers up to p of primes
£ from the set

W(p) = {€ prime : £ < p, g,(¢£) = 0(mod p)}.

However, the proof of (3) given in [12] is conditional on the extended Riemann
hypothesis.
It has been conjectured by Granville [8, Conj. 10] that

£, = o((log p)'/*). 4)
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It is quite reasonable to expect a much stronger bound on £,. For example,
Lenstra [16] conjectures that £, < 3; this has been supported by extensive com-
putation (see [5; 14]). The motivation for the conjecture (4) comes from the fact
that this has some interesting applications to Fermat’s last theorem [8, Cor. 1].
Although this motivation relating £, to Fermat’s last theorem does not exist any-
more, improving the bounds (1) and (2) is still of interest and may have some other
applications.

THEOREM 1. We have

Ep < (lOg p)463/252+0(1)

as p — oo.

Following the arguments of [16], we derive the following improvement of [16,
Thm. 2].

COROLLARY 2. For every ¢ > 0 and a sufficiently large integer n, if a" ' = 1
(modn) for every positive integer a < (logn)*%/252+¢ then n is squarefree.

The proof of Theorem 1 is based on the original idea of Lenstra [16], which re-
lates £, to the distribution of smooth numbers, which we also supplement by some
recent results on the distribution of elements of multiplicative subgroups of res-
idue rings of Bourgain, Konyagin, and Shparlinski [3] combined with a bound
of Heath-Brown and Konyagin [10] for Heilbronn exponential sums. Also, using
these results we can prove the following.

THEOREM 3. For every ¢ > 0, there is § > 0 such that for all but one prime
Q'™ < p < Q, we have £, < (log p)9/35+e,

The proof of the next result is based on a large sieve inequality with square moduli
that is due to Baier and Zhao [1].

THEOREM 4. Foreverye > 0, thereis § > 0 such that for all but O(Q'~?) primes
p < Q,we have £, < (log p)¥/3*e.

‘We note that

4
ﬁ:1.8373..., 2=1.6857..., §=1.6666....
252 35 3

Throughout the paper, the implied constants in the symbols “O” and “<” may
occasionally depend on the positive parameters ¢ and §, and are absolute other-
wise. We recall that the notations U = O(V) and U < V are both equivalent to
the assertion that the inequality |U| < ¢V holds for some constant ¢ > 0.

2. Smooth Numbers

For any integer n we write P(n) for the largest prime factor of an integer n with
the convention that P(0) = P(£1) = 1.
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For x > y > 2 we define S(x, y) as the set y-smooth numbers up to x, that is

Sx,y)={n<x:Pn) <y}

and put
W(x,y) = #S(x,y).

We make use of the following explicit estimate, which is due to Konyagin and
Pomerance [15, Thm. 2.1] (see also [11] for a variety of other results).

LEMMA S. Ifx >4andx >y > 2, then

\IJ(.X y) - xl—loglogx/logy
s .

3. Heilbronn Sums
For an integer m > 1 and a complex z, we put
en(z) = exp(2miz/m).

Let Z, be the ring of integers modulo an n > 1 and let Z} be the group of units
of Z,.
Now, for a prime p and an integer A, we define the Heilbronn sum

p
H,(\) = Zepz(,\bp).
b=1

For x € Z,, denote

x?2 xP1
f(x)=x+7+~-~+p_leZ,,. (5)
Also, define foru € Z,,
Fu)=1{xeZ,: f(x) =u}. (6)

We now recall the following two results due to Heath-Brown and Konyagin that
are [10, Thm. 2] and [10, Lemma 7], respectively.

LEMMA 6. Uniformly over all s # 0 mod p, we have

14
Y IHy(s +rp)l* < p>.

r=1

LEMMA 7. Let U be a subset of Z, and T =#U. Then

> #Fw) < (pT)*°,
ueld
Since H,(rp) = 0if r # 0 mod p and H,(rp) = p if r = 0 mod p, we immedi-
ately derive from Lemma 6 that
2

p
> IH, )|t < p¥*. (7)

u=1
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4. Distribution of Elements of Multiplicative Subgroups
in Residue Rings

Given a multiplicative subgroup G of Z*, we consider its coset in Z (or multiplica-
tive translate) A = LG, where A € Z}. For an integer K and a positive integer &,

we denote
J(n,A,k,K) =#({K +1,...,K + k} N A).

We need the following estimate from [3].

LEMMA 8. Let A be a coset of a multiplicative subgroup G of 7, of order t.
Then, for any fixed ¢ > 0, we have

kt k
J N ,k,K - - Mn ,Z,
(A K) < — = 3 My(w; Z,6)

weZy

5o

ue A

where
Z = min{n'*k~", n/2}

and M,(w; Z,G) is the number of solutions to the congruence

w=zu (modn), 1<|z|<Z, ued.

Let N(n, G, Z) be the number of solutions of the congruence
ux =y (modn), where 0 < |x|, |y| < Z, and u €G.

We use Lemma 8 in a combination with yet another result from [3], which gives
an upper bound on N(n, G, Z). We note that the proof given in [3] works only for
Z > n'/?, which is always satisfied in this paper; however it is shown in [4] that
the result holds without this condition too, exactly as it is formulated in [3].

LEMMA 9. Let v > 1 be a fixed integer and let n — 00. Assume #G =t > /n.
Then for any positive number Z we have

N(n,G, Z) < Zt@+D/@ue+D), —1/Qu+D)+oh) 72 1/v,=1/v+o(D),

5. Large Sieve for Square Moduli
We make use of the following result of Baier and Zhao [1, Thm. 1].
LEmMA 10. Let «y,...,ay be an arbitrary sequence of complex numbers and let

N N
Y = Z|an|2 and S(u) = Z oy exp(27iun).

n=I n=1
Then, for any fixed ¢ > 0 and arbitrary Q > 1, we have
qZ
a
> X fs(%)
I=g<Q a=1 q
ged(a,q)=1

2
< (ON)*(Q* + N + min{NQ"*,N'2Q?*})Y.
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6. Proof of Theorem 1

For a positive integer k < p?, let N, (k) denote the number of elements v € [1, k]
of the subgroup G < Z7, of order p — 1, consisting of nonzero pth powers inZ ..
We fix some ¢ > 0.

To get an upper bound on N, (k) we use Lemma 8, which we apply withn = P
A=G,t=p—1,and K = 0. For every integer a with a?~! = 1 (mod p?) there
is a unique integer b with 1 < b < p — 1 such thata = b” (mod p?). Thus the cor-
responding exponential sums of G are Heilbronn sums, defined in Section 3. We
derive

k k
NoR) = S GK K) s 3 M (s .G (Hy @)l + 1) ®)
wesz

By the Holder inequality, we obtain

4
( Z Mp2(w;Z,g)|Hp(w)|>

wGsz

4
=< 3 My (w: z,g>1/2<M,,z<w;z,g)2)1/4(|Hp<w>|“>““)

WEZ 2

2
5( > My (w; z,g)) > Mpw; 2,9 Y IH,w)l*. (9)

weZ,» weZ,» WEZ 2
Trivially, we have
D Mpw; Z2,9) =21Z](p— 1) < p*k (10)
WEZ
We also see that
> Mpw: 2,6 = (p— DN(p™3, 2).
weZ

&Ve now Ch()()Se
463/252+3
k = p / € .

Lemma 9 applies with v = 6 and leads to the estimate

N(p% G, Z) < Zp¥/34(p2)~114+o(h) 4 72,1/6( y2y=1/6+0()
< Zp13/84(p2)—1/14+0(1)

41/252

(since for Z < p the first term dominates). Hence,

N(pz’ g’ Z) < p2+1/84+3£k71.
Therefore
Z MFZ(U); Z’g)Z < p3+1/84+38k71. (11)

wesz
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Substituting (7), (10), and (11) in (9) and then using (8), we deduce that

k k _ _
Np(k) « ;+?(p3+28k 1)1/2(p3+1/84+3£k 1)1/4(p9/2)1/4+p28
<« E + k1/4p127/336+28
p

provided p is large enough.
Recalling our choice of k, we see that

k
N, (k) < = (12)
p

for the preceding choice of k and sufficiently large p.
Since a?~! = 1 (mod p?) for all positive integers a < ¢,,, this also holds for any
a that is composed of primes £ < £,. In particular it holds for any a € S(k, £,).
Thus
W(k,£,) < N,(k). (13)

Now, using Lemma 5 and the bound (12), we derive from (13) that
kl—loglogk/logl,, < E
which implies that
loglogk 1 1 463 - 1
08 08 Zogp—i-O =(-=4+3¢) +0 .
log?, logk logk 252 log p
Therefore

463
logt, < <25—2 + 38) loglogk + 0(

loglog p
log p

= 463—{—35 loglog p + O(1) < 463+4s loglo
=\ 252 glogp =23, glog p,

provided that p is large enough. Taking into account that ¢ is arbitrary, we con-
clude the proof.

7. Proof of Theorem 3

7.1. Preliminaries

We need several statements about the groups of pth powers modulo p?, which may
be of independent interest.

Fix a prime p. Let again G be the group of order p — 1, consisting of nonzero
pth powers modulo p2.

LEmMMA 11.  Ifny,n, € G are such that ny = n, (mod p) then we also have

ni = n, (mod p?).
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Proof. Since ny,n; € G we can write

ny=m! (mod p*) and ny =m} (mod p?) (14)
for some integers m and m,. Therefore

my—my =m| —mh =n; —ny, =0 (mod p).
Then m; = m, + pk for some integer k, which, after substitution in (14), yields

the desired congruence. UJ

ForveZ,y, let
D,(v) = {(m1,m3) : 0 <my,my < p—1, mf — m’z7 = (modpz)}. (15)
We can rewrite Lemma 7 in the following form.

LEMMA 12. Let V be a subset of Z),,, T = #V, and vi/vy ¢ G for any distinct
v, V2 €V. Then

Y #D,(0) < (P,

veY

Proof. We follow the arguments of the proof of Lemma 2 from [10]. For v € Z7,
denote
Av) =0 7P €Zpy.

Since the cardinality #D, (v) is invariant under multiplication by elements of the
group G we have #D,(A(v)) = #D,(v). Next, we always have A(v) = 1 (mod p).
Therefore, the congruence
A(v) = m} —m¥ (mod p?)
implies m; — my = A(v) = 1 (mod p). Hence
A(v) =m! — (m; — 1)? (mod p?).
But
m{ — (my —1)" =1— pf(m;) (mod p?)
where the function f(x) is defined by (5). Hence,
#D,(v) = #F(U(v)) (16)
where
Uw) =1 —-2r)/peZ,
and the set F () is defined by (6).
The assumption that v; /v, ¢ G for any distinct v, v, € V implies A(v;)/A(v2) ¢
G and U(v;) # U(vz). Applying Lemma 7 to the set
U={U):veV}
and using (16) we get
> #D,(v) =Y #F ) < (pT)*?

veV uelU
as required. UJ
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Now we consider two primes p; # p» and the corresponding subgroups G, € Z ),
consisting of nonzero p, th powers modulo p2, v = 1,2.

Also, we denote by G, the subsets of Z formed by the integers belonging to
G, modulo pf. That is, while G, is represented by some elements from the set
{a,..., pf — 1}, the set G, is infinite, v = 1, 2.

LEMMA 13.  Let x, K, and L be positive integers with x < p}p3. Suppose that a
set A C [1,x] N Gy N G, satisfies the following conditions:
(i) there are at least L pairs (ni,n,) € A2 with n, > n» and such that n; = n,

(mod p»);
(ii) there are at most K elements of A in any residue class modulo p;.

Then

L
< piPZ'VPN(p?, 61, 2)'?

where Z = Lx/p%J.
Proof. Denote
M; :#{neA:n—ip%eA}, i=1,...,Z.

By Lemma 11 and the condition (i) we have

A
>u
i=1

v

L.

Next, let
mi=#neG n—ip3eG), i=1,...,Z.

Then by condition (ii) we have

z 1 < L
i > — Mi > —. 17
2RI MR "
We observe also that fori =1,...,Z

m; < #D, (ip3). (18)

Moreover, we have Z < plz. In particular, if a positive integer i < Z is divisible
by p; then, by Lemma 11,

m; = #D,,(ip3) = 0.

Assume that the residues of ip% modulo plz, i =1,...,7Z, are contained in J
distinct cosets Ci, ..., C; of the group G;. For j =1,..., J, we denote
si=#{i:1<i<Z, ip;eC;}
and also
t; =#D, (v)

for some element v € C; (clearly, this quantity depends only on the coset C; and
does not depend on the choice of v).
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Therefore, using (18) we can rewrite (17) as

IS 19
= K’
To estimate the left-hand side of (19) from above we consider that the cosets
Ci,...,C; are ordered so that the sequence {fi,...,f,} is nonincreasing. By
Lemma 12 we have for j =1,...,J

i+t L (prj)

Hence,
< pi iR (20)
Clearly,
J
Y osi=2 @21
j=1

By the definition of N(p?, G, Z), we have

s; < N(pi, G, 2). (22)

M-

We notice that Z > 1; otherwise there are no (n;,n,) € A* with n; > n, and such
that ny = n, (mod p,). Define

= |Z*N(p?.G1,Z)] and J; =min{Jy, J}.

It is easy to see that Jy > 1. Therefore, J; > 1.

To estimate the left-hand side of (19) we consider separately the cases j < J;
and j > J; (the second case can occur only if Jo = J;). By (20), (22), and the
Cauchy—Schwarz inequality, we have

Ji 2 Ji I J Jo
Dot 9 2 D R L RIS
Jj=l1 Jj=l1 j=l1 j=l1

j=1

Therefore,
Ji

Z sity < pi*Z'PN(pt.G1. ). (23)
j=1
If Jo = J; then we also have to estimate the sum over j > Jy. To do so we
use (20) and (21):
J

> sty <15,2 < piPZ'PN(pi. 61 2)'. (24)
j=Jo+1

Combining (19), (23), and (24), we complete the proof. O
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Now we prove a combinatorial statement demonstrating thatif aset [1,x]NGNG»
is large then we can choose aset A C [1,x] N GiNnG, satisfying the conditions of
Lemma 13 with K and L such that L/K > p».

Let Z, and Z, be nonempty finite sets. For a set A C Z; x Z, we denote the
following horizontal and vertical “lines”:

Ax, ) ={yel,: (x,y) € A}; AC,y) ={xeZi: (x,y) € A}.

LEMMA 14. For any set A C I x I, there exist a subset B C A and positive
integers ki and ky such that:

(i) #B > %#A;
(ii) #B(x,-) < ky for any x € Ly,
(iii) #B(-,y) <k forany y € I;
(v Y #B(x,) >

xeZ
#B(x,)>k1/2

V) E #B(-,y) >
Y€l
#B(-,y)>ka2/2

s
log(#T, + #1,)

——#A.
log(#Z, + #1,)

Proof. The case A = (J is trivial, so we now consider that #4 > 0. Let U be the
smallest integer such that 2U > #T, +#75,501 < U « log(#Z) + #1,).

We construct the following sequence of sets {4,}, v = 0,1,.... Set 4, = A.
Assume that .4, has been constructed. We now define u, as the smallest integer u
such that |

D #Ax ) S —#A (25)
8U
xeZ

#A,(x,)>2"

Similarly, let v, be the smallest integer v such that

1
Do HA(GY) S HA. (26)
8U
Y€y
#A,(,y)>2Y
Define
A=A\ | (y:iyedx )
xeZ
#A, (x,)>2"v
\ U @y ixeAy) 27)
el
#A, (-, y)>2%

Clearly, for any v = 0, 1, ... we have
Av+1§Ava OSMU+ISMV<U7 Ofvv+lfvv<U'

There exists a number N < 2U such that
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uyri=uy and vyy = vy.

Set
B=Any1, k1 =2", ky =2,

Now, from (25), (26), and (27), we derive

N N
HANB) <Y Y #A) Y D #AGY)
v=0 v=0

X€I; Y€l
#A,(x,)>2" #A(-,y)>2%
2(N +1) 1
< ——#A < —#A.
- 8U -2

So, condition (i) is satisfied.

By the definition of B, k;, and k, we see that conditions (ii) and (iii) are satis-
fied too.

Next, if k; = 1 then

> #B(x,) =#B.

xely
#B(x,-)>ky/2

If k| > 1 then we deduce from the equality uy; = uy that
1
#B(-, —#A.
> 3> o

xely
#B(,y)>k1/2

In either case the condition (iv) holds. Analogously, we also have condition (v)
satisfied. OJ
7.2. Conclusion of the Proof
We suppose that Q is large enough while ¢ and § are small enough and define

x= Q%3 and y = ((1 —8)log Q)35+,

Assume that there are two primes p; # p, with Q'=° < p;,p» < Q and
such that
a”' =1 (mod p?), a”> ' =1 (mod p3)

for all positive integers a < y.

As before, for v = 1,2, we use G, to denote the subgroup of Zy. consisting
of nonzero p,th powers modulo p? and use G, for the subset of Z formed by the
integers belonging to G, modulo p2.

Then S(x,y) € G, N G» (here we take into account that y < min{py, p»}).

Since |
59/24 —38)([1 — — 1+6
59/ )< 59/35+e)> +

provided § is small enough compared to ¢, we derive from Lemma 5 that
W(x,y) > Q' (28)

(provided ¢ and § are small enough).



324 J. BouRGAIN, K. ForD, S. V. KONYAGIN, & I. E. SHPARLINSKI

We now associate with any integer n € S(x, y) the pair of residues
(n (mod p1), n (mod p3)) € Z,, X Zp,.
Using Lemma 14 we conclude the existence of a set
AC S,y CILxINGING,
and positive integers k|, k, and an absolute constant ¢ satisfying the following

conditions:

(@) #A > W(x,y)/2;
(b) there are at most k| elements of A in any residue class modulo p;
(c) there are at most k, elements of .4 in any residue class modulo p,;
(d) there are at least coW(x, y)/(k; log Q) residue classes modulo p; containing
at least k1 /2 elements from A,
(e) there are at least coW(x, y)/(k, log Q) residue classes modulo p, containing
at least k, /2 elements from A.
Without loss of generality we can assume that k, > k.
In particular, we see from property (a) and (28) that

#A> Q'
Therefore, by properties (a) and (e) we have

W(x,y) Q'
Yk log 0 ~ krlog O

O>pr>c

Hence,
)

0
k —,
2 > log 0

provided that Q is large enough. If a residue class modulo p, contains at least
ko /2 elements from A, then there are at least k% /10 pairs (n1,n,) € A? such that
n; > np and n; = n, (mod p;). Therefore, the conditions of Lemma 13 are ful-
filled with K = k; and

k3 \/ v 1+
Lo |2 | (x,y) S (x, y)k2 > 0 kz.
10 k> log O log O log O

Considering again that Q is large enough we obtain that
L k0

— > = > 0.
K = Kk =0

Applying Lemma 13, we obtain

piPZAN(p2. Gl 2)* > Q (29)

where

7 — { X J < Q-5 < p111/24_6/2.
2
20

On the other hand, Lemma 9 applies with v = 2 and yields
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5/12 - 1/2 - 13/24—38/2+0(1
N(pi.G1.2) < Zpy P (p}) o+ 4 22p 2 (p]) VoW < p D,
Consequently,
p2/3ZI/3N(p12,gl,Z)l/3 < p1176/3+0(1) < Q176/3+0(1)’

which disagrees with (29) for Q large enough. This contradiction completes the
proof.

8. Proof of Theorem 4

Let P, be the set of all primes p for which

a’~!'=1 (mod p?) (30)
for all primes a < y.
We need the following estimate, from which Theorem 4 follows quickly.

LEMMA 15. Suppose Q > 2y > 2. Then for all § > 0 and any x > 2, we have

()CQ)'S(Q2 + xQ*1 + min(fol/Z,xl/ZQ))
Y(x,y) :

#HpePy:0/2<p=0}K

Proof. For real u, let
Tu) = Z exp(2miun)
neS(x,y)
andput Y = T(0) = ¥(x,y).
Let p € P,. By the Parseval identity, we have for each prime p

=2 -Gl

2

£ 1)

a:l_ a=1
P’ P
=p> Y N(p>a)’—p) N(p,b)’, 31
a=1 b=1

where N(q, a) is the number of elements of n € S(x, y) in the progression n = a
(mod q). For p € P, we see that n?~! = 1 (mod p?) for every n € S(x,y). By
Lemma 11, foreach b € {1, ..., p — 1} there is a unique residue a;, modulo p? with

» = b (mod p) and al’f_l = 1 (mod p). Consequently, N(p% a,) = N(p,b).

Therefore
P
ZN(p a)* = ZN(p a)* =Y N(p,b)’,
b=1

which, after substitution in (31), implies that

()

2

P
=p(p—1)Y_ N(p,b).
1<a<p? b=1
(a,p)=1
Since
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p
> N(p.by=Y
b=l

and clearly N(p,0) = 0 for p > Q/2 > y, by the Cauchy—Schwarz inequality,

we obtain
>

I<a<p?
(a,p)=1

2 p—1
T(%)‘ =p(p—1>_ N(p.b)* = pY>

b=1

Therefore

T a
> X (5
PEPy  l<as<p?
0/2<p=0 (a,p)=1

2
> QY*#{peP,: Q/2<p <0} (32

By Lemma 10,

2. 2.

q=0 1§a§q2
(a,q)=1

2
T(:—z)‘ < (x0)(Q% + x + min{xQ"2% x2Q%)Y.  (33)

Comparing (32) and (33), we obtain the desired estimate. O

To finish the proof of Theorem 4, we take x = Q2 and y = (log Q)*/3*¢ in
Lemma 15. Inserting the bound from Lemma 5, we have

W(x,y) > x 1 -1/G/3+e) > Q1+58
for a suitable § > 0. Therefore, for the previous choice of y we obtain

#{pePy:0/2<p=<0}<k Q'

which implies the desired estimate.

9. Comments

Lemmas 6, 8, and 9 can easily be obtained in fully explicit forms with concrete
constants. Thus, the bound of Theorem 1 can also be obtained in a fully explicit
form, which can be important for algorithmic applications. For example, it would
be interesting to get an explicit formula for n¢(¢) such that for n > n((e) the con-
clusion of Corollary 2 holds.

It is interesting to establish the limits of our approach. For example, the bound

N, (k) < kp—l-‘ro(l)

for values of k = p'™°™ (or larger), which is the best possible result about N, (k),
leads only to the estimate
¢y < (log p)'**0,

which is still much higher than the expected size of £,,. Furthermore, if instead of
Lemma 10 we have the best possible bound
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q 2
a
> 's<—2) ’ < QYQ*+ Ny,
1=¢g<0Q0 a=l 4
ged(a,q)=1
the exponent 5/3 of Theorem 4 can be replaced with 3/2.

Certainly, improving and obtaining unconditional variants of the estimate (3)
and, more generally, investigating other properties of set YW(p) is of great interest
owing to important applications outlined in [12]. It is quite possible that Lemma 6
can be used for this purpose as well.

Congruences with Fermat quotients g, (a) modulo higher powers of p have also
been considered in the literature; see [6; 13]. Using our approach with bounds of
generalized Heilbronn sums

p
m—1
Hpyw(}) = Ze,,m(w )
b=1

due to Bourgain and Chang [2] or Malykhin [17] (which is fully explicit), one can
estimate the smallest a with

gp(a) #1 (mod p™)
for fixed m > 2.
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